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ABSTRACT

The High-Resolution Rapid Refresh (HRRR) model with its hourly updating cycles provides multiple

weather forecasts valid at any given time. A logical combination of these individual deterministic forecasts is

postulated to showmore skill than any single forecast for predicting clouds containing supercooled liquid water

(SLW), an aircraft icing threat. To examine the potential value of using multiple HRRR forecasts for icing

prediction, a time-lag-ensemble (TLE) averaging method of combining a number of HRRR forecasts was

implemented for amultiplemonth real-time test during thewinter of 2016/17. The skills of individualHRRRand

HRRR-TLE aircraft icing predictions were evaluated using icing pilot reports (PIREPs) and surface weather

observations and compared with the operational Forecast Icing Product (FIP) using the Rapid Refresh (RAP)

model. The HRRR-TLE was found to produce a higher capture rate of icing PIREPs and surface icing con-

ditions of freezing drizzle or freezing rain than single deterministic HRRR forecasts. As a trade-off, the volume

of airspace warned in HRRR-TLE increased, resulting in a higher false detection rate than in the deterministic

HRRR forecasts. Overall, the HRRR-TLE had similar probability of detection and volume of airspace warned

for icing as the operational FIP prediction for the icing probability of 25%or greater. Alternative techniques for

composing TLE from multiple HRRR forecasts were tested in postseason rerun experiments. The rerun tests

also included a comparison of the skills of HRRR and HRRR-TLE to the skills of RAP and RAP-TLE.

1. Introduction

Accurate forecasts of aircraft icing and supercooled

large drops (SLD; freezing drizzle and freezing rain)

conditions are of great importance to aviation safety.

In fact, new aircraft icing regulations were enacted in

January 2015 to introduce a new icing certification rule,

section 25.1420 (FAA 2014), and a FAA engineering

standard (‘‘Appendix O’’) that defines SLD environ-

ments for certification of affected aircraft. Past icing

forecast algorithms were developed by applying tem-

perature and humidity thresholds to the output of nu-

merical weather prediction (NWP) models (Schultz and

Politovich 1992) and by refinement using vertical ther-

modynamic profiles (Forbes et al. 1993) and merging

observations from various platforms (Bernstein et al.

2005). The currently operational icing forecast product

that the aviation community relies upon, Forecast Icing

Product (FIP; https://aviationweather.gov/icing/fip), is-

sues short-term forecasts of icing threat based on the

thermodynamic and water-phase variables from the

13-km Rapid Refresh (RAP) model (McDonough et al.

2004). FIP provides valuable information including icing

probability, icing severity, and potential for SLD.

Moving toward smaller grid spacing and more sophis-

ticated physical parameterizations, the current High-

Resolution Rapid Refresh (HRRR; Benjamin et al.

2016) has shown promising results for directly predicting

clouds with an icing threat (Thompson et al. 2017). The

rapid hourly cycling of HRRR also makes available

multiple forecasts valid at any given time. Past experi-

ence and previous studies (e.g., Wolff and McDonough

2010; Cintineo et al. 2014; Thompson et al. 2017) have

shown that cloudy regions predicted by single deter-

ministic NWP model forecasts tend to be spatially

smaller than is observed. This low bias in cloud amount

is seen for relatively low-altitude clouds such as boundary

layer clouds, as well asmidtroposphere cloudswith cloud-

top temperature in the range of 08–208C. Therefore, it is
logical to presume that aircraft icing is underpredicted by

the current deterministic HRRR forecasts. This led us to
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postulate that a logical combination of individual deter-

ministic forecasts may improve the prediction of aircraft

icing beyond any single forecast. Furthermore, given the

uncertainties in the model’s initial conditions and im-

perfections in themodel’s physical parameterizations, the

ensemble approach may be a viable way to reduce fore-

cast uncertainties. Thompson et al. (2017) described an

attempt to construct the time-lag-ensemble (TLE) aver-

age for the prediction of supercooled liquid water (SLW)

using a set of individual HRRR-TLE forecast members.

For one case study of a high-impact weather event, it was

shown that the TLE technique increased, sometimes

substantially, the number of correctly captured icing re-

ports. Also as expected, there was a trade-off with the

prediction of negative icing reports, due to the increase in

the total predicted icing airspace volume by the TLE

averaging procedures.

To test systematically the effectiveness of the TLE

procedures, an algorithm similar to that developed in

Thompson et al. (2017) was implemented and auto-

mated to run in a 3.5-month real-time test beginning

1 December 2016 and ending 15March 2017. During the

real-time test, individual HRRR forecasts from hourly

cycles were received from the National Centers for

Environmental Prediction (NCEP). These determinis-

tic HRRR forecasts were combined to form 1–12-h

HRRR-TLE forecasts (with the HRRR-TLE forecast

length refers to the shortest HRRR forecast used in the

TLE). Observations of icing conditions aloft from pilots

(PIREPs) and surface weather conditions from Meteo-

rological Aerodrome Reports (METARs) were used to

assess the icing conditions aloft and at the surface.

Finally, in order to compare the icing predictions of the

HRRR individual and HRRR-TLE forecasts to the

existing operational forecast, real-time FIP data were

collected and evaluated as well. For brevity, only the

evaluation results of 3- and 6-h forecasts of HRRR,

HRRR-TLE, and FIP are discussed in this paper. Fol-

lowing the real-time test, rerun experiments were con-

ducted to test alternative TLE averaging methods for

HRRR and to evaluate the TLE forecasts composed of

RAP members. In the sections to follow, this paper

describes the TLE procedures (section 2), observation

datasets and verification methods (section 3), results

from the systematic real-time evaluation (section 4),

postseason rerun experiments (section 5), and intermodel

comparisons (section 6). Section 7 gives the summary and

conclusions.

