
Tulip Infiniband:
SSG's Infiniband Visualization Solution

Nathan Rini
 Supercomputer Services Group

Yellowstone Infiniband Hardware
Type Installed Count Ports

(Max)
Chip Description

SX6536
9 Orca

162 Spines
261 Leafs

648 SwitchX-2 Non-blocking 56Gb/s InfiniBand
Director Switch System

SX6512 2 Orca
11 Spines

9 Leafs
216 SwitchX-2 Non-blocking FDR 56Gb/s InfiniBand

SDN Switch System

SX6036 252 TORs 36 SwitchX-2 Non-blocking Managed 56Gb/s
InfiniBand/VPI SDN Switch System

HCA 4645 1 or 2 ConnextX-3 Mellanox ConnectX-3 VPI QSFP
FDR14/40GbE HCA

Yellowstone Infiniband 9208 Cables
Length Type Count

1 m Copper 4530

2 m Copper 3

3 m Copper 11

10 m Fiber 659

15 m Fiber 2276

20 m Fiber 1461

30 m Fiber 268

Problem:

How to visualize and analyse
9208 cables connected to
252 TORs and 270 Leafs?

Existing Visuals?

INAM - A Scalable InfiniBand Network Analysis and Monitoring Tool

Problem of Yellowstone's Scale

What is Tulip

Tulip is an information visualization framework dedicated to the analysis and visualization
of relational data. Tulip aims to provide the developer with a complete library, supporting
the design of interactive information visualization applications for relational data that can
be tailored to the problems he or she is addressing.

Tulip

Tulip Examples

Tulip Plugins

NCAR (SSG) Infiniband C++ Plugins
Infiniband Topology Import:
This plugin will import the entire Infiniband fabric based on the output of the
'ibnetdiscover -p' command. Each Infiniband chip is created as a node and each physical
cable is created as 2 directional edges.

Infiniband CSV Importer:
This plugin imports CSV files created by the commonly created by Infiniband Monitoring
applications that produce aggregated hardware counter values. The generally come in
the form of hex encoded GUID, decimal port number and then a value (or set of them).
This plugin exists to correctly import or correlate the CSV to the existing IB fabric that has
already been loaded into Tulip. The current use of this import to get the traffic
measurements for running fabrics.

Infiniband Topology Import Routes:
This plugin imports the file ibdiagnet2.fdbs created by 'ibdiagnet -r' command. Currently,
it fills out the ibRoutesOutbound field with number of routes outbound on a given cable
(directional edge).

NCAR (SSG) Infiniband C++ Plugins

Public Source Code Repository:

https://github.com/nateucar/tulip_infiniband

https://github.com/nateucar/libibautils

https://github.com/nateucar/tulip_infiniband
https://github.com/nateucar/libibautils

Graph Network Setup

ConnectX
or

SwitchX

Infiniband Cable

1 Chip
= 1 Node

2 Directional Edges
per Cable

Mellanox ASIC support up to 36 Ports
Omnipath ASIC support up to 48 Ports

Data Sources

OFED: OpenFabrics Enterprise Distribution

ibutils2 / ibdiagnet
ibdiagnet scans the fabric using directed route packets
and extracts all the available information regarding its
connectivity and devices.

ibnetdiscover
The ibnetdiscover command allows you discover the IB
fabric.

Yellowstone’s Ideal
Network Topology

Yellowstone has an asymmetric non-blocking Quasi Full Fat Tree Topology.

Yellowstone’s Actual
Network Topology

Glade
Pronghorn
Geyser
Caldera

Yellowstone

Yellowstone’s Topology includes several other clusters.

Yellowstone Adjacency Matrix

pqft Routing Engine

Full Fat Tree Routing
Infiniband uses static routing

Yellowstone’s combined topology was
(originally) unsuited to OpenSM’s Fat Tree
(ftree) routing engine. The Up Down (updn)
routing engine was used instead of ftree.

Mellanox created Routing Engine Chains
(REC) to logically route subsets of the
Infiniband Fabric.

Mellanox later created Quasi Fat Tree
(pqft) routing engine to further optimise
routing.

