Geophysical Research Letters

RESEARCH LETTER
10.1029/2019GL083171

Key Points:
• This study provides the first detailed and continuous observations of black carbon interaction with mixed-phased clouds
• In-cloud scavenging by droplets preferentially removes larger and thickly coated black carbon
• Black carbon with a larger core size in water droplets is released back to air through the WBF process during a snow event

Supporting Information:
• Supporting Information S1

Correspondence to:
D. Liu, D. Zhao and D. Ding
dantongliu@zju.edu.cn; dg1828019@sina.com; zytddp@vip.sina.com

Citation:

Received 16 JAN 2019
Accepted 27 JUN 2019
Accepted article online 8 JUL 2019
Published online 22 JUL 2019

This article was corrected on 30 JULY 2019. See the end of the full text for details.

Abstract Wet scavenging of black carbon (BC) has been subject to large uncertainty, which importantly determines its atmospheric lifetime and indirect forcing impact on cloud microphysics. This study reveals the complex BC-hydrometeor interactions in mixed-phase clouds via single particle measurements in the real-world environment, by capturing precipitation processes throughout cloud formation, cold rain/graupel, and subsequent snow events at a mountain site influenced by anthropogenic sources in wintertime. We found highly efficient BC wet scavenging during cloud formation, with large and thickly coated BC preferentially incorporated into droplets. During snow processes, BC core sizes in the interstitial phase steadily increased. A mechanism was proposed whereby the BC mass within each droplet was accumulated through droplet collision, leading to larger BC cores, which were then released back to the interstitial air through the Wegener-Bergeron-Findeisen processes when ice dominated. These results provide fundamental basis for constraining BC wet scavenging.

Plain Language Summary The wet removal of black carbon (BC) is crucial to determine its atmospheric lifetime and indirect radiative effects. However, the mechanism of BC-cloud particle interactions is still largely unknown, especially for mixed-phase clouds. This study conducted in situ single particle measurements to reveal this microphysical process throughout an entire precipitation event. The BC particles with large core sizes and thick coatings were observed to be preferentially incorporated into liquid droplets when the cloud was formed. The subsequent droplet collision further resulted in fewer but larger droplets with larger BC cores inside. Afterward, when a significant amount of ice was present, the water vapor could be transferred from droplets to ice crystals. As a result, the BC contained in the droplet could be released back to the interstitial phase, leading to larger BC cores in the air than those before the precipitation event. This is an important process when considering the wet scavenging of BC in mixed-phase clouds, which is first observed in the real atmosphere in this study.

1. Introduction

Black carbon (BC) is strongly absorbing in the visible and near-infrared, which has an important radiative impact on regional and global scales (T. C. Bond et al., 2013). Because freshly emitted BC is highly water insoluble (hydrophobic), so it is hard for it to act as cloud condensation nuclei (CCN; Weingartner et al., 1997). However, BC will show more hygroscopicity at subsaturation if coated with water-soluble materials (Andreae & Rosenfeld, 2008; Dusek et al., 2006; D Liu et al., 2013) and, in such cases, may serve as CCN (Kuwata et al., 2007). This is a crucial process to determine its atmospheric lifetime because of the subsequent cloud-precipitation removal (Latha et al., 2010). BC can be scavenged by in-cloud removal (Sellegrini, 2003) and below-cloud scavenging (Feng, 2007) depending on its size and hygroscopicity. The in situ...
measurements found that particles containing larger refractory BC (rBC) cores were preferentially removed by liquid cloud, consistent with Köhler theory (Moteki et al., 2012). The CCN activity of BC associated with its mixing state has been computed in process models (Fierce et al., 2015) or global models (Oshima & Koike, 2013) to quantify the ageing and removal time scale of BC in the atmosphere. However, this process is complicated by mixed-phase cloud. Long-term measurements at the Jungfraujoch alpine site showed that the aerosol scavenging efficiency, including BC, decreased with increased ice content of mixed-phase cloud (Cozic et al., 2007; Verheggen et al., 2007). It is proposed that the Wegener-Bergeron-Findeisen (WBF) process may play an important role on releasing some of the aerosols contained in droplets. Because of the higher supersaturation over ice than liquid, the ice can thus grow at the cost of the water content in droplets by vapor deposition. Previous modeling studies suggested a large quantity of CCN will be released through the WBF process which acts to compensate for aerosol scavenging (Schwarzenböck et al., 2001). Accounting for the relatively low scavenging rate of BC in mixed-phase/ice clouds dominated by the WBF process will significantly improve the agreement between model results and observations (Qi, Li, He, et al., 2017), especially for the high-latitude Arctic region (Qi, Li, Li, et al., 2017).

