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ABSTRACT

Accurately estimating tropical cyclone (TC) intensity is one of the most critical steps in TC forecasting and

disaster warning/management. For over 40 years, the Dvorak technique (and several improved versions) has

been applied for estimating TC intensity by forecasters worldwide. However, the operational Dvorak tech-

niques primarily used in various agencies have several deficiencies, such as inherent subjectivity leading to

inconsistent intensity estimates within various basins. This collaborative study between meteorologists and

data scientists has developed a deep-learning model using satellite imagery to estimate TC intensity. The

conventional convolutional neural network (CNN), which is a mature technology for object classification,

requires several modifications when being used for directly estimating TC intensity (a regression task).

Compared to theDvorak technique, the CNNmodel proposed here is objective and consistent among various

basins; it has been trained with satellite infrared brightness temperature and microwave rain-rate data from

1097 global TCs during 2003–14 and optimized with data from 188 TCs during 2015–16. This paper also

introduces an upgraded version that further improves the accuracy by using additional TC information

(i.e., basin, day of year, local time, longitude, and latitude) and applying a postsmoothing procedure. An

independent testing dataset of 94 global TCs during 2017 has been used to evaluate the model performance.

A root-mean-square intensity difference of 8.39 kt (1 kt ’ 0.51m s21) is achieved relative to the best track

intensities. For a subset of 482 samples analyzed with reconnaissance observations, a root-mean-square in-

tensity difference of 8.79 kt is achieved.

1. Introduction

Tropical cyclone (TC) intensity, which is defined as the

maximum sustained surface wind near the TC center, is

an important parameter that needs to be accurately esti-

mated in TC forecasting and disaster warning/manage-

ment. For instance, Zhai and Jiang (2014) proposed that

normalized hurricane economic losses approximately

follow a power-law relationwithTC intensity, inwhich the

exponent generally ranges between 4 and 12. In addition,

an accurate estimation of the intensity could lead to a

better initialization of the numericalmodels, and thus lead

to better forecasts. More accurate intensity estimation

may also contribute to a forecast of rapid intensification,

which is one of the most challenging forecast issues and

remains the highest operational forecasting priority at

the National Hurricane Center (Rappaport et al. 2012;

DeMaria et al. 2014).

A major problem for intensity estimation and fore-

casts has been the lack of in situ observations, which are

difficult because TCs spend most of their lifetime over

the open ocean, where only a few surface observations

are available on small islands and from buoys. Although

reconnaissance, research aircraft with radar, drop-

sondes, and other instruments provide high-quality ob-

servations, such aircraft missions are expensive and areCorresponding author: Buo-Fu Chen, bfchen777@gmail.com
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only available in the Atlantic and eastern North Pacific

when a hurricane is near the U.S. mainland. Therefore,

satellite remote sensing observations are the primary

source of TC information, due to their global coverage

and high temporal frequency. Although satellite remote

sensing does not provide a direct measurement of the

wind near the surface, satellite images of cloud, water

vapor, and precipitation serve as proxies for estimating

TC intensity (e.g., Cecil and Zipser 1999; Velden et al.

2006; Olander and Velden 2009; Ritchie et al. 2012).

For over 40 years, the Dvorak (1975, 1984) technique

has been the primary source of TC intensity estimates

worldwide, especially when aircraft reconnaissance data

are not available (Velden et al. 2006). The Dvorak tech-

nique involves subjectively identifying central and banded

cloud features in color-enhanced infrared images (i.e.,

scene-type determination) and linking these cloud pat-

terns to TC intensity by lookup tables. During the last two

decades, several revised Dvorak techniques have been

developed (Velden et al. 1998). For example, the Olander

and Velden (2007) advanced Dvorak technique (ADT) is

currently used for operational TC intensity estimation.

The ADT reduces the subjectivity by using an objective

storm center determination scheme and computer-based

algorithms for recognizing cloud features, to which linear

regression is applied to estimate TC intensity.

As the basic idea of using satellite imagery to estimate

TC intensity is that intensity is strongly related to cloud

patterns in the images, other parameters calculated from

satellite infrared images have been proposed to correlate

with TC intensity: (i) deviation angle variance (DAV),

which determines the degree of symmetry of the TC by

evaluating the gradients of cloud-top temperatures

(Ritchie et al. 2012, 2014); (ii) mean and standard de-

viation of cloud-top temperatures in 14 radial rings

around a TC (Fetanat et al. 2013); and (iii) slope of TC

inner-core cloud tops (Sanabia et al. 2014). Further-

more, various regression methods have been applied to

TC intensity estimation: (i) Ritchie et al. (2012) used a

nonlinear sigmoid equation to describe the relationship

betweenDAVandTC intensity; (ii) Fetanat et al. (2013)

used the k-nearest-neighbors algorithm to identify an-

alog TCs that exhibit similar cloud features; (iii) Zhao

et al. (2016) introduced a multiple linear regression

model that utilizes seven different parameters of TC

cloud characteristics; and (iv) Zhang et al. (2016) in-

troduced a machine-learning method, called the rele-

vance vector machine, to estimate TC intensity.

In addition to geostationary satellite infrared imagery,

temperature anomaly profiles associatedwith theTCwarm

core, observed by the Advanced Microwave Sounding

Unit (AMSU), have been applied for intensity estimation

(Spencer and Braswell 2001; Demuth et al. 2004). The

AMSU, which is in low Earth orbit (;810km above the

surface vs;36000km for geostationary satellites), detects

earth/atmosphere emitted radiation in the microwave

portion of the electromagnetic spectrum. The brightness

temperatures of various AMSU channels can be used to

determine the temperature anomaly associated with the

TC warm core, which has a strong relationship to the TC

intensity. As each of these techniques has pros and cons,

the state-of-the-art Satellite Consensus (SATCON) blends

the ADT estimate and other estimates based on polar-

orbiting satellite overpass, includingAMSU, to produce an

ensemble estimate of TC intensity worldwide (Herndon

et al. 2010; Velden and Herndon 2014; Herndon and

Velden 2018). Specifically, SATCON utilizes a statistically

derived weighting scheme that maximizes (minimizes) the

strength (weaknesses) of each technique to produce a

consensus intensity estimate for a variety of TC structures.

Although SATCONwill only provide an updated estimate

when a polar-orbiting member overpass of a target TC

becomes available, it is one of the best techniques with

a root-mean-square intensity error under 10kt (1kt ’
0.51ms21).

