Large contribution of biomass burning emissions to ozone throughout the global remote troposphere

Ilan Bourgeois*a,b,1, Jeff Peischla,b,1, J. Andrew Neumana,b, Steven S. Brownb,c, Chelsea R. Thompsona,b, Kenneth C. Aikinb,b, Hannah M. Allend, Helène Angote,2, Eric C. Apelf, Colleen B. Baublitzg,2, Jared F. Brewer1, Pedro Campuzano-Jostb,2, Roisin Commaneb,2, John D. Crounse2, Bruce C. Daube2, Joshua P. DiGangi2, Glenn S. Diskin2, Louis K. Emmons2, Arlene M. Fioreg,h, Georgios I. Gkatzelisb,2,3, Alan Hillsi, Rebecca S. Hornbrookj, Lee T. Murrayn, Rebecca S. Hornbrookf, L. Gregory Hueyl, Ilann Bourgeoisa,b,1, Kenneth M. Frank1, Benjamin A. Naultc,d,1, David D. Parrishb,2, Eric Raya,b, Colm Sweeneym, David Tanner1, Steven C. Wofsy1, and Thomas B. Ryersonb,5

*Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; 1National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO 80305; 2Department of Chemistry, University of Colorado, Boulder, CO 80309; 3Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; 4Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309; 5Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80301; 6Department of Earth and Environmental Sciences, Columbia University, Palisades, NY 10964; 7Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964; 8School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; 10NASA Langley Research Center, Hampton, VA 23681; 11School of Earth and Atmospheric Sciences, University of Rochester, Rochester, NY 14627

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (~7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredicted the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.

Significance

Understanding the sources of tropospheric ozone is important for effective air quality management and accurate radiative forcing attribution. Biomass burning emits large quantities of ozone precursors to the lower atmosphere. This source can drive regional-scale ozone production, but its impact on global tropospheric ozone is poorly constrained. Here, we present unique global in situ aircraft observations of ozone and continental pollution tracers. Ozone enhancements attributable to biomass burning equal or exceed those from urban emissions, a result that is not predicted by current chemical transport models. These findings represent a potentially major shift in the understanding of the sources of ozone in the lower atmosphere and indicate the need for model developments to improve the representation of global tropospheric ozone.

Published December 20, 2021. This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Edited by Mark Thiemens, University of California San Diego, La Jolla, CA; received May 24, 2021; accepted November 3, 2021

Tropospheric ozone (O_3) has been the focus of decades of scientific research due to its central role in atmospheric chemistry (1), its adverse impact on human and ecosystem health (2, 3), and its role as a climate forcer (4, 5). Despite this focus, there remains considerable uncertainty in tropospheric O_3 production pathways, precursor sources, and long-term trends. Sources of tropospheric O_3 include downward transport from the stratosphere and photochemical production from a complex set of coupled reactions between nitrogen oxides (NOx) and volatile organic compounds (VOCs), each of which is in turn emitted from both anthropogenic and natural sources (1, 6). The contribution of fossil fuel combustion to tropospheric O_3 has recently declined in the United States and in Europe, proportionally increasing the contribution from natural sources (7–10). However, the spatial distribution of anthropogenic O_3 precursor emissions has shifted to lower latitudes.
Biomass burning (BB) is an important source of O₃ precursors (16–19). A recent study based on observed O₃ to carbon monoxide (CO) enhancements in smoke plumes attributed 3.5% of the global tropospheric chemical O₃ production to BB emissions (19). Other studies have accounted for the numerous production and destruction pathways of O₃ in the troposphere using global chemical transport models (CTMs) to estimate the global budget of O₃ (20, 21). However, few studies separately quantify the contributions of fossil fuel combustion and BB emissions to global tropospheric O₃ (22). Global inventories attribute five times more NOₓ (23, 24) but roughly equal VOC emissions (17, 25) to fossil fuel combustion (hereafter referred to as urban sources) compared with BB. However, precursor emissions do not necessarily determine tropospheric O₃ production close to the sources because of the nonlinearity of O₃ formation chemistry (26, 27). Additionally, global CTMs do not always agree on the tropospheric O₃ burden, suggesting possible deficiencies with emission inventories of O₃ precursors and/or an incomplete representation of O₃ chemistry (21, 28–30), although a recent model intercomparison study showed that the model ensemble reproduced well the salient spatial, seasonal, and decadal variability and trends of tropospheric O₃ (31).