The importance of understanding the mechanism of BC wet deposition is to determine not only its atmospheric lifetime and thereby the global budget (Koch et al., 2009) but also its indirect and semidirect impacts on cloud properties (Koch & del Genio, 2010). The indirect radiative impact of BC by interacting with cloud is evaluated to be more important than its direct effect (Wang, 2013). However, the current parameterization of BC wet scavenging is still subject to significant uncertainty leading to large model-observation discrepancies (J P Schwarz et al., 2010; Sharma et al., 2013). There is currently a lack of in-field detailed observations to explain and quantify the interactions between BC and cloud particles at the microscale, which hinders a better knowledge of the physical process.

This study chose a mountain site around Beijing city, which is substantially influenced by anthropogenic BC sources. A precipitation event was captured spanning a full cloud phase evolution from cloud formation to cold rain/graupel and subsequent snow process. This provides the first detailed and continuous observations of BC evolution during in-cloud scavenging in mixed-phase clouds in the real-world atmosphere.

2. Experimental Site, Instrumentation, and Data Analysis

The mountain research station (hereinafter Yan station) in this study (115.78°E, 40.52°N, 1,344 m above sea level) is located on the north of Taihang ridge to the northwest of Beijing. The site frequently experiences land contact of clouds and precipitation. This observation was conducted in the period 19–21 November 2016, during the topographic precipitation and integrated cloud-seeding experiments (Ma et al., 2017). The temperature was mostly below zero, and precipitation was in the form of graupel or snow. Besides Yan station, precipitation data were also collected from two other monitoring stations, Chang and Xi, located on the east (300 m) and southeast of Yan (500 m), respectively. The ground observation of BC physical properties in central Beijing was also conducted during the APHH project (D. Liu et al., 2019) at the same time as the experiment here.

In this study, the physical properties of BC particles were characterized using a single particle soot photometer (SP2, DMT Inc.; D Liu et al., 2010; J Schwarz et al., 2006). The SP2 incandescence signal was calibrated for rBC mass using Aquadag® BC particle standards (Acheson Inc.,) and corrected for ambient rBC with a factor of 0.75 (Laborde et al., 2012). The mass-equivalent diameter of the rBC core \(D_c \) is obtained from the measured rBC mass assuming a density of 1.8 g/m\(^3\) (Tami C Bond & Bergstrom, 2006). For a given time window, the mass median diameter of rBC core is calculated from the \(D_c \) distribution below and above which the rBC mass was equal. The coated BC size \(D_p \) is obtained by applying the Mie-lookup table to match the core-shell-modeled scattering cross section with measurement (D Liu et al., 2014; J W Taylor et al., 2015). The SP2 laser power was monitored by the scattering peak amplitude of monodispersed polystyrene latex spheres (PSL) and showed very stable performance (within ±3%) during the experiment. The lack of SP2 data during certain periods was due to a hard drive issue of the data acquisition computer which did not affect the data quality. The bulk relative coating thickness \(D_p/D_c \) in a given time window is calculated as the total volume of coated BC particles divided by the total volume of the rBC cores, given by
All aerosols were sampled from a PM$_{2.5}$ prior to measurement at Yan station. (i.e., the air histories represent the relative influence of different regions on the sampled air over the 2 days. Period A represented the initial formation of droplets, although unfortunately, the fog monitor suffered a malfunction during the fog period in order to collect both interstitial cloud particles. As Figure 1 shows, this experiment spanned a full precipitation process including cloud formation, cold rain/graupel, and subsequent snow precipitation. The BC properties in the interstitial phase (out of hydrometeors) were monitored throughout the period. Five periods were defined: Dry (without hydrometer), A (BC accumulation), B (droplet formation and BC scavenging), C (graupel formation), and D period (snow and BC releasing). Only the Dry period had RH < 60% and an absence of hydrometeors with visibility > 5 km, and Periods B–D all had very high relative humidity with visibility < 5 km. In the Dry period, BC had a relatively low mass loading (384.8 ± 384.4 ng/m2), a stable D_p, at 0.21 ± 0.01 μm, and the coatings maintained at 0.043 ± 0.04 μm. The HYSPLIT back-trajectories (supporting information Figure S2) showed a uniform northwesterly air mass with occasional land contact. The NAME dispersion model (Figure S3) showed the recent influence on the air mass was relatively low, consistent with the lower BC concentration during this period. The moderate resolution imaging spectroradiometer (MODIS) visible cloud images (Figure S4) also showed clear sky over the site in Dry period, but the emergence of ice clouds from Period A intensified in Period D. Ground precipitation was also observed from Period C (Figure 1b). Period A represented the initial formation of droplets, although unfortunately, the fog monitor suffered a data outage for most of this period. However, the high RH coincident with a decrease of visibility.