2. The TLE methodology

The TLE method implemented for the real-time test

in this study is similar to that described in Thompson

et al. (2017), but applied to the operational HRRR

forecasts. At each grid point, a set of fractional weights

were assigned to the explicitly predicted liquid water

content (LWC; sum of cloud water and rain) from the

individual HRRR forecasts to create a weighted average

as the resultant HRRR-TLE forecast of LWC. Icing con-

ditions in both HRRR and HRRR-TLE were diagnosed

from LWC and temperature, with the ice accretion rate

calculated following Thompson et al. (2017). A threshold

of LWC. 1026 gm23 (and temperature, 08C) was used
in the real-time test as the criteria for icing forecast on any

grid point. No attempt was made to discriminate the var-

ious icing intensities with model-predicted ice accretion

rates in this work.

The operational HRRR model is run every hour

with hourly forecasts to 18 h over a domain that covers

the contiguous United States (CONUS) with 3-km

grid spacing. The numerical core of HRRR employs

the Weather Research and Forecasting (WRF) Model

(Skamarock et al. 2008), version 3.6.1, utilizing the

Thompson and Eidhammer (2014) aerosol-aware mi-

crophysics. Additional details regarding physical pa-

rameterizations used inHRRRcan be found inBenjamin

et al. (2016). Because of the nature of real-time experi-

ments and prototype software to process HRRR data,

the availability of any specific forecast for any specific

time of day was not always guaranteed. Infrequent data

outage and occasional data transfer delay occurred. The

real-time processing system took in what was available

each hour after approximately 2-h wait time to construct

HRRR-TLE forecasts of various forecast lengths.

EachHRRR-TLE forecast used as few as 3 or asmany

as 9 time-lagged ensemble members, all valid at the

same time. Only the 3- and 6-h HRRR-TLE forecasts

were evaluated in this paper. For the 3-h HRRR-TLE,

the most recent forecast used is the 3-h HRRR forecast,

and similarly for the 6-h HRRR-TLE, the most recent

member forecast is the 6-h HRRR. The eligible member

forecasts for 6-h HRRR-TLE is schematically shown in

Fig. 1. However, during the real-time test, no processing

information was recorded to know exactly how many

and which HRRR members actually entered into a

specific HRRR-TLE forecast.

Ideally, the weights assigned to the individual mem-

bers that compose an ensemble forecast should be de-

pendent on the relative skills of the individual forecasts.

However, without reliable a priori knowledge of the

skills of the individual HRRR forecasts for icing, the

weights used in this test were arbitrarily set. Table 1

gives the weights used in the real-time test. Depending

on the number of available forecasts, one of the lines

in Table 1 was used to combine the member forecasts

into the resultant TLE. Another crucial aspect of the
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real-time system was the selection of member forecasts.

To retain maximum flexibility in a real-time operating

environment, the table of weights was used in conjunc-

tion with a priority ordering of the forecast hours shown

in Table 2. Take 6-h TLE for example, 10 HRRR fore-

casts are eligible for composing 6-h TLE (having a lead

time of 6 h or longer) and they were ordered as 6, 9, 12, 7,

11, 8, 10, 13, 14, and 15h (Table 2). If all 10 forecasts

were received when the 6-h TLEwas composed, the first

9 files would be used. The 9 HRRR forecasts would be

given the weights in line 1 of Table 1 to form the 6-h

TLE. If less than 9HRRRfiles were received at the time

the TLE was composed, weights in line 2 or below of

Table 1 would be used. If less than 3 files were received,

the 6-h TLE would be missing. Again, the priority

rankings used in the real-time test (Table 2) were

arbitrarily set.

Following the real-time test, a set of postseason rerun

experiments were conducted using a subset of the real-

time cases. In the rerun mode, the weights and members

were varied in a controlled manner, and their impact on

the resultant TLE forecast was explored (section 5). The

TLEmethod described above was also used to construct

RAP-TLE forecasts from selected deterministic RAP

forecasts, which will be discussed in section 6.

3. Validation of model forecasts

a. Validation of HRRR model forecasts aloft using
PIREPs

Pilot reports (PIREPs) are verbally relayed from pi-

lots to various aviation support personnel on the ground

and generally contain reports of upper-air conditions

of cloud cover, temperature, wind, weather, turbulence,

and icing. The icing information from PIREPs includes

direct reports of either no icing (NEG) or subjective

levels of icing experienced such as trace (TRC), light

(LGT), moderate (MOD), or heavy/severe (SEV).

Occasionally, pilots will use intermediate categories

such as LGT–MOD, in which case we placed them into

the bin with the more severe category. Since TRC re-

ports may not be operationally relevant to end users and

the number of SEV reports is relatively small, we fo-

cused on the verification statistics calculated for the two

intermediate icing severity thresholds: LGT and above

and MOD and above. Various inherent uncertainties

and limitations are associated with PIREPs (Schwartz

1996). As a result, the verification statistics are not to be

interpreted in an absolute sense, but as relative assess-

ment for comparing the capabilities of different fore-

casting systems.