Each of these techniques has issues, such as inconsistency

across basins and uncertainties arising from inherent sub-

jectivity or complicated finetuning procedures. Several

studies have shown that theDvorak technique is negatively

affected by the inherent subjectivity of storm center selec-

tion and scene-type determinations. Nakazawa and

Hoshino (2009) documented differences between the

Dvorak techniques as applied by the Japan Meteoro-

logical Agency and by the Joint Typhoon Warning

Center (JTWC) for westernNorth Pacific TCs from 1987

to 2006. Nakazawa andHoshino (2009) also showed that

the JTWC tends to estimate a faster intensification rate

before the mature stage and a slower or delayed start of

the weakening stage. Maskey et al. (2018) provided an

example of widely different estimates among the U.S.

agencies: ‘‘the 15 UTC 10 October 2017 National Hur-

ricane Center discussion for Tropical Storm Ophelia

noted that the Dvorak intensity estimates ranged from

T2.3/33 kt (by UW-CIMSS1) to T3.0/45 kt (by TAFB2)

to T4.0/65 kt (by SAB3). In this particular case, human

experts at TAFB and SAB differed by 20 kts in their

Dvorak analyses, and the automated version at the

University of Wisconsin was 12kt lower than either

of them.’’

1 Cooperative Institute for Meteorological Satellite Studies,

University of Wisconsin–Madison.
2 Tropical Analysis and Forecast Branch, National Hurricane

Center.
3 Satellite Analysis Branch; National Environmental Satellite,

Data, and Information Service.
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In summary, most of the current techniques for TC

intensity estimation rely upon feature-engineering to

transform low-level satellite imagery into high-level

human-constructed features. Even for the most experi-

enced meteorologists and forecasters, it is still hard to

identify if a feature is suitable for intensity regression for

all TCs in various life stages, environments, and basins.

In addition, only a few features (usually less than 10)

may be finally used in the regression models.

This collaborative study between meteorologists and

data scientists proposes a deep-learning model to address

the need for an automated, objective, and end-to-end in-

tensity estimation technique. Since AlexNet, which estab-

lished the baseline architecture of convolutional neural

networks for image recognition used today, was proposed

in 2012 (Krizhevsky and Hinton 2009; Krizhevsky et al.

2012), deep-learning algorithms have flourished. These al-

gorithms include convolution neural networks (CNN), re-

current neural networks (RNN), and generative adversarial

networks (GAN). A CNN consists of convolutional layers

that extract spatial features from the input image and fully

connected layers with simple computational units that

learns discriminative features to improve prediction of the

target phenomenon, without relying on human intelligence

to identify which features aremost important (e.g.,He et al.

2016). Therefore, a CNN could be applied for extracting

features form satellite infrared images just as meteorolo-

gists determine cloud patterns (e.g., the eye of a hurricane)

that are related to TCs within certain intensity ranges.

Then, the CNN will use these features as predictors to es-

timate TC intensity.

Recent studies (Pradhan et al. 2018; B. Chen et al. 2018;

Velden and Cossuth 2019) have applied CNN to estimate

TC intensity. Pradhan et al. (2018) used CNN to classify

TC images into eight categories (i.e., not a TC, tropical

depression, tropical storm, and five Saffir–Simpson scales

for hurricane intensity). The intensity intervals between

these eight categories range from 12 to 29kt. Although

the Pradhan study demonstrated the potential of applying

CNN for intensity estimation, they studied only 98 hur-

ricanes in the eastern North Pacific and Atlantic. More-

over, their training data and validation data were from

the same hurricanes, and thus these datasets were cor-

related. Therefore, the capability of CNN for intensity

estimation has not yet been demonstrated.

Instead of solving this task through classification, our

previous study (B. Chen et al. 2018) proposed a pre-

liminary CNN model that estimates TC intensity as a re-

gression task. In this study, the previousmodel is extended

and optimized for global TC intensity estimation with

comprehensive verification. A total of 1097 TCs during

2003–14 were used for training the model, and the model

was further optimized with data from 188 TCs during

2015–16. Subsequently, an independent testing dataset of

94 global TCs during 2017 was used to evaluate the model

performance and compare the model performance with

the operational ADT, AMSU, and SATCON techniques.

The datasets used in this study and the CNNmodel design

are described in section 2. Some optimizations of the

preliminarymodel (B.Chen et al. 2018) tomake it suitable

for global usage are described in section 3. The perfor-

mance of the CNN model is evaluated in section 4, and

conclusions are given in section 5.

2. Data and the CNN design

a. Data

As satellite observations have been used for estimating

TC intensity (e.g., Cecil and Zipser 1999; Velden et al.

2006; Olander and Velden 2009), this study utilizes the

Gridded Satellite dataset (GridSat; Knapp et al. 2011;

Inamdar andKnapp 2015) and the passive-microwave rain

rate derived from theClimate PredictionCentermorphing

technique (CMORPH; Joyce et al. 2004). GridSat is a

long-term dataset of geostationarymeteorological satellite

observations, including infrared (IR1), water vapor (WV),

and visible channel (VIS) brightness temperatures. This

global dataset is available every 3h since 1981 and with a

resolution of 0.078 latitude/longitude. Since the resolution

and quality from different satellites have been calibrated,

theGridSat data are suitable for training a CNNmodel for

estimating TC intensity in different basins. Because the

VIS observations are only available during daylight hours,

only the GridSat IR1 and WV data were used in the cur-

rent study. The CMORPH technique provides a passive

microwave (PMW) rain-rate dataset that is derived from

low-Earth-orbit microwave satellite observations, and

these observations are translated via spatial propagation

information obtained from geostationary IR1 data.

CMORPH PMW has global coverage, with a resolution

of 0.258 latitude/longitude, and is available every 3 h

since 2003. For this study, the CMORPH data were

regridded to 0.078 by linear interpolation to unify the

resolution of the input arrays for the CNN model. Al-

though the CMORPH rain rate improves model perfor-

mance (as described later in section 3b), the CMORPH

version used in this study is produced at a 24-h latency,

because it is a blend of microwave imager data before

and after the valid time. For real-timeoperational use, the

model presented in this paper would have a 24-h latency.

A future version will test a modification: adopting the

nearest PMW rain rate observation within the past 1.5 h.