\[\frac{D_p}{D_c} = \frac{\sum D_{p,i}}{\sum D_{c,i}} \]

where $D_{p,i}$ and $D_{c,i}$ are the coated and rBC diameters for each single particle, respectively. The mass ratio of coating and rBC in bulk ($M_{\text{coating}}/M_{\text{rBC}}$) could be also obtained by assuming a density of coating 1.3 g/cm3 (Cross et al., 2007) and rBC 1.8 g/cm3 (Tami C Bond & Bergstrom, 2006).

The droplet size distribution was measured by a Fog Monitor (model FM-100, DMT Inc) with optical diameter ranging from 2 to 50 μm (Tav et al., 2018). The precipitation was characterized by a Parsivel raindrop spectrometer (Löffler-Mang & Joss, 2000) with a forward-scattering optical system to collect precipitation particles and output the particle size and velocity, ranging from 0.2 to 25 mm and 0.2 to 20 m/s, respectively. In addition, the meteorological parameters including temperature, relative humidity (RH), and wind were continuously measured at Yan, with a visibility sensor (Belfort Model 6000, visual range: 200 m–50 km) to monitor the atmospheric visibility. Meanwhile, the images of precipitation particles were also obtained by photomicrography.

The HYSPLIT 4.0 model (Draxler et al., 1997) using 1° × 1°, 3-hourly GDAS1 reanalysis was used to calculate back trajectories, aiding identification of the source locations. The model performed ensemble simulations with 27 trajectories for each run. In addition, the Numerical Atmospheric-dispersion Modeling Environment (NAME) model (Jones et al., 2007) using meteorological data from the global configuration of the UK Met Office’s Unified Model was employed to obtain air histories quantifying the relative influence of emissions from different regions. The model was run in backward mode, releasing tracer particles from the Yan measurement site and recording the integrated time spent by these tracer particles in the lowest 0–1,000 m above ground level on a 0.25° × 0.25° horizontal grid, aggregated over all particles for a given release period. Tracer particles were released at a nominal rate of 1 g/s, with a maximum travel time of 48 hr (i.e., the air histories represent the relative influence of different regions on the sampled air over the 2 days prior to measurement at Yan station).

All aerosols were sampled from a PM$_{2.5}$ impactor (BGI SCC1.829), which means most of the cloud particles will be screened out and the sampled particles will represent the interstitial phase between cloud particles. Besides the experiment in November 2016, another identical experiment was conducted in March 2019. Along with the measurements from the main sampling line, scanning electron microscope (SEM) analysis was performed for particles collected on the copper grids coated with carbon film (carbon type-B, 300-mesh copper, Tianld Co., China; Xu et al., 2019). For the SEM samples, a PM$_{2.5}$ cascade impactor was applied during the snowing period but without being applied during the fog period in order to collect both interstitial and in-cloud particles.

