## NCAR/UNIDATA

# CfRadial Data File Format 

Proposed<br>CF-compliant netCDF Format for Moments Data for RADAR and LIDAR in Radial Coordinates

## Version 1.2

Mike Dixon, Wen-Chau Lee
Bob Rilling, Chris Burghart, Joe Van Andel
EOL, NCAR

2011-06-07
CfRadial format Version 1.2 ..... 2011-06-07
1 INTRODUCTION ..... 5
1.1 On-LINE Location .....  5
1.2 SUMMARY of UPDATES .....  5
1.3 Purpose ..... 5
1.4 EXTENSIONS TO THE CF CONVENTION ..... 5
1.5 Strict use of variable and attribute names. .....  6
1.6 FillValue value attribute ..... 6
1.7 REQUIRED VS. OPTIONAL VARIABLES ..... 6
2 DATA CONTENT OVERVIEW ..... 7
2.1 THE NATURE OF RADAR AND LIDAR MOMENTS DATA ..... 7
2.2 GEO-REFERENCE VARIABLES ..... 7
2.3 COORDINATE VARIABLES AND STORAGE OF MOMENTS DATA ..... 8
2.3.1 Regular 2-D storage - constant number of gates ..... 8
2.3.2 $\quad$ Staggered 2-D storage - variable number of gates ..... 9
2.3.3 Principal dimensions and variables for the case of a constant number of gates ..... 9
2.3.1 Additional dimensions and variables for the case of a variable number of gates ..... 10
2.4 SWEEP INDEXES - A "PSEUDO" THIRD DIMENSION ..... 10
2.5 CONSTANT START RANGE AND GATE SPACING PER VOLUME ..... 11
2.6 No GRID MAPPING VARIABLE ..... 11
2.7 CALIBRATION INFORMATION ..... 11
2.8 COMPRESSION ..... 12
3 CONVENTION HIERARCHY ..... 13
4 CF/RADIAL BASE CONVENTION ..... 14
4.1 Global attributes ..... 14
4.2 DIMENSIONS ..... 15
4.3 GLOBAL VARIABLES ..... 15
4.4 COORDINATE VARIABLES ..... 16
4.4.1 Attributes for time coordinate variable ..... 16
4.4.2 Attributes for range coordinate variable ..... 17
4.5 RAY DIMENSION VARIABLES ..... 17
4.6 LOCATION VARIABLES ..... 18
4.7 SWEEP VARIABLES ..... 18
4.8 SENSOR POINTING VARIABLES ..... 19
4.8.1 Attributes for azimuth(time) variable ..... 20
4.8.2 Attributes for elevation(time) variable ..... 20
4.9 MOVING PLATFORM GEO-REFERENCE VARIABLES ..... 20
4.10 MOMENTS FIELD DATA VARIABLES ..... 21
CfRadial format Version 1.2 ..... 2011-06-07
5 SUB-CONVENTIONS ..... 23
5.1 THE INSTRUMENT PARAMETERS SUB-CONVENTION ..... 23
5.2 THE RADAR_PARAMETERS SUB-CONVENTION ..... 24
5.3 THE LIDAR_PARAMETERS SUB-CONVENTION ..... 24
5.4 THE RADAR_CALIBRATION SUB-CONVENTION ..... 25
5.4.1 Dimensions ..... 25
5.4.2 Variables ..... 25
5.5 THE LIDAR_CALIBRATION SUB-CONVENTION ..... 27
5.6 THE PLATFORM_VELOCITY SUB-CONVENTION ..... 28
5.7 THE GEOMETRY_CORRECTION SUB-CONVENTION ..... 28
6 STANDARD NAMES ..... 30
6.1 PROPOSED STANDARD NAMES FOR METADATA VARIABLES ..... 30
6.2 STANDARD NAMES FOR MOMENTS VARIABLES ..... 37
7 COMPUTING THE DATA LOCATION FROM GEO-REFERENCE VARIABLES ..... 38
7.1 SPECIAL CASE - GROUND-BASED, STATIONARY AND LEVELED SENSORS ..... 38
7.1.1 LIDARs ..... 39
7.1.2 RADARs ..... 39
7.2 MOVING PLATFORMS ..... 40
7.3 COORDINATE TRANSFORMATIONS FOR THE GENERAL CASE ..... 40
7.3.1 Coordinate systems ..... 41
7.3.2 The earth-relative coordinate system ..... 41
7.3.3 The platform-relative coordinate system ..... 41
7.3.4 The sensor coordinate system ..... 44
7.4 COORDINATE TRANSFORMATION SEQUENCE ..... 45
7.4.1 Transformation from $X_{i}$ to $X_{a}$ ..... 45
7.4.1.1 Type Z sensors ..... 45
7.4.1.2 Type Y sensors ..... 45
7.4.1.3 Type $X$ sensors ..... 46
7.4.2 Rotating from $X_{a}$ to $X$ ..... 46
7.5 SUMMARY OF TRANSFORMING FROM $X_{I}$ TO X ..... 47
7.5.1 For type $Z$ radars: ..... 47
7.5.2 For type Y radars: ..... 47
7.5.3 For type $X$ radars: ..... 48
7.5.4 Computing earth-relative azimuth and elevation ..... 48
7.6 SUMMARY OF SYMBOL DEFINITIONS ..... 48
8 CHANGE LOG ..... 49
8.1 VERSION 1.2, RELEASED 2011-06-07 ..... 49
CfRadial format Version 1.2 2011-06-07
8.2 VERSION 1.1, RELEASED 2011-02-01 ..... 49
9 REFERENCES ..... 50