The validation was done for mostly daytime hours of

1200–0300 UTC, when PIREPs are most prevalent, for

all 105 days of the real-time test. To match the obser-

vations with forecasts in time, PIREPs from 30min prior

to 30min after the top of each hour were used to ver-

ify the forecasts valid at the hourly output interval of

the HRRR. Spatially, the HRRR model values at a set

of 8 3 8 grid points surrounding the report and within

1000 ft (305m) below and above the reported altitude

TABLE 1. The weights given to individual forecasts to create a

HRRR-TLE forecast depending on the number of available files

to include in the TLE average.

No. of files Weights

9 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1

8 0.1, 0.1, 0.2, 0.1, 0.1, 0.2, 0.1, 0.1

7 0.1, 0.1, 0.2, 0.15, 0.15, 0.2, 0.1

6 0.5, 0.1, 0.1, 0.1, 0.1, 0.1

5 0.50, 0.15, 0.15, 0.10, 0.10

4 0.55, 0.20, 0.15, 0.10

3 0.60, 0.25, 0.15

2 0.65, 0.35

TABLE 2. The ranking of each HRRR forecast hour used in the

time-lag-ensemble average.

Priority Forecast hour

1 6

2 9

3 12

4 1

5 3

6 4

7 5

8 7

9 11

10 8

11 10

12 2

13 13

14 14

15 15

FIG. 1. Schematic showing the 10 eligible HRRR member fore-

casts that comprise a 6-h TLE ensemble forecast. Which members

were actually used in a TLE depends on the availability of files and

the maximum number of members allowed. A maximum of 9 were

allowed in the real-time test.
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were retrieved. The 83 8 model grid points are taken as

4 consecutive rings surrounding the PIREP covering a

region of approximately 243 24km2 (see Fig. 2). In the

validation of forecast for a positive icing PIREP, a

model prediction was scored as a hit if any one of the 64

model points surrounding the PIREP on anymodel level

within 1000 ft from the report altitude contained icing

(SLW above the threshold of 1026 gm23). However, in

the case of negative icing, all of the 64 grid points sur-

rounding the no-icing PIREP at the model level nearest

to the reported altitude were required to have nomodel-

predicted icing to be considered a hit (correct negative).

Following Brown et al. (1997), we computed the

probability of detection (POD) or hit rate by the model

forecasts for icing reports at the reported icing severity

levels, and the probability of detection for no-icing

(NEG) reports, PODno. By definition, PODno is the

fraction of the no-icing PIREPs that were correctly

forecast as no. As discussed in Brown et al. (1997), the

pilots usually do not make systematic reports, and typ-

ically in PIREPs, there aremanymore icing reports than

no-icing reports. The event counts in PIREPs overesti-

mate the relative frequency of icing conditions, and do

not represent the ‘‘true’’ distribution of icing conditions.

As a result, it is inappropriate to combine the yes- and

no-icing reports together to estimate joint probabili-

ties. For example, using PIREPs to estimate the stan-

dard false alarm ratio, defined as the probability of a

no-observation given a yes-forecast, would produce

misleading results of values that are much too small. The

limitations of PIREPs also make it difficult to adopt

some other commonly used statistical evaluation methods

for dichotomous forecasts, such as the equitable threat

score (ETS) or the true skill statistic (TSS). The POD

and PODno used in this study are observation-based

probabilities. The complement of PODno, the probability

of false detection (POFD 5 1 2 PODno), can be viewed

as a limited measure of false alarms, since it is the fraction

of the observed ‘‘no’’ events that were incorrectly fore-

cast as ‘‘yes.’’ In the discussions to follow, the phrase,

false alarm rate, will be used to refer to the observation

based probability of false detection (POFD).

From the real-time test, daily, monthly and 105-day

aggregated statistics of POD and PODno (POFD) were

compiled. In addition, a total volume of icing impacted

airspace (VOL) was computed for each forecast. The

method for computingVOL follows that fromThompson

et al. (1997a) and Brown et al. (1997) and VOL is defined

as the sum of all model gridbox volumes containing

forecast icing conditions for each HRRR orHRRR-TLE

forecast. Therefore, the VOL is a measure of the total

spatial extent of the predicted SLW field over the model

domain in increments of HRRR gridbox volume. An

increase of VOL from HRRR to HRRR-TLE is clearly

expected as a result of the ensemble spread.

To facilitate comparing HRRR validation results with

validation results using the FIP and RAP, one may de-

fine VOL for the HRRR grid in a different manner.

By partitioning the HRRR grid into 4 3 4 gridpoint

neighborhoods, each neighborhood contains an area of

12 3 12 km2, which is very close to the FIP/RAP indi-

vidual grid cell area of 13 3 13km2. This partitioning

method results in 16 individual HRRR grid cells

representing a 12 3 12km2 area. If any one of the indi-

vidual HRRR grid cells within the 12 3 12km2 neigh-

borhood had SLW above the threshold (1026 gm23),

then the entire 12 3 12km2 neighborhood was consid-

ered to have icing for the VOL calculation. This meth-

odology effectively degrades the HRRR grid resolution

from 33 3km2 to 123 12km2 to allow close comparison

with the FIP/RAP (discussed further in section 6). It

should also be noted that the HRRR and FIP/RAP

have similar vertical grid increment.

b. Validation of RAP model and FIP forecasts aloft
using PIREPs

The current FAA-sponsored operational forecast ic-

ing product provides 2–18-h forecasts of icing proba-

bility, icing severity, and potential for supercooled large

drops (including freezing drizzle and freezing rain) on a

grid with 13-km horizontal spacing and 500-ft vertical

FIG. 2. Schematic showing the HRRR 8 3 8 (24 3 24 km2)

gridbox region and the FIP 2 3 2 (26 3 26 km2) gridbox region

where the model forecasts are validated by the indicated PIREP

observation.
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spacing. FIP icing probability was calibrated against

PIREPs and always remains below 100% since the

forecast of icing cannot be done with absolute certainty

at any given location in space and time. The maximum

icing probability that is permitted is based on forecast

lead time. At 3- and 6-h lead times, the maximum per-

mitted icing probability values are 74% and 64%, re-

spectively. FIP’s forecasts of icing severity are given in

five categories similar to those used in PIREPs: none,

trace, light, moderate, and heavy. The real-time display

of FIP can be found at http://www.aviationweather.gov/

icing/fip.