Examples of IR1, WV, and PMW observations of Ty-

phoon Champi (2015) are shown in Fig. 1. At 0600 UTC

17 October, the GridSat IR1 image (Fig. 1a) and WV
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image (Fig. 1b) both have an asymmetric cold cloud

shield associated with a sheared anvil to the south. By

contrast, the CMORPH PMW reveals the eye and eye-

wall of Champi and a separate convection area to the

southwest (Fig. 1c). Five days later (Figs. 1d–f), the IR1

and WV both have a large eye, but the PMW has the

capability to resolve asymmetries in the rain rate of the

eyewall and in the rainbands. Although the PMW better

observes the TC inner core, the IR1 reveals more cloud

features in the outer region, including shallow rainbands

and nonprecipitating anvil clouds.

In this study, IR1, WV, and PMW satellite observa-

tions from a total of 1379 TCs during 2003–17 were ex-

amined every 3 h. Table 1 shows the sample sizes of TCs

and 3-hourly images for the western North Pacific (WP),

eastern North Pacific (EP), Atlantic (AL), Southern

Hemisphere (SH, including South Pacific and south

Indian Ocean), central North Pacific (CP), and north

Indian Ocean (IO). Note that the data were categorized

into three groups: training, validation, and testing

(Table 1). The training dataset was used to fit the CNN

weights, and the validation dataset was used to find the

best hyperparameters (parameters selected a priori,

rather than learned during training). Finally, the best-

performing model on the validation dataset is applied to

the testing data, which provides an independent assess-

ment of the model’s performance.

Postseason analyzed best track TC intensities were

used as the ‘‘ground truth’’ for developing the CNN

model. These intensities were provided by the JTWC for

TCs in the WP, IO, and SH basins, and from the revised

hurricane database (HURDAT2) for TCs in the EP, CP,

and AL basins. Although these best track intensities

were considered ground truth, most of them are based

FIG. 1. GridSat (a) IR1 and (b)WV brightness temperature images and (c) CMORPHPMW rain rate (shaded color over grayscale IR1

brightness temperature) of Typhoon Champi (201525W) at 0600 UTC 17 Oct 2015, and (d)–(f) corresponding images five days later at

0600 UTC 22 Oct 2015. The best track intensities are also indicated.
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on satellite, rather than in situ reconnaisance or research

observations that are available in the EP and AL basins.

Nevertheless, best track intensities are currently the

most suitable intensity datasets to develop a worldwide

TC intensity estimation technique. As the best track

datasets are generally available only at the 6-hourly

synoptic times, TC locations and intensities at 0300,

0900, 1500, and 2100 UTC in this study were generated

by a simple linear interpolation tomatch the times of the

satellite datasets. Although this interpolation might in-

troduce some small errors, it is necessary to train the

model with satellite images that are not at the 6-hourly

synoptic times.

Because a large majority of best track intensities have

been generated using the subjective Dvorak technique

by forecasters in various agencies, some considerable

uncertainty (i.e., error relative to the real truth) exists in

the best track data. Thus, a separate evaluation of the

model performance will be relative to a subset of recon-

aided best track data that includes only the intensities

within 63 h of aircraft reconnaissance observations4 in

the AL and EP basins during 2015–17.

b. Brief introduction to convolutional neural
networks

CNNs, a class of deep-learning model, are the state of

the art in many computer vision problems, such as digit

identification (e.g., LeCun et al. 1998) and object rec-

ognition (e.g., Krizhevsky et al. 2012). A CNN consists

of several processing layers to extract a progressively

more abstract representation of the input data, called

‘‘features,’’ and fits these features to some target cate-

gories for a classification task or a target value for a

regression task.

Each layer consists of a number of units (or neurons),

which compute a weighted linear combination of the

input and are followed by an element-wise nonlinearity

(activation function). The weights (or model parame-

ters) are optimized by ‘‘training’’ themodel on a dataset.

A common choice of the element-wise nonlinear func-

tion is linear rectification [f(x)5max(x, 0)], which gives

rise to rectified linear units (ReLUs; Nair and Hinton

2010). This application of ReLUs is critical for learning

nonlinear relationships between the input and output

variables and effectively reduces the ‘‘vanishing gradi-

ent’’ problem in training neural networks (Nair and

Hinton 2010; Glorot et al. 2011). This ReLU application

also makes other pretraining procedures (e.g., Bengio

2007) unnecessary in most cases.

To train the CNN to fit TC intensities that are repre-

sented as single values by updating theweights of neurons

with many learning iterations (i.e., epochs), the model

calculates the error (or loss function) at the end of each

epoch and propagates it backward. As the errors are

back-propagated in the network, the CNN ‘‘learns’’ the

task by updating theweights of each layer tominimize the

loss function. As shown in Fig. 2, our CNN model is

consisted of convolution layers and fully connected

layers. The CNN components responsible for feature

extraction are the convolutional layers, as the weights in

the convolutional filters are learned during training. Note

that the transformation through convolution layers is

useful to extract features when the input data exhibit

somekind of topological structure, such as the ordering of

pixels in a grid or the temporal structure of an audio

signal. Specifically, a learnable convolution filter (Fig. 2,

red cuboids), which has a specificwindow size and a depth

equivalent to the depth of the input layer, scans through

the data with restricted connectivity to the next layer, and

transforms the multidimensional array scanned by the

filter into one high-level output feature at every step of

scanning. As a set of convolution filters is applied to the

input layer, a subsequent convolution layer is produced

with a depth equivalent to the number of the filters. After

passing through several convolution layers, the feature

maps (Fig. 2, the 3D array of the last convolution layer)

are flattened to a 1D array in the CNN. In this study, fully

connected layers transform these features to the target

value, which is an estimate of TC intensity. Similar to a

conventional artificial neural network, neurons in a fully

connected layer have full connections to all neurons in the

previous layer, and their output can hence be computed

with a weight and a bias offset.

Pooling techniques (or pooling layers), which are

usually applied in CNNs, aim to reduce computational

complexity by storing the statistics of a group of features

instead of their original values (Krizhevsky et al. 2012).

TABLE 1. Sample sizes of TCs and 3-hourly frames of training

data (left portion), validation data (center portion), and testing

data (right portion) for various basins. Each frame comprises an

IR1, a WV, and a PMW image.