Large-scale in situ observational constraints commensurate with the grid resolution of current global CTMs are rare. Instead, modeling studies often rely on ozonesonde-derived climatologies and satellite-based remote sensing observations to constrain tropospheric O₃ distributions and precursor sources (20, 32, 33). The recent NASA Atmospheric Tomography (ATom) mission provides global-scale and seasonally resolved in situ measurements of O₃ and CO and a comprehensive suite of trace gases and aerosol parameters, including tracers of BB and urban emissions (34). ATom sampled the remote troposphere from the Arctic to the Antarctic over the Pacific and Atlantic Oceans using repeated vertical profiles from ~0.2 to ~13 km in altitude during four seasonal deployments between 2016 and 2018 (Fig. 1). Recently, the ubiquitous presence of dilute BB smoke in the remote troposphere and its significant contribution to aerosol mass loading was established using ATom observations (35). Here, we use ATom measurements to quantify the individual contributions of urban and BB emissions to O₃ in the remote global troposphere using tracers specific to each source. We compare this analysis with simulations from three global CTMs that alternatively set BB and urban emissions to zero to evaluate their impact on modeled tropospheric O₃.

Results and Discussion

Here, we analyze in situ measurements of O₃, ozone precursors, chemical tracers of continental emissions, CO, and water vapor (H₂O) to evaluate the influence of urban and BB emissions on O₃ levels in the remote troposphere. We use the industrial solvents tetrachloroethylene (C₂Cl₄) and dichloromethane (CH₂Cl₂) as tracers of urban and industrial activity, as more than 90% of their global emissions are anthropogenic (36–38). Conversely, we use hydrogen cyanide (HCN) and acetonitrile (CH₃CN) compounds emitted almost exclusively (80 to 100%) from BB, as tracers of BB emissions (39–41). All four tracers have an atmospheric lifetime ranging roughly from 2 to 6 mo (40, 42, 43), that is, long enough to identify the influence of emissions on tropospheric O₃, which has a global average lifetime of several weeks (28). CO is an atmospheric pollutant released by combustion processes extensively used as a tracer of continental pollution (44) with a global mean atmospheric lifetime of roughly 1 to 3 mo (45, 46). Air masses sampled during ATom were usually within 5 to 10 d downwind of continental pollution sources (47), such that the selected tracers were subject on average to modest (~20%) loss. In this analysis, we combine HCN and C₂Cl₄ as our primary pair of BB and urban tracers and CH₃CN and CH₂Cl₂ as our secondary pair based on data availability and analytical uncertainty (see details in SI Appendix, section S1).

In a previous study, we used the relationship between O₃ and CO during ATom to identify several distinct air mass types: well mixed and aged, stratospheric, marine, and fresh continental outflow (48). Here, we remove data with dominant stratospheric and marine influence as well as the flight segments above the conterminous United States (see Materials and Methods). We thus retain 61% of observations for analysis of the remote troposphere and report the distribution of tropospheric O₃ corresponding to each quartile of C₂Cl₄, CH₂Cl₂, HCN, and CH₃CN for various regions in Regionally Enhanced O₃ Levels in Polluted Air Masses. We separately investigate high O₃ season (spring and summer) and low O₃ season (fall and winter) for both hemispheres. Note that the boreal spring and summer corresponds to the austral fall and winter and vice versa. This seasonal cycle was captured by ATom observations (48) and is typical of tropospheric O₃ globally (49). In Sources of O₃ to the Remote Troposphere, we attribute O₃ measured in the remote troposphere to urban and BB sources, and in Comparison of Observed and Modeled BB Influence on Tropospheric O₃, we compare our results with global CTMs. All acronyms are listed in SI Appendix, Table S1.

Regionally Enhanced O₃ Levels in Polluted Air Masses.