During the real-time test and postseason rerun, FIP

forecasts at various probability levels were evaluated

versus PIREPs using the four grid points (26 3 26km2,

see Fig. 2) immediately surrounding each PIREP. Given

the 13-km spacing FIP grid, the four gridpoint evalua-

tion area is nearly equivalent to what was used in the

HRRR evaluation. If any of the four grid boxes had

icing probability equal or greater than a given proba-

bility level (any of 5%, 15%, 25%, 35%, 45%, and 55%),

then the FIP forecast corresponding to the PIREP was

designated as having predicted icing at that probability

level. No evaluation was made for FIP predicted icing

severity categories. For FIP at each of the six probability

thresholds, POD (or PODno) was calculated using

PIREPs of LGT and above,MOD and above, andNEG,

respectively. Similar to the HRRR evaluation, when

evaluating the no-icing PIREPs to compute PODno for

FIP, all four grid boxes surrounding the report had to

contain an icing probability below the thresholds men-

tioned. The different thresholds of icing probability

correlated with different volumes of airspace warned

since the 5% and above represents a far greater volume

than the 55% and above threshold.

Similarly, RAP and RAP-TLE forecasts were also

validated versus PIREPs using the four grid points (263
26km2) immediately surrounding each PIREP. Aggre-

gated statistics of POD, POFD and VOL were cal-

culated for RAP and RAP-TLE during the rerun

experiments. Since the FIP and RAP domains are larger

than the HRRR domain, for comparison purposes only

the PIREPs that were used in HRRR validation were

used to evaluate FIP and RAP.

c. Validation of HRRR surface precipitation type
using METAR

During the real-time test, surface conditions of icing

(freezing rain or freezing drizzle) as well as other surface

weather types were validated using METAR observa-

tions. Weather types in METAR were classified into

seven categories: rain or drizzle (RAorDZ), snow (SN),

fog (FG), freezing rain or freezing drizzle (FZRA or

FZDZ), freezing fog (FZFG), ice pellet (PL), and

graupel/hail (GR/SG). Among the categories, the re-

ports of rain and snow are generally the most reliable

while the reports of fog and freezing fog are the least

reliable. In decoding the METAR data, some classifi-

cation logics were applied (e.g., when a report of rain

was foundwith an air temperatureT, 08C, it was placed
as freezing rain). In a typical hour during cool season,

there are ;2000 reporting stations with as many as

500–700 precipitation observations over CONUS. Most

METAR locations make reports of occurrence of the

various surface weather types, but do not make no-

precipitation reports. For these stations, a lack of report

of a weather type does not necessarily mean that the

weather type did not occur. However, a subset of 33

locations are Service Level A or B sites augmented with

human observations that can provide reliable informa-

tion of nonoccurrence of events. Therefore, similar to

PIREPs, the METAR data were also biased toward

positive precipitation reports. No skill scores that com-

bine hits and false alarms could be evaluated.

To verify forecasts valid each hour, METARs from

15min prior to 15min after the hour were used with

the same horizontal matching process as was done

in the PIREP verification. The time window used for

METARs were narrower than that used for PIREPs

because there were generally many more METAR re-

ports than PIREPs. Also different from the PIREP

verification, the POD and PODno were computed

for each surface weather condition using two different

threshold criteria: at least 1 and at least 8 of the 64

HRRR model points surrounding the report contained

the observed condition. Obviously, the 8-point POD

represents a more stringent test compared to the

1-point test and will always have a lower POD value.

The model forecast of precipitation type was diag-

nosed from the hydrometeor and temperature fields

at the lowest model level. For example, in the case a

METAR has RA (rain) or DZ (drizzle), then if the

model has rainwater QR . 1026 gm23 and T . 08C, it
is a hit. In the case a METAR has FZRA (freezing rain)

or FZDZ (freezing drizzle), then if the model has rain-

water QR. 1026 gm23 and T, 08C, it is a hit. It should
be pointed out that the METAR reports of both FG and

FZFG are based on visibility, not on the actual presence

of visible droplets, so the verification of FG and FZFG

using cloud water were highly unreliable. The graupel/

hail reports were also not used in the verification. Since

the main interest of this work is on icing prediction, the

verification focused on freezing rain and freezing drizzle

conditions, even though additional surface precipita-

tion types were verified using METAR. POD for vari-

ous precipitation types were computed from METAR
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reports from all the ;2000 observing stations whereas

PODno (or POFD) were computed using only the lim-

ited dataset from the 33 Service Level A or B stations.

d. Statistical significance of the validation

During the 3.5-month test period, a total of 32 000

icing PIREPs of trace, light, moderate, or severe were

collected (see Fig. 3a). In addition, there were 6500 ex-

plicit no-icing (NEG) reports during the period. Icing

PIREPs were present for 1670 out of the total 1785h,

typically between a few and a few dozen reports per

hour. Typical numbers for daily light icing reports are

100–300 across the CONUS. Figure 3b shows the num-

ber of METAR observations according to categorized

surface precipitation types during the real-time test pe-

riod. During the 3.5 months, there were approximately

244 000 reports of RA or DZ, 292 000 reports of SN,

10 000 reports of FZRA or FZDZ, 1000 reports of PL,

57 000 reports of FG, and 23 000 reports of FZFG. Only

the observations within the evaluation time window

were counted in Figs. 3a and 3b.

