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Abstract. Earth System Model (ESM) simulations are increasingly con-
strained by the amount of data that they generate rather than by com-
putational resources. The use of lossy data compression on model output
can reduce storage costs and data transmission overheads, but care must
be taken to ensure that science results are not impacted. Choosing ap-
propriate compression algorithms and parameters is not trivial given the
diversity of data produced by ESMs and requires an understanding of
both the attributes of the data and the properties of the chosen compres-
sion methods. Here we discuss the properties of two distinct approaches
for lossy compression in the context of a well-known ESM, demonstrating
the different strengths of each, to motivate the development of an auto-
mated multi-method approach for compression of climate model output.

1 Introduction

The Community Earth System Model (CESM) [9] is a popular earth system
model code based at the National Center for Atmospheric Research (NCAR). A
high-resolution CESM simulation can easily generate over a terabyte of data per
compute day (e.g., [22]), outputting time slices of data for hundreds of variables
at hourly, daily, and monthly sampling rates. In fact, the raw data requirements
for CESM for the current Coupled Model Comparison Project (Phase 6) [19] are
expected to exceed 10 petabytes [20]. The massive data volumes generated by
CESM strain NCAR’s resources and motivated the work in [2], a first step in ad-
vocating for the use of lossy data compression on CESM output. In [2], errors in
reconstructed CESM data (data that had undergone compression) resulting from
multiple lossy compression methods were evaluated primarily in the context of
an ensemble of simulations. The idea was that the effects of lossy compression on
the original climate simulation should not, at a minimum, be statistically distin-
guishable from the natural variability of the climate system. Preliminary results
indicated that this requirement could be met with a respectable compression
rate with the fpzip compressor [18].

A more recent study in [1] applied fpzip lossy compression to a subset of
the data from the CESM Large Ensemble (CESM-LE) Community Project [12],
which was made available to climate researchers to examine features of the data
relevant to their interests (e.g., extremes, variability patterns, mean climate char-
acteristics). The results from several of these studies are discussed in [1], and
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the authors conclude that while it is possible to detect compression effects in
the data in some features, the effects are often unimportant or disappear in
post-processing analyses. For this study, each CESM output variable was as-
sessed individually to maximize compression such that the reconstructed data
passed the ensemble-based quality metrics in [2]. This costly “brute force” ap-
proach required the generation of multiple ensembles and exhaustive testing of
the compression algorithm’s parameter space.

Our goal is to simplify the process of determining appropriate compression
for a given CESM dataset that both maximizes data reduction and preserves the
scientific value of the data. Therefore, we must be able to detect problematic
compression artifacts with metrics that do not require ensemble data. Further,
because a single compression algorithm cannot obtain the best compression rate
(and quality) on every CESM variable, we explore applying multiple types of
compression methods to a CESM dataset. Once a particular method has been
matched to a variable, then the amount of compression (i.e., parameters) must be
chosen inexpensively as well. In this work, we progress toward identifying which
type of compression method to use based on a variable’s characteristics and
determining the strengths and weaknesses of different types of lossy compression
algorithms in the context of CESM output. We also demonstrate the potential
of a multi-method compression approach for CESM.

2 Challenges

Our ultimate goal is to develop an automated tool to integrate lossy compression
into the CESM workflow. Given a CESM dataset, this tool must be able to
efficiently determine which compression algorithm(s) to apply and evaluate the
impact of the information loss. These two capabilities are particularly challenging
for CESM simulation output due to the diversity of variables, and a variable’s
characteristics determine how effectively it can be compressed. CESM variables
may be smooth, constant, or contain abrupt changes. Variables may have large
ranges of data values, artificial “fill” values, unpredictable missing values, or large
numbers of zero values. Further, the same variable field may “look” different at
different spatial and temporal resolutions.

The work in [2] customizes how aggressively each CESM variable is com-
pressed by adjusting algorithm-specific parameters that control the amount of
compression. However, here we further suggest using different compression algo-
rithms on different variables. The benefit of a multi-method approach is that, for
example, a compression method that does poorly on data with sharp boundaries
but extremely well on smooth data would not be excluded from consideration,
but simply applied only to smooth variables. The challenge of a multi-method
approach is that determining the rules to automate the process of matching
variables to appropriate lossy compression algorithms requires a thorough un-
derstanding of the features of each variable, the strengths and weaknesses of
each compression method, and the evaluation metrics in the context of CESM
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data. Further, once a lossy compression method has been chosen, method-specific
parameters must be optimized as well.

