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Abstract: In this work we propose a Monte Carlo estimator for non stationary covari-
ances of large incomplete lattice data and irregularly distributed observations. In par-
ticular, following the multiresolution approach introduced by Nychka et al. (2003) and
Matsuo et al. (2008), we estimate a spatial reduced rank covariance starting from a Matérn
model and using the Wendland basis function in its decomposition. The basic idea is to
estimate the covariance on a lower resolution grid starting from a stationary model and use
the multiresolution property for evaluating the variance of the full data. Since this method
doesn’t need to compute the wavelet coefficients, it is very fast in estimating covariance
in large dataset. The spatial forecasting performances of the method has been described
through a simulation study. Finally, the method has been applied to aerosol optical thick-
ness (AOT) satellite data, observed in Northen Italy, for the estimation of missing values
and to ozone concentrations for spatial prediction.

Keywords: Monte-Carlo estimator, multi-resolution basis, non-stationary covariance,
large data sets.

1. Introduction

The analysis of many geophysical and environmental problems requires the application of
interpolation techniques based on the estimation of covariance matrices. Due to the non
stationary nature of the data and to the large size of the dataset it is often difficult to use
classical covariance models. In this work we proposed a wavelet-based non parametric
estimator for computing the covariance matrices of massive data.
Let y be the m data points of the field on a fine grid and Σ the (m×m) covariance matrix
among grid points. By the multiresolution approach (Nychka et al. (2003)), a spatial
covariance matrix Σ can be decomposed as

Σ = WDW T = WHHTW T (1)

where W is a matrix of basis functions evaluated on the grid, D is the matrix of coeffi-
cients, H is a square root of D, and the apex T denotes transposition. Unlike the eigenvec-
tor/eigenvalue decomposition of a matrix, W need not be orthogonal and D need not be
diagonal. Since for massive data sets Σ may be very large, some authors (Nychka et al.
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(2003)) suggest an alternative way of building the covariance by specifying the basis
functions and a matrix H . The basic idea of this work is to estimate in a iterative way
the matrix H on a lower resolution grid starting from a stationary model for Σ. The eval-
uation of the wavelet basis on a fine grid in Eq. (1) provides a reduced rank covariance
matrix.
The method can be used for the estimation of covariance functions of irregularly dis-
tributed data points and lattice data with many missing values.
In this paper, the multiresolution method based on the reduced rank covariance is applied
to two environmental data sets: the AOT satellite data (Nicolis et al. (2008)) and to daily
ozone concentrations (Nychka (2005)).
Next Section discusses the multiresolution approach for the analysis of observational data.
Section 3 describes the Reduced Rank Covariance (RCC) algorithm for the estimation of
conditional variance in large data sets. Section 4 shows some simulation results. Applica-
tions to satellite and ozone data are described in Section 5. Section 6 presents conclusions
and further developments.

2. Modelling observational data

In many geophysical applications the spatial fields are observed over time and one can
exploit temporal replication to estimate sample covariances. In this section we focus on
this case and also for gridded data with the goal of deriving a estimator that scale to large
problems.
Suppose that the point observations y are samples of a centered Gaussian random field
on a fine grid and are composed of the observations at irregularly distributed locations yo,
and the missing observations ym. In other words, we assume that the grid is fine enough
in resolution so that any observation can registered on the grid points (as in Figure 1 (a)).
Hence,

y =

(
yo

ym

)
∼ MN(0,Σ) (2)

where Σ = WDW T is the covariance fine gridded data described in Eq. (1), D is a non
diagonal matrix and W is a matrix of non-orthogonal scaling and wavelet functions.

Figure 1: Gridded data: irregularly distributed data (squares); missing data
(blue circles) and knots (red circles).
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Although the non-orthogonality property of wavelet basis provide off diagonal coeffi-
cients in the matrix D, the localized support of these functions ensures that many co-



variance terms in D will be close to zero, reducing the computational complexity in the
interpolation problems of surfaces. An important class of compactly supported basis func-
tion, used in the applications of this work, is the Wendland family proposed by Wendland
(1995).

Figure 2: Example of D (a) and H matrix (b) on a 8× 8 grid data (b) using
wavelet-based non stationary covariance.
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The Wendland functions are also implemented in the R statistical language (http://www.r-
project.org) in the fields package (Nychka (2005)). Figure 2 provides an example for the
matrices D and H , obtained by Eq.(1),

D = W−1ΣW−T , (3)

where Σ is the covariance resulting from the fitting of a Matérn model to a regular grid,
W is a matrix whose columns contain Wendland functions, and W−T is the transpose of
the inverse of W .
The observational model (2) can be written as zo = Ky + ε where ε is a multivariate
normal MN(0, σ2I), zo is a vector of m observations, and y is the underlying spatial
field on the grid. The matrix K denotes an incidence matrix of ones and zeroes with a
single one in each row indicating the position of each observation with respect to the grid.
The conditional distribution of y given zo is Gaussian with mean

