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Background

Between 15 and 17 March 2010, a workshop was held at Princeton University
entitled ‘Meeting a Grand Challenge to Hydrology: The Global Monitoring of
Earth’s Terrestrial Water’. The goal of this workshop was to assess the need
for developing hyper-resolution (0.1-1 km) global hydrology and land surface
models and to make an inventory on what obstacles need to be overcome to
make hyper-resolution models a reality. The primary output from this
workshop was a position paper formulating a number of science questions
that would benefit from hyper-resolution modelling and key challenges to
overcome to make this possible (see Wood et al., 2011).

Since the Princeton workshop and the paper, several groups have been
working on making high-resolution ‘Locally Relevant Hydrological
Models Everywhere’ a reality. For instance, WaterGAP (Doll et al.,
2003) now runs at Smin globally (Florke et al., 2013) as does PRC-
GLOBWB (Van Beek et al., 2011), whereas LISFLOOD (De Roo et al.,
2000; Van Der Knijff ef al., 2010) runs at 6 min globally. Using a modular
python-based framework, NOAH-MP (Niu et al., 2011) is being coupled to
Dynamic TOPMODEL (Beven and Freer, 2001) for 30-m continental
simulations. At the same time, the Land Information System software has
been developed to support high-performance land surface modelling and
data assimilation with horizontal resolutions down to 1 km (Peters-Lidard
et al., 2007). Parallel to these efforts is the community of models configured
to be as physically based as possible (e.g. three-dimensional variably
saturated coupled to shallow water equations for surface runoff) using
high-performance computing technology to scale up from catchments to
basins to continents (Kollet and Maxwell, 2006; Camporese et al., 2010;
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Brunner and Simmons, 2012; Maxwell, 2013). With
global hydrological models ever increasing their resolu-
tion and physically based catchment models their
domains, the two approaches are bound to meet in the
middle in the near future. Aside from hydrology, but
relevant to the present initiative, are ongoing efforts to
improve the hydrology in land surface models (Milly and
Shmakin, 2002; Balsamo et al., 2009; Milly et al., 2014)
and dynamic vegetation models (Rost ef al., 2008; Biemans
et al., 2011), some of which act as land components in earth
system models (Oleson et al., 2004; Best et al., 2011;
Guimberteau et al., 2012). Table I provides a (non-
exhaustive) overview of the various large-scale models
from the different communities and their properties.

Undoubtedly, all these efforts face similar problems:
which processes are best explicitly modelled and which
are better parameterized? How to cope with the computer
processing costs that increase exponentially with resolu-
tion; not only from finer resolution grids but also because
many processes previously parameterized at the lower
resolution now have to be addressed in a spatially explicit
manner? How to best utilize increasingly powerful
computing resources including parallel computers?
How to obtain and process the data required to feed the
huge parameterization needs of these models? How, if at
all, to calibrate such models, validate their simulation
results and perform uncertainty analyses on them?

Because many of the groups are at the moment trying to
find solutions to these problems independently, we
organized a follow-up workshop in Utrecht to exchange
experiences and learn from each other. The main outcome
of the workshop was the foundation of the open
HyperHydro network. Here, we present the objectives
of and the rationale behind this initiative, the scientific
questions that it will attempt to answer and the major
obstacles we need to work on.

The Objective, the Rationale and the Science

The HyperHydro initiative is an open network of
scientists with the objective of simulating large-scale
terrestrial hydrology and water resources at hyper-
resolution with acceptable accuracy. By using the term
‘open network’, we intend that scientists are free to join
and co-operate and that participation in its activities is
voluntary: Participants use their own time and re-
sources to participate in the network’s activities. There
are a number of reasons that motivate this initiative:

