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ABSTRACT 

The El Niño Southern Oscillation (ENSO) is a well-known source of inter-annual climate 
variability for both precipitation and temperature in the northern Great Plains. The 
northern Great Plains also have the largest wind resource in the United States. With the 
continued growth of wind energy, ENSO’s effect on wind speed needs to be examined 
because of our current lack of understanding about how wind speeds are affected by 
inter-annual variability. After having previously established that a teleconnection to 
ENSO exists, we set out to quantify the uncertainty in this relationship with this study.  
Our method uses the sign test and resampling of hourly airport wind speed measurements 
for the past half-century at 4 airports in both North Dakota and South Dakota. Airport 
data are useful in this case because they have very long and continuous measurement of 
hourly wind speed. With this data, we were able to show that ENSO did have an effect on 
wind speeds as well as on wind power. The warm phase of El Niño, in particular, was 
correlated with the largest reductions in wind speed in South Dakota. In North Dakota, it 
was the cold phase that produced the largest reduction in wind power. The largest 
differences occurred in April, while the smallest differences occurred in July.  It is our 
hope that this method will also be a useful tool for wind farm developers across the 
country to more accurately assess the value of their site based on limited in-situ data.  
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1. Introduction 
 

There are many current stresses for residents of the Great Plains, including 
climate change, economic volatility, and market pressures. Climate variability is just one 
additional stress that is increasingly affecting Great Plains residents. The present study is 
motivated by a desire to better understand the impact of the El Niño-Southern Oscillation 
(ENSO) cycle on the climate and economics of the Great Plains.  

 
ENSO has been shown to have significant impacts on various atmospheric 

parameters and phenomena throughout continental United States. Past studies have 
shown the association of ENSO with temperature (Ropelewski and Halpert 1986; Sittel 
1994), precipitation (Ting and Wang 1997; Montroy et al. 1997, Schubert et al. 2003, and 
severe storms (Bove et al. 1998; Etkin et al. 2001). Climate variability has the possibility 
of affecting, either positively or negatively, many economic sectors in the Great Plains, 
including agriculture, ranching and livestock, natural systems, and water. 

 
A new sector of economic development, wind power, is injecting a much needed 

economic boost while promoting sustainability in the northern Great Plains, which has 
the largest natural wind resource in the United States. Harvesting the wind’s power to 
make electricity has prompted commercial utilities and individual farmers to install mid-
size wind turbines. This trend is following suit with the increased worldwide use of wind 
turbine generators as the cost of producing energy from wind continues to decline. As the 
northern Great Plains continues to develop its wind industry, issues related to the site 
specific dependability and economics of these intermittent resources are going to become 
crucial to utility planning. Although modern wind turbines have long lifetimes, the site 
planning data used to estimate potential energy production is often based on as little as 12 
months of data. A limited understanding of wind climatology could cause energy 
production potential to be either over- or under-estimated if local measurements were 
unknowingly influenced by the ENSO cycle. 

  
Accurate wind climatology is extremely important to the wind energy industry 

because the power available in a gust of wind is:  
 

P = 0.5 * ρ * A * V
3 

(Gipe 2004) 
P = power in watts  
ρ = air density (about 1.225 kg/m

3 
at sea level)  

A = rotor swept area, exposed to the wind (m
2
)  

V = wind speed in meter/sec  
 
Therefore, the power in a free flowing stream of wind is directly related to the cube of the 
wind speed1. If wind speed measurements used for locating turbines are limited or 
inaccurate, the resulting power over the lifetime of the wind farm will likely differ from 
                                                 
1 In practice, P is roughly proportional the square of the wind speed. This is because in practice power is 
limited by the mechanical limitations of the turbine and the second law of thermodynamics. Each turbine 
also has a threshold below/above which P = 0.  
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the expected performance goals. There are obviously financial and grid management 
consequences if a site does not produce as much energy as expected, but there are also 
consequences if the site produces more energy then expected.  
 

