Gas-Phase Photolysis of Hg(I) Radical Species: A New Atmospheric Mercury Reduction Process

Alfonso Saiz-Lopez,∗† A. Ulises Acuña, ‡ Tarek Trabelsi,∗ Javier Carmona-García,§ Juan Z. Dávalos, ‡ Daniel Rivero,‡ Carlos A. Cuevas,† Douglas E. Kinnison,∥ Sebastian P. Sitkiewicz,∥ Daniel Roca-Sanjuán,∗§∗ and Joseph S. Francisco*,†

†Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocosolano, CSIC, Madrid 28006, Spain
‡Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
§Institut de Ciència Molecular, Universitat de València, Valencia 46071, Spain
∥Atmospheric Chemistry Observations and Modelling, NCAR, Boulder, Colorado 80301, United States

Supporting Information

ABSTRACT: The efficient gas-phase photoreduction of Hg(II) has recently been shown to change mercury cycling significantly in the atmosphere and its deposition to the Earth’s surface. However, the photolysis of key Hg(I) species within that cycle is currently not considered. Here we present ultraviolet—visible absorption spectra and cross-sections of HgCl, HgBr, HgI, and HgOH radicals, computed by high-level quantum-chemical methods, and show for the first time that gas-phase Hg(I) photoreduction can occur at time scales that eventually would influence the mercury chemistry in the atmosphere. These results provide new fundamental understanding of the photobehavior of Hg(I) radicals and show that the photolysis of HgBr increases atmospheric mercury lifetime, contributing to its global distribution in a significant way.

Mercury is a developmental neurotoxin that is transported in the atmosphere in elemental and oxidized forms. Elemental mercury is characterized by low chemical reactivity and it remains long enough in the atmosphere (6–12 months on average) to become a global contaminant, albeit in very low concentration ~1–2 ng m−3.

Anthropogenic emissions to the atmosphere are essentially by living organisms and enriched through the trophic chain. It is currently assumed that Hg(0) atmospheric oxidation is initiated mainly via photochemically produced bromine (Br) atoms by a two-stage mechanism. The first step yields an unstable intermediate, HgBr, which can thermally dissociate back to Hg(0) or be further oxidized to divalent mercury Hg(II) by secondary oxidants, such as OH, Br, I, Cl, NO2, HO2, BrO, IO, and ClO. Although HgCl, HgI, and HgOH radicals can also be produced, their formation rate is 3–4 times slower than that of the brominated monohalide.

A recent study has shown that fast gaseous photoreduction of the resulting Hg(II) species can have a major impact on global atmospheric mercury dynamics and its deposition to the surface environment. However, the photodissociation of the HgBr radical back to Hg(0), which would crucially determine its lifetime in the troposphere, has been overlooked in the current mechanism of atmospheric mercury chemistry. In this Communication, we report detailed spectroscopic properties of HgX (X = Cl, Br, I, OH) species, computed by robust theoretical methods, which are critical to showing for the first time the importance of photodissociation of Hg(I) for the atmospheric mercury cycle.

Previous computational studies of mercury compounds have been recently reviewed and were concerned mainly with ground-state properties of closed-shell compounds. In addition, a few theoretical studies addressed selected spectral properties of electronic excited-states of Hg(I) halide radicals such as the radiative lifetimes of the B→X transition, the low-lying electronic states of HgCl and HgBr, the X→A transition in HgCl and HgBr, and two low-lying electronic states of both species.

Here we applied the state-averaged complete active space self-consistent field (CASSCF) method, followed by multireference configuration interaction (MRCI) including the Davidson correction (MRCI+Q) to determine potential energy curves (PECs), geometrical (bond lengths and angles), and thermochemical (bond dissociation energies) properties of the HgX radicals. In addition, we also used multistate complete active space second-order perturbation theory, (MS-
CASPT221−24 as implemented in MOLCAS,25 to predict absorption spectra and cross-sections by well-established computational techniques,26,27 used before for spectra calculation of a series of Hg(II) compounds.6 Finally, a kinetic model for the atmospheric redox (photo)chemistry of the Hg(0), Hg(I), and Hg(II) species was built based on the computed data (see Supporting Information (SI)).