Northern Hemisphere extratropics (≥20°N). The highest tropospheric O₃ levels were measured in the Northern Hemisphere (Figs. 1 and 2 A and B) during ATom, with median O₃ mixing ratios of 59 ppbv (parts per billion by volume) in spring and summer and 44 ppbv in fall and winter (median calculated for all altitudes). The Northern Hemisphere also had the largest abundance of CO (SI Appendix, Fig. S1 A and B) and urban tracers (SI Appendix, Fig. S2 A and C). There was little seasonal difference in the CO abundance, but BB tracer mixing ratios were greater in spring and summer, and urban tracer mixing ratios were greater in fall and winter (SI Appendix, Fig. S2).

Greater O₃ levels in spring and summer compared with fall and winter reflect photochemical production of O₃ in both urban- and BB-influenced continental plumes lofted and transported to the remote atmosphere (44, 50–52). While O₃ production is diminished in fall and winter due to reduced sunlight exposure and resulting photochemistry (SI Appendix, Fig. S3A), O₃ is still enhanced in polluted air masses relative to the background during those seasons (Fig. 2B). Parrish et al. proposed wintertime chemical destruction of O₃ to explain negative O₃ to CO slopes in North American polluted air masses transported over the Atlantic Ocean (53). Here, we find that O₃ does not continuously increase with increasing CO in fall and winter (SI Appendix, Fig. S4), but it does continuously increase with increasing urban and BB tracers (Fig. 2B). Furthermore, we find that CO continuously increases with increasing levels of urban tracers but not with BB tracers (SI Appendix, Fig. S1 A and B). This supports previous findings suggesting that the O₃ to CO correlation can be driven by the mixing of air masses with different origins rather than O₃ production in the remote troposphere (54, 55). The mixing of urban- and BB-influenced air masses affect O₃ and CO levels differently, and the resulting O₃ to CO correlation depends on the composition and age of the mixture.
The seasonal and latitudinal differences in background O₃ reveal the contributions of photochemical O₃ production outside of pollution plumes to global tropospheric ozone. Background O₃, defined as the average O₃ in well-mixed and aged air (air in which both urban and BB tracers are below their regional median), is 15 ppbv greater in spring and summer compared with fall and winter in the Northern Hemisphere (Fig. 2A and B), a pattern not observed in the Southern Hemisphere (Fig. 2E and F). Additionally, background O₃ in the Northern Hemisphere spring and summer is 25 ppbv greater than in the Southern Hemisphere spring and summer but only 5 ppbv greater in fall and winter.Attributing this increased and seasonally dependent background O₃ to sources is not possible with our approach.

Tropics (20°S to 20°N). The tropical Atlantic exhibits the second highest O₃ levels after the Northern Hemisphere extratropics with a median O₃ of 42 ppbv. In contrast, the tropical Pacific has the lowest levels of O₃ with a median O₃ of 25 ppbv despite having a higher abundance of CO (SI Appendix, Fig. S1C) and urban and BB tracers than the Southern Hemisphere extratropics (SI Appendix, Fig. S2). O₃ increased with pollution tracers in both tropical regions (Fig. 2C and D).

In the tropical Pacific, O₃ (Fig. 2C) and CO (SI Appendix, Fig. S1C) concomitantly increase with increasing urban and BB tracers, suggesting a comparable influence of these emission sources on O₃ in that region (56–58). Low O₃ in the tropical Pacific has been attributed to loss in the marine boundary layer (MBL), where conditions favor the destruction of O₃ via photolysis and subsequent formation of OH at high humidity without concurrent production through the HO₂-N₂O₅ cycle because of the low NOₓ levels in this region (59–62).

In the tropical Atlantic, the levels of BB tracers are second only to the Northern Hemisphere in spring and summer (SI Appendix, Fig. S2B and D). Additionally, O₃ and CO both increase with increasing levels of BB tracers, a pattern not reproduced with the urban tracers (Fig. 2D and SI Appendix, Fig. S2D), illustrating the overwhelming influence of African and South American BB emissions on tropospheric O₃ in this region (63–65).