An electric utility must provide a reliable and continuous source of electricity to 
its customers. Due to wind energy’s intermittent nature, it has been restricted to 
supplementing a small portion of the total U.S. energy demand. Currently, slightly more 
than 0.4% of total U.S. electricity generation is supplied by wind energy. Nevertheless, 
wind energy has lately demonstrated environmental and economic benefits as an energy 
resource and is growing in significance as a component of the US electric supply system. 
As wind energy continues to capture a larger percentage of the U.S. energy market, the 
forecasting and understanding of wind characteristics in time and space must also become 
more reliable. Without accurate wind climatology, the wind industry will not able to 
become as effective and competitive in the energy industry as coal, nuclear, natural gas, 
and other means of electricity generation. 

 
Despite the growing importance of wind climatology, ENSO’s effect on wind 

speed has received virtually no attention when compared to atmospheric teleconnections 
more closely related to crop production, such as precipitation and temperature. Enloe et 
al. (2004) have previously documented ENSO impacts on extreme winds over the entire 
United States. These authors, however, did not have sufficient data to draw any 
conclusions about the impacts of ENSO on the northern Great Plains. In order to help fill 
this void, our study last summer explored the potential role of El Niño as a source of 
seasonal to inter-annual variability in the winds at four sites in South Dakota (Harper 
2005, SOARS® paper). Their approach, which is commonly applied in teleconnections 
research, involves dividing the time series of the variable of interest (e.g. wind speed) 
into groups based on the simultaneous value of another variable (e.g. occurrence/non-
occurrence of an El Niño event). Then the median values of the groups were compared 
using box plots. This approach is more appropriate than ordinary correlation because we 
suspected the relationship between tropical SST and North American wind speeds may be 
non-linear. Additionally, the extremes wind speeds are of particular importance because 
the amount of power produced is very sensitive to high and low wind speeds. Harper 
found that an ENSO signal in the wind speed likely does exist because when the same 
procedure was used after one randomization, the difference in magnitude was smaller 
than observed with the grouped data. Therefore, we were convinced that further 
quantifying the uncertainty of ENSO effect on wind speed would prove to be productive.  

 
We set out to discover three main things with this research. First we needed to 

confirm that the teleconnection between ENSO and wind speeds in South Dakota we 
found last year are in fact a real correlation and not simply an artifact of the data we used. 
Next we needed to get an idea of how much ENSO changes wind speed. Finally we 
needed to investigate what this change in wind speed means for power production. 

 
The process for determining ENSO months for the period 1950 – 2000 and the 

wind speed data set are described in section 2 while our four stages of statistical analysis 
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are described in section 3. Section 4 consists of our results. A discussion follows in 
section 5 after which the conclusions are presented in section 6.  
 
2. Data 
 

Hourly wind speed data were obtained from the TD6421 Enhanced Hourly Wind 
Station Data for the Contiguous United States dataset developed by the National Climatic 
Data Center. The wind speed data is taken at the original anemometer height in m sec

-1 
x 

10. Our data is recorded as discrete speeds with a precision of approximately 0.5 m/s. The 
data represent observations from four airport anemometers located at Huron Regional 
Airport (44.38N, 98.22W), Pierre Municipal Airport (44.38N, 100.28W), Bismark 
Airport (46.81N, 100.78W), and Williston Airport (48.16, 103.63W) that can be found in 
Figures 1 and 2 as denoted by the four pointed stars. These sites were selected to examine 
wind characteristics along a range of different latitudes and longitudes in the northern 
Great Plains. All four of the stations have some missing data (Table 1), but are relatively 
complete in their record. The data from the Ellsworth Air Force Base was initially 
included in our analysis, but was later dropped due to step functions identified in the data 
that may indicate a change in the station surroundings or the physical movement of the 
station and non-Weibull wind distributions patterns that may indicate corrupted data. Our 
study was also constrained by the ENSO index data we used, which spanned the period 
from January 1950 – December 1999 (Trenberth 1997). Altogether 1,453,059 hours of 
wind speed data were analyzed.  
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Figure 1: North Dakota - Wind Resource Map. Note the locations of Bismarck in the 
South central and Williston in the North West part of the state.  Map generated by 

the U.S. Department of Energy National Renewable Energy Laboratory. 