The relevant molecular orbitals of the HgX (X = Cl, Br, I, OH) radicals are shown in Figure 1, while Tables S1−S3 present geometrical and thermochemical data calculated for these species, both in the ground and first bound electronically excited-state, together with previous available experimental and computed values.

The PEC diagrams of these radical species were calculated including spin-orbit (SO) coupling. Those corresponding to HgBr, as a function of the internuclear distance, and HgOH as a function of the Hg−OH coordinate are shown in Figure 2. The remaining PECs are displayed in Figures S1 and S2. The electronic-state nomenclature designated in previous spectroscopic analysis28−30 is retained here. For the HgX (X = Cl, Br, I) monohalides, A and B denote the lowest-lying excited spin free (SF) states $^3\Pi$ and $^2\Sigma^+$ and C and D is used for each of the SO states (with $\Omega = 1/2$ and 3/2) related to the high-energy $^3\Pi$ SF state. The ground and excited electronic states of all the HgX radicals computed here contain mixtures of ionic and covalent configurations, as was noted by previous calculations of the Cl and Br mercury monohalides.12

The calculated bond-dissociation energy (D_0) of the weakly bound $X^2\Sigma^+$ ground-state of the monohalides (Tables S1 and S2) decreases rapidly from \approx100 (Cl) to \approx30 (I) kJ⋅mol$^{-1}$, in very good agreement with existing experimental data. The agreement extends also to equilibrium geometry and harmonic frequencies. In the case of the isoelectronic HgOH radical, the ground-state binding energy of the Hg−OH bond is even lower, and would compromise the stability of this radical. The MS-CASPT2 computed absorption spectra of the mercury monohalides and hydroxyl radical species are presented in Figure 3 (see also Tables S4−S13), for the wavelength range of atmospheric relevance. In addition, numerical cross-section values, with 1 nm resolution, are present in Figure 1.

charge-transfer component from the halogen atom to Hg (due to electron promotion from the atomic-like \(p \)-orbital of the halogen atom to the σ^{SONO} (see Figure 1)), which neutralizes the charge separation of $X^2\Sigma^+$ ground state and decreases the Coulombic attraction and (ii) the orbital populated (σ^{SONO}) has antibonding character. Light absorption (in the 600−700 nm range, see below) would photodissociate the radicals into Hg(1S) and X($^2P_{1/2,3/2}$) atomic fragments with 100% efficiency.

The first bound excited-state of the monohalide series, $B^2\Sigma^+$ in Figure 2, is an ion-pair12 fluorescent state which yields the well-known lasing emission.28−30 The strong Coulombic binding interaction is reflected in the high calculated D_0 values (Table S1 and Figure S3), which only show a modest decrease from 428 in the chlorine radical to 401 kJ⋅mol$^{-1}$ in the iodine radical, in agreement with experimental observations.

The MS-CASPT2 computed absorption spectra of the mercury monohalides and hydroxyl radical species are presented in Figure 3 (see also Tables S4−S13), for the wavelength range of atmospheric relevance. In addition, numerical cross-section values, with 1 nm resolution, are

![Figure 1](image1.png)

Figure 1. Natural orbitals (isovalue = 0.05) of HgX (X = Cl, Br, I, and OH).