Southern Hemisphere extratropics (>20°S). The Southern Hemisphere is the most pristine region of those examined here and exhibits the lowest levels of CO (SI Appendix, Fig. S1E and F) and pollution tracers (SI Appendix, Fig. S2). Median O₃ mixing ratios were 39 and 34 ppbv in spring and summer and fall and winter, respectively. While little O₃ enhancement above background was observed with increasing pollution tracers in fall and winter (Fig. 2F), more active photochemistry in spring and summer (SI Appendix, Fig. S3B) led to significantly enhanced O₃ above background in polluted air masses (Fig. 2E). A more pronounced increase of O₃ (Fig. 2E and F) and CO (SI Appendix, Fig. S1E and F) with BB tracers than with urban tracers reflect the dominance of BB emissions over urban as a source of pollution in this region inhabited by only ~5% of the world population but with equivalent BB emissions to that in the Northern Hemisphere extratropics (66, 67).

Sources of O₃ to the Remote Troposphere. To separately quantify the respective influence of urban and BB emissions on tropospheric O₃, we classify all sampled air masses into four categories based on observed concentrations of tracers. For each region, polluted air parcels are either defined as urban air (urban tracer > regional median, BB tracer < regional median), BB air (BB tracer > regional median, urban tracer < regional median), or mixed pollution air (both urban and BB tracers > regional median). The remaining data (both urban and BB tracers < regional median) are considered to be well-mixed and aged air. We define the background levels of a given species (O₃, CO, and the urban and BB tracers) as the average mixing ratio of that species in well-mixed and aged air. This background is regionally and seasonally dependent. Note that this definition of background differs from that used for surface ozone in regulatory applications. For example, air masses with a strong stratospheric influence have been removed in this analysis, but they are usually included in determinations of background ozone used for regulatory purposes. Each category
contains roughly equal numbers of observations. The O₃ distribution for each air parcel category is shown in Fig. 3. Excess O₃ (denoted as positive ΔO$_3$) attributed to each pollution source is the difference between the average O₃ in polluted air (i.e., urban, BB, or mixed pollution) and that in well-mixed and aged air (i.e., regional background O₃).

We compare ATom observations with three global CTMs: GEOS-Chem, CAM-chem, and GFDL-AM3 (SI Appendix, section S2). Ozone and CO are simulated along the ATom flight tracks in a base case scenario with both anthropogenic and BB emissions (simulation A), zero anthropogenic emissions (simulation B), and zero BB emissions (simulation C). Since CO is directly emitted by both fossil fuel combustion and BB, anthropogenic CO (CO$_{UR}$) is determined as the difference between simulations A and B, and BB CO (CO$_{BB}$) is determined as the difference between simulations A and C. Using CO$_{UR}$ as the model urban tracer and CO$_{BB}$ as the model BB tracer, we derived the modeled O₃ distribution associated with urban, BB, mixed-pollution, and well-mixed and aged air and the corresponding ΔO₃ following the same methodology as for the observations.

ATom observations show that O₃ levels were generally more enhanced in mixed pollution air, followed by BB air and then urban air, in all regions (Fig. 3). This result is generally consistent for either set of urban and BB tracers used. Larger O₃ levels in mixed pollution air usually reflect increased O₃.
production (68–70) from greater NOx and peroxy acyl nitrates (PANs)—a reservoir species of NOx—in mixed-pollution air compared with the BB- or urban-dominated air alone (68–71). We report in Fig. 4 regional median mixing ratios of the four most abundant reactive nitrogen (NOy) species measured during ATom: NOx, PANs, and nitric acid (HNO3) as well as particulate nitrate (pNO3). NOy concentrations were almost always greatest in mixed-pollution air followed by BB air and then urban air, similar to those for O3. The only exception was in the tropical Atlantic, where median NOy was highest in BB air, resulting in the highest ΔO3 (Fig. 2D). Higher NOx concentrations in BB air than in urban air is due to generally higher NOx and PANs levels (Fig. 4), a pattern analogous to what is observed for O3 (Fig. 3). Although global inventories estimate five times more NOx emissions from fossil fuel combustion than from BB sources, only a limited fraction of the total NOx and PANs emitted in the boundary layer reaches the free troposphere (72, 73). BB emissions, on the other hand, are often convectively injected to higher altitudes, resulting in a proportionally larger amount of BB NOx than urban NOx injected into the free troposphere (74, 75). In the remote troposphere, O3 production is driven by the abundance of NOx or its reservoir species such as PANs (27, 76, 77). Injection at higher altitude and colder temperatures also increase the lifetime of thermally