 
Figure 2: South Dakota - Wind Resource Map. Note the locations of Huron in the East 

central and Pierre in the central part of the state. Map generated by U.S. Department of 
Energy National Renewable Energy Laboratory. 
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Table 1.  

Station Location  Completeness Dates Used  
Bismarck Airport  89.3%  1 January 1950 – 31 December 1999  
Huron RA  89.0%  1 January 1950 – 31 December 1999  
Pierre MA  89.0%  1 January 1950 – 31 December 1999  
Williston Airport  84.5%  1 January 1962 – 31 December 1999  

 
The classification of ENSO events followed in the present study is defined by the 

National Oceanic and Atmospheric Administration’s (NOAA) Multivariate ENSO Index 
(MEI). The MEI Sea Surface Temperature (SST) index defines phases of ENSO based on 
the main observed variables over the tropical Pacific. These surface marine observations 
have been collected and published in the Comprehensive Ocean-Atmosphere Data Set 
(COADS) for many years. The MEI can be understood as a weighted average of the main 
ENSO features contained in the following six variables: sea-level pressure, the east-west 
and north-south components of the surface wind, SST, surface air temperature, and total 
amount of cloudiness. Extremes in ENSO typically develop during summer, climax in the 
fall, and subside the following spring. The periods of ENSO events used in this study are 
summarized in Table 2.  

 
Table 2 

Listings of El Niño and La Niña events after 1950 as defined by SST’s in the Nino 3.4 
region and exceeding + 0.40C threshold. The starting and ending month of each is given 

with the duration in months. 
El Niño events 

Begin            End             Duration 
La Niña events 

Begin            End             Duration 
Aug-51 Feb-52 7 Mar-50 Feb-51 12 
Mar-53 Nov-53 9 Jun-54 Mar-56 22 
Apr-57 Jan-58 15 May-56 Nov-56 7 
Jun-63 Feb-64 9 May-64 Jan-65 9 
May-65 Jun-66 14 Jul-70 Jan-72 19 
Sep-68 Mar70 19 Jun-73 Jun-74 13 
Apr-72 Mar-73 12 Sep-74 Apr-76 20 
Aug-76 Mar-77 8 Sep-84 Jun-85 10 
Jul-77 Jan-78 7 May-88 Jun-89 14 
Oct-79 Apr-80 7 Sep-95 Mar-96 7 
Apr-82 Jul-83 16 Jul-98 Dec-99 18 
Aug-86 Feb-88 19    
Mar-91 Jul-92 17    
Feb-93 Sep-93 8    
Jun-94 Mar-95 10    
Apr-97 Apr-98 13    
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3. Methodology 
 

The main tool used to analyze the data set was the R Project for Statistical 
Computing. R is a language and environment for statistical computing and graphics. It is 
a GNU project, which is similar to the S language and environment, which was 
developed at Bell Laboratories by John Chambers and colleagues. R can be considered as 
a different implementation of commercially available S language. There are some 
important differences, but much code written for S runs unaltered under R. See www.r-
project.org for more information. 

  
Each month of wind speed data has been assigned one of three ENSO phases: 

cold (La Niña), neutral, or warm (El Niño) that correspond to the simultaneous ENSO 
phases in the tropical Pacific based on NOAA’s MEI. Separating the data by ENSO 
phase we were able compute differences between the cold/warm phase and the neutral 
phase. The three power characteristic differences we computed were 1) mean wind speed 
2) mean probability of a low wind event and 3) mean wind power production. 