Σo,m(Σo,o)
−1zo (4)

and variance
Σm,m − Σm,o(Σo,o)

−1Σo,m (5)

where Σo,m = WoHHTW T
m is the cross-covariance between observed and missing data,

Σo,o = WoHHTW T
o + σ2I is covariance of observed data and Σm,m = WmHHTW T

m is
the covariance of missing data. The matrices Wo and Wm are wavelet basis evaluated at
the observed and missing data, respectively.
For a chosen multiresolution basis and a sparse matrix H there are fast recursive algo-
rithms for computing the covariance Σ. Motsuo et al. (2008) proposed a method that
allows for sparse covariance matrices for the basis coefficients. However the evaluation
of wavelet coefficients can be slow for large data sets.



3. The Reduced Rank Covariance (RRC) method

In this section we propose an estimation method for Σ based on the evaluation of a reduced
rank matrices. We denote by “knots” the spatial points on a lower resolution grid G of size
(g × g), where g ≤ m. The idea is to estimate the matrix H on the grid of knots starting
from a stationary model for Σ and using the Monte Carlo simulation for providing an
estimator for the conditional covariance. A flexible model of stationary covariance is the
Matérn covariance given by

C(h) = σ2 1

Γ(ν)2ν−1

(
2
√
ν
h

θ

)
Kν

(
2
√
ν
h

θ

)
, θ > 0, ν > 0

where h is the distance, θ is the spatial range and Kν(·) is the Bessel function of the
second kind whose order of differentiability is ν (smoothing parameter). Since W is fixed
for a chosen basis, the estimation procedure for the conditional covariance is given by the
estimation of the matrix H after a sequence of approximations. Following this approach
the covariance in Eq. 1 can be approximated as

Σ ≈ WH̃gH̃
T
g W

T , (6)

where H̃g is an estimate of the matrix H on the grid G.
The RRC estimation algorithm can be described by the Monte Carlo EM algorithm in the
following steps.

1. Find Kriging prediction on the grid G:

ŷg = Σo,g(Σo,o)
−1zo,

where H̃g = (W−1
g Σg,gW

T
g )

1/2 and Σg,g is stationary covariance model (es. Matern).
2. Generate synthetic data: zso = Kys

g + ε where ys
g = WgH̃ga with a ∼ N(0, 1).

3. Compute Kriging errors:
u∗ = ys

g − ŷs
g,

where ŷs
g = Σo,g(Σo,o)

−1zso.
4. Find conditional field ym|zo:

ŷu = ŷg + u∗.

5. Compute the conditional covariance on T replications, Σu = COV (ŷu) and use the
new H̃g in the step 1.

Performing this several times will give an ensemble of fields and, of course, finding the
sample covariance across the ensemble provides a Monte Carlo based estimate of the
conditional covariance.

4. Simulation study

The purpose of this study is to investigate the forecasting ability of the proposed RRC
method in two different contexts: (i) approximation of stationary covariance models and
(ii) estimation of non-stationary covariances.



Figure 3: Simulated Gaussian random field on a 20× 20 grid with Matèrn
covariance (θ = 0.1 and ν = 0.5) without (a) and with (b) 50% of missing
values.
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In order to study the properties of approximation of the RRC method, we simulated n =
20 Gaussian random fields on a 20 × 20 grid using a Matèrn model with parameters
θ = 0.1 and ν = 0.5. In order to generate the missing data we removed randomly 50% of
the simulated data. An example of simulated random field with missing data is shown in
Figure 3.

Figure 4: (a) RMSE of the 50% of missing values. The estimates are obtained
using a Matèrn model (Stat) and RRC method (W) with five iterations; (b)
covariance between the point indicated by black circle and the rest of grid points.
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For each simulated random field we estimated the missing data using the RRC method on
a grid of 8×8 knots and then we computed the root mean square errors on the predictions.
The parameters of the Matèrn model used in the step 1. of the algorithm has been chosen
by cross validation.



Figure 4 (a) compares the RMSE for each simulated random field for the Matèrn model
and the non-stationary wavelet-based covariance model (RRC). The similarity of the two
boxplots indicates a good approximation of the proposed method to the stationary model.
The covariance between a specific point and the rest of grid points shown in Figure 4 (b)
highlight the higher correlation between neighboring points.