![Fig. 3. Distributions of tropospheric O3 (y axis) within each air mass classification (x-axis): well-mixed and aged (WMA) air, urban (UR), BB, or mixed pollution (MP) as defined in Sources of O3 to the Remote Troposphere. The Northern Hemisphere (NH) extratropics (panels A and B), the tropics (panels C and D), and the Southern Hemisphere (SH) extratropics (panels E and F) were defined as in Fig. 2. ATom observations classified using HCN and C2Cl4 or CH3CN and CH2Cl2 pairs of tracers are shown in yellow and green, respectively. Modeling results are shown by the hashed box and whisker plots with GEOS-Chem1 in violet (2 x 2.5° horizontal resolution), GEOS-Chem2 in pink (4 x 5° horizontal resolution), GFDL-AM3 in light blue, and CAM-chem in gray. The boxes and whiskers show the 10th, 25th, 50th, 75th, and 90th percentiles of O3 distributions. ΔO3 corresponds to the difference between average O3 in polluted air (i.e., UR, BB, or MP) and that in WMA air. ΔO3 is plotted with square markers for ATom observations and round markers for modeling results. The error bars correspond to the SEs of the average O3 in polluted air and in WMA air added in quadrature.](https://doi.org/10.1073/pnas.2109628118)
labile NOx reservoirs such as PANs, whose slow thermal decomposition enables sustained ozone production during long-range transport (78).

Often, the global CTMs used here predict lower O3 in polluted air masses than in well-mixed and aged air, particularly in the Northern Hemisphere and in the tropical Atlantic (negative ΔO3; Fig. 3A, B, and D). Greater levels of O3 in well-mixed and aged air imply that tropospheric O3 sources in these CTMs are overweighted toward either chemical O3 production from nonurban and non-BB emissions or stratospheric mixing. Additionally, CTMs often overestimate ΔO3 in urban air masses in the Southern Hemisphere in fall and winter and do not reproduce ΔO3 in BB and mixed-pollution air masses in the Southern Hemisphere in spring and summer (Fig. 3E and F). CTMs sometimes reproduce ΔO3 in polluted air masses in the tropical Pacific, where overall O3 mixing ratios are lowest (Fig. 3C), but they predict significantly [ANOVA test combined with a Tukey post hoc test with a 95% CI (79)] greater levels of O3 in well-mixed and aged air compared with observations there and in all other regions except for the Southern Hemisphere in fall and winter (Fig. 3). Discrepancies between models and observations highlight gaps in our understanding of tropospheric O3 sources.

Comparison of Observed and Modeled BB Influence on Tropospheric O3.
To approximately quantify the contributions of BB and urban emissions to O3, we first calculate their respective influence on every tropospheric air parcel sampled during ATom in which either the urban or BB tracer was above the regional background value (45 to 76% of the data; SI Appendix, Table S2). The fraction of influence is calculated as the ratio of the normalized excess mixing ratio of an urban and BB pollution tracer to CO using ATom observations to its emission ratio from source inventories (see Materials and Methods). A simple mixing model shows that variations in the fraction of influence of a source-specific tracer quantitatively represents its mixing with different air mass types (SI Appendix, section S4). Next, we calculate the amount of O3 attributed to urban and BB emissions as the product of the fraction of influence and the amount of O3 above background. Underlying assumptions and uncertainties are further discussed in Materials and Methods and in SI Appendix, sections S3–S6. We report the concentration-weighted average O3 attributed to urban and BB emissions per region in Fig. 5. The concentration-weighted average corresponds to the average regional O3 attributed to urban/BB emissions weighted by the urban/BB tracer mixing ratio. Additionally, we estimate the contributions to O3 from BB and urban emissions using the same simulations from the three global CTMs (Fig. 5). The difference between simulation A (base case) and B (no anthropogenic emissions) is interpreted as urban O3, and the difference between simulation A (base case) and C (no BB emissions) is interpreted as BB O3.