 
In order to assess the importance of our findings to the wind energy industry, we 

converted our results from wind speed to power using a power curve for a typical utility 
scale turbine. Utility scale turbines have a hub height of around 80 m and therefore 
typically experience higher wind speeds than those at the height where weather data are 
recorded. An approach commonly used to extrapolate 10 m wind speed data to 80 m is 
the power-law relation [available at http://rredc.nrel.gov/wind/pubs/atlas], 

  
α)()(

Rz
z

RVzV =  (2)  
 
where V(z) is wind speed at elevation z above the topographical surface (80 m in this 
case, i.e. V(80)), V

R 
is wind speed at the reference elevation z

R 
(10 m above the 

topographical surface in the rest of this paper), and α (typically 1/7) is the friction 
coefficient (Archer and Jacobson 2003). Although the amount of energy in the wind is 
related to the cube of the wind’s speed, the actual amount of energy that can be extracted 
is bounded by the mechanical limitations of a real wind turbine. This non-linear 
relationship is different, yet similar, for almost all modern wind turbines. All wind 
turbines have a range of wind speeds for which they extract power from the wind, but 
above and below which no power is produced (Figure 3). For this study a low wind event 
is considered any wind speed below 4 m/s. 
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Figure 3: Idealized power curve for a wind turbine (example). From the Canadian 

Wind Energy Atlas. 
 

Once the wind speed was corrected we used a power curve for a typical utility 
scale turbine to calculate the power produced from the 80 m wind speed. This is because 
of the earlier mentioned non-linearity of wind power production. In this study we used a 
power curve for the NORDEX N60 1.3-MW turbine approximated by a 4

th 
order 

polynomial:  
P = 0.0649s

4 
– 3.8773s

3 
+ 74.418s

2 
– 429.14s + 785.06 (3)  

where P is the power in kW and s is the speed of the wind between 4 m s
-1 

and 26 m s
-1 

because most utility scale turbines only produce power within this range. 
 
We then tested the significance of these power characteristics using statistical 

analysis. Our statistical analysis involved four analysis stages 1) global test of 
significance 2) local test of significance 3) confidence interval for effect size, and 4) 
distributional analysis. 
 
a. Global test of Significance 
 

The global test of significance is a global test designed to detect a significant 
ENSO effect. It is considered global because it treats all months simultaneously. The 
global test utilizes the sign of the result rather than the numeric value and is often referred 
to as the “sign test” (Hollander and Wolfe 1998). The sign test indicates whether there is 
an ENSO effect in one or more months, but does not necessarily identify which specific 
months. This was performed by separating the wind speed data into three categories 
(cold, neutral, and warm phases) mentioned before. We then plotted the monthly mean 
statistic of interest for all of the months on a single plot that gave us an annual trend for 
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each phase of ENSO. Simply by examining how many times the difference changes sign, 
the test tells us whether there is a significant difference. This is because a plot of any 
monthly mean statistic is similar to flipping a fair coin 12 times. The outcome of flipping 
a coin can be represented by a binomial distribution. There is a .00024 chance that this 
event will result in 12 heads. Likewise there is a .00024 chance that all tails will result. 
Combined, there is a .00049 chance that one would always get the same result back, 
either all heads or all tails. This is the same as having all cold phase monthly mean 
statistics result in higher values than all the neutral phase monthly mean statistics or vice 
versa. In other words, if the cold phase line is always above the neutral phase line the 
difference has zero negative occurrences or 12 positive occurrences. It is less significant 
if one or more of the cold phase differences is negative. The probability of 0 – 3 points 
breaking with this pattern is given in Table 3. 

 
Table 3 

Occurrence Probability Significance 
0 or 12 .00049 Significant at 1% level 
1 or 11 .0063 Significant at 1 % level 
2 or 10 .039 Significant at 5% level 
3 or 9 .15 Not significant at 10% level 