Figure 5: Non-stationary random field simulated on a 40× 40 grid with Matèrn
covariance (θ = 0.1 and ν = 0.5) (a) and RMSE results for 50% of missing
values using a Matérn model and a RRC method on a grid of 8× 8 knots.
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In order to estimate non-stationary covariance by RRC method we generated n = 20
synthetic non-stationary data on a grid of 40 × 40 points with 50% of missing values.
These spatial data has been obtained from a mixture of two dependent stationary random
fields as in Matsuo et al. (2008) with Matèrn covariances (Σ1(ν = 1, θ = 0.125) and
Σ2(ν = 0.5, θ = 0.1)), and a weight function w(u) = Φ((ux − 0.5)/.15) where Φ(·) is
the normal cumulative distribution function and ux is the horizontal coordinate. Figure 5
(a) shows an example of simulated non-stationary random field. The RRC method with
a grid of 8 × 8 knots has been applied for forecasting 50% of the missing values. In this
case the RMSE results (Figure 5 (b)) indicates that RRC method provides better estimates
than a stationary model.

5. Applications

5.1 Satellite data

Satellite data are very important in the analysis of environmental data as they cover wide
monitoring areas and can sometimes be easily downloaded from specialized Internet web-
sites. However, their statistical analysis often requires special techniques to cope with
large data sets or to treat other exogenous variables that affect the satellite measurements
in the atmosphere. The satellite aerosol optical thickness (AOT) data is an example. The
study of these measurements is particularly important to assess the amount of fine particu-
late matters in the air and the consequent risk to human health. However, the meteorolog-



Figure 6: Satellite AOT measurements (a) and kriging predictions (b) using RRC
method on a grid of 8× 8 knots.
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Figure 7: Non-stationary covariance WH̃gH̃
T
g W

T obtained after five iterations
of MC simulations. Each panel shows the covariance between the point indicated
by black circle and the rest of grid points.
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ical conditions determine the AOT retrieval since the availability of the data is restricted
to cloud-free conditions. Indeed, the cloudy coverage causes a large number of missing
data, sometimes making problematic the application of traditional correlation models.
In this work we consider the column aerosol optical thickness (AOT)4 data derived from
the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satel-
lites in Northern Italy for the period April 1st - June 30th, 2006 (Nicolis et al. (2008)).
The Terra satellite crosses Europe near 10:30 local solar time (morning orbit), while Aqua
crosses Europe near 13:30 local solar time (afternoon orbit). Hence, at least two obser-
vations of any place in Europe are obtained per day during daylight hours. These data
are based on analyzing 20 × 20 pixels at 500 m resolution and reported at 10 × 10 km2

resolution. The reflectivity measured at 2.1 µm at the top-of-atmosphere is used to infer
surface reflectivity at that wavelength. Fig.6 (a) shows the daily average of AOT data on
July 26, 2006 in Northen Italy measured on a grid of 54×32 locations. Figure 7 shows the
non-stationary structure of the estimated conditional covariance, WH̃gH̃

T
g W

T , for four

4AOT measurements can be downloaded from the NASA web page http://disc.sci.gsfc.nasa.gov/.



points obtained after five iterations of MC simulations using a grid of 8 × 8 knots. It
is important to note that the correlation structure is slightly different for the four graphs
which indicates that the model is able to capture the non-stationarity of data.
The Kriging prediction for the day July 26, is shown in Figure 6 (b). These results indicate
that higher estimates of AOT values are in the Western part of Northern Italy around the
cities of Turin and Milan. Similar results were found by Fassó et al. (2007) and ? for the
analysis of fine particulate matters (PM10) in Northen Italy.

5.2 Ozone data

In order to apply the RRC method to irregular data, we considered ozone concentrations,
included in Fields package of R software (Nychka (2005)).

Figure 8: (a) Daily ozone concentrations on June 18, 1987; (b) Kriging map
using the RRC method on a grid of 8× 8 knots.
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The database consists of daily 8-hour average ozone concentration measured in parts per
billion (PPB) for 153 sites in the Midwestern US over the period June 3,1987 through
August 31, 1987 (89 days). Many of these station have incomplete records both in time
and space. Figure 8 shows ozone concentrations on July 19, 1987. The application of
RRC method allows to estimate the ozone concentrations on a fine grid with resolution
(100×100) using a lower resolution grid of 8×8 knots. Figure 9 shows the non-stationary
of the estimated reduced rank covariance.

6. Conclusions and further developments

We have proposed a practical method for approximating stationary covariance models
and estimating non-stationary covariances. The method based on empirical estimation
the reduced rank matrix provides an efficient tool for handling large data sets.
Although this method is still in its preliminary stages, the results from the simulation study
are very encouraging. We believe that RRC method can be used for a preliminary analysis



Figure 9: Covariances vs distances: (a) Reduced rank covariance after one
iteration (circles) and Matérn covariance (green line); (b) Reduced rank
covariance after five iteration (circles) and Matérn covariance (green line).
Boxplot in (b) indicates the distribution of the estimated reduced rank
covariance.
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of the spatial covariance structure and can be developed for the covariance estimation of
space time models. We also intend to find a parametrization for the RRC matrix and using
an EM algorithm for the estimation of the model with missing data.
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