Observations demonstrate consistently similar or greater O3 contribution from BB compared with urban emissions in most regions and seasons, with most confidence in the Southern Hemisphere spring and summer and tropical Atlantic. In the Southern Hemisphere and the tropical Atlantic, BB emissions contribute ~2 to 10 times more O3 than urban emissions. In the Northern Hemisphere and the tropical Pacific, BB and urban emissions contribute similar levels of O3. The highest concentration-weighted average O3 attributed to BB emissions is found in the Southern Hemisphere spring and summer (23.0 to 24.7 ppbv) followed by the tropical Atlantic (10.8 to 12.5 ppbv). The highest concentration-weighted average O3 attributed to
urban emissions is in the tropical Pacific (9.0 to 10.0 ppbv) followed by the Northern Hemisphere spring and summer (3.3 to 7.5 ppbv). The O₃ attribution has a large uncertainty (SI Appendix, Table S3), and the methodology applied to derive these numbers is sensitive to many parameters that also have large uncertainties (e.g., background value, emission ratio; SI Appendix, sections S5 and S6). However, we apply similar assumptions and parameters to calculate O₃ from urban and BB emissions, which should reduce the uncertainty in the ratio of O₃ attributions to these sources. Consistent results for two sets of urban and BB tracers further support this methodology (Figs. 3 and 5). Additionally, an alternate method consisting of removing air parcels with significant BB or urban influence to evaluate the shift in the regional O₃ distribution also points to a similar or stronger influence from BB than urban emissions on tropospheric O₃ (SI Appendix, Figs. S6 and S7). Indeed, removing air masses with large BB or mixed pollution influence generally reduces O₃ by a few ppbv, whereas removing air masses with large urban influence generally shifts the O₃ distribution toward higher values.

None of the models adequately represents the strong influence of BB emissions on tropospheric O₃. Only one model, GEOS-Chem1, attributed similar O₃ enhancements to BB and urban emissions but only in the Southern Hemisphere and the tropical Atlantic. The other two models, as well as GEOS-Chem2 in the Northern Hemisphere and the tropical Pacific, attribute a factor of 2 to 10 more O₃ to urban than BB emissions. In general, all models ascribe similar or more O₃ to urban emissions than that derived from observations. Since these observation-derived O₃ enhancements are relative to background O₃, which itself is increased by pollution outflow (80), they are lower estimates of the O₃ contribution from BB and urban emissions. Accounting for contributions from urban and BB emissions to observed background O₃ could reduce the discrepancy with modeled urban O₃ but would likely further increase the gap with modeled BB O₃.

Discrepancies in the attribution of tropospheric O₃ to BB emissions between observations and model results may arise from a misrepresentation of 1) BB emissions, 2) smoke chemistry, and 3) plume injection height in global models. A correct representation of the injection altitude of smoke in the troposphere is crucial to better predict the impact of BB emissions on the composition of the atmosphere (81). Zhu et al. recently proposed a new global BB emissions injection scheme (not used here by GEOS-Chem), which resulted in significantly better agreement of the simulated vertical profiles of PAN and CO with observations over the North American boreal regions (82). Uncertainty in BB emission inventories has been suggested as a potentially large source of error in global modeling of tropospheric O₃ by the recent Tropospheric Ozone Assessment Report modeling analysis (21). Furthermore, BB emission inventories rely on satellite images of burned areas with coarse spatial resolution and thus significantly underestimate the contribution of undetected small fires (83). Finally, O₃ chemistry in BB plumes is complex and is a topic of intensive current research. Recent findings on the emissions and chemical evolution of NOₓ species (71, 84, 85), VOC emissions (18), and O₃ formation in smoke plumes (86, 87) may improve constraints for global models and enable a better representation of chemical mechanisms in smoke.