 
b. Local test of Significance 
 

In contrast to the global test, the local test of significance attempts to detect an 
ENSO effect in a single month. It is necessarily less powerful than the global test, 
because it makes use of wind specific months rather than all of the data. The local test 
randomizes the data and then draws from that random set without replacement. In other 
words the data is simply permuted, or re-ordered, because there are no repeated values. 
Permutation techniques are not particularly concerned about populations and/or their 
parameters. Permutation procedures focus on the underlying mechanism that led to the 
data being distributed between groups in the way that they are (Efron and Tibshirani, 
1993). Therefore, in order to confirm that the teleconnection between ENSO and wind 
speeds in the northern Great Plains that we found is in fact real for any particular month, 
we used the permutation approach. By randomly choosing new ENSO values for a 
particular month of each year we computed the same statistics of interest. This approach 
avoids autocorrelation because consecutive months are only minimally dependent on the 
previous months. By performing this permutation again and again we can increase our 
confidence as to whether the original data produced a unique result. We performed the 
permutation test 10,000 times for a particular month and then determined the level at 
which 95% of these results occurred. After comparing this to our original statistic of 
interest we could say with 95% confidence that our result could or could not have 
occurred randomly. 

 
c. Confidence Interval for effect size 
 

The confidence interval for effect size uses the bootstrap technique to attach 
uncertainty to a statistic once it is computed. Bootstrapping is primarily focused on 
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estimating population parameters, and it attempts to draw inferences about the population 
from which the data came (Efron and Tibshirani, 1993). We used the bootstrap to 
calculate a confidence interval that is useful whether or not the ENSO effect is 
statistically significant. Consider, for example, two groups of wind speed data that have 
been assigned as occurring either during an anomalous event or a normal event. The 
bootstrap approach would focus primarily on estimating data differences between the two 
conditions, and would result in a confidence interval on the mean difference in estimated 
wind speed between an anomalous and normal event. Our approach first created two 
populations, the first consisting of all the warm phase mean monthly statistics and the 
second consisting of all the neutral phase mean monthly statistics. We then drew (with 
replacement) a sample of equal length for the new “warm” and “neutral” sets. Each of 
these is called a bootstrap sample and is different from a permutation mainly because we 
sampled with replacement and therefore could get repeated values. We repeat this process 
10,000 times as before, and obtain 10,000 bootstrap samples. These 10,000 samples 
contain information that we used to put confidence intervals on the statistics we 
computed. By computing the 97.5 percentile of the statistic from the 10,000 bootstrap 
samples we can infer a 95% confidence interval on the original statistic. In other words 
we are 95% confident that the actual difference lies with the provided confidence 
interval. 

 
d. Distributional Analysis 
 

The distributional analysis utilizes a fitted Weibull wind speed distribution that 
closely models most wind regimes (Dodson 2006). It is used for purely descriptive 
purposes, aiding in comparing the ENSO effects in terms of lulls, mean wind speed, or 
mean wind power. This approach has the advantage of examining the effect of ENSO on 
the entire distribution of wind speed simultaneously, rather than focusing on a single 
wind statistic at a time as in the previous three stages. The Weibull distribution has two 
parameters of interest: the shape and scale. For wind speeds the shape parameter usually 
ranges between 1 (and exponential distribution) and 3 (a nearly normal distribution) 
because wind speed are usually skewed toward the low values. When two distributions 
are compared the one with a lower shape parameter indicates that low wind speed occur 
more frequently provided the two distributions have the same scale parameter. The scale 
parameter has no effect on the shape of the distribution, but does have an effect on the 
mean and variance of the distribution. 
 
4. Results 
 

For the four sites analyzed during this study, the largest variations in wind speed 
occurred in annual and diurnal cycles. The most reliable high winds normally occur in 
April, whereas average wind speeds are the lowest in July. This accounts for the overall 
peak and valley pattern seen in the plots of mean wind speed (Figure 4). The strongest 
daily winds typically peak during the warmest part of the day (1 pm – 3 pm), while the 
weakest winds are characteristically consistent during the coldest part of the day (8 pm – 
7 am). These cycles are the dominant sources of variability in wind speeds.  
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Figure 4: Mean wind speed at Huron. Note the numbers on the x-axis correspond to 

the months of the year. For example 2 = February, 4 = April, etc. 
 
a. Huron 

The sign test of monthly mean wind speeds suggests that a relationship with 
ENSO does exist. Figure 4 shows that for all twelve months the monthly mean wind 
speed during the warm phase was lower than during the neutral phase. Additionally, 
Figure 4 shows that for all months except May and June the monthly mean wind speed 
during the cold phase is also lower than during the neutral phase. The difference in April 
monthly mean wind speeds between the neutral and warm phase is 0.84 + 0.38 m/s while 
the permutation analysis showed that 95% of the time this difference would be less than 
0.54 m/s. The difference in July monthly mean wind speeds between the neutral and 
warm phase is 0.07 + 0.24 m/s, while the permutation analysis showed that 95% of the 
time this difference would be less than 0.27 m/s. 