Yellowstone Switches Topology

● Orcas
○ spines and leafs

■ use same chip as Piranha switches
■ routing works same as Piranha switches

● Asymmetric Full Fat Tree
● 2 cables from each Piranha connect to each Orca

Yellowstone Switches Topology

All Orcas and Piranhas All Orcas

Yellowstone Switches Topology

Single OrcasAll Orcas

Yellowstone Orca Topology

Yellowstone Orca Topology
● Orcas contain Leafs and Spines
● Each Leaf and Spine has 36 ports
● All Leafs and Spines are connected

Non-Yellowstone Network Topology
● Dav Cluster

○ Nodes connect directly to DAV
SX6512 switch

○ Pronghorn, Geyser, Caldera

● Glade
○ Nodes connect directly to Glade

SX6512 switch
○ GPFS NSD and Glade

Management Nodes

Non-Yellowstone Network Topology

Adjacency matrix with Yellowstone greyed out

Non-Yellowstone Network Topology

PQFT Routing Engine

What about other Supercomputers?

SuperMUC Topology

SuperMUC Topology

SuperMUC Topology

Stampede’s Topology

Stampede’s Topology

Stampede’s Topology

Cheyenne’s Topology
Magnified Hypercube

Cheyenne’s Topology
Magnified Lower Dimension Hypercubes

Cheyenne’s Topology
Hypercube Dimension vs Cables

Cheyenne’s Adjacency Matrix
Magnified

Jellystone’s Topology

Infiniband Routing

Infiniband Routing
● Routing Type: Static (live updated by OpenSM daemon)

● Each SwitchX chip is provided a table of LIDs and destination port.
● Each SwitchX can receive a packet on any port but will only send packets to

assigned port.
● Every SwitchX chip acts independently and can get out of sync.

● ibRoutesOutbound field = number of routes outbound on a given cable
(directional edge).

Infiniband Routing Engines
● Static Assignment

○ System administrator supplies static file containing routes.
● MINHOP

○ finds minimal paths among all endpoints and tries to balance the number of routes per
link locally at each switch (under the constraint of minimal routes). [Hoefler, Schneider,
Lumsdaine]

● UPDN
○ A breadth-first spanning tree on the graph of the network is computed first using a

distributed algorithm. Routing is based on an assignment of direction labels (“up” or
“down”) to the operational links in the network by building a BFS spanning tree. [Arora,
Reader]

● DOR (Dimension Order Routing)
○ routes along the dimensions of a k-ary n-cube to determine shortest paths and might

create circular buffer dependencies. [Hoefler, Timo Schneider, Lumsdaine]

Infiniband Routing Engines (Continued)

● LASH
○ routing uses Virtual Lanes (VL) to break cyclic dependencies among channels of the

underlying DOR scheme. [Hoefler, Schneider, Lumsdaine]
● FTREE

○ routing scheme optimized for fat trees which is also deadlock-free but requires a fat tree
network topology. [Hoefler, Schneider, Lumsdaine]

● PQFT
○ Modified ftree routing to handle Quasi fat trees.

Infiniband Routing Engine Chains

● Logically partition topology
● Apply routing engines only to logical partitions
● Use multiple routing engines on same fabric
● Allows complex Topologies to use optimal

routing engines
● Automatic fail over to different routing engines
● Written by Mellanox for clusters like

Yellowstone

Infiniband PQFT Routing Engine

● QFT is no longer a collection of trees
● Fat Tree there is a single path from parent switch to any of its children. On

QFT there are several such paths
● Smaller jobs see higher impact on their effective diameter If jobs fits into a

sub-tree it gets lower latency and higher BW QFT provides the maximal
number of hosts in a sub-tree

[Zahavi, Keslassy, Kolodny]

Yellowstone Routing Engine Comparison

UpDown ftree pqft

Yellowstone UpDown Routing

Yellowstone UpDown Traffic

http://www.youtube.com/watch?v=vbUdi7PLT1A

Yellowstone ftree Routing Video

Yellowstone ftree Traffic Video

http://www.youtube.com/watch?v=mv7taPmsG6c

Yellowstone pqft Routing

Yellowstone pqft Traffic Video

http://www.youtube.com/watch?v=6O4kKaAlIfU

Questions?