Given an icing report of any type in time and space,

the model forecast is either a ‘‘hit’’ or a ‘‘miss.’’ The

collection of the forecasts for all reports forms a bino-

mial distribution of size N. Assuming the modeling

system has a hit rate of p, then the success proportions

would follow an approximate normal distribution with

the mean equal to the true proportion p, and with

standard deviation:

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(12 p)

N

r
.

The upper limit is s5 0:5/
ffiffiffiffi
N

p
for p 5 0.5 (50%). For

p 5 0.8, s5 0:4/
ffiffiffiffi
N

p
, and for p 5 0.9, s5 0:3/

ffiffiffiffi
N

p
.

The above analysis gives us a way to roughly estimate

the confidence interval of the calculated POD or

POFD for given sample sizes. To ensure the standard

deviation of the calculated POD or POFD is within

1% (i.e., with 95% confidence interval at 21.96%

and11.96% for approximate Gaussian distribution),N

would need to be 900–2500 (assuming p 5 0.1–0.9).

Given that for PIREPs reports of LGT and NEG, N 5
32 000 and 6500, respectively, the uncertainties of the

aggregated mean POD and POFD, in terms of stan-

dard deviation, will be approximately 0.2%–0.3% and

0.4%–0.6%. For the estimation of daily POD and

POFD, the values will increase to about 2%–3%

and 4%–6%. Themean POD for severe icing (SEV) also

has a larger uncertainty, with a standard deviation

of about 2%–3%. For the surface verification using

METAR icing reports, N 5 10 000, and therefore, s’
0.3%–0.5%.

4. Results from the winter 2016–17 real-time test

a. Forecast skills for icing aloft

The 3.5-month aggregated probability of detection by

the 3- and 6-h forecasts of HRRR andHRRR-TLEwith

respect to the PIREP icing category is shown in Figs. 4a

and 4b. Clearly, an icing forecast that uses the time-lag-

ensemble (TLE) procedure is shown to capture more

icing pilot reports than its corresponding deterministic

forecast. For icing PIREPs of light and greater severity

(indicated as LGT in Fig. 4a), the probability of detec-

tion by the 6-h forecasts increased from 59% to 75%

using the TLE method. For PIREPs of moderate and

greater severity (indicated as MOD in Fig. 4a), the in-

crease in probability of detection was from 63% to 79%

FIG. 3. (a) Total number of PIREPs vs weather types during the

3.5-month testing period.NEG indicates explicit no-icing reports at

locations, and CLA is for reports of ‘‘clear sky above,’’ which im-

ply no-icing conditions. CLA reports are not used in this study.

(b) Number of METAR reports vs surface weather types during

the 3.5-month test period. The value for NEG-FZRA is the num-

ber of negative freezing rain/freezing drizzle reports.
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for 6-h forecasts. The improvement of POD by TLE in

the 3-h forecasts are similar to that in the 6-h forecasts,

with the general POD skills of the 3-h forecasts slightly

higher than those of the 6-h forecasts. Also evident in

Fig. 4 is the general trend of increasing POD as PIREP

icing severity increases, with the highest POD for severe

icing conditions.

On the other hand, as the POD increased with TLE,

the PODno decreased, resulting in increased POFD due

to false alarms. The percentage of correctly captured

negative icing (PODno) was 78% for the 6-h deterministic

HRRR forecast and decreased to 69%withHRRR-TLE.

This is to say that the POFD increases from 22% to 31%

when using the TLEmethod. Since the predicted cloudy

regions are increased using TLE, the volume of total

airspace impacted increased by 147%, from approxi-

mately 1.7 3 106 to 4.2 3 106 km3, by TLE on average

during the 3.5 months. This trade-off of volume of air-

space warned for increasing POD was mentioned in

prior studies and remains a significant challenge for any

forecast system to gain the greatest increase of POD

while retaining the lowest POFD. Again it should

pointed out that, the VOL values in Figs. 4a and 4b were

defined at 3-km resolution as the volume sum of all

HRRR grid boxes having explicitly predicted SLW. The

6-h deterministic HRRR forecasts consistently have

slightly smaller VOL than the 3-h HRRR forecast,

pointing to a possible small effect of cloud reduction in

longer forecasts. The notably smaller VOL in 6-h TLE

(4. 2 3 106 km3) as compared to 3-h TLE VOL (4. 9 3
106 km3) are presumablymainly because generally fewer

members are used in 6-h TLE, given that HRRR fore-

casts of 3–5-h lead time could be included in 3-h TLE,

but not in 6-h TLE.