For training

(2003–14)

For validation

(2015–16)

For testing

(2017)

TCs Frames TCs Frames TCs Frames

WP 320 17 104 59 2955 33 1367

EP 203 11 910 44 2826 20 972

AL 207 11 921 28 1786 18 1154

SH 285 16 131 45 2303 19 969

CP 17 2771 2 358 0 0

IO 65 1121 10 434 4 118

Global 1097 60 958 188 10 662 94 4580

4 The aircraft reconnaissance data can be downloaded at the

NHC website (https://www.nhc.noaa.gov/recon.php).
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However, the characteristics of TC satellite images lead

to the decision of omitting pooling layers in our model,

because pooling degrades the resolution of the detected

features, such as small-scale gradients (e.g., a clear

hurricane eye with large gradients on the eyewall), which

are important in determining TC intensity (B. Chen et al.

2018, their section 4.3).

Another common procedure applied in standard

CNNs is dropout, which is a regularization technique

where randomly selected neurons are ignored (the out-

put is temporarily set to zero) during the training to

prevent overfitting (Srivastava et al. 2014). However,

our previous study (B. Chen et al. 2018, their section 4.3

and Fig. 4) suggested that the application of dropout led

to a negative bias in the CNN model, which did not

have a softmax layer (Krizhevsky et al. 2012) in order to

solve intensity estimation as a regression task. Thus, no

dropout is applied to the CNN model in this study. As

will be described later in section 2c, an alternative reg-

ularization technique, which is the random rotation of

input images, is applied to prevent overfitting and im-

prove the model performance.

c. Description of the CNN model

The proposed CNNmodel was developed based on the

structure of AlexNet (Krizhevsky et al. 2012), instead of a

very deep CNN (e.g., VGGNet; Simonyan and Zisserman

2014) because our training set is smaller (60000 images)

than those typically required for a very deep model. A

deeper CNN contains more weights and therefore re-

quires more data to properly adjust these weights; it could

easily overfit without a sufficient data amount. Because a

relatively deep CNN usually needs to be pretrained, we

reduce the number of layers and use fewerweights on each

layer, so that no pretraining is needed. The main pro-

cedures and the architecture of the CNNmodel (hereafter

referred to as CNN-TC) are described in Fig. 2. However,

some optimizations will be described in section 3 with

additional experiments. For example, an experiment to be

described in section 3b, excluding the WV datasets, leads

to a later decision to only include the IR1 brightness

temperatures and PMW rain rates as the model inputs.

Three preprocessing steps of middle-cropping, random

rotation during the learning phase, and normalization

FIG. 2. Flowchart and architecture of the CNN-TC model (see description in section 2c).
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were applied to the satellite observations (Fig. 2). As the

TC intensity may correlate better with inner-core fea-

tures than with cloud patterns in the outer region, an area

of 64 3 64 grid points (approximately 2.258 latitude–

longitude) with respect to the TC center was cropped.

The main reason for focusing on this inner-core region

was to omit less important andmore complicated features

in order to avoid overfitting. Second, as dropout layers

were omitted in the CNN-TC (section 2b), data aug-

mentation is performed by randomly rotating the input

fields with respect to the TC center before using them to

train the model. This augmentation not only efficiently

increased the amount of training data, but also guarded

against overfitting. The third preprocessing step was to

separately normalize IR1 and PMW values by z-score

normalization. For instance, a brightness temperature

value of an IR1 image was normalized by subtracting the

mean of all brightness temperatures of all IR1 images in

the training data and dividing the value by the standard

deviation. This step significantly improved the computa-

tional efficiency because most of the values would range

between 23 and 3 after the normalization. Finally, an

additional preprocessing stepwas utilizedwith the images

of SH TCs. As the Southern Hemisphere TCs rotate

clockwise while Northern Hemisphere TCs rotate coun-

terclockwise, the images of SH TCs were flipped hori-

zontally to make them suitable to be simultaneously

trained with NH TCs.

After preprocessing, the model had 64 3 64 3 2 5
8192 values (Fig. 2). Subsequently, four convolution

layers were applied to extract/transform these 8192

features into 1152high-level features. The convolution

window size, number of convolution filters, stride (i.e.,

the grid points by which the convolution window shifts),

and other configurations are shown in Table 2. Taking

the first convolution layer as an example, scanning

through the input array (D 5 64 3 64 3 2) by a total of

16 filters with a 43 43 2 window size andwith a stride of

2 transformed the input to 31 3 31 3 16 5 15 376 fea-

tures. Similarly, the second, third, and fourth convolu-

tion layers extracted 153 153 325 7200, 73 73 645
3136, and 3 3 3 3 128 5 1152 features, respectively.

Also, ReLUs were applied to account for nonlinearity

on every layer.

Finally, three fully connected layers were applied to

transform these 1152 features to one predicted TC in-

tensity. At the end of the learning process, the model

calculates the loss function and propagates it backward

to update the weights. Because the objective here is to

predict the actual magnitude of the TC intensity, the

mean squared error (MSE; kt2) is selected as the loss

function. Note that the CNN hyperparameters as shown

in Table 2 (e.g., layer numbers and filter sizes) were

determined by testing various CNN structures based on

the training and validation datasets.

The CNN-TC was trained with randomly rotated TC

images from 2003 to 2014 (Table 1). Each image is

horizontally rotated with a random angle at each epoch

during the training process to enhance the variability

of the input data and prevent overfitting (Dieleman

et al. 2015). The model was trained on GeForce GTX

1080 8GB GPU, using the TensorFlow5 framework (in

Python), which supports CUDA.6 It took approximately

2h to complete 100 epochs, and 100–300 epochs are

generally sufficient for learning this task with the afore-

mentioned CNN architecture.

The MSEs relative to the best track intensity for each

epoch in the CNN-TC are shown in Fig. 3 for the training

data (red line) and the validation data (green line). For

the training data, the MSEs decrease as the epoch num-

ber increases. This continuous MSE decrease is because

the CNN-TC focuses more and more on detailed and

minor features of each image in the training data after

about 200 epochs, so that smaller and smallerMSE can be

achieved (i.e., overfitting the data). In contrast, the MSE

for the validation data stops decreasing after about

200 epochs, and then increases slightly because of the

TABLE 2. The shape of the input array and hyperparameters of four convolution layers (Conv. 1–4) and three fully connected layers

(FC 1–3). See also Fig. 2 and the description in section 2c.

