

Extreme value analysis with the R package extRemes

Eric Gilleland Research Applications Laboratory Weather and Climate Impacts Assessment Program National Center for Atmospheric Research 28 August 2017

Environmental Risk Modeling and Extreme Events Workshop 28 – 31 August 2017 Centre de Recherches Mathématiques, Montréal, Québec, Canada

National Center for Atmospheric Research

Background Information

- Software funded by the Weather and Climate Impacts Assessment Science Program (<u>http://www.assessment.ucar.edu</u>)
- Project impetus, and continuing involvement, from Rick Katz (<u>http://www.isse.ucar.edu/staff/katz)</u>
- Primary goal is to shorten learning curve for atmospheric scientists to apply extreme value analysis (EVA) in their work when appropriate
- Two R (<u>http://www.r-project.org</u>) packages: extRemes (command-line) and in2extRemes (GUI for some extRemes functions)
- Web page for extRemes and in2extRemes (<u>http://www.ral.ucar.edu/staff/ericg/extRemes</u>)

Background Information

Tutorials for extRemes and in2extRemes

- Gilleland, E. and R. W. Katz, 2016. extRemes 2.0: An Extreme Value Analysis Package in R. *Journal of Statistical Software*, **72** (8), 1 - 39, DOI: 10.18637/jss.v072.i08 (https://www.jstatsoft.org/article/view/v072i08).
- Gilleland, E. and Katz, R. W., 2016: in2extremes: Into the R Package extremes - Extreme Value Analysis for Weather and Climate Applications. *NCAR Technical Note*, NCAR/TN-523+STR, 102 pp., DOI: 10.5065/D65T3HP2 (http://dx.doi.org/10.5065/D65T3HP2).

Background Information

Other EVA software (not just R packages, but mostly):

- List of EVA software at
 <u>http://www.ral.ucar.edu/staff/ericg/softextreme.php</u>
- Gilleland, E., 2016. Computing Software. Chapter 25 In *Extreme* Value Modeling and Risk Analysis: Methods and Applications. Edts. Dipak K. Dey and Jun Yan, CRC Press, Boca Raton, Florida, U.S.A., pp. 505 - 515.
- Gilleland, E. and Ribatet, M., 2015. Reinsurance and extremal events. In: <u>Computational Actuarial Science with R</u>. Ed. A. Charpentier, Chapman & Hall/CRC the R series, Boca Raton, Florida, U.S.A., pp. 257 - 286.
- Gilleland, E., M. Ribatet and A. G. Stephenson, 2013. A software review for extreme value analysis. *Extremes*, **16** (1), 103 119, DOI: 10.1007/s10687-012-0155-0 (available online at http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.100 <u>7/s10687-012-0155-0</u>).
- Stephenson, A. and E. Gilleland, 2005. Software for the Analysis of Extreme Events: The Current State and Future Directions. *Extremes*, 8, 87 - 109.

Main function for all (univariate) extreme value distribution (EVD) fitting

```
fevd(x, data, threshold = NULL, threshold.fun = ~1,
    location.fun = ~1, scale.fun = ~1, shape.fun = ~1,
    use.phi = FALSE, type = c("GEV", "GP", "PP",
                    "Gumbel", "Exponential"),
    method = c("MLE", "GMLE", "Bayesian", "Lmoments"),
    initial = NULL, span, units = NULL,
    time.units = "days", period.basis = "year",
    na.action = na.fail, optim.args = NULL,
    priorFun = NULL, priorParams = NULL,
    proposalFun = NULL, proposalParams = NULL,
    iter = 9999, weights = 1, blocks = NULL,
    verbose = FALSE)
```

It's not as bad as it looks!

Fit GEV to block maxima using MLE

Samples of size 100 of maxima of standard normal distributed samples

```
Zmax <- matrix( rnorm( 100 * 1000 ), 1000, 100 )
dim( Zmax )
Zmax <- apply( Zmax, 2, max )
dim( Zmax )</pre>
```


UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

data(SEPTsp)

?SEPTsp

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

```
fit0 <- fevd(TMX1, data = SEPTsp,
    units = "deg C")</pre>
```

fit0

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec fit0

fevd(x = TMX1, data = SEPTsp, units = "deg C")

[1] "Estimation Method used: MLE" Negative Log-Likelihood Value: 134.9045

Estimated parameters: location scale shape 18.1978488 3.1266252 -0.1395647

Standard Error Estimates: location scale shape 0.4999587 0.3616231 0.1168080

Estimated parameter covariance matrix. location scale shape location 0.24995872 0.04741458 -0.02468781 scale 0.04741458 0.13077124 -0.02121723 shape -0.02468781 -0.02121723 0.01364411

AIC = 275.8091

BIC = 281.6045

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

fevd(x = TMX1, data = SEPTsp, units = "deg C")

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

```
ci(fit0, type = "parameter")
fevd(x = TMX1, data = SEPTsp, units = "deg C")
[1] "Normal Approx."
         95% lower CI
                      Estimate 95% upper CI
location
              17.2179478 18.1978488 19.17774993
                                          3.83539336
                       2.4178570 3.1266252
scale
                      -0.3685042 -0.1395647 0.08937479
shape
ci(fit0)
fevd(x = TMX1, data = SEPTsp, units = "deg C")
[1] "Normal Approx."
[1] "100-year return level: 28.812"
[1] "95% Confidence Interval: (24.7221, 32.9011)"
```


Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

fit1 <- fevd(TMX1, data = SEPTsp, location.fun = ~AOindex,units = "deg C") Recall for fit0 that f_{i} +1 Negative Log-Likelihood Value: 134.4556 AIC = 275.8091Estimated parameters: BIC = 281.6045mu1 scale shape mu0 18.1781844 -0.4220587 3.0397157 -0.1043810 Indicating fit0 is better! Standard Error Estimates: mu O mu1 scale shape 0.4853334 0.4388729 0.3527318 0.1177925 AIC = 276.9112 BIC = 284.6385 Results shortened for space μ (AOindex) = μ_0 + μ_1 * AOindex

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

plot(fit1)

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

NCAR

Fit GEV to block maxima using MLE

Maximum winter temperature (°C) in Sept-Iles, Québec

lr.test(fit0, fit1)

Likelihood-ratio Test

data: TMX1TMX1

Likelihood-ratio = 0.89789, chi-square critical value = 3.8415, alpha =0.0500, Degrees of Freedom = 1.0000, p-value = 0.3433 alternative hypothesis: greater

Result agrees with AIC and BIC

Fit GEV to minimum winter temperature (°C) using MLE (Negative) Minimum winter temperature (°C) in Sept-Iles, Québec

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999 Fit a GP distribution to the data

fit <- fevd(Prec, data = Fort,
 threshold = 0.395, type = "GP",
 units = "inches")</pre>

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

plot(fit, type = "trace")

Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Fit a Poisson Point Process to the data

```
fit <- fevd( Prec, Fort,
    threshold = 0.395, type = "PP",
    units = "inches" )</pre>
```


Fort Collins, Colorado daily precipitation (inches) 1900 to 1999

Estimated economic damage (billions USD) caused by hurricanes

Data not taken every x time units, so must estimate an average number of events per year.

fevd(x = Dam, data = damage, threshold = 6, type = "GP", time.units = "2.05/year")

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.

Threshold Selection

Plot parameter estimates over a range of thresholds

Threshold Selection

Plot parameter estimates over a range of thresholds

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

threshrange.plot(Tphap\$MaxT, r = c(105, 110), type = "PP")

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

extremalindex(Tphap\$MaxT, threshold = 105)

θ	Number of Clusters	Run Length
0.21	234	2

UCAR Confidential and Proprietary. © 2014, University Corporation for Atmospheric Research. All rights reserved.

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

У

plot(y)

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

decluster.runs(x = Tphap\$MaxT, threshold = 105, r = 2)

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

extremalindex(y, threshold = 105)

θ	Number of Clusters	Run Length
1	229	3

UCAR Confidential and Proprietary. © 2014, University Corporation for Atmospheric Research. All rights reserved.

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

Tphap2 <- Tphap Tphap2\$MaxT.dc <- c(y)

fit <- fevd(MaxT.dc, threshold = 105, data = Tphap2, type = "PP", time.units = "62/year", units = "deg F")

Sky Harbor airport, Phoenix, Arizona July to August maximum temperatures (°F)

Tail dependence

Example where a random variable is completely dependent in terms of the variables, but completely tail independent (from Reiss and Thomas (2007) p. 75.

Reiss, R.-D. and Thomas, M., 2007. *Statistical Analysis of Extreme Values: with applications to insurance, finance, hydrology and other fields*. Birkhäuser, 530pp., 3rd edition.

Future Plans

- New bootstrap options (testing stage)
 - Currently only parametric bootstrap with percentile method is available via ci() function
 - Multiple options for regular bootstrap using the distillery package
 - m < n bootstrap
 - iid and block bootstrap options
 - Multiple choices for estimated intervals (e.g., BCa, basic, bootstrap-t, normal, etc.)
 - Test-inversion bootstrap also using distillery package
- New bivariate EVA functionality (with help from Dan Cooley; early stage)
- Other ... (thinking stage; funding dependent)

Discussion Questions

- What functionality is missing from the software that would be most useful to include (that is not already on the docket)?
- Open-source software, such as extRemes, is use-at-your-own-risk. But, is a proprietary package better?

Thanks! Questions?

are here: NCAR • RAL • WSAP • Forec		Applied Statistics • Eric Gille	eland
Eric	Gilleland		Projects
			Extremes
	,,		Weather and Climate Impacts Assessment Science
bout Education Publications	Presentations	Software	Program
hort Courses Visits Synergy	Awards Links	Fun	Mesoscale Verification Intercomparison in Complex Terrain (MesoVICT)
Welcome by my web site. I am a			Climate Model Verification Project
Applications Laboratory. My main research interests are spatial statistics, forecast verification methods and extreme value analysis.			Reading
			Reference list of spatial (and spatio-temporal)
Eric Gilleland, Ph.D. (CV)			extreme value anlaysis papers
Project Scientist Weather Systems Assessment Pro	ogram (WSAP)		Reference list of spatial forecast verification papers
Research Applications Laboratory			Frontis Page
			Eric Gilleland
National Center for Atmospheric F P.O. Box 3000, Boulder, CO 8030			
Phone: (303) 497-2849 Fax: (303) 497-2729 (e: EricG@ucar.edu	
2017, UCAR Privacy Policy Terms o stal Address: P.O. Box 3000, Boulder,		Shipping Address: 3090 Cer	nter Green Dr. Boulder, CO 80301 • Contact

UCAR Confidential and Proprietary. © 2017, University Corporation for Atmospheric Research. All rights reserved.