Science
There are science questions related to global environ-
mental change that require hyper-resolution descrip-
tions of terrestrial water resources (see also Wood
et al., 2011). We will mention four of these: (1) In
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global biogeochemical cycling, a proper description of
the fate and export of, e.g. N, P, C, and Si requires a
very detailed representation of streams, ponds, lakes,
reservoirs, floodplains and wetlands because much of
the retention on land can be concentrated in the
smallest of water bodies (Bouwman et al., 2013). (2)
Related to this, reconciling rates of soil erosion to
observed riverine sediment export rates is impossible
at the present time because of an insufficient
description of along-river sediment transport, which
in turn is largely related to not resolving important
small scale processes such as sediment trapping, river
bank erosion and bedload transport (Walling, 2009;
Wisser et al., 2013); (3) Recently, several groups have
been working on the assessment of global flood hazard
and risk (Pappenberger ef al., 2012; Hirabayashi et al.,
2013; Winsemius ef al., 2013). These approaches thus
far only consider the probability of flooding based on
simplified hydrodynamics or downscaled volumes of
overbank discharge. However, flood risk also needs
flow velocities, time to flooding and flood duration
times to convert hazard into risk. This in turn requires
very detailed (<100m) resolution hydrodynamic
modelling including the effects of flood defence
structures. (4) The non-uniqueness of parameters and
process descriptions in hydrological models (Beven and
Binley, 1992) and the fact that different processes are
active at different time scales in different catchments
making each catchment unique (Beven, 2000), calls for
generally applicable hydrological models with better
process understanding that provide acceptable predic-
tions in ungauged catchments (PUB, Hrachowitz et al.,
2014). Many of the approaches suggested in PUB, such
as regionalization methods and similarity frameworks,
and its successor Panta Rhei (Montanari et al., 2013),
e.g. optimality and catchment co-evolution, would be
greatly helped if we had ‘hydrological and water
resources models of everywhere’ at a locally relevant
resolution. These models and their output could then be
explored for scale dependent first order controls on
runoff, evaporation, groundwater recharge and others.

Opportunity
Not always popular with hydrologists but no less an
important reason to pursue hyper-resolution models is
the phrase ‘Because we can!’. On the one hand, there
have been enormous advances in global data availabil-
ity, such as (a) low-resolution hydrologic states from
remote sensing: soil moisture (de Jeu et al., 2008),
evaporation (Sheffield ef al., 2006; Miralles et al., 2011),
total terrestrial water storage (Swenson et al., 2006;
Famiglietti and Rodell, 2013), lake and reservoir levels
(Swenson and Wahr, 2009; Gao et al., 2012); (b) high-
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resolution parameter fields: global land cover at 1km
(GLCC), global soils and soil properties at 1km (http:/
soilgrids.org), global surface lithology at 1 km (Hartmann
and Moosdorf, 2012), surface elevation and global river
networks at 15 arc-second (500 m) (Lehner ef al., 2008)
and 3 arc-second (100 m). (¢) Global online databases of
field observations: discharge (GRDC, MOPEX, EWA-
FRIEND), evaporation and carbon fluxes (FLUXNET),
soil moisture (ISMN (Dorigo et al., 2011)); (d) low-
resolution forcing datasets of meteorological forcing
(WFD (Weedon ef al., 2011); CRU TS3.21 (Harris ef al.,
2014); ERA-INTERIM (Dee et al., 2011), MERRA
(Rienecker ef al., 2011)). On the other hand, advances in
computational capabilities and data storage have
exceeded petaflop and petabyte capabilities, making it
possible to model large domains at very high resolution.
At the same time, new solvers and simulation platforms
are being developed that take advantage of these new
computational possibilities and can efficiently handle very
large problems. The earth system modelling and climate
modelling community will certainly grasp the opportuni-
ty. It is imperative that hydrologists are central to this
effort in order to safeguard the sound incorporation of
hydrologic principles at hyper-resolutions.

Society
Most developed countries have dedicated hydrological
models to support water resources management and
planning under conditions of environmental change, or
for operational forecasting and early warning. Howev-
er, in many developing countries, such models are not
yet available or are poorly constrained because of the
lack of local data. For these developing countries, access
to information about water resources that is timely and
locally relevant can be a great asset (GEOSS, 2009).
The issue here is an ethical argument on the equity of
information (Lievrouw and Farb, 2003). One could
discuss whether detailed information on water re-
sources status is really of use to local water managers,
or the local population in general, given that one needs
to be a specialist to be able to interpret these data and
because it arises from technological push rather than
stakeholder pull. However, we believe that adoption of
new technology is always likely to be slow unless it is
made freely available and presented in the right
manner. Similarly, the potential future applications of
new technology are often unpredictable ,and as a result,
the development of new capabilities to model the global
water cycle may produce additional, currently unrec-
ognized benefits. In any case, river basin managers
often consider 1-Skm resolution models more useful
than 0.5° models. Obviously, how and in what form to
make this information available needs further thought.
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Obstacles and Challenges

The goal to provide locally relevant hydrological
information globally is far from trivial and poses a
series of significant challenges (see also Wood et al.,
2011). To name a few:

