Δ NCAR

 extremes in 2 extRemes
Extreme value analysis with ${ }^{T}$ the R package extRemes

Eric Gilleland

Research Applications Laboratory
Weather and Climate Impacts Assessment Program
National Center for Atmospheric Research
28 August 2017

Environmental Risk Modeling and Extreme Events Workshop

$$
28-31 \text { August } 2017
$$

Centre de Recherches Mathématiques, Montréal, Québec, Canada
\square

Background Information

- Software funded by the Weather and Climate Impacts Assessment Science Program (http://www.assessment.ucar.edu)
- Project impetus, and continuing involvement, from Rick Katz (http://www.isse.ucar.edu/staff/katz)
- Primary goal is to shorten learning curve for atmospheric scientists to apply extreme value analysis (EVA) in their work when appropriate
- Two R (http://www.r-project.org) packages: extRemes (command-line) and in2extRemes (GUI for some extRemes functions)
- Web page for extRemes and in2extRemes (http://www.ral.ucar.edu/staff/ericg/extRemes)

Background Information

Tutorials for extRemes and in2extRemes

- Gilleland, E. and R. W. Katz, 2016. extRemes 2.0: An Extreme Value Analysis Package in R. Journal of Statistical Software, 72 (8), 1-39, DOI: 10.18637/jss.v072.i08 (https://www.jstatsoft.org/article/view/v072i08).
- Gilleland, E. and Katz, R. W., 2016: in2extremes: Into the R Package extremes - Extreme Value Analysis for Weather and Climate Applications. NCAR Technical Note, NCAR/TN-523+STR, 102 pp., DOI: 10.5065/D65T3HP2
(http://dx.doi.org/10.5065/D65T3HP2).

Background Information

Other EVA software (not just R packages, but mostly):

- List of EVA software at
http://www.ral.ucar.edu/staff/ericg/softextreme.php
- Gilleland, E., 2016. Computing Software. Chapter 25 In Extreme Value Modeling and Risk Analysis: Methods and Applications. Edts. Dipak K. Dey and Jun Yan, CRC Press, Boca Raton, Florida, U.S.A., pp. 505-515.
- Gilleland, E. and Ribatet, M., 2015. Reinsurance and extremal events. In: Computational Actuarial Science with R. Ed. A. Charpentier, Chapman \& Hall/CRC the R series, Boca Raton, Florida, U.S.A., pp. 257-286.
- Gilleland, E., M. Ribatet and A. G. Stephenson, 2013. A software review for extreme value analysis. Extremes, 16 (1), 103-119, DOI: 10.1007/s10687-012-0155-0 (available online at http://www.springerlink.com/openurl.asp?genre=article\&id=doi:10.100 7/s10687-012-0155-0).
- Stephenson, A. and E. Gilleland, 2005. Software for the Analysis of Extreme Events: The Current State and Future Directions. Extremes, 8, 87-109.

fevd

Main function for all (univariate) extreme value distribution (EVD) fitting
fevd(x, data, threshold = NULL, threshold.fun $=\sim 1$, location.fun $=\sim 1$, scale.fun $=\sim 1$, shape.fun $=\sim 1$, use.phi = FALSE, type = c("GEV", "GP", "PP",
"Gumbel", "Exponential"),
method = c("MLE", "GMLE", "Bayesian", "Lmoments"), initial = NULL, span, units = NULL, time.units = "days", period.basis = "year", na.action = na.fail, optim.args = NULL, priorFun = NULL, priorParams = NULL, proposalFun = NULL, proposalParams = NULL, iter = 9999, weights = 1, blocks = NULL, verbose = FALSE)

It's not as bad as it looks!

fevd

Fit GEV to block maxima using MLE
Samples of size 100 of maxima of standard normal distributed samples

```
Zmax <- matrix( rnorm( 100 * 1000 ), 1000, 100 )
dim( Zmax )
Zmax <- apply( Zmax, 2, max )
dim( Zmax )
```


fevd

Fit GEV to block maxima using MLE
Load the library
library(extRemes)
fit $<-$ fevd (Zmax ${ }^{〔}$ Do the fit
fit

See a summary of the fit

fevd

Fit GEV to block maxima using MLE
plot(fit)
Look at diagnostic plots for the fit

ci(fit, type = "parameter")	Obtain Cl's for the GEV
distill(fit)	parameters

strip(fit)