Conclusion and Implications. Global-scale in situ observations of O₃, CO, and pollution tracers in the remote troposphere demonstrate that both urban and BB emissions strongly influence global tropospheric O₃. Air parcels with pollution from both sources exhibit the greatest O₃ enhancements followed by air influenced by BB and then urban emissions in all regions of the globe. A similar pattern is observed for NOₓ species, which suggests significant O₃ production due to continental pollution in the remote troposphere. All global CTMs used here overpredict O₃ in well-mixed and aged air masses, usually leading to an underprediction of the excess O₃ in polluted air masses when compared with the observations. Observations are analyzed to show that in the Northern Hemisphere, where most urban emissions occur, and in the tropical Pacific, O₃ attributed to BB was within a factor of two of that attributed to urban sources, while in the Southern Hemisphere and in the tropical Atlantic, BB accounted for 2 to 10 times the ozone from urban sources. Conversely, all global CTMs used in this study ascribe a factor of ~1 to 10 more O₃ from urban than from BB emissions for the same air parcels, possibly arising from uncertainties in BB emission inventories, chemical mechanisms for O₃ production, plume injection heights, or all three.

On the global scale, anthropogenic activity has increased the tropospheric ozone burden by ~40% since 1850 (28, 88), with modeled increases at northern midlatitudes of ~70% since 1850 and 40% since 1950 (89), in broad agreement with limited observations from the early and mid-20th century (90). In contrast, inventories suggest that global BB emissions have not changed substantially since preindustrialization, as the observed decrease in African emissions since about 1950 has been partially compensated for by an increase in emissions from South America and Asia (66). Nevertheless, there is mounting evidence that BB emissions will play an increasing role in the future composition of the atmosphere due to longer fire seasons (91), more intense fire activity (92), and emissions reductions from fossil fuel combustion. Characterizing these emissions and their impacts at all scales is a subject of intense current public and scientific interest (93–97). Accurate representation of BB emissions and related atmospheric chemistry in global CTMs will be crucial to predicting future levels of tropospheric O₃ and its role in the radiative forcing of climate and air quality. The increased influence of BB O₃ on regional backgrounds compromises the mitigation of O₃ through local emissions reductions to meet air quality standards (98). Estimates of O₃ radiative forcing are dependent on accurate understanding of relevant emission sources and chemistry and may depend more strongly on BB emissions than currently predicted (99). The observational analysis of BB influence at the global scale suggests an incomplete representation of global ozone in current models and points toward several mechanisms requiring further investigation to address these uncertainties.

Materials and Methods

Data Parsing. We used the 2-min merged ATom dataset in this study (34). We removed flight segments over the continental United States to limit the influence of regional emissions. Next, we filtered out marine and stratospheric influences by retaining measurements with O₂/H₂O between 0.003 and 1 ppbv ppm⁻¹ (parts per million by volume). This resulted in 61% of the ATom dataset considered as remote tropospheric air. The thresholds of 0.003 and 1 ppbv ppm⁻¹ were chosen based on the inclusions in the O₃ to O₂/H₂O correlation (SI Appendix, Fig. S7). A similar filter based on the modeled O₃ and H₂O was applied to the results from the CTMs. The sensitivity to these filters is further discussed in SI Appendix, section S3 and illustrated in SI Appendix, Figs. S9 and S10. More details about the instrumentation during ATom and the modeling simulations used in this work can be found in SI Appendix, section S2.

Fraction of Influence. We quantified the respective influence of BB and urban emissions on each air parcel by first calculating the normalized excess mixing ratio (NEMR) of BB and urban tracers according to Eq. 1:

\[
\text{NEMR}_{BB} = \frac{\Delta X}{X_{BB} - X_{BB}}
\]

where NEMR is the normalized excess mixing ratio of compound X (i.e., X = HCN, CH₃CN, C₂Cl₄, or CH₃Cl₂) to CO, and ΔX/X is the difference between the mixing ratio of compound X (CO) and its background level. Background levels were defined as the average mixing ratio in well-mixed and aged air.
masses, defined as air where both urban and BB tracers are lower than their regional median values (see Sources of O3 to the Remote Troposphere).