3. Results and Discussions
3.1. In-Cloud Scavenging of BC
As Figure 1 shows, this experiment spanned a full precipitation process including cloud formation, cold rain/graupel, and subsequent snow precipitation. The BC properties in the interstitial phase (out of hydrometeors) were monitored throughout the period. Five periods were defined: Dry (without hydrometer), A (BC accumulation), B (droplet formation and BC scavenging), C (graupel formation), and D period (snow and BC releasing). Only the Dry period had RH < 60% and an absence of hydrometeors with visibility > 9 km, and Periods B–D all had very high relative humidity with visibility < 5 km. In the Dry period, BC had a relatively low mass loading (384.8 ± 384.4 ng/m2), a stable D_p, at 0.21 ± 0.01 μm, and the coatings maintained at 0.043 ± 0.04 μm. The HYSPLIT back-trajectories (supporting information Figure S2) showed a uniform northwesterly air mass with occasional land contact. The NAME dispersion model (Figure S3) showed the recent influence on the air mass was relatively low, consistent with the lower BC concentration during this period. The moderate resolution imaging spectroradiometer (MODIS) visible cloud images (Figure S4) also showed clear sky over the site in Dry period, but the emergence of ice clouds from Period A intensified in Period D. Ground precipitation was also observed from Period C (Figure 1b). Period A represented the initial formation of droplets, although unfortunately, the fog monitor suffered a data outage for most of this period. However, the high RH coincident with a decrease of visibility.
indicates fog droplets started to form but did not reach a large enough size to be impacted by the PM$_{2.5}$ inlet. This period showed significant increase in BC concentration (Figure 1g) and BC coating thickness (Figure 1f), indicating the BC mass from south/southeast sources had not been significantly scavenged. There was some variability of BC mass loadings; however, the BC core size (Figure 1e) remained stable at 0.20 μm. The ensemble back-trajectories (Figure S2b) indicated that the sampled air was influenced by high BC emissions to the south/southeast, although in this model, the trajectories were mostly still northwesterly because of Mongolian high-pressure system. In contrast, the NAME air histories (Figures S3b–S3e) indicated that through Periods A–D, the low-level contribution was mainly from south/southeast, and in Period D, this surface contribution was lessened. This was in line with the BC emission inventory (Figure S3f), which shows that significant anthropogenic BC emission was present to the southeast of the experimental site. Combing with the Dry period, Period A clearly showed a highly
stable BC core size when BC was not subject to significant scavenging at this initial stage, despite the variation of BC mass loading, and this constant median D_c is shown by a dash line in Figure 1e. Given that the BC core size may reflect the source profile (D Liu et al., 2014; J Schwarz et al., 2008), this implies BC sources were stable during the experimental period.

Period B was the time when droplet started to appreciably form. During this process, the effective diameter (D_{eff}, i.e., area-weighted mean diameter) of droplets was growing from 4.9 to 13.8 μm, but the number concentration of droplets decreased by 80% in about 7 hr. Figure S5 also shows a negative correlation between droplet number concentration and D_{eff}. This suggests a collision process of droplets leading to the increase in droplet sizes (Kollár et al., 2005). Precipitation was not observed during this period (Figure 1b). Note that the increase of liquid water content (LWC) exactly coincided with the decrease in BC mass/number concentration, median D_c, coatings, and coated BC size. This means an efficient in-cloud scavenging of BC began as soon as droplets were formed. In line with Köhler theory, the observations here revealed that the larger particles, that is, the larger BC-containing particles with larger core sizes and thicker coatings, were preferentially removed by droplets, leading to BC with smaller cores and less coating in the interstitial phase, which is consistent with previous in situ measurements (Moteki et al., 2012; J Taylor et al., 2014). During this period, ~75% of the rBC mass was scavenged. Median D_c decreased from 0.2 to 0.16 μm and remained at this size when rBC mass loading reached its lowest value of 170 ng/m³.

It should be noted that due to collision of droplets, the BC cores incorporated in each droplet could be merged in one larger droplet; thus, multiple BC cores could be contained in one collided droplet as has been revealed by a recent microscopy study (L Liu, Zhang, et al., 2018). The merged BC cores in collided droplets could further coagulate and lead to an enlargement of BC core sizes. A conceptual model analysis (detailed in Supporting Information S1) was conducted to quantitatively understand the BC size enlargement in the droplets during collision processes. The model analysis is consistent with the observation here when considering ~80% of the droplets participated in the collision process.