New (not yet available).
Same as distill(), but simpler (only parameter estimates shown)

See just the parameter estimates and some other information (useful for multiple fits, e.g., thousands of locations)

fevd

Fit GEV to block maxima using MLE
Maximum winter temperature (${ }^{\circ} \mathrm{C}$) in Sept-lles, Québec

data(SEPTsp)

?SEPTsp

fevd

Fit GEV to block maxima using MLE
Maximum winter temperature (${ }^{\circ} \mathrm{C}$) in Sept-lles, Québec

fevd

Fit GEV to block maxima using MLE
Maximum winter temperature (${ }^{\circ} \mathrm{C}$) in Sept-lles, Québec

$$
\begin{gathered}
\text { fit } 0<- \text { fevd (TMX1, data = SEPTsp, } \\
\text { units }=\text { "deg } C \text { ") }
\end{gathered}
$$

fit0

fevd

Fit GEV to block maxima using MLE

Maximum winter temperature (${ }^{\circ} \mathrm{C}$) in Sept-lles, Québec

 fit0```
fevd(x = TMX1, data = SEPTsp, units = "deg C")
[1] "Estimation Method used: MLE" Negative Log-Likelihood Value: 134.9045
Estimated parameters:
 location scale shape
18.1978488 3.1266252 -0.1395647
Standard Error Estimates:
 location scale shape
0.4999587 0.3616231 0.1168080
Estimated parameter covariance matrix.
 location scale shape
location 0.24995872 0.04741458 -0.02468781
scale 0.04741458 0.13077124 -0.02121723
shape -0.02468781 -0.02121723 0.01364411
AIC = 275.8091
BIC = 281.6045
```


## fevd

Fit GEV to block maxima using MLE
Maximum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-lles, Québec

> fevd(x = TMX1, data = SEPTsp, units = "deg C")
plot( fit0 )





## fevd

Fit GEV to block maxima using MLE
Maximum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-lles, Québec

```
ci(fit0, type = "parameter")
fevd(x = TMX1, data = SEPTsp, units = "deg C")
[1] "Normal Approx."
 95% lower CI Estimate 95% upper CI
location 17.2179478 18.1978488 19.17774993
scale 2.4178570 3.1266252 3.83539336
shape -0.3685042 -0.1395647 0.08937479
ci(fit0)
fevd(x = TMX1, data = SEPTsp, units = "deg C")
[1] "Normal Approx."
[1] "100-year return level: 28.812"
[1] "95% Confidence Interval: (24.7221, 32.9011)"
```


## fevd

Fit GEV to block maxima using MLE
Maximum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-lles, Québec

```
 fit1 <- fevd(TMX1, data = SEPTsp,
 location.fun = ~AOindex,
 units = "deg C")
fit1
Negative Log-Likelihood Value: 134.4556
Estimated parameters:
mu0 mul scale shape
18.1781844-0.4220587 3.0397157 -0.1043810
Standard Error Estimates:
mu0 mul scale shape
0.4853334 0.4388729 0.3527318 0.1177925
AIC = 276.9112 BIC = 284.6385
\(\mu(\) AOindex \()=\mu_{0}+\mu_{1}{ }^{*}\) AOindex
```

Recall for fit0 that
AIC $=275.8091$
$B I C=281.6045$
Indicating fit0 is better!

```
Results shortened for space
```


## fevd

Fit GEV to block maxima using MLE
Maximum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-lles, Québec
plot(fit1)

(Standardized) Model Quantiles

Transformed Data

$\mathrm{N}=51$ Bandwidth $=0.514$


index

## fevd

Fit GEV to block maxima using MLE
Maximum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-lles, Québec