Scale separation and scale-related breakdown of
concepts and assumptions

When moving from the common resolution of 0.5°
(order of 50km at the equator) down to 1km and
smaller, many concepts that have been designed to
resolve small-scale processes at the sub-grid scale break
down. One could even talk about the ‘loss of the sub-
grid paradigm’. First, simple cell fractionation has to be
replaced by explicit dynamics. For instance, surface
runoff at 0.5° can be conceptualized as the fraction of
saturated soil assuming a univariate spatial frequency
distribution of sub-grid surface elevation or associated
with a distribution of soil storage within a cell (Moore,
1985; Blyth et al., 2004). However, when moving to
higher resolutions, the explicit spatial juxtaposing of
saturated soils with time has to be accounted for, e.g. by
using concepts related to the topographic index (Beven
and Freer, 2001). Second, very much related to the
reasons above, is the breaking up of connections
between compartments of the hydrological system. In
0.5° models, water stress assessments are based on the
assumption that water demand is satisfied by available
surface water and groundwater within the same grid
cell. This assumption works well because most regional
water redistribution works fit within a 50 x 50 km area
around the location where water is consumed. However,
at resolutions of 10 km and finer, inter-cell redistribution
of water from abstraction points to hotspots of water
consumption, or from lateral groundwater flow, need to
be taken into account (Krakauer et al., 2014). Third,
assumptions about dominant physics break down. For
example, consider the way we model heat and water
fluxes between the land and atmosphere. It is generally
assumed that sensible and latent heat fluxes are
proportional to the vertical gradient of potential
temperature and specific humidity. This only holds true
if vertical gradients are much larger than horizontal
gradients (Holtslag and Ek, 2008), for example, when
using average fluxes over large horizontal domains.
However, for spatial resolutions approaching 100 m and
below, horizontal advection becomes important, and
new theories to correctly model land-atmosphere heat
and moisture exchange are needed. Finally, and this is
indeed a great challenge, in an ideal world we would have
sub-grid concepts and parameterizations that change
consistently with scale as described in, e.g. Bloschl and
Sivapalan (1995) and Bierkens et al. (2000).
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Lack of information and epistemic uncertainty

In a comment on the paper of Wood et al. (2011), Beven
and Cloke (2012) rightly point out that moving to higher
resolutions will pose huge challenge as epistemic
uncertainties will become very large because of lack of
process and parameter knowledge at such high resolu-
tions. Indeed, there is much we do not know about the
global land surface properties at these resolutions that
need to be added. For instance, relating local water
demand and water abstraction at high resolution
requires knowledge of local water redistribution systems
that is not available globally. Although the number of
high-resolution datasets on topography, land use,
geology, soil properties and others, is increasing, these
data are also the products of remote sensing, land surface
models, statistical downscaling techniques or combina-
tions thereof and thus full of inaccuracies. Finally,
several studies (e.g. Doll and Fiedler, 2008; Biemans
et al., 2009) have shown that precipitation that is used to
force global hydrological models contributes to a large
part of the uncertainty in model output. High-resolution
meteorological datasets of sufficient accuracy are thus
greatly needed. This does not mean that current lack of
information and related uncertainty should deter us
from attempting hyper-resolution modelling. First, the
number and quality of high-resolution datasets are
increasing, and they are expected to increase even
further as new missions with better sensors are launched.
Second, our globalized digital world makes local datasets
universally accessible, enabling better ground-truthing
of these datasets. Third, because many of the envisioned
hyper-resolution models will have global coverage,
multi-model predictions of parameters and variables
are available for all locations in the world. A comparison
of multiple model results and their fit to observations will
reveal pathways for improvement of both process
description and their parameterizations. Moreover,
multi-model ensemble simulations would provide an
approximation of predictive uncertainty, arising from
both model structure and forcing datasets.

Computational challenges

Obviously, hyper-resolution global modelling results in
large computational demands in terms of CPU time and
storage requirements (Kollet et al., 2010; Maxwell,
2013). Just increasing the spatial resolution by a factor
of 10 increases calculation and storage requirements by
a factor of 100. Moreover, as stated before, when
increasing resolution, many processes that use simple
sub-grid parameterizations may need to be replaced by
explicit process dynamics further increasing computa-
tional efforts. Finally, running hyper resolution models
real-time in an operational setting, and incorporating
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incoming observations using data-assimilation schemes,
will further increase the computational demand.
Fortunately rapid developments in both hardware and
software architecture support these increased compu-
tational challenges. Powerful PCs with multi-core and
multi-thread CPUs or small linux clusters are com-
monplace with many hydrology groups. Fibre-optic
cable networks are present on many universities as well
as large quantities of idle desktops making grid
computing a possibility. Moreover, massively parallel
computing facilities involving many hundreds of
thousands of cores can be found in the larger research
centres, with the largest having >10 petaflop perfor-
mance and expecting to reach exaflop ability in 2020.
This tremendous computational power can only be
exploited if the computations behind a model can be
performed in parallel. Here, domain decomposition
methods can be used (e.g. using a hierarchical structure
based on continents, basins, catchments, sub-
catchments, etc.). If the code can be adequately
restructured, parallel processing software such as Open
MPI allows information to travel between different
computers (nodes) and OpenMP to allow further
breakup of operations to different cores (processors).
Alternatively, smart robust numerical methods need to
be developed that solve the equations relying on only a
limited number of cores. Note, however, that efficient
numerical methods are also needed in the case of
massive parallel computing if one requires a good
scaling to a large numbers of cores.!