Layer Input shape Number of filters Shape of the filter Stride Nonlinearity Output (features learned)

Conv. 1 2 3 64 3 64 16 2 3 4 3 4 2 ReLU 16 3 31 3 31 5 15 376

Conv. 2 16 3 31 3 31 32 16 3 3 3 3 2 ReLU 32 3 15 3 15 5 7200

Conv. 3 32 3 15 3 15 64 32 3 3 3 3 2 ReLU 64 3 7 3 7 5 3136

Conv. 4 64 3 7 3 7 128 64 3 3 3 3 2 ReLU 128 3 3 3 3 5 1152

FC 1 1152 — — — ReLU 256

FC 2 256 — — — ReLU 128

FC 3 128 — — — — 1

5 TensorFlow is an open-source software library for dataflow

programming across a range of tasks. It is a symbolic math library

and is also used for machine learning applications such as neural

networks. (Abadi et al. 2016).
6 CUDA is a parallel computing platform and application pro-

gramming interface model created by NVIDIA.
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CNN overfitting. Consequently, the decision was to stop

training the model at around 200 epochs and to use this

CNN configuration for estimating TC intensity. Further

optimizations for TC intensity estimation across the globe

are described in the next section.

3. Model optimization and preliminary results

a. Rotational ensemble averaging

Rotational ensemble averaging is a special procedure

only applied in the prediction (validation and testing)

phase to enhance the performance of the CNN-TC. It is

somewhat similar to the concept of the ensemblemean, in

which ensemble members are created with initial pertur-

bations as the model input and an average of all members

is taken as the final output. In this study, the CNN-TC

estimates TC intensity by averaging multiple estimates

based on images rotated by evenly distributed angles from

08 to 3608. For example, if an ensemble number of 4 is

selected, four estimates would be obtained by using the

unrotated image and those rotated by 908, 1808, and 2708.
Note again that this procedure is not applied in the

training phase, in which each image was randomly rotated

before fed into the model at each epoch.

The MSE with an ensemble number of 10 for the vali-

dation data (Fig. 3, blue line) is lower than the MSE

without rotational ensemble averaging (Fig. 3, green line).

In addition, a series of experiments was conducted to test

the effect of various ensemble numbers on the model

performance (Fig. 4a). As the ensemble number increases

from 1 to 12, the MSEs decrease but tend to equilibrate

with ensemble numbers larger than 6. Therefore, an en-

semble number of 10 was adopted for the CNN-TCmodel.

b. Test of the combinations of different channels

With the selection of an ensemble number of 10 (section

3a), experiments evaluating the model performance with

various combinations of satellite images (i.e., IR1, WV,

and PMW) as the model input were conducted (Fig. 4b).

To examine the seven combinations of the satellite

channels, the filter size of the first convolution layer was

changed to fit the depth of the input array.

The first test is the impact of using a single channel

among the PMW, WV, and IR1 channels. An MSE of

around 250kt2 could be achieved if only the PMW is used

(Fig. 4b, gray dotted line). If only theWV is used, anMSE

of around 160kt2 is achieved (Fig. 4b, blue dotted line).

Note that the IR1-only experiment achieves an MSE of

around 130kt2 (Fig. 4b, red dotted line), and thus the IR1

FIG. 3. Learning curves (i.e., MSE for each epoch) for the CNN

model using training data (red line) and validation data for both

the non-ensemble-averaging estimation (green line) and the

rotational-ensemble-averaging estimation (blue line).

FIG. 4. Learning curves (i.e., MSE for each epoch) based on the

validation data for (a) CNN models with various ensemble num-

bers and (b) CNN models trained with various combinations of

satellite images.
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is concluded to have the most useful features for TC in-

tensity estimation. However, the optimum combination

of two channels is found to be IR1 and PMW (Fig. 4b,

black solid line). The reason the combination of the IR1

and WV channels has higher MSEs (Fig. 4b, yellow solid

line) is that these channels have similar features (Fig. 1),

while the PMW resolves the convective features under

the cold cloud shield and thus provides additional in-

formation for estimating the TC intensity. Furthermore,

the MSE of the three-channel combination (Fig. 4b, blue

solid line) is slightly higher than that of IR1 1 PMW

combination (Fig. 4b, black solid line) presumably be-

cause the current CNN may be not deep enough to ef-

fectively extract features from three channels at the same

time. Because the combination of IR1 and PMW is more

effective than the three-channel combination, the WV

channel was omitted in the final CNN-TC configuration.

c. Optimized versions of CNN-TC for TCs from
all basins

In the previous subsections, TCs from all basins dur-

ing 2003–14 were used for training the model. However,

the model was found to have different performance in

different basins, presumably because the TCs are af-

fected by different environments, which contribute to

different TC structures and cloud features. Learning

curves of the root-mean-square errors (RMSEs) of the

estimated intensity relative to the best track intensity

are shown in Fig. 5 for TCs from various basins in the

verification data. For the all-basins model (black lines in

Fig. 5), the RMSEs for the WP (Fig. 5a), SH (Fig. 5b),

and AL (Fig. 5c) basins are around 12kt, but the RMSE

for the EP is close to 10kt (Fig. 5d). Except for the AL

basin (Fig. 5c), the all-basins model has smaller RMSEs

than the basin-specific models (red lines in Fig. 5), which

were trained with data from each specific basin. Al-

though the all-basin model performance is generally

better because of the larger training dataset, the lower

RMSEs of the AL-specific model (Fig. 5c, red line)

suggest that some special cloud features in the AL basin

are not learned by the all-basins CNN.

Another modification of the CNN architecture to

develop an upgraded version of CNN-TC for estimating

TC intensity in all basins was to include other TC

FIG. 5. Learning curves of intensity RMSE for (a)WP TCs for the CNNmodels trained with all data (black line),

data from the specific basin (WP in this case, red line), and the other two optimized versions of the CNN model

(green and blue lines), and corresponding graphs for TCs from (b) SH, (c) AL, and (d) EP basins.
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information into the model. This modification was

made by adding nonsatellite TC parameters into the

1152 features extracted by the four convolution layers

before feeding them into the fully connected layers

(Fig. 2). The first modification was simply including six

basin codes (1 or 0) representing the WP, EP, AL, SH,

CP, and IO basins. For example, a WP TC has the six

basin codes of [1, 0, 0, 0, 0, 0]. Therefore, a total of

1152 1 6 5 1158 features were fed into the fully con-

nected layers. This ‘‘basin-code’’ version (Fig. 5, green

lines) has comparable RMSEs to the all-basin model in

the WP and SH basins and has substantially lower

RMSEs than both all-basin and basin-specific models

in the EP and AL basins.