 
Table 1: Mean wind speed difference between warm and neutral phase  

(Neutral – Warm)  
Month Mean wind 

speed (m/s) 
95% confidence 

interval (m/s) 
95% 

significance 
level (m/s) 

Significant 

April 0.84 0.46 – 1.3 0.54 Yes 
July 0.07 -0.33 – 0.31 0.27 No 

 
The observed statistical differences associated with mean wind speed translate to 

mean wind power as well as can be seen in Figure 5. Less mean wind power was 
produced during each month of the warm phase although this relationship was not only 
true for the cold phase. The difference between neutral and warm mean wind power April 
was less than 41 kW 95% of the time while the actual difference in April mean wind 
power was 67 + 26 kW. The same difference in July mean wind was less than 22 kW 
95% of the time while the actual difference in July mean wind power was 17 + 22 kW, 
though. 
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Figure 5: Mean wind power at Huron. 

 
Table 2: Mean wind power difference between warm and neutral phase  

(neutral – warm) 
Month Mean wind 

power (kW) 
95% confidence 

interval (kW) 
95% 

significance 
level (kW) 

# of iterations 

April 67 41 - 93 41 10,000 
July 17 -3.9 – 40 22 10,000 

 
The observed patterns in low wind events associated with ENSO are very similar 

in magnitude, though inverted, to the pattern observed for mean wind speed. Once more 
the warm phase has a higher probability of a low wind event than the neutral phase for 
every month of the year, while the cold phase has the same pattern for all months except 
May and June as shown in Figure 6. The difference in April monthly probabilities of a 
low wind event between the neutral and warm phase is 9.4 + 6.5%, while the permutation 
analysis illustrates that 95% of the time this difference would be less than 6.4%. But the 
difference in July monthly probabilities of a low wind event are between the same neutral 
and warm phases is 3.6 + 6.1%, while the permutation analysis gives us an idea that 95% 
of the time this difference would be less than 5.2%. Additionally, the same analysis for 
February and September yielded differences of 9.7 + 4.5% and 7.5 + 5.7%, respectively. 
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Figure 6: Low wind events at Huron. 

 
Table 3: Probability of a low wind event difference between warm and neutral 

phase (neutral – warm) 
Month Probability of a 

lull (%) 
95% confidence 

interval (%) 
95% 

significance 
level 

Significant 

February 9.7 5.2 – 15 - Yes 
April 9.4 2.9 – 16 6.4 Yes 
July 3.6 -2.6 – 9.7 5.4 No 

September 7.5 1.8 – 13 5.4 Yes 
 
Because we found significant results during the month of April, we also produced 

a Weibull curve that summarizes the monthly distribution of wind speeds.  This 
distribution is consistent with the previous results. While the long tail is very similar for 
each phase, the low winds speeds differ markedly. Since a wind turbine can normally 
only produce power above a threshold of 4 m/s, Figure 7 explains why the neutral phase 
conditions produces the most power while the warm phase conditions have the highest 
probability of a low wind event. During a warm phase the scale parameter of the Weibull 
distribution tends to be smaller for the warm phase than the neutral phase and as a result 
the distribution is shifted toward the lower wind speeds. 
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Figure 7: A fitted Weibull distribution for the month of April at Huron. 

 
b. Other Stations 
 
 The ENSO effect at Pierre was more difficult to identify, but the results are 
similar to those found at Huron. The warm phase showed a statistical decrease for both 
the mean wind speed as well as mean power output (Figure 8). We were not able to 
identify the warm phases’ effect on low wind events. 
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Figure 8: Mean wind power at Pierre. 