```
lr.test(fit0, fit1)
Likelihood-ratio Test
data: TMX1TMX1
Likelihood-ratio = 0.89789, chi-square critical value = 3.8415,
alpha =0.0500, Degrees of Freedom = 1.0000, p-value = 0.3433
alternative hypothesis: greater
```


## Result agrees with AIC and BIC

## fevd

Fit GEV to minimum winter temperature $\left({ }^{\circ} \mathrm{C}\right)$ using MLE
(Negative) Minimum winter temperature ( ${ }^{\circ} \mathrm{C}$ ) in Sept-Iles, Québec

$$
\begin{gathered}
\text { fit0 }<- \text { fevd(-TMN0 } \sim 1, \text { data }=\text { SEPTsp, } \\
\text { units }=\text { "neg. deg. C") }
\end{gathered}
$$

## fevd

## Fort Collins, Colorado daily precipitation (inches) 1900 to 1999



## fevd

## Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Fit a GP distribution to the data

$$
\begin{aligned}
& \text { fit }<- \text { fevd( Prec, data }=\text { Fort, } \\
& \text { threshold }=0.395, \text { type }=\text { "GP" } \\
& \text { units }=\text { "inches") }
\end{aligned}
$$

## fevd

## Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Fit a GP distribution to the data plot( fit )





## fevd

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999
plot( fit, type = "trace" )





## fevd

## Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Fit a Poisson Point Process to the data

$$
\begin{aligned}
& \text { fit }<- \text { fevd( Prec, Fort, } \\
& \text { threshold }=0.395, \text { type }=~ " P P ", ~ \\
& \text { units }=\text { "inches") }
\end{aligned}
$$

## fevd

## Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

 plot( fit )



Return Levels based on approx. equivalent GEV


See Smith, R. L. and Shively, T. S., 1995. A point process approach to modeling trends in tropospheric ozone. Atmospheric Environment, 29, 3489 - 3499.

Also:
http://www.stat.unc.edu/postscript/rs/var.pdf

## fevd

## Estimated economic damage (billions USD) caused by hurricanes

Data not taken every x time units, so must estimate an average number of events per year.




## Threshold Selection

Plot parameter estimates over a range of thresholds

Generalized Pareto


## Threshold Selection

Plot parameter estimates over a range of thresholds


Change number of thresholds over the specified range



## Declustering

## NCAR

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )


## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )
threshrange.plot(Tphap\$MaxT,

$$
r=c(105,110), \text { type }=" P P ")
$$





## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ ) extremalindex( Tphap\$MaxT, threshold = 105 )

| $\boldsymbol{\theta}$ | Number of <br> Clusters | Run Length |
| :--- | :--- | :--- |
| 0.21 | 234 | 2 |

## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )
$\mathrm{y}<-$ decluster ( Tphap\$MaxT,
threshold = 105,
$r=2$ )

Y
plot( y )

## Declustering

## NCAR

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )


## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )

$$
\text { extremalindex( y, threshold = } 105 \text { ) }
$$

| $\boldsymbol{\theta}$ | Number of <br> Clusters | Run Length |
| :--- | :--- | :--- |
| 1 | 229 | 3 |

## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )

```
Tphap2 <- Tphap
Tphap2$MaxT.dc <- c(y)
fit <- fevd(MaxT.dc, threshold = 105,
 data = Tphap2, type = "PP",
 time.units = "62/year",
 units = "deg F")
```


## Declustering

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures ( ${ }^{\circ} \mathrm{F}$ )


## Tail dependence

Example where a random variable is completely dependent in terms of the variables, but completely tail independent (from Reiss and Thomas (2007) p. 75.

$$
\begin{aligned}
& \mathrm{z}<-\operatorname{runif}(100,-1,0) \\
& \mathrm{w}<--1 *(1+z) \\
& \text { taildep }(z, w, u=0.8) \\
& \text { taildep.test }(z, w)
\end{aligned}
$$



Reiss, R.-D. and Thomas, M., 2007. Statistical Analysis of Extreme Values: with applications to insurance, finance, hydrology and other fields. Birkhäuser, 530pp., 3rd edition.

## Future Plans

- New bootstrap options (testing stage)
- Currently only parametric bootstrap with percentile method is available via ci() function
- Multiple options for regular bootstrap using the distillery package
- m < n bootstrap
- iid and block bootstrap options
- Multiple choices for estimated intervals (e.g., BCa, basic, bootstrap-t, normal, etc.)
- Test-inversion bootstrap also using distillery package
- New bivariate EVA functionality (with help from Dan Cooley; early stage)
- Other ... (thinking stage; funding dependent)


## Discussion Questions

- What functionality is missing from the software that would be most useful to include (that is not already on the docket)?
- Open-source software, such as extRemes, is use-at-your-own-risk. But, is a proprietary package better?


## Thanks! Questions?


©2017, UCAR I Privacy Policy I Terms of Use
Postal Address: P.O. Box 3000, Boulder, CO 80307-3000 • Shipping Address: 3090 Center Green Dr. Boulder, CO $80301 \cdot$ Contact
The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, finc
publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