FIG. 6. Best track intensities every 6 h (red line) vs the intensity estimates every 3 h by the optimized CNN-TC

(blue line) for the 25 global TCs with maximum intensities greater than 96 kt and lifetimes longer than 10 days

during 2015–16 (validation dataset). The year, storm number, and basin indicator (W for western North Pacific,

E for eastern North Pacific, L for Atlantic, and S for Southern Hemisphere) of each TC is indicated at the bottom,

and names of specific TCs mentioned in the text are provided at the top.
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An upgraded CNN-TC version (hereafter referred to

as ‘‘optimized version’’) was achieved by further adding

day of year (represented by sine and cosine), local time

(represented by sine and cosine), and TC location

(longitude and latitude) into the basin-code version.

Therefore, a total of 11521 125 1164 features were fed

into the fully connected layers. This optimized version

(Fig. 5, blue dotted lines) has RMSEs around 11.5 kt for

the WP and the SH and 9.5 kt for the AL and the EP.

Finally, the weights at epoch 160 were selected as the

final CNN configuration, and the performance of this

optimized CNN-TC is evaluated in the next section.

4. Performance of the CNN-TC and comparison to
other techniques

a. Performance of the optimized CNN-TC based on
the validation dataset

This subsection aims to further evaluate how well the

optimized CNN-TC fit the validation dataset and in-

troduces the application of a smoothing procedure to

improve the estimation accuracy.

The 3-hourly intensity estimates from the optimized

version of the CNN-TC are compared in Fig. 6 with the

6-hourly best track intensities for all 25 global TCs during

2015–16 that reached major-hurricane intensity (.96kt)

and had lifetimes longer than 10 days.Generally, CNN-TC

exhibits good performance for estimating TC intensity

based on images at a single time. For example, the CNN-

TC estimated intensity closely follows the best track in-

tensity during the rapid intensifications ofTyphoonMaysak

(201504W), Typhoon Soudelor (201513W), Hurricane

Jimena (201513E), and Hurricane Matthew (201614L).

Note that the peak intensity of 155 kt of Typhoon

Soudelor (201513W) is actually captured by the CNN-TC.

Although the CNN-TC estimates generally follow the

best track intensities, 3-hourly CNN-TC estimates have

larger fluctuations. For example, the CNN-TC estimated

intensity of Severe Tropical Cyclone Nathan (201518S)

has oscillations of 20 kt when Nathan moved along the

northern coast of Australia. For Severe Tropical Cy-

clone Winston (201611S), which was the most intense

tropical cyclone on record in the SH, the CNN-TC also

has short-term intensity fluctuations even though it fol-

lows the general intensity evolution rather well.

Hurricane Lester (Fig. 6, 201613E) was a case with a

pronounced diurnal intensity evolution in the verifica-

tion data. Examination of Lester’s intensity oscillations

relative to the local time and a series of IR1 images

FIG. 7. Best track intensities (red line) and CNN-TC estimates (blue line) forHurricaneLester (201613E) and the

local time at the TC location (green line, right axis). Diurnal variations of the TC IR1 cloud features are illustrated

by the six IR1 images. The green circles on the IR1 image indicate the 200- and 400-km radii from the TC center.
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(Fig. 7) reveal that Lester had a relatively large cold

cloud shield and a clear eye near local noon and a small

cold cloud shield near midnight. While the larger cold

cloud shields and clear eye appear to be correlated

with large CNN-TC intensity estimates, the amplitudes

of diurnal intensity variations in CNN-TC estimates

are larger than the amplitudes of best track intensities

(recall that the best track values are every 6h and are

interpolated to 3-h values). Thus, oscillations of theCNN-

TC intensity estimates may in part be due to overfitting

the diurnal variation of cloud features.

Another contribution to the large short-term intensity

fluctuations of the CNN-TC may be that each 3-hourly

estimate by theCNN-TC is time-independent. Therefore,

several smoothing methods were tested for the CNN-TC

estimates, which are illustrated for Typhoon Namtheun

(201615W)as an example (Fig. 8). The smoothingmethods

tested include: (i) five-point weighted average, which av-

erages the five estimates during the previous 12h with

weights of 1, 2, 3, 4, and 5 (i.e., the latest time, t5 0, has a

weight of 5; Fig. 8, green line); and (ii) nine-point linear

fitting, in which the final estimates is based on a linear fit of

estimates during the previous 24h (Fig. 8, blue line). These

smoothing methods are most effective in reducing differ-

ences relative to best track intensities during the steady-

state stage (Fig. 8, time frame;0–20) and for a short time

scale oscillation during the intensification period (Fig. 8,

time frame 5 23).

In this study, the RMSE relative to best track in-

tensities for the optimized (but nonsmoothed) CNN-TC

version based on all samples in the validation dataset

(Table 1) is 10.38 kt. This RMSE can be reduced to 8.74

and 9.80 kt if five-point weighted average and nine-point

linear fitting are applied, respectively. Consequently,

postsmoothing by the five-point weighted average is

applied to the optimized version of CNN-TC, which is

hereafter referred to as the ‘‘optimized and smoothed’’

version. In this version, only 11% of the estimations in

the validation dataset have a negative bias larger than

10kt and only 9% of the estimations have an intensity

overestimate larger than 10kt. Thus, the optimized and

smoothed version has better performance [79% of

errors, 10kt (Fig. 9, blue line)] than the optimized and

unsmoothed version [73% of errors , 10kt (Fig. 9, red

line)]. By contrast, the original version, which is trained

without additional TC information, substantially un-

derestimates the intensity (Fig. 9, black line).

The performance of the optimized and smoothed

CNN-TC relative the best track intensities is also eval-

uated by stratifying the validation dataset by various

TC intensities, environmental vertical wind shear (VWS)

magnitudes, and latitudes (Fig. 10). As shown in Fig.

10d, CNN-TC has relatively small biases for the large

sample (Fig. 10a) of TCs within the 30–60-kt intensity

bin, which may be due to the training of the CNN having

focused on those cases in reducing the MSE during the

learning process. Similar to previous studies (e.g.,

Ritchie et al. 2012, their Fig. 11; and Fetanat et al. 2013,

their Fig. 8), the CNN-TC tends to have positive biases

(overforecasts) for tropical depressions and negative

biases (underforecasts) for hurricanes and typhoons

(Fig. 10d). The underestimations for hurricanes and ty-

phoons (intensity . 65kt) contribute to the relatively

high RMSEs (10–15 kt) and mean absolute errors

(MAEs, 8–12kt), compared to the RMSE and MAE for

FIG. 8. Intensity evolutions of Typhoon Namtheun (201615W)

from the optimized CNN-TC model estimations with different

smoothing methods: no smoothing (red line); 5-point weighted

average (green line); and 9-point linear regression (blue line). The

black line indicates the best track intensity.

