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Abstract

The Constellation Observing System for Meteorology, lonosphere,
and Climate (COSMIC) is expected to provide a wealth of data In
near real-time for ionospheric and space weather research, as well
as for numerical weather prediction (of the neutral atmosphere).
COSMIC will consist of six low earth orbit (LEO) satellites, each
carrying three instrument payloads for ionospheric and plasmas-
pheric monitoring. 1) A Global Positioning System (GPS) receiver,
connected to two high-gain limb viewing antennas and two anten-
nas for precise orbit determination (POD), will observe the total
electron content (TEC) to all GPS satellites in view at all times, and
will provide profiles of the electron density via the radio occultation
technique. 2) A Tiny lonospheric Photometer (TIP) will measure
the ultra-violet emission due to recombination of oxygen and elec-
trons in the 1onosphere along the sub-satellite track. 3) A Tri-Band
Beacon (TBB) will transmit radio signals on three frequencies (150,
400, and 1067 MHz) which will be received by chains of receivers
on the ground with the main goal to determine the line-of-sight TEC
and i1onospheric scintillation levels. The ionospheric data products
from COSMIC will be made available to the community from the
COSMIC Data Analysis and Archival Center (CDAAC) In Boul-
der, Colorado, within 150 minutes of collection in orbit. COSMIC
IS scheduled for launch by the end of 2005.

Tablel: Anticipated near real-time ionospheric data products from COSMIC, their

lonospheric Data Products and Formats

The COSMIC Data Analysis and Archival Center (CDAAC) has defined
a series of 1onospheric data products that will be made available to the
user community in near real-time once the mission starts. These products
and their formats are summarized in Table1. The latency is basically de-
termined by an initial maximum of about 100 minutes before the data col-
lected by each satellite are down-linked to one of two receiving stations
(Fairbanks or Kiruna), plus transfer to CDAAC and processing time. It is
not yet clear if CDAAC will be the center for the processing of the TBB
data. These data will be collected at dedicated ground stations currently
being installed in various countries all over the world.

Besides the products described in Tablel, CDAAC will also work
to combine different data types. This could include combination of the
1 Hz occultation data from the POD antennas, with high rate (50 Hz) oc-
cultation data collected below ~ 140 km, via the limb antennas, to obtain
electron density profiles with very high vertical resolution (~ 100 m)
through the E- and D-layers. CDAAC also considers to provide global
scintillation parameters from the two limb antennas and from the TBB
data (if processed at CDAAC) as well as higher level products from the
TIP data (e.g., F-layer peak density). The detailed definition of any of
these products has yet to be worked out.

Absolute TEC calibration

Using data from the German CHAMP satellite (e.g., Heise et al., 2002),
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Figurel: Estimated CHAMP POD antenna differential code bias (DCB) over 50 days
In Oct/Nov, 2003 (red), and a least squares fit (blue smooth curve), upon which a next
day prediction can be based.

Electron density from occultation data

The observations from the COSMIC GPS receivers will also be used to
provide model-independent estimates of the electron density at the orbit
altitudes, and the occultation data will be combined with GPS-derived
Global lonospheric Maps (GIMs) and/or TIP data to mitigate the effects
of horizontal gradients when calculating the electron density profiles be-
low the orbit altitudes.

At elevation angles close to zero, the orbit electron density, Ne(7 1),
IS related to the occultation TEC below the LEO satellite orbit, ATEC, as
a function of the ray path tangent altitude, r, as

For COSMIC, ATEC will be obtained using the approach introduced by
Schreiner et al. (1999), where the data collected at positive elevation an-
gles are subtracted from the data collected at negative elevation angles.
For the processing of CHAMP data, only the occultations where data col-
lection starts very close to zero elevation angle are processed.

The middle panel of Figure4 shows the Langmuir Probe data during
Oct. 29, and the GPS-derived orbit electron density at the beginning of
the occultations on that day. Although both Figure2 and Figure4 show
good agreement most of the time, there are still some large outliers which
require improved gquality control of the GPS occultation data. The GPS-
derived orbit electron density Is used as an upper boundary condition in
the derivation of electron density profiles.

GIMs of vertical TEC are generated on a regular basis from a
global network of ground-based GPS receivers (Figure3). For near real-
time processing, CDAAC will most likely implement a simple approach
(Hernandez-Pajares et al., 2000) using the vertical TEC from GIMs to
mitigate the effects of horizontal gradients in the retrieval of electron den-
sity profiles. The profiles in the bottom panel of Figure4 were derived
using the not always valid assumption of local spherical symmetry, pre-
sumable giving rise to large errors below the F-layer (e.g., the profile at
19:52 UT). The GIMs currently available from the Jet Propulsion Labora-
tory (JPL) have a temporal resolution of one hour and a spatial resolution
of 2° by 2°. The six COSMIC satellites will provide a total of about 2500
electron density profiles per day.
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Figure4: Upper panel: Absolute TEC as afunction of time and elevation angle for all GPS satellitesin view on Oct. 29, 2003. Middle panel: Electron density measured by the Langmuir Probe, and GPS-derived orbit electron density at the beginning of occultations. L ower panel: Derived electron density profiles using the orbit electron density as upper boundary condition.