Determining appropriate metrics to evaluate the impact of information loss is
also challenging due to the diversity of data (e.g., smooth data may be easier to
compress, but perhaps there is less tolerance for error). However, a second issue
stems from not knowing in advance how a large publicly-available CESM dataset
will be analyzed. Indeed, if we know how data will be analyzed, compression
can be tailored to well preserve features of interest (e.g., top of the atmosphere
surface radiation balance) in the reconstructed data. Finally, computational cost
is a consideration. While the ensemble-based quality metrics that leverage the
climate model systems’s variability were needed to establish the feasibility of
applying lossy compression to CESM output in [2], an ensemble-based approach
is expensive. On the other hand, simple metrics such as the root mean squared
error (RMSE) or peak signal-to-noise ratio (PSNR) are insufficient for detecting
features potentially relevant to climate scientists.

3 Lossy Compression Algorithms

Lossy compression algorithms for general floating-point scientific data have re-
ceived attention recently (e.g., [3], [4], [6], [11], [14], [15], [16], [17], [18], [21]) due
to their ability to compress much more agressively than lossless approaches. A
few studies have focused on applying lossy algorithms to climate simulation data
in particular (e.g., [2] [25], [8]). Compression schemes can be described in terms
of their modeling and encoding phases, and available compression algorithms dif-
fer in how these phases are executed. Predictive schemes and transform methods
are common choices for the modeling phase in lossy compression algorithms. We
focus on a representative algorithm of each type to explore how the two different
types of compression algorithms differ in the context of CESM data. While not
discussed in this work, note that algorithm performance and ease-of-use are im-
portant and desirable lossy compression method properties for CESM data are
discussed in [2].

The fpzip compressor [18] models the floating-point numbers via predictive
coding; as the data are traversed, values are predicted based on data already
visited. The idea behind a predictive method is that the residual between the
actual and predicted floating-point value is smaller than the original value and,
therefore, can be encoded with fewer bits. The fpzip compressor [18] may be
lossless or lossy depending on whether all bits are retained (or a number of least
significant bits are truncated) before the floating-point values are converted to
integers. Integer residual values are then encoded by a fast entropy encoder.
In lossy mode, because discarding of bits effectively rounds toward zero, some
introduction of bias is possible [15].

A tranform compression method aims to model the original data with a rela-
tively small number of basis coefficients (i.e., those with the largest magnitudes)
and then encode those coefficients. The compressor that we refer to as SPECK
uses a discrete wavelet basis and encodes with the set partitioned embedded
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block coder algorithm [10]. In this research we adopted the SPECK implemen-
tation from QccPack [7], with the CDF 9/7 wavelet transformation [5]. For 2D
variables, a 2D transform was applied to each horizontal slice; for 3D variables,
an additional 1D transform was applied along the Z axis. Normally a trans-
form method cannot support a lossless option due to floating-point inaccuracies
associated with the transform, and SPECK is no exception. The amount of com-
pression with SPECK is controlled by specifying a target bit per voxel (i.e., a
fixed rate). For example, for single precision data (32-bits), specifying a bit per
voxel of 8 would yield a compression ratio (CR) of approximately 0.25, where
(CR) is defined as the ratio of the size of the compressed file to that of the
original file. Other examples of transform approaches include JPEG2000 (e.g.
[25]) and zfp [17], the latter of which targets numerical simulation data.

4 Metrics

Three of the four metrics in [2] for evaluating information loss in CESM due
to lossy compression are ensemble-based. We move away from ensemble-based
metrics in this study largely due to cost considerations, though a second hin-
derance to automation with ensemble-based metrics is that variable properties
across the ensemble cannot be known in advance to determine allowable error.
For example, if a variable is constant across the ensemble, then there may be
no tolerance for any error no matter how small. Therefore, for our comparison
of the two lossy approaches here, we use the three metrics described next, as
well as the Pearson correlation coefficient as in [2]. We do not claim that the
following metrics (and tolerances) are comprehensive (notably absent are mul-
tivariate metrics and temporal considerations), but they reflect our evolution in
terms of suitable metrics that measure different aspects of the data and illustrate
the differences between the two lossy approaches that we compare in this work.
Indeed, determining comprehensive and efficient metrics is a subject of on-going
long-term research.