The daily values of POD and POFD are shown in

Fig. 5. As discussed in section 3d, the daily POD/POFD

calculation is associated with a greater degree of un-

certainty due to the smaller sample sizes. As an example,

for the 6-h forecasts, the POD values for the determin-

istic HRRR spread from 40% to 80% with the 10th and

90th percentiles at 47% and 70%, respectively, while the

POD for HRRR-TLE ranges approximately from 55%

to 90% with the 10th and 90th percentiles at 65% and

83%. The POFD for the deterministic HRRR ranges

from 5% to 40% with the 90th percentile around 31%,

while the values for HRRR-TLE are 15%–55%, and

the 90th percentile is at 42%.

b. Forecast skills for surface precipitation type

Figure 6 shows the 3.5-month aggregated statistics of

the HRRR and HRRR-TLE forecasts validated against

categorical surface weather conditions reported in

METARs. For each of the six groups of weather con-

ditions, two sets of four bars are plotted, for POD using

the 1-point threshold and 8-point threshold, respec-

tively, for the 3- and 6-h individual and HRRR-TLE

forecasts. As expected, for all surface weather types, the

POD for the more stringent 8-point threshold is lower

than the POD for the 1-point threshold; however, the

decreases are generally small among each weather cat-

egory. An exception is the POD for FZRA/FZDZ, for

which the fractional decrease going from the 1-point to

8-point threshold is relatively large. More notewor-

thy is the additional benefit of the TLEmethod tomatch

the observed weather more consistently. For instance,

FIG. 4. (a) POD of the aloft icing reports by 3-h HRRR and

HRRR-TLE and 6-h HRRR and HRRR-TLE forecasts. The bars

labeled TRC (LGT, MOD) are for the indicated and greater se-

verity. The last cluster of bars are for the VOL in the forecasts.

(b) POD and POFD vs VOL by 3-h HRRR and HRRR-TLE

(blue) and 6-h HRRR and HRRR-TLE (red) forecasts, for light

and above (solid lines), and moderate and above (dashed lines)

icing severity. The lines connecting HRRR and HRRR-TLE

are plotted for clarity only.
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the POD for 6-h forecasts at 1-point threshold increases

from 75% to 86% for snow and from 44% to 55% for

the combination of either FZRA or FZDZ using the TLE

method. The POFD values for FZRA/FZDZ for all fore-

casts remain low, from 1%–2% for HRRR to 3%–7% for

HRRR-TLE. When a false detection is defined as having

only 1 of 64 model grid points showing a nonobserved

precipitation type instead of 8, the POFD values increase

considerably. The highest POFD values are seen in the

forecasts of rain and drizzle (RA/DZ).

Generally, the deterministic HRRR forecasts

underpredict the occurrence of FZRA/FZDZ condi-

tions. With TLE, the cloudy and precipitating regions

are increased to improve the POD values for icing

conditions aloft as well as at the surface, however, the

POFD values also increase. One significant caveat with

the analysis of surface weather conditions is the known

deficiency of freezing drizzle and ice pellet reports in the

existing METARs from Automated Surface Observing

System (ASOS; Ramsay 1999; Landolt et al. 2017),

FIG. 5. Scatterplots of daily hit rate (POD) vs false alarm rate (POFD) of icing aloft byHRRR(blue) andHRRR-

TLE (red) forecasts at the light and above severity level (LGT) during the real-time test. The two filled dots are the

aggregated values during the 3.5 months for HRRR and HRRR-TLE, respectively. The horizontal and vertical

dashed lines mark the upper and lower 10th percentiles of the POD and POFD, respectively.

FIG. 6. (a) POD and (b) POFD of 6 different surface weather type combinations by 3-h HRRR (olive), 3-h HRRR-TLE (light blue),

6-h HRRR (green) and 6-h HRRR-TLE (blue) forecasts validated againstMETAR. Two levels of detection are defined as having at least

one and at least eight matching grid points within a 24 3 24 km2 box surrounding the observation location.
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which are sometimes incorrectly diagnosed as snow,

reported as unknown precipitation (UP) or missed al-

together. The improvement of automatically diagnosed

surface weather conditions using a new precipitation-

type algorithm is a subject of current research.

5. Alternative TLE methods

To explore further the ability of HRRR-TLE for icing

forecast, alternative TLE methodologies are tested in a

postseason rerun and analysis, using a subset of the real-

time cases. The rerun was done for 4 validation times

daily, at 1500, 1800, 2100, and 0000 UTC, during December

2016. For each validation time, seven deterministic HRRR

forecasts, with a lead time of 2, 3, 4, 6, 9, 12, and 15h, were

combined in alternative ways to form a list of TLE fore-

casts (Table 3). The same fractional weights as given in

Table 1 were used in the rerun test when applicable (i.e.,

in TLE-7Member, TLE-6Member and TLE-3Member).

These alternative TLE forecasts, as well as the individual

forecasts, were evaluated against PIREPs in the same way

as in the real-time test (section 4).

The POD and POFD of the TLE and deterministic

forecasts of the rerun test are shown in Fig. 7. The first

thing to note in Fig. 7 is that the 3-h deterministicHRRR

and 3-h HRRR-TLE by weighted averaging 6-member

forecasts have very similar skills to those in the real-time

test (Fig. 4b). Given that the rerun has a smaller sample

size, this argues for the reliability of the section 4 results.

Among the deterministic forecasts, while the POD

generally increases with shorter forecast lead time, the

probability of false detection and the volume of warned

airspace increases with shorter lead time. Thismay again

indicate that there exists a slight trend of decreasing

cloudiness as the model integrates forward in time.