FIG. 9. Cumulative distribution functions of intensity biases

relative to the best track intensity for the original version of

CNN-TC model (black line), the optimized version (red line), and

the smoothed-optimized version (blue line).
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the 30–60-kt TCs (Fig. 10g). A future modification of the

CNN-TC to address this issue will be to randomly drop

out the samples with tropical storm intensities in the

training data for reducing the overall sampling bias.

Following B.-F. Chen et al. (2018) and Galarneau and

Davis (2013), VWS is defined as the difference between

200- and 850-hPa mean flows and was calculated based

on the National Centers for Environmental Prediction

final operational global analyses. As applied here, both

the rotational and divergent winds associated with a TC

vortex have been removed within 58 from the TC center,

and the mean flow at each level could be calculated by

averaging the wind within this 58 area (Galarneau and

Davis 2013). Note also that only half of all samples (n5
5331) are available for this analysis because the global

analysis data are produced every 6 h. As shown in

Fig. 10e, the CNN-TC intensity biases are fairly stable

for various VWS bins, except that the biases are slightly

larger for larger VWS magnitudes. This result suggests

that the CNN-TC is capable of detecting asymmetric

cloud features associated with the TC–VWS interaction,

which is important as VWS is considered to be the most

critical factor contributing to asymmetric TC convec-

tion. Furthermore, relatively small intensity RMSEs

FIG. 10. (a) Sample sizes in 15-kt intensity bins, (d) biases, and (g) RMSEs and MAEs of the optimized and smoothed CNN-TC

estimations. Note that the box with the red horizontal bar in (d) indicates the lower, middle, and upper quartiles of the biases, while the

black line indicates the mean. (b),(e),(h) As in (a), (d), and (g), but for various 3m s21 VWS bins. (c),(f),(i) As in (a), (d), and (g), but for

various 48 latitude bins.
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and MAEs are found for VWS . 12m s21 (Fig. 10h).

The interpretation is that a TC under strong VWS

(.12ms21) usually cannotmaintain a hurricane/typhoon

intensity (i.e., .64kt), while TCs under moderate VWS

(,10ms21) are more likely to reach hurricane/typhoon

intensities. It is also possible that the intensity estimation

errors of TCs under strong VWS are inherently con-

strained to be smaller because of the smaller intensities

(see also Fig. 10g).

For various latitude bins (Figs. 10c,f,i), the perfor-

mance of CNN-TC is also stable, except the positive bias

for low-latitude TCs (Fig. 10f, 48–88 bin) and negative

bias for high-latitude TCs (Fig. 10f, 368–488 bin). For
low-latitude TCs, the higher bias (Fig. 10f, 48–88 bin) but
lower RMSE (Fig. 10i, 48–88 bin) may be attributed to

generally weak TC intensities. For high-latitude TCs,

CNN-TC might underestimate the intensity, as the TC

cloud pattern begins to disperse as the extratropical

transition begins.

Recall that a large majority of best track intensities

were generated using the subjective Dvorak technique

and thus might have considerable uncertainty. Following

the practice at Cooperative Institute for Meteorological

Satellite Studies (CIMSS), the CNN-TC performance is

also evaluated with respect to recon-aided best tracks,

which is a subset of best track data that includes only the

intensities within 63h of aircraft reconnaissance obser-

vations in the AL and EP basins. Whereas the intensity

RMSE of the optimized and smoothed CNN-TC model

for all 10662 samples from global TCs is 8.74kt with a

correlation coefficient of 0.96 (Fig. 11a), the RMSE for

the 673 recon-only samples is 9.63kt, with a correlation

coefficient of 0.97 (Fig. 11b). Again, a significant un-

derestimation of the extraordinarily intense Hurricane

Patricia (indicated by the red circle in Fig. 11b) indicates

that the current CNN-TC model lacks skill for intensities

above 140kt. Although the recon-only RMSE (9.63kt) is

larger than the all-sample RMSE (8.74kt), a two-sample

Student’s t test indicates that the mean absolute error

of these two groups are not significantly different at the

99% confidence level. These results suggest that although

the CNN-TC model is trained to fit the global best track

data, a statistically consistent performance could be also

evaluated based on just the recon-aided best tracks for

EP and AL TCs.

b. Final verification based on the testing dataset and
comparing the optimized and smoothed CNN-TC
to ADT, AMSU, and SATCON

Recall that the final CNN configuration and the option

of smoothing CNN-TC estimates have been determined

based on the evaluation of the validation dataset. Thus,

the independent testing dataset (TCs in 2017) is used as a

documentation of the CNN-TC performance as it might

be operationally used in the future. For the optimized and

smoothed CNN-TC, the RMSE relative to all 4580 best

track intensities from global TCs is 8.39 kt (Fig. 12a),

which is slightly lower than but not significantly different

to the RMSE (8.74kt) calculated based on the validation

dataset (Figs. 11a). Furthermore, the RMSE relative to

482 recon-aided best track samples from EP andAL TCs

is 8.79kt, with a correlation coefficient of 0.97 (Fig. 12b).

FIG. 11. (a) Scatterplot of CNN-TC estimations and best track intensities in the validation dataset of 188 global

TCs in 2015–16. The sample number n, least squares regression line (black line), correlation coefficient R, and

RMSE are also shown. (b) As in (a), except for samples with recon-aided best track for which aircraft re-

connaissance observations were available within a 63-h period.
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FIG. 12. Scatterplots of CNN-TC estimations and best track intensities for (a) all samples from the testing dataset

(94 TCs in 2017), (b) samples with recon-aided best track intensity, and (c) a subset of recon-aided samples for

homogenous comparison with other techniques. The sample number n, least squares regression line (black line),

correlation coefficient R, and RMSE are also shown. As in (c), except for (d) ADT, (e) AMSU, and (f) SATCON.
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This RMSE of 8.79kt is considered the most robust and

independent in the current study.

The optimized and smoothed CNN-TC intensity esti-

mates were compared with three objective operational

techniques for intensity estimation: ADT (Olander and

Velden 2007), AMSU (Demuth et al. 2004; Herndon and

Velden 2014), and the SATCON (Velden and Herndon

2014; Herndon and Velden 2018). These intensity esti-

mates were downloaded from the CIMSS website.7

Different rules were necessary to select samples for

homogenous comparisons among the four techniques.