3.2. BC Interaction With Graupel or Snow

During the Period C, precipitation on the ground started to be observed. Droplet number concentration remained almost constant, while LWC was considerably lower compared to the Period B. The precipitation particles seen from microscopy (Figure 1, middle) mainly showed the form of graupel with significant riming of supercooled droplets (temperature ~ −5 °C). The precipitation during this period had a peak diameter at 1 mm and also contained the other mode of larger particles spanning from 1.5–4 mm (Figure S5d). The mean falling velocity for the graupel size of 2–4 mm was relatively high at 3 ± 1.2 m/s. As Figure 1d showed, the increase in precipitation rate corresponded with the decrease in LWC. Contrasting to the Period B, the droplets in the Period C showed relatively constant number concentrations with a short gap, after which the second fog event showed a smaller D_{eff} and lower LWC. The rimming of LWC by graupel was thus deemed to be the main process of keeping low levels of LWC and droplet number concentration (Ávila et al., 2009). The BC concentration remained low (<190 ng/m³) from the initialization of precipitation until the precipitation rate reached the maximum, suggesting the scavenging activity by the graupel was still high. In the late stage of Period C, the fog began to vanish, and the continuous contribution of BC sources to the site (according to NAME model) tended to introduce more coated BC without being scavenged. The BC core size in the interstitial air started to increase toward the end of Period C when precipitation rate started to decrease (note that there was a short period lasting about 1 hr with decreasing D_c which corresponded with the increase in LWC for that short period).

During the Period D, LWC was as low as $1.6 \times 10^{-4} \text{ g/m}^3$ throughout the period with increased D_{eff} for the second half. The precipitation at the Yan site was weak for the first half of the period, but the precipitation of heavy snowflakes (image shown by microscopy, Figure 1) started from 4 am. The lower precipitation rate during the first half was observed at the other two sites (Chang and Xi) to the east and southeast of Yan (Figure 1b). The visibility was slightly higher than Period C due to reduced droplet concentration. Figure S6 showed that for hydrometeor particle diameters of 2–4 μm, the snowflake precipitation falling speed at 2 ± 0.3 m/s was lower than that of the graupel in Period C. The significant fraction of small hydrometeor particles (Figure S6) was because of the shattering of falling snowflakes (Mossop, 1985).
The first half of the Period D was when the BC concentration started to increase and median D_c started to be above the reference line (205 nm) for ambient BC before being scavenged (the dash line in Figure 1e). This period was the time before the heavy snow precipitation formed, with very low LWC but high RH and low visibility. The cloud glaciation may have occurred during this period (though a lack of cloud microphysics observation over the site makes it difficult to draw concrete conclusions) with ice growth consuming the LWC, but the particles may have not reached the size large enough to be detected by the precipitation instrument. The BC core size maintained the steadily increasing trend from 0.20 to 0.26 μm throughout the Period D, which lasted over 8 hr. The BC concentration varied in this period from 70 to 508 ng/m³.

One of the hypotheses here is the increase of D_c may result from additional sources, which may be a new source or preexisting (but being modified) source. However, this hypothesis was firmly excluded based on the following reasons. First, the NAME dispersion model showed a weakened source contribution from the most intensive emission region to the southeast of the site. In addition, any burning was strictly prohibited within ~5 km around the site because of the fire regulation on the forest-covered mountain. In addition, Period D spanned the time from close to midnight to early morning, when the planetary boundary layer was not likely to be elevated high enough to advect the pollutants from lower level to the mountain site. Furthermore, the new source had to last continuously for over 8 hr in order to contribute to the continuous increase of D_c, which is very unlikely in this case. To further support the discussion, we also compared the results here with the ground measurements conducted in urban Beijing for 1 month at the same time (during November–December 2016). As Figure 2b shows, during this 1-month experiment, experiencing sources for all air mass directions and meteorological conditions, there was no appreciable BC with D_c over 0.22 μm, whereas Period D showed substantial increase of D_c above 0.22 μm. In other periods, the pattern (D_c vs. BC mass) fell within the range of ground measurements.