The next thing to note is that TLE-7Member, the

TLE by weighted averaging 7 members (Table 3), has the

same skill as TLE-MAX, the TLE by taking the maxi-

mum SLW value of the 7 members at each grid point. This

is presumably because a relatively low SLW amount

(1026 gm23) is used as the threshold above which a detec-

tion by the model is signified, such that if any member

predicts icing at a grid point, the TLE by weighted average

would predict icing. This renders the weights used in the

TLErelatively unimportant, as long as the resultant average

SLW is above the threshold value. The POD and POFD

of a forecast have more to do with the extent or regions,

but not the specific values of SLW in the clouds. Essen-

tially both TLE-7Member and TLE-MAX have cloudy

regions encompassing all cloudy regions in the seven indi-

vidual HRRR forecasts. Tests have shown that when

the icing threshold of SLW is increased to 1023gm23, the

magnitude of SLW in the forecasts will become important.

When only 3 members (2, 3, and 6h) are used in the

TLE forecast (TLE-3Member), its skill and volume-

warned decreased proportionally from the 7-member

TLE. The TLE-Median, formed by taking the median

value of the 7 forecasts, essentially represents the icing

prediction by ‘‘vote of the majority.’’ Both the POD and

VOL in TLE-Median are considerably lower than those

of the deterministic forecasts, indicating that there is a

relatively small region where any four (or more) of the

seven HRRR cloud fields overlap. This has lead us to

experiment with TLE-Median2 and TLE-Median3,

in which the TLE icing fields are composed by taking,

respectively, the second or third largest LWC values

forecast by the seven members at each grid point. That

is, the icing volume in TLE-Median2 (TLE-Median3)

represents the regions where at least two (three) mem-

bers predict icing. The skills and volumes of TLE-

Median3 are similar to those of the deterministic

HRRR forecasts, while TLE-Median2 gives higher

POD and POFD/VOL. That is, the overlapping cloudy

regions by at least three of the seven members are

comparable in size to the cloudy region in any arbitrary

deterministic member, while the overlapping cloudy re-

gions by at least two members are generally larger than

that in any member forecast.

Also indicated in Fig. 7 are the POD and POFD

values by the a posteriori best and worstmember. These

are the evaluation scores achieved by selecting the most

and least skillful deterministic forecasts for each hour.

The knowledge as to which member will perform best

(or worst) for a certain forecast hour, of course, is not a

priori available. The a posteriori best and worst skills are

calculated here only as proxies to the upper and lower

limits of the predictability of the current deterministic

TABLE 3. List of the TLE experiments conducted for December

2016. The methodology explains how the TLE hydrometeor fields

are composed from those of the deterministic HRRR forecasts.

Experiment TLE methodology

TLE-7Member Weighted average of 2-, 3-, 4-, 6-,

9-, 12-, and 15-h HRRR

TLE-6Member Weighted average of 3-, 4-, 6-, 9-,

12-, and 15-h HRRR

TLE-MAX Maximum value of 2-, 3-, 4-, 6-, 9-,

12-, and 15-h HRRR

TLE-3Member Weighted average of 2-, 3-, and 6-h

HRRR

TLE-Median Median value (fourth largest)

of 2-, 3-, 4-, 6-, 9-, 12-, and

15-h HRRR

TLE-Median2 Second largest value of 2-, 3-, 4-,

6-, 9-, 12-, and 15-h HRRR

TLE-Median3 Third largest value of 2-, 3-, 4-, 6-,

9-, 12-, and 15-h HRRR
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HRRR forecasts. As at any given validation hour the

forecasts with shorter lead time were more likely the

ones with higher POD, the 2-h forecast was most fre-

quently found to be the a posteriori best member for

POD. In general, all the TLE methods tested showed

trade-offs between POD and POFD, and future icing

prediction methods should be sought to achieve better

POD while maintaining POFD as low as possible.

6. HRRR-TLE versus FIP and RAP

To illustrate the value of HRRR-TLE for icing fore-

casting, its skills were examined in the context of the

current operational icing forecasts: FIP. The skills of

HRRR forecasts were also compared with those of RAP

forecasts, both deterministically and with TLE applied,

to give insight to how the model grid resolution affects

the icing prediction capabilities. This exercise was done

in the rerun mode since additional evaluations beyond

those in the real-time test were required. Similar to the

rerun of HRRR, RAP forecasts were obtained and

evaluated at four validation times daily, at 1500, 1800,

2100, and 0000 UTC, during the month of December

2016. The same TLE methodology as for HRRR-TLE,

the weighted averaging method, was used to combine

deterministic RAP forecasts with a lead time of 2, 3, 4, 6,

9, 12, and 15 h to form RAP-TLE.

Figure 8 shows the PIREPs validation results of 3-h

FIP forecasts at various thresholds of icing probability,

as well as results for 3-h HRRR and HRRR-TLE, and

3-h RAP and RAP-TLE. Given that FIP/RAP and

HRRRhave different domain and grid spacing, care was

taken to make their skill representations as consistent

as possible. When the FIP and RAP forecasts were

validated against PIREPs, only the domain area that

matches the HRRR domain was considered. The POD

and POFD of FIP/RAP were evaluated by searching

4 grid points surrounding each PIREP, and the VOL for

FIP/RAP was defined as the sum of all 13-km grid boxes

having SLW . 1026 gm23. Once again it should be

noted that the VOL for HRRR and HRRR-TLE in

Fig. 8 are defined differently from those presented in

Figs. 4–7 (as previously described in section 3a). How-

ever, the POD and POFD calculations for HRRR were

not modified for comparison to FIP/RAP, and still re-

quired any of the 64 HRRR grid cells surrounding the

PIREP to have SLW above the threshold to be scored

as a hit. Likewise, for negative icing all 64 points had to

FIG. 7. POD and POFD vs the forecast icing volumes (VOL) for 2-, 3-, 4-, 6-, 9-, 12-, and 15-h

HRRR forecasts (gray), and various HRRR-TLE forecasts (colors) using alternative TLE

methods, for the month of December 2016. The a posteriori best (worst) skills are obtained by

selecting the best (worst) performing member forecast at each hour. The lines connecting the

deterministic and TLE points illustrate the trends and do not represent data points in the

interim.
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be free of SLW to be considered a hit (PODno). No

modifications were made to this methodology because

the scoring occurs over roughly the same volume be-

tween the two model grids (24 3 24km2 from the

HRRR and 26 3 26 km2 from the FIP/RAP).