As the CNN-TC estimates were available every 3 h,

the closest ADT estimate within620min of a CNN-TC

estimate was selected. As AMSU estimates were avail-

able only at irregular times when the polar-orbiting sat-

ellites overpassed the TC, the closest AMSU estimate

within660min of each CNN-TC estimate was selected.

As SATCON estimates were also only available when a

polar-orbiter with a microwave sounder (e.g., AMSU)

passed over a TC, the analysis only included SATCON

estimates in which a CIMSS AMSU estimate was avail-

able in the past 60min. Note also that, to ensure a fair

comparison, these three techniques were validated

with corresponding best track values interpolated

to their observation times. Finally, only CNN-TC es-

timates that were able to be matched with all three

other estimates were included in the homogenous

comparisons.

As ADT, AMSU, and SATCON have been designed

to minimize error with respect to the recon-aided

best track intensities, scatterplots of the 144 intensity

estimates and the corresponding recon-aided best

tracks during 2017 are shown for the four techniques

(Figs. 12c–f). For this homogeneous comparison, the

RMSE and the correlation coefficient R for the CNN-

TC are 7.96 kt and 0.97 (Fig. 12c). The CNN-TC

generally has a better performance than the ADT

(Fig. 12d, RMSE 5 12.65 kt, R 5 0.94) and AMSU

(Fig. 12e, RMSE 5 12.26 kt, R 5 0.93), and a compa-

rable performance to the SATCON (Fig. 12f, RMSE5
8.59 kt, R 5 0.97). In addition, the distributions of

absolute errors of the four techniques are also com-

pared (Fig. 13). Themean absolute error of CNN-TC is

6.5 kt. According to two-sample Student’s t tests, this

mean absolute error is significantly smaller than that of

ADT (9.6 kt) and AMSU (9.5 kt) at the 99% confi-

dence level, but is not significantly smaller than for

SATCON (6.9 kt).

5. Conclusions

This study proposes a satellite imagery-based CNN for

TC intensity estimation that is objective and addresses

some deficiencies in other techniques, such as inherent

subjectivity leading to inconsistent intensity estimates

within various basins. Several modifications to the gen-

eral CNN, such as omitting the pooling and dropout, al-

low theCNN-TC to directly estimateTC intensity. To our

knowledge, CNN-TC is the first CNN model that can

estimate TC intensity as a regression task.

The CNN-TC was trained with datasets of 1097 TCs

during 2003–14 and optimized with data from 188 TCs

during 2015–16. An optimized version was developed

that uses both satellite infrared brightness temperatures

and microwave rain rates as inputs and incorporates

other TC information (i.e., basin, day of year, local time,

longitude, and latitude) into the model to estimate TC

intensity all over the globe. A postanalysis smoothing of

short time-scale intensity fluctuations based on a five-

point weighted average further reduces the model

RMSE to 8.74 kt based on all 10 662 global samples in

the validation dataset (2015–16 TCs). Furthermore,

79% of the CNN-TC estimations have ‘‘errors’’ (dif-

ferences relative to the best track intensities) less than

10kt. An independent testing dataset of 94 global TCs

during 2017 was used to evaluate the model perfor-

mance. The optimized and smoothed CNN-TC has

RMSEs of 8.39 and 8.79 kt for all 4580 testing samples

and 482 recon-aided best track intensities, respectively.

Although the CNN-TC model is trained to fit the global

best track data, a statistically consistent performance

FIG. 13. Boxplots of the absolute errors relative to the recon-aided

best track intensties for CNN-TC, ADT, AMSU, and SATCON in

a homogenous comparison with n 5 144 samples from the testing

datasets (2017 TCs). On each box, the median, 25th percentile, and

75th percentile are indicated; the whiskers extend to the 5th and 95th

percentiles; the blue ‘‘’X’’ and the blue text above the box indicate

themean absolute error. The red (black) text indicates the significant

(not significant) mean difference of each techniques to the mean of

CNN-TC (blue horizontal line) at the 99% confidence level.

7 ADT: http://tropic.ssec.wisc.edu/misc/adt/, AMSU: http://tropic.

ssec.wisc.edu/real-time/amsu/, SATCON: http://tropic.ssec.wisc.edu/

real-time/satcon/.
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could be also evaluated based on just the recon-aided

best tracks for EP andAL TCs. Moreover, the RMSE of

8.79 kt for the 482 recon-aided best track intensities

(Table 3, row 5) is considered the most robust and in-

dependent in the current study. One of the limitations of

the current model is that it would operate with a 24-h

latency because the CMORPH data are a blend of mi-

crowave imager data before and after the valid time. A

future modification to be tested for a real-time opera-

tional use is to utilize the nearest PMW rain rate ob-

servation within the past 1.5-h time window.

Based on a homogenous verification of 144 recon-aided

samples in the testing dataset, the optimized and smoothed

CNN-TC has anRMSE of 7.96kt (Table 3, row 6), which

is significantly lower than the RMSE of the operational

ADT (12.65) and AMSU (12.26), and statistically com-

parable to the SATCON (8.59kt). Although homoge-

neous comparisons were not possible with the techniques

of Kossin et al. (2007), Fetanat et al. (2013), Ritchie et al.

(2012), and Liu et al. (2015), the RMSE of the CNN-TC

is smaller than those of these techniques (Table 3, rows

1–4). In summary, the results of this study suggest that

the CNN approach is competitive with existing methods

to estimate TC intensity from satellites.

The successful application of CNN-TC for intensity es-

timation demonstrates the potential of applying data sci-

ence for TC analyses. For example, future studies may

apply advanced applications for tasks such as estimating

TC size and structure, which are important parameters

related to forecasting the potential societal impacts of a

TC (Powell and Reinhold 2007; Irish et al. 2008; Done

et al. 2018; B.-F. Chen et al. 2018). The demonstration

that CNN-TC was capable of incorporating external TC

information into the neural network suggests it may be

possible to develop CNN models for predicting the TC

formation based on both the satellite images and envi-

ronmental factors from external sources, such as the

SHIPS parameters (DeMaria and Kaplan 1994; Knaff

et al. 2005; Jones et al. 2006; Kaplan et al. 2015). Finally,

the challenging task of predicting the probability of rapid

intensification of a TC might be approached with a

CNN model.
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