Therefore, we conclude that the enlargement of BC core size was from the existing BC particles which had been included in the droplets (Period B) but were then released back to air in Period D when ice or snow grew through the deposition of water vapor that transfers from liquid to ice (i.e., WBF process). This WBF process was more likely to occur in Period D than in C because of the lower hydrometeor falling speed (Figure S6). The multiple BC cores in the droplet must have been processed and modified to be significantly larger than the reference ambient D_c, resulting in a larger size distribution than the ambient. This process is consistent with the view that the drop collision could merge the BC cores in multiple droplets into the same one (Part 1 of model validation in Supporting Information S1) and then became one larger BC core after the droplet was evaporated, also evidenced by SEM results shown in Figure 3. The start of Period D had a higher BC mass loading, which may result from a higher initial rate of release. According to the Kelvin effect (Krarnes et al., 1991) in cloud microphysics, smaller droplets (containing smaller D_c) will evaporate first and larger droplets (containing larger D_c) follow, which explains why D_c maintained the increasing trend (Part 2 of model validation in Supporting Information S1). Interestingly, the released BC had a steadily but slightly decreased coating content per unit rBC mass during the releasing process (Figure 1f). This is because a portion of the BC coatings could dissolve into the droplet medium and evaporate along with the droplet evaporation (e.g., Ervens et al., 2011; Galloway et al., 2014; Zardini et al., 2010). As a result, the released BC contains less coatings as before. The proposed mechanism of interactions between BC and hydrometeors is schematically summarized in Figure 3.

Based on another set of identical measurements during precipitation events experienced in springtime 2019 (Figure S8), a notable decrease of D_c by 20% was also observed on 10 March during the cloud formation (with ~50% decrease of rBC mass), followed by an increase of D_c above the ambient D_c size during snow (Figure 2a). This event replicated the preceding longer precipitation event in 2016 when the cloud and snow also occurred in sequence. During another event on 9 March 2019, however, D_c did not exhibit marked variation, along with an insignificant BC scavenging. This may be due to the overlap of cloud formation and snow periods, leading to a co-occurrence of decrease and enhancement of D_c. Thus, based on the observed 2019 events (particularly the 10 March event), we further validate the conclusion derived from the preceding 2016 events for the efficient BC in-cloud scavenging and subsequent BC releasing driven by the WBF process.

The microstructure of BC from SEM during the 10 March 2019 event further validates the proposed mechanism demonstrated in Figure 3. Before cloud formation, most of the detected single particles were at...
maximum projected diameter (D_{max}) of 200–500 nm and mostly in a shape of open cluster, and no compact shape was observed. During cloud formation, more larger BC particles were observed ($D_{\text{max}} > 450$ nm) in high fluffy shape. Note that there was no PM$_{2.5}$ impactor installed during this period, both particles within and outside of droplets may have been measured. During snow (with impactor), there was an appreciable number of compact and large ($D_{\text{max}} > 500$ nm) BC observed in the interstitial phase, and they were in notably high compact shapes. Such amount of BC in compact shape was not observed for the other time before the precipitation event. This strongly supports the cloud-accumulation and subsequent snow-releasing mechanism illustrated in Figure 3.

3.3. The Scavenging and Releasing Rates of BC as a Function of Core Size

The lognormal distribution of BC core size for each period (A–D) is shown in Figure 2. The scavenging rate of BC (R_{sca}) as a function of core size is calculated as the difference in size distribution between Periods A and B relative to A: $(B - A) / A$. Here we assume the variation in rBC mass loading in Period A represents the general variation of ambient BC as the source contribution was similar between Periods A and B (Figure S3). The releasing rate (R_{release}) is calculated as the difference between D and C relative to C: $(D - C) / C$. An exponential relationship between BC scavenging/releasing rate and core size is found as $R_{\text{sca}} = 0.95 - 0.60\exp(-10.24 * D_c)$ and $R_{\text{release}} = 6.16 - 7.11\exp(-0.79 D_c)$.

A conceptual model analysis (detailed in Supporting Information S1) has been proposed to quantitatively reproduce the observed exponential relationship between the BC core size and scavenging/releasing rate by applying a first-order BC in-cloud scavenging/releasing scheme (H Liu et al., 2001; Neale et al., 2010), expressed as...

\[
[BC]_{\text{scav/rel}} = [BC]_0 F (1 - e^{-k \Delta t}),
\]

where \([BC]_{\text{scav/rel}}\) denotes scavenged/released BC mass concentration and \([BC]_0\) denotes BC mass concentration in the air before scavenging or in clouds before releasing. \(F\) is the areal fraction of the cloudy region where the scavenging/releasing process takes place, and \(k\) represents the first-order BC in-cloud scavenging \((k_s)\) or releasing \((k_r)\) rate parameter. The observed relationship between scavenging/releasing rate and BC core sizes infers a linear relationship between \(k\) (i.e., \(k_s\) or \(k_r\)) and \(D_c\). Thus, an observation-constrained \(k_s = 9.48 \times 10^{-4} D_c + 4.25 \times 10^{-5}\) is obtained, and the resulting in-cloud scavenging rate parameter \((k_s)\) is