 
 We were unable to identify any statistically significant ENSO effect at Bismarck. 
The ENSO effect at Williston was only significant during the cold phase as shown in 
Figure 9. Here we saw a decrease in wind power production during La Niña conditions. 
We did not find the same result for either mean wind speed or low wind events. 
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Figure 9: Mean wind power at Williston. 

 
5. Discussion 
 
 The annual and diurnal wind cycles on the Northern Great Plains are well known 
to the wind industry. ENSO’s effect, however, does have some discernable signals that 
should be considered in wind power planning. Although ENSO’s effect on wind speed is 
smaller in magnitude, it remains an important consideration because of the exponential 
relationship between wind speed and power. This means that the potential power is very 
sensitive to wind speeds. The South Dakota stations appear to exhibit a more consistent 
signal and a markedly different pattern than the stations in North Dakota. For this reason 
we will consider them separately.  

In South Dakota the warm phase has the strongest signal and tends to reduce 
mean wind speeds and mean wind power while also increasing the probability of a low 
wind event. At both Huron and Pierre we can say that we are more than 99.9% sure that 
the wind power production, which is the main statistic of interest for wind energy 
producers, is reduced during the warm phase. This decrease tends to be most significant 
for the months of January though April and again for September and October. In the 
month of April in particular the wind speeds are very likely to be below average during a 
warm phase. If this ENSO effect in not taken into account a wind farm could 
overestimate its production by as much as 72 kW per MW of capacity. This represents an 
error of 7.2%. The decrease in wind power generation tends to be smallest, and possibly 
even reversed, for the months of May though July. This results in similar Weibull scale 
parameters and warm phase distributions that are comparable to the neutral phase. The 
cold phase also exhibits a parallel pattern to that of the warm phase although it is harder 
to identify this effect statistically. At Huron station in particular we are more than 95% 
sure that the cold phase reduces mean wind speed and increases the probability of a low 
wind event. This decrease was most significant during the months of January, September, 
and December at both stations. As with the warm phase, the lower Weibull scale 
parameter during the cold phase indicate that the distribution is shifted toward the low 
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wind speeds during these 3 months relative to the same months during the neutral phase 
(Figure 9). 

 
In North Dakota the ENSO signal is different than the signal further south and 

much harder to detect. The strongest ENSO signal is present in the mean wind power 
statistic at Williston station. Here we are 95% sure the cold phase reduces the mean wind 
power relative to the neutral phase. This effect is most significant during the months of 
April, September, and December as we saw in South Dakota.  

  
The difference in results between North and South Dakota suggests that latitude 

plays a more critical role whether the cold or warm phase reduces wind speeds. We 
hypothesize that this may the result of changes in latitude of the jet stream and storm 
tracks across the northern Great Plains. While physical mechanisms that connect wind 
speeds in the northern Great Plains to ENSO may be related to a storms direction and/or 
frequency; this connection must await further analysis. 
 
6. Conclusion  
 
 The wind power resource in the northern Great Plains was variable at inter-annual 
time scales, in part at least, due to forcing associated with ENSO conditions. Shifts in the 
distribution of wind speed were identified in association with the El Niño and La Niña 
phases of ENSO. Monthly mean wind power production was found to generally decrease 
during the El Niño phase. Other systematic characteristics in the long-term climatology 
of the wind resource that are relevant to power system planning and operations were also 
found. Significant shifts occurred in the mean wind speed and probability of a low wind 
event in South Dakota. El Nino noticeably decreased both the mean wind speed and 
increased the probability of a low wind event while the connection with La Nina was 
harder to identify.  

 
Accurate wind speed measurements are critical in order for this method to identify 

a teleconnection with ENSO. In addition to the importance of accurate wind speed 
measurements, it is also useful to consider that the ENSO index is a continuum rather 
than a discrete 3 phase index. This sometimes causes El Niño phases of different intensity 
to behave very differently from each other (Philander 2004). 
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