The respective influence of urban and BB emissions (F$_X$) was then calculated as the ratio of the NEMR of compound X to the average emission ratio of compound X (E$_R$) as follows:

$$ F_X = \frac{NEMR_X}{E_R} $$ \[2\]

The determination of ERs for each pollution tracer is further discussed in SI Appendix, section S5 and illustrated in SI Appendix, Fig. S10. Urban and BB fractions of influence were calculated for air masses with urban or BB tracer levels above their background values, thus limiting the analysis to air parcels with quantifiable continental pollution. The proportion of such air masses is given for each region in SI Appendix, Table S2. We present in SI Appendix, Fig. S11 a histogram of the fractions of influence in the tropical Atlantic as an example. The fractions of influence are distributed around values that reflect the most commonly observed influence from each emission type. In the tropical Atlantic, we show a larger influence of BB compared with urban emissions on polluted air parcels, consistent with our understanding of pollution sources in the area. Further details on the calculation of the fraction of influence are given in SI Appendix, section S4.

0$_3$ Attribution Calculation. We attribute tropospheric O$_3$ background to urban and BB emissions in polluted air masses as follows:

$$ O_3 = F_X \times \Delta O_3 $$ \[3\]

Then, we calculate the weighted-average O$_3$ attributed to urban (BB) emissions in each region, which is the average of attributed O$_3$ in each air parcel weighted by the urban (BB) tracer mixing ratio, as follows:

$$ x_{wavg} = \frac{\sum_i \omega_i x_i}{\sum_i \omega_i} $$ \[4\]

where x_{wavg} is the weighted-average attributed O$_3$, x_i is the attributed O$_3$ in the air parcel i, and ω_i is the weight associated with each value of O$_3$ attribution equal to the tracer mixing ratio.

One of the assumptions inherent to this O$_3$ attribution is that O$_3$ enhancements are linearly correlated with urban and BB tracers. In the remote troposphere, O$_3$ production is linearly driven by NO$_x$ availability (77). However, a significant fraction of tropospheric O$_3$ may reflect export from the polluted continental boundary layer (73), where O$_3$ production is nonlinearly determined by the NO$_x$ to VOCs regime (26). The balance between export from the boundary layer and in situ production of tropospheric O$_3$ is thus key to assess the validity of this assumption but is not constrained at the global scale. Here, we consider the simultaneous increase of O$_3$, CO, and NO$_x$ species with urban and BB tracers (Figs. 2 and 4 and SI Appendix, Fig. S1) to evidence the support to a linear approximation. This simple calculation should thus provide a useful estimate of the average tropospheric O$_3$ enhancement from each source. We further discuss and illustrate the uncertainty associated with this term in SI Appendix, section S5, Fig. S12, and Table S3. A caveat to this methodology is that it assumes similar ozone production efficiency (OPE) from urban and BB emissions. The range of measured ΔO_3 to ΔCO, a proxy of OPE (44), in urban and BB plumes span similar values (−0 to 1 ppbv·ppmv$^{-1}$) at the regional scale (19, 63, 101). In our analysis, O$_3$ detrained from the continental boundary layer to the remote troposphere is integrated over large spatial scales, and the event-scale differences in OPE is likely smoothed out in the process. However, differing OPEs would lead to a corresponding overestimation of the attributed O$_3$ from the source with the lower OPE.

Data Availability. Measurements and modeling work data have been deposited in https://daac.gsfc.nasa.gov/ATomGuides/ATom_merger_html (https://doi.org/10.3334/ORNLDAAC/1581). ATom and modeling data used in this study are published through the Distributed Active Archive Center for Biogeochemical Dynamics (34).

Acknowledgments. We thank the ATom leadership team, science team, and DC-8 pilots and crew for contributions to the ATom measurements. ATom was funded in response to NASA ROSES-2013 NRA NNH13ZDA001N-EVS2. We acknowledge support from the US National Oceanic and Atmospheric Administration Atmospheric Chemistry, Carbon Cycle, and Climate (ACCA) Program. This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. We thank O. Cooper, E. Fischer, P. Wennberg, S. McKeen, and M. Trainer for helpful discussions.
Large contribution of biomass burning emissions to ozone in the global remote troposphere