Figure 3. Schematic illustration of the interaction between black carbon and hydrometeors during different stages of scavenging processes. Right panels show the typical scanning electron microscope images of single black carbon particles for each process, and the hydrometeor images (for graupel and snowflake) taken by photomicrography are shown for the precipitation stages. WBF = Wegener-Bergeron-Findeisen.
0.9 × 10^{-6}–0.5 × 10^{-5} s^{-1} for a typical \(D_{\text{c}} \) range of 0.05–0.5 \(\mu \text{m} \) (see Supporting Information S1 for details). Note that \(k_{\text{c}} \) obtained here is for thin orographic cloud with LWC up to 0.1 g/m³, and this is generally consistent with, but slightly smaller than, the typical values (10^{-4}–10^{-3} s^{-1}) used for the stratiform warm cloud condition in global models (e.g., H. Liu et al., 2001). Previous studies (e.g., Qi, Li, Li, et al., 2017; Qi, Li, He, et al., 2017) have shown that the \(k_{\text{c}} \) tends to be smaller in mixed-phase clouds dominated by the WBF process. Similarly, an observation-constrained \(k_{\text{c}} = 5.5 \times 10^{-5} \) \(D_{\text{c}} = 1.0 \times 10^{-5} \) is obtained, leading to a releasing rate parameter (\(k_{\text{r}} \)) of up to 1.8 × 10^{-5} s^{-1} for \(D_{\text{r}} \) values of up to 0.5 \(\mu \text{m} \). We note that the aforementioned conceptual model analyses are simplified and only used here to quantitatively understand the observed relationship between BC scavenging/releasing rate and core sizes. More accurate estimates and comparisons with observations require a more sophisticated aerosol-cloud size-resolved model, which will be investigated in future studies. Nevertheless, our analysis suggests that the observations in this study are very useful to improve and constrain BC wet scavenging schemes in models.

4. Conclusions

A full process of interactions between BC and hydrometeors was observed in this study, as schematically illustrated in Figure 3. The larger and thickly coated BC was observed to be efficiently removed by cloud droplets. The phenomenon of BC release from preexisting liquid droplets during ice/snow particle formation was observed for the first time at the microscale; this emphasizes the importance of the presence of ice on reducing the scavenging rate of BC (Schwarzenböck et al., 2001). A mechanism was proposed whereby BC particles are accumulated by droplet collision before being released back to air in a more aggregated form (with larger cores) during the WBF process. All these processes could explain the variation of BC core size distribution observed across various locations or under different meteorological conditions.

The mechanism proposed here, such as efficient cloud removal of larger BC with thicker coatings, BC particle aggregating during droplet collision/merging, and subsequent BC releasing driven by the WBF processes, has wide applications in conditions when ice or mixed-phase clouds dominate coexisting water droplets. This may explain large model-measurement discrepancies such as the underestimates of BC concentration at high latitude and altitude areas dominated by mixed-phase or ice clouds (He et al., 2014; Qi, Li, Li, et al., 2017). The BC core size-dependent in-cloud scavenging and releasing rates as observed in this study could be used to constrain a range of modeling activities.

Acknowledgments
This research was supported by the National Key Research and Development Programme of China (2016YFA0602001), National Natural Science Foundation of China (41875167, 41695198, 41875044, 41675038 and 41775138), and National Science Foundation of Beijing (8172023). C. He was supported by the NCAR Advanced Study Program (ASP) Fellowship. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation (NSF). We acknowledge use of the NAME atmospheric dispersion model and associated NWP meteorological data sets made available to us by the Met Office. We acknowledge the significant storage resources and analysis facilities made available to us on JASMIN by STFC CEDA along with the corresponding support teams. Processed data are available from the file sharing link (https://pan.baidu.com/s/1Yq5Hrz3YzAIUg34LZHIW70) using extracting code u457.

References

DING ET AL. 8461

Erratum

In the originally published version of this article, Shuo Ding's affiliation should have been Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, China. Additionally, the reference D. Liu et al. (2019) was published incorrectly in the reference list. These errors have since been corrected, and the present version may be considered the authoritative version of record.