We consider a single temporal step for our analysis and denote the original
spatial dataset X as X = {x1, x2, . . . , xN}, with xi a scalar and i the spatial
index, and the reconstructed dataset X̃ by X̃ = {x̃1, x̃2, . . . , x̃N}. The range of
X is denoted by RX . The normalized maximum pointwise error (enmax) is the
maximum norm, normalized by RX , and the normalized RMSE (nrmse) is the
RMSE between the original and reconstructed data, normalized by RX .

Pearson correlation coefficient: The Pearson correlation coefficient (PCC)
indicates the strength of the linear relationship between the original and recon-
structed data, and a value of one indicates a perfect (positive) correlation. Lossy
compression should not degrade this relationship, and as such, we require that
PCC ≥ .99999 as the acceptance threshold for this test [2]. The PCC is useful
as it is sensitive to outliers in the data (but is invariant to mean shifts).

Kolmogorov-Smirnov Test: The two-sample Kolmogorov-Smirnov (KS) test
detects a potential shift in the distribution. The KS test is a nonparametric
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hypothesis test for evaluating whether two datasets are drawn from the same
probability distribution (the null hypothesis) and is based on the supremum
distance between two empirical cumulative density functions (CDFs). We use
the SciPy statistical functions package two-sample KS test at the 5% confidence
level. Note that the KS test benefits from large sample size, which we have here,
making it more accurate/sensitive. This test should detect smoothing, skew, or
other distribution-changing features in the reconstructed data. For example, if
many points with the same value in the distribution are systematically under- or
overestimated (by even a tiny amount), this test will fail even if the discrepancy
is undetectable in the sample mean and standard deviation.

Spatial relative error: While checking the maximum norm of the error gives
a minimum guarantee of precision, the error may only be large at one single
point. On the other hand, a measure of average error (e.g., RMSE) can hide an
error at a single or a few point(s). To better describe the spatial extent of the
error, we determine the percentage of spatial grid locations at which the relative
error is greater than a specified tolerance δ. In particular, for each variable X at
each grid point, we calculate the relative error: rexi

= (xi − x̃i)/xi (if xi == 0,
then we calculate the absolute error). If percentage of grid points with rexi

> δ
exceeds 5%, this test will fail. We are compressing single-precision (32-bit) data
in CESM, and for our experiments we use δ = 1e−4.

Structural similarity index: The structural similarity Index (SSIM) was de-
veloped to measure the perceived change in structural information between two
images, as the commonly used RMSE is typically not well suited to such a task
[23]. Data visualization is a key component in many climate simulation post-
processing analyses, as evidenced by the popularity of the Atmosphere Working
Group Diagnostics Package (AMWG-DP). Clearly, visual evidence of informa-
tion loss due to compression in post-processing image analysis would be prob-
lematic, particularly if scientific conclusions are affected. Computing the SSIM
for 2D slices of the original and reconstructed data provides an indication as
to whether the difference is noticeable. An SSIM score of one indicates that
two images are identical, while lower scores indicate some degree of difference.
Most threshold values for minimum allowable SSIM for compression in the med-
ical imaging research field, which focuses on “diagnostically lossless” [13], range
from .95 to .99. While an appropriate SSIM threshold is clearly application de-
pendent (and requires further research for CESM), we use .98 in this study as it
is commonly cited as the level of visual indistinguishability (e.g., [24]).

5 Multi-method Comparison

We limit our investigation to output from the atmospheric model component
of CESM, the Community Atmosphere Model (CAM), evaluating the same
data as in [2], which were annual averages obtained from the 1.1 release ver-
sion of CESM, using a spectral element (SE) dynamical core on a cubed-sphere
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Table 1. Representative CESM variable characteristics

variable name description dim. xmin xmax % zeros

H2O2 H2O2 concentration 3D 9.44e-13 3.55e-9 0.1
FSNTC Clearsky net solar flux (top of model) 2D 4.57e1 3.80e2 0.0
TS surface temperature 2D 2.15e2 3.04e2 0.0
TAUY zonal surface stress 2D -2.66e-1 2.44e-1 0.0