![Figure 2](image2.png)

Figure 2. Potential energy curves including SO-effects of the low-lying electronic states of HgBr (a) and HgOH (Hg−OH stretching) (b) as a function of the internuclear distance. SF labels are used here.
Figure 3. Computed UV-Vis absorption spectra and cross-sections (σ/cm^2) of the HgX ($X = \text{Cl}, \text{Br}, \text{I}, \text{OH}$) radicals studied in this work. The light-colored areas correspond to the uncertainty of the cross-section due to the statistical sampling. Note the different range of σ values for the spectra.

compiled in Table S14. The transition energies computed here in the 200–300 nm UV range (sharp twin peaks, bands C $^3\Pi_{1/2}$ and D $^3\Pi_{3/2}$ reproduce closely (within 1–3%) the experimental values derived from gas-phase emission spectra of the mercury monohalides reported before, as well as those from the few available absorption spectra (HgCl, HgI). In contrast, a cross-section value of 6×10^{-16} cm2 for the 279 nm absorption of the HgCl radical estimated previously is a factor of 10 larger than that computed here. This large value is not consistent with other spectroscopic properties of the radical.

The computed SO splitting of the C $^3\Pi_{1/2}$–D $^3\Pi_{3/2}$ doublet (0.4–0.5 eV) of the monohalides reproduces the experimental value of 3920, 3833, and 3538 cm$^{-1}$ reported for HgCl, HgBr, and HgI, respectively. In the case of HgOH, the broad band observed in the low-resolution absorption spectrum of this radical in aqueous solution shows both, peak location and cross-section, very similar to those presented in Figure 3. Similar experimental data on spectral properties for the HgOH radical in the gas-phase could not be found.

Regarding the 300–700 nm range, experimental data for these radicals are also very scarce. The transient absorption spectra of HgBr in the 240–520 nm range shows an intense absorption at \sim350 nm (band B) virtually identical to that computed here, but no data are available on absorption coefficients. Interestingly, these radicals were also detected in the aqueous-phase pulse radiolysis of HgCl$_2$ and HgBr with the estimation of the 350 nm absorption cross-section of HgCl and HgBr in aqueous-phase provided values of 0.9 and 1.6 $\times 10^{-17}$ cm2, respectively, consistent with those computed here for the gas-phase species.

In connection with the low-intensity absorption band in the 600–700 nm range (Figure 3), little or no experimental information could be found. A broad absorption continuum centered at \sim600 nm detected in the HgBr transient absorption spectra was assigned to a dissociative transition (band A) predicted theoretically. Similarly, the very weak fluorescence at \sim685 nm was assigned to the B $^2\Sigma^+ - A^1\Pi_{1/2}$ transition in the same radical species, in agreement with the values computed here (Table S8).

From the analysis of the SF deconvolution of the computed SO MS-CASPT2 spectra (Figures S4–S7) and electronic structure (Tables S5–S13), bands C–D, B, and A of the monohalide series can be assigned to the $X^2\Sigma^+ - (C^2\Pi_{1/2} - D^2\Pi_{3/2}), X^2\Sigma^+ - B^2\Sigma^+$, $X^2\Sigma^+ - A^2\Pi$ transitions, respectively. These transitions correspond essentially to one-electron promotion from the orbital with the unpaired electron (σ^{ONO}), mainly localized on the 6s Hg atomic orbital (Figure 1), to the δ_{x^2} of Hg (band C–D), from the p_{xy} of the halogen atom to the σ^{ONO} (band B), and from σ bonding orbital to the σ^{ONO} (band A). The doublet at \sim280 nm (bands C and D) and the large bandwidth of the absorption in the dissociative 600–700 nm range (band A) arise from SO coupling effects, which split each of the $^2\Pi$ SF transitions into SO pairs, with Ω values of 1/2 and 3/2 (Figure 1; Tables S6, S8, and S10). These sharp C–D doublets may be explained by an excitation more localized on the Hg atom.

For the dissociative band A $^4\Pi$, the calculated SO splitting increases from 0.09 eV (HgCl) to 0.3 eV (HgBr), maintaining similar absorption intensity (Tables S6 and S8), which explains the larger bandwidth of this band in the latter. The splitting is even larger in HgI (0.59 eV, Table S10) and the transition connected with the $\Omega = 1/2$ state becomes much more favored resulting in an intensity increase of the photodissociative band $A^2\Pi$ (Figure 3). See SI for further details.

