Utilizing the Mesoscale Model Evaluation Testbed (MMET) to Transition Promising New Techniques from Research to Operations

Jamie K. Wolff1, Michelle Harrold1, Tara Jensen1, Hongli Jiang2, Tricia Slovacek1, Gary M. Lackmann3, Jimy Dudhia1, Pedro A. Jimenez4, Brian A. Colle5, Clifford F. Mass6

Special Symposium on Advancing Weather and Climate Forecasts: Innovative Techniques and Applications
January 9, 2013

1National Center for Atmospheric Research/Research Applications Laboratory and Developmental Testbed Center
2Cooperative Institute for Research in the Atmosphere/Colorado State University
3North Carolina State University
4División de Energías Renovables, CIEMAT, Madrid, Spain
5State University of New York - Stony Brook University
6University of Washington
DTC Mission

The fundamental purpose of the DTC is to facilitate the interaction & transition of NWP technology between research & operations.

DTC facilitates:

• **O2R** transition by making the operational NWP systems available to the research community & providing community user support
• **R2O** transition by performing testing & evaluation of new NWP innovations in a functionally similar operational environment over an extended period
• **Interaction** between research & operational NWP communities through the organization of community workshops/meetings on important topics of interest to the NWP community & hosting a DTC Visitor Program

*DTC strives to be an **efficient** and **effective** community facility for the transition of innovations in NWP between research and operations.*
Testing Protocol Motivation

- Wide range of NWP science innovations under development in the research community
- Testing protocol imperative to advance new innovations through the research to operations (R2O) process *efficiently* and *effectively*.

- **Three stage process:**
 1) Proving ground for research community
 2) Comprehensive T&E performed by the DTC
 3) Pre-Implementation testing at Operational Centers
Mesoscale Model Evaluation Testbed (MMET)

- **What**: Mechanism to *assist* research community *with initial stage of testing* to efficiently demonstrate the merits of a new development
 - Provide model input and observational datasets to utilize for testing
 - Establish and publicize baseline results for select operational models
 - Provide a common framework for testing; allow for direct comparisons
- **Where**: Hosted by the DTC; served through Repository for Archiving, Managing and Accessing Diverse Data (RAMADDA)

www.dtcenter.org/eval/mmet
MMET Cases

- Initial solicitation of cases from DTC Science Advisory Board Members and Physics Workshop Participants – great response and enthusiasm towards endeavor

- **Cases current available within MMET**
 - **20090228** – Mid-Atlantic *snow storm* where North American Mesoscale (NAM) model produced high QPF shifted too far north
 - **20090311** – *High dew point* predictions by NAM over the upper Midwest and in areas of snow
 - **20091007** – High-Resolution Window (*HIRESW*) runs *underperformed* compared to coarser NAM model
 - **20091217** – “Snowapocalypse ‘09”: NAM produced high QPF over mid-Atlantic, lack of cessation of precipitation associated with decreasing cloud top over eastern North Carolina
 - **20100428–0504** – Historic Tennessee *flooding* associated with an atmospheric river event
 - **20110404** – Record breaking *severe* report day
 - **20110518–26** – Extended period of *severe weather* outbreak covering much of the mid-west and into the eastern states later in the period
 - **20111128** – *Cutoff low* over SW US; NAM had difficulties throughout the winter of breaking down cutoff lows and progressing them eastward
 - **20120203-05** – *Snow storm* over Colorado, Nebraska, etc.; NAM predicted too little precipitation in the warm sector and too much snow north of front (persistent bias)
User Case #1 (Lackmann)

20091217 12 UTC – Single initialization focused on the “Snowpocalypse” of 2009 where NAM produced high QPF over mid-Atlantic, lack of cessation of precipitation

Forecasts: WRF v3.4 ARW baseline configuration namelist from DTC
WRF v3.4 ARW namelist with mp_physics=9 activated
CONUS domain at 15km resolution

Utilized IC and BC files provided by DTC for model initialization
User Case #1 (Lackmann)
Composite Reflectivity Forecasts and Observations

12 UTC 20091217 through 00 UTC 20091220 (every 3 hours)
User Case #1 (Lackmann)
24-h WRF Forecast

Snapshot valid at 12 UTC 18 Dec 2009
User Case #1 (Lackmann)
48-h WRF Forecast

Snapshot valid at 12 UTC 19 Dec 2009
User Case #1 (Lackmann)
72-h Total Precipitation Accumulation

Both WRF forecasts captured main features of observed precip:
• Western extent of precip shield
• Local min of precip over Florida
• Axis of heavier precip in coastal Carolinas

However…
• Significant over-prediction of precip, including areas of North and South Carolina and Virginia
• Issue with cessation of precip appeared with both microphysics schemes tested
User Case #2 (Jimenez and Dudhia)

20100428-20100504 – Extended case focused on historic Tennessee flooding associated with an atmospheric river event

Forecasts: WRF v3.4 ARW baseline configuration namelist from DTC
WRF v3.4 ARW namelist with `topo_wind=1` activated
CONUS domain at 15km resolution

Utilized IC and BC files provided by DTC for model initialization
Utilized observation files provided by DTC for verification
User Case #2 (Jimenez and Dudhia)
Wind Speed Observations

00 UTC 20100428 through 00 UTC 20100504 (every 3 hours)

Average observed wind speed across the domain
User Case #2 (Jimenez and Dudhia)
Wind Speed Time Series

![Wind Speed Time Series Graph]

- Default
- Topowind
- Observations

Time (days)

Wind speed (m/s)
User Case #2 (Jimenez and Dudhia)
Wind Speed Error (topo_wind=1)

00 UTC 20100428 through 00 UTC 20100504
(every 3 hours)

Average wind speed across the domain
• topo_wind=1
• Observed
User Case #2 (Jimenez and Dudhia)

Wind Speed 6-day Average Error

Status of development:
• Overall 6-day domain average with topo_wind=1 smaller than default
• Reduces diurnal mean bias but does not capture full diurnal amplitude
• Looking into reduction of convective mixing and vertical transport of momentum causing overall lower speeds
MMET Case Expansion

Nominating new cases of interest
MMET Expansion
Case Nomination Form

Here is a MMET Case recommendation:

Time Period: 20 June - 30 June 2012
Type of Case: Mid-Atlantic Derecho event, June 2012.
Forecast Model: GFS, NAM, RAP
Forecast Response: Operational numerical forecasts would be challenged to represent a MCS of this type, but some HRRR/Rapid Refresh runs may have represented the system.
Domain: Central and Eastern US and offshore western North Atlantic
Observation Source: Radar, surface observations, severe wind reports
Observation Format: GEFS, etc.
Contact: Gary Lack mann

©2012, DTC • Postal Address: P.O. Box 2999, Boulder, CO 80301-2999 • Shipping Address: 3090 Center Green Dr, Boulder, CO 80301 • Contact
Conclusion

- Established data sets for nine MMET cases
 - Open solicitation for cases recommendations for future expansion
- Assist community in efficiently testing new innovations
 - Easy to use – model input and observational datasets provided
 - Allows for quick comparisons to be made against published baseline results
 - Provides a common framework for testing; allow for direct comparisons among community results
- Promising results nominated for extensive T&E performed by DTC

R2O Test Protocol Document:

Acknowledgements: The DTC is funded by the National Oceanic and Atmospheric Administration, the Air Force Weather Agency, and the National Center for Atmospheric Research (NCAR). NCAR is sponsored by the National Science Foundation.