CLOUD Cloud fraction 3D 0.0 8.95e-1 22.3
PRECSC Convective snow rate 2D 0.0 6.80e-9 75.8
TOT ICLD VISTAU Total in-cloud visible sw optical depth 3D 0.0 6.75e1 27.3
PRECCDZM Convective precipitation rate (ZM deep) 2D 0.0 2.39e-7 4.6

OMEGAT Vertical heat flux 3D -2.74e2 2.01e2 0.0
FLNS Net longwave flux at surface 2D 1.14e1 1.50e2 0.0
VQ Meridional water transport 3D -9.21e-2 1.07e-1 0.0

NUMLIQ Grid box averaged cloud liquid num. 3D 1.00e-12 1.10e8 43.1
WSUB Diagnostic sub-grid vertical velocity 3D 2.00e-1 1.30e0 0.0

Table 2. A list of the lowest CR variants of SPECK and fpzip for each representative
CESM variable

variable name SPECK fpzip DWT→IDWT
variant enmax nrmse CR variant enmax nrmse CR max. abs. error

H2O2 speck 2 2.47e-4 2.47e-5 .06 fpzip 20 2.56e-4 2.05e-5 .23 0.0
FSNTC speck 8 1.75e-4 2.08e-5 .26 fpzip 24 2.33e-5 1.18e-5 .36 0.0
TS speck 4 1.46e-3 1.95e-4 .13 fpzip 24 8.71e-5 4.95e-5 .28 0.0
TAUY speck 12 8.04e-6 1.24e-6 .38 fpzip 24 1.41e-5 7.92e-7 .54 0.0

CLOUD – – – – fpzip 24 1.70e-5 2.42e-6 .36 8.88e-16
PRECSC – – – – fpzip 16 4.01e-3 1.97e-4 .12 2.53e-24
TOT ICLD VISTAU – – – – fpzip 24 2.68e-5 5.84e-7 .38 8.88e-15
PRECCDZM speck 24 7.44e-9 1.61e-9 .77 fpzip 16 3.89e-3 4.16e-4 .24 5.29e-23

OMEGAT speck 16 2.24e-8 3.11e-9 .51 fpzip 24 1.09e-5 2.04e-7 .52 0.0
FLNS speck 12 1.38e-5 2.72e-6 .38 fpzip 24 2.81e-5 5.19e-6 .42 0.0
VQ speck 16 3.50e-9 3.82e-10 .51 fpzip 24 9.53e-6 6.52e-7 .48 0.0

NUMLIQ – – – – fpzip 32 0.0 0.0 .46 5.96e-8
WSUB – – – – fpzip 32 0.0 0.0 .43 0.0

1-degree global grid (48,602 horizontal grid-points and 30 vertical levels). CESM
data are written to single-precision (truncated from double-precision), and we
use all 198 default output variables, 101 of which are two-dimensional (2D)
and 97 three-dimensional (3D). We define fpzip Y as fpzip where Y indicates
the number of bits to retain before quantization, and we evaluate with Y =
{8, 12, 16, 20, 24, 28, 32}. Therefore, fpzip 8 is the most aggressive and fpzip 32
is lossless. We define speck M as SPECK where M indicates the bit target rate
and evaluate with M = {1, 2, 4, 8, 12, 16, 24, 32}. Therefore, speck 1 is the
most aggressive and speck 32 is the least (closest to lossless). Note that because
the CAM SE data is output as a 1D array for each horizontal level (space-filling
curve ordering), we reorder the CAM data to be spatially coherent data be-
fore applying the transform method. In particular, the original 48,602 horizontal
grid points were mapped to the six cubed-sphere faces (91x91x1), and SPECK
is applied to each face independently (3D variables have 91x91x30 input arrays).
SPECK also takes two additional parameters related to the wavelet transform
levels; given that the wavelet transform kernel size is 9, we set XY-level to 4
(log2(91/9) + 1) and Z-level to 2 (log2(30/9) + 1).
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Fig. 1. Absolute error between the original and reconstructed data with speck 8 (left)
and fpzip 24 (right) for variable TS. Both methods shown attain a similar CR.

Fig. 2. Variable H2O2 (level 7) in original data (left) and after speck 1 compression
(right). The SSIM index for the images is below the .98 threshold. Colorbars for these
two plots have been omitted as they are identical and do not contribute information.