The Hyperhydro Network
(www.hyperhydro.org)

The HyperHydro network is open to the broader scientific
community for anyone who wants to cooperate in
activities furthering the development of hyper-resolution
models. The governance structure is quite informal, with
a post box and a website hosted at Utrecht University and
three working groups (WG) loosely organized around the
sets of challenges laid out above. These groups are:

WGI1 Test beds

The objective of this working group is to set up a test
bed for comparing different large-scale models at
different resolutions. Data-sets will be provided for
different domains resolutions: Global at 5 min; CONUS
and CORDEX Europe at 1km; the Rhine-Meuse,
Illinois and California at 100m. Starting with the
smallest domains, the WG will run a collection of
different models on the same datasets (forcing, soil,

"In parallel computing, ‘good scaling’ means that the computation times
keep decreasing significantly when more processors are used.
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geology, etc., output data) for decreasing resolution.
This enables the assessment of model uncertainty (by
model inter comparison) and model bias (by model-data
comparison) but also the effects of resolution on model
uncertainty and bias. The WG will set up the data and
simulation protocols for participating groups to per-
form their analyses. The ultimate goal is to improve
model conceptualizations and parameterizations and
make these robust under change of model resolution.

WG2 Common framework

Members of this group together work on computational
challenges, including parallel computing and model
component coupling. This will take the form of
collecting information on and developing tools for
solving computational issues (e.g. parallelization),
developing a common framework for coupling modules
based on existing couplers and standards and setting up
a common platform for generating comparison statis-
tics (as related to the work by WG1).

WG3 Parameter and concepts

The goal of WG3 is to develop concepts and possible
solutions on how to deliver the information needed to
achieve hyper-resolution (<1km) globally. Their work
will consist of compiling an overview of useful high-
resolution global datasets that can be used in param-
eterizing global hyper-resolution models, creating new
high-resolution datasets using auxiliary information,
devising new model concepts to replace sub-grid
parameterizations with computationally frugal, spatial-
ly explicit physics and to create new hyper-resolution
global forcing data of sufficient accuracy.
HyperHydro will set up regular meetings at interna-
tional conferences and symposia to discuss progress and
set targets. Working group leads will be responsible for its
impetus and progress, and we expect that results of
working group activities will be reported through peer-
reviewed publications. We invite all those who are
interested to look on the website www.hyperhydro.org
for current activities and past results and urge those who
want to be on the mailing list or actively participate in one
of the working groups to send an email to the lead author.
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Data repositories referred to

CRU - monthly meteorological forcing from observations. https://
climatedataguide.ucar.edu/climate-data/cru-ts321-gridded-precipita-
tion-and-other-meteorological-variables-1901

ERA-Interim daily meteorological forcing from ECMRWEF re-
analysis. http://data-portal.ecmwf.int/data/d/interim_daily/

EWA-Friend European catchment data. http:/www.bafg.de/GRDC/
EN/04_spcldtbss/42_EWA/ewa_node.html

FLUXNET: Water vapour, energy and CO, land-atmosphere fluxes
from towers. http://fluxnet.ornl.gov/obtain-data
GLCC land cover data. http://landcover.usgs.gov/landcoverdata.php

GRDC global runoff data. http://www.bafg.de/GRDC/EN/Home/
homepage_node.html

ISMN global network of soil moisture data. https://ismn.geo.tuwien.
ac.at/ismn/

MERRA daily meteorological forcing from the NASA Goddard Earth
Observing System Data Assimilation System Version 5. http:/gmao.
gsfc.nasa.gov/research/merra/

MOPEX US catchment data. ftp://hydrology.nws.noaa.gov/pub/gcip/
mopex/US_Data/
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