Apparent from Fig. 8 is that for all of the models or

forecast methods, as POD increases, so does VOL.

The result is a trade-off between POD and POFD. The

TLE averaging increases the POD and POFD for both

RAP andHRRR, with HRRR-TLE giving considerably

higher POD and POFD than RAP-TLE. The volume of

airspace warned in 3-h HRRR-TLE nearly doubles the

value in 3-hRAP-TLE. For the probability based FIP, as

the probability threshold gets higher, the VOL/POFD

decreases and so does the POD. The FIP at 55% prob-

ability yields similar though slightly higher POD and

VOL as RAP, while FIP at 45% probability slightly

outperforms the RAP-TLE with a similar VOL but

lower POFD.

Between 3-h HRRR-TLE and 3-h FIP, the skill of

HRRR-TLE is roughly equivalent to FIP at 25% icing

probability threshold in terms of both POD and POFD.

Even though the TLE procedure increased the overall

regions of predicted icing conditions compared to the

deterministic HRRR, the total volume of airspace

warned in the HRRR-TLE forecast remain reasonable

without being overly exaggerated in the context of FIP

icing probability forecasting. On the other hand, in order

for HRRR-TLE to addmore significant value to the FIP

operational forecasts at higher icing probability thresh-

olds, methods should be developed to filter out the re-

gions of low icing probability and to lower the POFD in

HRRR-TLE. Thompson et al. (1997a) have evaluated

the formerly operational Eta model versus PIREPs in

a very similar manner and found a POD of 41% with a

corresponding volume of 2.86 3 106 km3 (shown with a

star in Fig. 8). Explicit numerical weather prediction of

supercooled liquid water has since come a long way.

It should be pointed out that part of the reason for

HRRR forecasts to have predicted considerably larger

VOL than RAP is because that, in calculating the VOL

values shown in Fig. 8, the horizontal resolution of the

HRRRLWCfield was effectively downgraded from 3 to

12 km. The VOL of HRRR forecasts defined as the total

volume of all 3-km grid boxes with predicted icing

(Fig. 7) is much lower than that of the total volume of all

12-km boxes with icing, and is more comparable to the

VOL of RAP. The HRRR and HRRR-TLE forecasts

could be evaluated at higher horizontal resolution in the

future. It would also be interesting to test whether a

HRRR-based FIP will be able to improve upon the skill

of the RAP-based FIP.

FIG. 8. POD (solid lines) and POFD (dashed lines) vs volume of airspace warned (VOL) by

3-h HRRR and HRRR-TLE (red), 3-h RAP and RAP-TLE (blue), and 3-h FIP (gray) at a

number of thresholds of icing probability, for themonth ofDecember 2016. The purple asterisk

marks the POD for the Eta model from Thompson et al. (1997a).
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7. Summary and conclusions

With relatively high resolution (3-km grid spacing)

and explicitly predicted supercooled liquid water, the

HRRR model is being tested on its capability for pro-

viding direct icing forecasts for aircraft and ground icing

applications. Multiple HRRR forecasts available at any

valid time from consecutive cycles make it possible to

construct time-lag-ensemble forecasts. A TLE method

based on weighted averaging was implemented in a

3.5-month-long real-time test and icing forecasts were

evaluated using observational datasets from PIREPs

and METARs. The HRRR-TLE forecasts were shown

to produce a higher capture rate of icing PIREPs and

METAR surface precipitation type than the determin-

istic HRRR forecasts, even using very ad hoc duration

ranks and weighting factors. However, a trade-off of the

TLE technique was the increase of the false alarm rates

and broadened regions of predicted overall icing areas.

The volume of airspace warned by HRRR-TLE is sim-

ilar to that of the 25% probability threshold in the

existing operational FIP. The TLE method was also

tested on RAP forecasts and shown to increase both the

capture rates and false alarm rates. Alternative TLE

methods were also shown to produce higher POD with

higher POFD and vice versa.

For future work, satellite screening techniques similar

to that in Thompson et al. (1997b) may be applied to

very short-term forecasts of HRRR-TLE as possible

ways to reduce POFD while maintaining high POD.

Such techniques diagnose cloud-free regions and remove

predicted icing regions in the forecasts where there are

no subfreezing cloud tops in the satellite analysis.

Another logical application of the TLE method is the

inherent probabilistic forecast information that could

be derived from the ensemble member forecasts for

icing prediction. Additionally, a true HRRR ensemble

system (HRRR-E) with multiple forecast members

generated from the same cycle could easily be

substituted for the TLE ensemble members (or com-

binations thereof). In fact, current plans call for a

HRRR-E to be developed in the near future that utilize

different data assimilation methods, different physical

parameterizations, or different lateral boundary con-

ditions. Theoretically, such ensembles will be able to

better represent the probabilities and uncertainties in

high-resolution NWP. The lessons learned and tech-

niques developed with TLE will be valuable to the

future effort of using theHRRR-E to providemore skillful

icing forecasts.
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