5.1 Detailed Investigation of Representative Variables

We examine a subset of the variables in detail (Table 1). For each variable, we
determine the most aggressive (i.e., lowest CR) variant of SPECK and fpzip
that pass the four tests described in Section 4 (see Table 2). Comparing SPECK
to fpzip is complicated by the fact that SPECK uses a fixed-rate specification
and fpzip does not. Values for enmax and nrmse are listed in Table 2, but are
not used as selection metrics, and the rightmost column is discussed in Sect. 6.

The top section in Table 2 lists four variables, H2O2, FSNTC, TS, and TAUY,
which have a lower CR with SPECK than with fpzip. These variables all have
either very few or no zeroes. Each variable is also quite smooth (intuitive for
surface temperature, TS). For H2O2, while the range is a bit larger overall, the
range within each horizontal level is smaller. Note that fpzip does not do poorly
on these four variables, but SPECK compresses more aggressively. Figure 1 il-
lustrates the difference in the two methods via the absolute error for TS with
speck 8 (left) and fpzip 24 (right), which achieve a similar CR of .26 and .28, re-
spectively. The error with SPECK is uniformly smaller at this same compression
ratio, which makes sense given that more aggressive compression via speck 4 is
acceptable (Table 2). Note that the cubed-sphere faces are evident in Figure 1.
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Fig. 3. Variable CLOUD (level 4) in the original data.

Fig. 4. Absolute error between the original and reconstructed data with speck 16 (left)
and fpzip 24 (right) for variable CLOUD (level 4).

For FNSTC, TS, and TAUY, more aggressive variants of the two compressors
fail the spatial relative error test. For H202, though, the more aggressive variant
of SPECK fails the SSIM test, which can be visually confirmed by the noticeable
difference in Figure 2 along the contour between blue and light blue.

The second section in Table 2 lists four variables that achieve a lower CR with
fpzip. The first three of these variables (CLOUD, PRECSC, TOT ICLD VISTAU)
contain sizable percentages of zeros, which SPECK typically does not exactly
preserve. Even the least aggressive SPECK variant, speck 32 (which does not re-
duce the file size) cannot pass the KS test, which detects the shift in distribution
caused by reconstructing zero values in the original data as very small values
(positive and negative). These fields also contain more abrupt jumps in the data,
which are not favorable to a transform method. For example, the 3D variable
CLOUD contains many zero values, very small numbers, and large ranges. Some
levels have ranges of eight orders of magnitude, half of the levels have no zeros,
the surface level (level 0) has all zeros, and level 4 (Fig. 3) is 95% zeros with a
range of five orders of magnitude. Figure 4 shows the absolute error for CLOUD
on level 4 with fpzip 24 (CR = .36 and passes all metrics) and speck 16 (CR
= .51 and does not pass), and it is clear that this variable is challenging for
a transform method. The fourth variable, PRECCDZM, has fewer zeros but a
large range, and can be compressed with SPECK, but not as aggressively as
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Table 3. All variables (198) categorized by method with lowest CR.

Category Number of SPECK averages fpzip averages
variables enmax nrmse CR enmax nrmse CR

SPECK better 87 4.23e-4 5.62e-5 .16 1.35e-4 2.25e-5 .30
fpzip better 12 4.26e-7 5.91e-8 .45 7.76e-4 1.09e-4 .37
fpzip/SPECK similar 24 5.31e-6 9.58e-7 .32 2.59e-4 1.18e-5 .32
fpzip (SPECK fails) 63 – – – 1.38e-3 6.71e-5 .29
lossless (fpzip 32) 12 – – – 0.0 0.0 .50

fpzip. More aggressive variants of SPECK and fpzip on PRECCDZM fail the
KS test and correlation coefficient test, respectively.

The third section in Table 2 contains variables for which both approaches
achieve a similar CR. These variables all fail the spatial relative error test if
compressed more aggressively with either method. Note that while the CR is
similar, both nmrse and enmax are notably smaller with SPECK for variables
OMEGAT and VQ. Finally, the bottom of Table 2 lists two variables for which
only lossless compression can pass the metrics. Lossy compression of NUMLIQ
(which has both a huge range and a high percentage of zeros) resulted in KS
and SSIM test failures for both SPECK and fpzip. In contrast, WSUB does
not have a large range, but it does have a large number of non-zero constants
(29% of the data values are equal to 0.2). Neither lossy approach preserved this
prevalent constant, resulting in KS test failures indicating a shifted distribution.
We note that fpzip lossless compression is slightly better than NetCDF4 lossless
compression (essentially gzip), which results in CR of .48 for both variables.
Lossless compression achieves a respectable CR on these two variables due to
their large numbers of constant values.