The absorption cross-sections of HgCl, HgBr, HgI, and HgOH in the 270–800 nm range, excluding the 270–460 nm interval corresponding to non-dissociative transitions to the states B, C, and D, were introduced into a global chemistry-climate model, CAM-Chem, to compute the photolysis rate ($1/s$) of each species. The global tropospheric rate of photolysis is 6×10^{-2} s$^{-1}$, 3×10^{-2} s$^{-1}$, 2×10^{-2} s$^{-1}$, and 1×10^{-2} s$^{-1}$ for Hgl, HgBr, HgCl, and HgOH, respectively. The competition between thermal- and photoreduction processes of HgBr and its oxidation reactions with the abundant radicals NO$_2$ and HO$_2$ (Scheme 1) was determined by calculating the averaged pseudo-first-order rates in the troposphere:

$$\text{HgBr} + \text{NO}_2 \rightarrow \text{syn-BrHgONO}$$ \hspace{1cm} (R1)

$$\text{HgBr} + \text{HO}_2 \rightarrow \text{BrHgOOH}$$ \hspace{1cm} (R2)

$$\text{HgBr} \xrightarrow{\Delta \tau} \text{Hg} + \text{Br}$$ \hspace{1cm} (R3)

The photolysis of HgBr, globally integrated in the troposphere, is of the same order (10^{-7} s$^{-1}$) as the pseudo-first-order rates of oxidation by NO$_2$, R1 and HO$_2$, R2, and much faster than thermal decomposition R3. Therefore, the photolysis of HgBr will compete with oxidation by NO$_2$/HO$_2$ in places with high concentrations of these oxidants. The computed photolysis of HgBr would be faster than the reaction with NO$_2$/HO$_2$ in regions free of anthropogenic pollution,
The novel photochemistry of gas-phase Hg(I) radical species has broad implications for atmospheric mercury chemistry. This photoreduction process has been largely overlooked, and our findings suggest that the photolysis of Hg(I) will increase the atmospheric lifetime of mercury, which is key to understanding the global atmospheric mercury cycle. Current atmospheric mercury models, which do not include HgBr photolysis, are clearly underestimating the lifetime of mercury in the atmosphere. Overall, the new findings on the photochemistry of Hg(I) radicals reported in this Communication challenges current kinetic models of atmospheric mercury chemistry.

ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b02890.

- Computation details, electronic structure tables, thermochemical data and deconvoluted spectra (PDF)
- Cross-section data (XLSX)

AUTHOR INFORMATION

Corresponding Authors
*a.saiz@csic.es
*Daniel.Roca@uv.es
*frjoseph@sas.upenn.edu

ORCID

Tarek Trabelsi: 0000-0001-6258-7191
Juan Z. Dávalos: 0000-0002-5835-6371
Daniel Rocas-Sanjúa: 0000-0001-6495-2770
Joseph S. Francisco: 0000-0002-5461-1486

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Consejo Superior de Investigaciones Científicas (CSIC) of Spain. This study has received funding from the European Research Council Executive Agency under the European Union’s Horizon 2020 Research and Innovation programme (Project ERC-2016-COG 726349 CLIMAHAL). This work was supported by the University of Nebraska Holland Computing Center. J.C.-G. acknowledges the Universitat de València for his master scholarship. D.R-S. is thankful to the Spanish MINECO/FEDER for financial support through Project No. CTQ2017-87054-C2-2-P, the Ramón y Cajal fellowship with ref. RYC-2015-19234, and the Unit of Excellence María de Maetzu MDM-2015-0538. S.P.S. acknowledges the Basque Government for funding through a predoctoral fellowship (PRE 2018 2 0200).

REFERENCES