5.2 Full Set of Variables

Now we look at all 198 variables and divide them into five categories according
to which lossy compression approach passes the Sect. 4 metrics with a lower CR
(Table 3). We find that 87 variables do better with SPECK than fpzip, and the
average CR and error measurements for that subset of variables is given in the
first row of Table 3. The average CR is approximately a factor of two smaller with
SPECK for these variables. The second and third row of Table 3 show that fpzip
outperforms SPECK on only 12 variables and that they perform similarly in
terms of CR on 24 variables. However, in both of these cases the SPECK average
errors are a couple of orders of magnitude smaller, indicating that traditional
error metrics may be insufficient for identifying certain problematic features.
Finally, for the remaining 75 variables (rows 4 and 5), SPECK is not an option
as it fails the metrics even with its least aggressive variant. Of these, twelve of
the variables cannot pass with fpzip in lossy mode either and require the lossless
variant of fpzip (fpzip 32).

6 Characterizing Data

The two lossy compression approaches that we evaluated have different strengths.
Unsurprisingly, transform methods are challenged by CESM datasets with abrupt
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changes and large ranges of values. They can also be problematic when zeros or
constants must be preserved for post-processing analyses. However, for smooth
CESM data, our results indicate that transform methods can compress more
aggressively and more accurately than a predictive method like fpzip. On the
other hand, fpzip’s general utility and effectiveness is valuable; it can be applied
successfully to every CESM variable and its lossless option is a necessity.

An automated tool for a multi-method approach must be able to assess easily
measurable properties of a variable’s data to determine which type of compres-
sion approach will be most effective. Our experimental results with SPECK and
fpzip indicate that if the least aggressive variant of SPECK (speck 32) is able to
pass the metrics, then the “best” (i.e., lowest CR that passes metrics) SPECK
variant is likely to be as good or better than that of the best fpzip variant.
When speck 32 fails on CESM variables, the reason is a KS test failure. CESM
variables with many zero values (or many constants in general) are particularly
problematic as zeros are frequently reconstructed as small (positive or negative)
values, causing the underlying distribution to shift and the KS test to fail.

In an attempt to predict SPECK effectiveness, we looked at a variety of
variable properties (range, gradient, number of zeros, etc.) and investigated the
cause of the speck 32 failures. We found that the key to the failures was SPECK ’s
CDF 9/7 wavelet transformation (DWT), which can suffer from floating-point
computation induced-error. We refer to the process of applying DWT followed
immediately by an inverse DWT (IDWT) as DWT→IDWT, which is lossless in
infinite precision. In practice, DWT→IDWT was lossless for some CESM vari-
ables and lossy for others, as indicated by the maximum absolute error between
the original data and the data after DWT→IDWT in the rightmost column in
Table 2 (e.g., a zero value indicates lossless). For all but 4 of the 198 total vari-
ables, we found that variables with non-zero absolute errors after DWT→IDWT
indicate that SPECK is not appropriate for these variables. Note that WSUB in
Table 2 is an exception as it requires lossless despite its zero DWT→IDWT error
(and is a target of future study). Therefore, applying a standalone DWT→IDWT
test (e.g., via QccPack) is promising method for automating the decision as to
whether to use a wavelet transform method such as SPECK.

7 Concluding Remarks

Transform methods are enticing due to their ability to compress both aggres-
sively and accurately. Unfortunately, SPECK was unsuitable for 38% of the vari-
ables in our test CESM dataset (though issues with preserving zeros or other
constants could conceivably be addressed by a pre-processing step). However,
the 2x improvement of SPECK over fpzip indicates that an automated multi-
method approach is worth pursuing. Indeed, large climate simulations commonly
produce data volumes measured in hundreds of terabytes or even petabytes, and
even a modest reduction in CR is quite significant in terms of data reduction and
impact on storage costs. Future work includes more research on appropriate met-
rics, as the selection of the most appropriate type of compression scheme must
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now be followed by a specification of the parameters that control the amount
of compression. Further, we note that we chose rather conservative tolerances
for our metrics that, if relaxed, would likely be more favorable to a transform
method.
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