## 1 Introduction

### 1.1 On-line location

This document, and other related information, is on-line at:
http://www.ral.ucar.edu/projects/titan/docs/radial_formats

### 1.2 Summary of updates

Version 1.1 was the first operational release for CfRadial.
All changes made subsequent to this version will be backward-compatible.
A major change was made for version 1.1. Support for a variable number of gates per ray was added.

This release, version 1.2, makes some minor additions.
See section 8 for details.

### 1.3 Purpose

The purpose of this document is to specify a CF-compliant netCDF format for radar and lidar moments data in radial (i.e. polar) coordinates.

The intention is that the format should, as far as possible, comply with the CF conventions for gridded data. However, the current CF 1.5 convention does not support radial radar/lidar data. Therefore, extensions to the conventions will be required.
The current CF conventions are documented at:
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.5

### 1.4 Extensions to the CF convention

This convention introduces the following extensions to CF:

1. The following axis attribute types:

- axis = "radial_azimuth_coordinate";
- axis = "radial_elevation_coordinate";
- axis = "radial_range_coordinate";

2. Additional standard units. The following need to be added:

- dB (ratio of two values, in log units. For example, ZDR).
- dBm (power in milliwatts, in log units)
- dBZ (radar reflectivity in log units)

3. Additional standard names.

CfRadial files will be CF compliant, with the above extensions.

### 1.5 Strict use of variable and attribute names

However, because of the inherent complexity of radial radar and lidar data, the CfRadial format requires extra strictness, as compared to CF in general, in order to keep it manageable. There are so many metadata variables in CfRadial that it is essential to require strict adherence to the dimension names and metadata variable names exactly as specified in this document, in addition to their standard names. It is not practical to expect an application to search for standard names for metadata variables, since this makes the code unnecessarily complex.

Since this is a completely new format, there is no requirement to support legacy data sets which are less strictly defined.
Note that this strictness requirement only applies to metadata variables. The moments data fields will be handled as usual in CF, where the standard name is the definitive guide to the contents of the field. Suggested standard names for radar variables not yet supported by CF are listed in section 6.

One exception to this is the dimensions used to specify the length of string variables. String length dimensions may be added as needed. This document refers to the string length dimension as 'string_length', but any suitable dimension may be used in its place. See section 4.2.

## 1.6 _FillValue value attribute

CfRadial will use the _FillValue attribute to indicate missing values.
Note: the CF documentation mentions that the missing_value attribute is deprecated, and that _FillValue should be used instead. However, the CF document also states that missing_value is supported for backward compatibility purposes.
Therefore, it is recommended that CfRadial software applications check for missing_value as well.

### 1.7 Required vs. optional variables

Required variables are shown shaded in this document.
All other variables are optional.
If an optional variable is not provided, the reader applications should set the variable to a missing value as appropriate.

## 2 Data Content Overview

### 2.1 The nature of radar and lidar moments data

As a radar or lidar scans (or points) the data fields (or moments) are produced over an entity specified by a time interval or angular interval.

We refer to this entity as a ray, beam or dwell. In this document we will use the term ray.
For a given ray, the field data are computed for a sequence of ranges increasing radially away from the instrument. These are referred to as range gates.
In most cases, the spacing between the range gates is constant along the ray, although this is not necessarily the case. For example, some NOAA radars have gate spacings of $75 \mathrm{~m}, 150 \mathrm{~m}$ and 300 m . Therefore, we need to be able to handle the cases for which the range gate spacing is variable. (This was not supported in version 1.0).

### 2.2 Geo-reference variables

A subset of the metadata variables in CfRadial are used to locate a radar or lidar measurement in space.
These are:

- range
- elevation
- azimuth
- latitude
- longitude
- altitude

See sections 4.4, 4.6 and 4.8 for details on these variables.
For moving platforms, extra variables are required for geo-referencing.
These are:

- heading
- roll
- pitch
- rotation
- tilt

See section 4.9 for details on these variables.
The mathematical procedures for computing data location relative to earth coordinates are described in detail in section 7 .

### 2.3 Coordinate variables and storage of moments data

The moments data to be handled by this format is represented in 2 principal dimensions:

- time: rays have monotonically increasing time
- range: bins have monotonically increasing range


### 2.3.1 Regular 2-D storage - constant number of gates

If the rays at all times have the same number of gates, the data is stored in regular arrays, as shown below.

In this case the time dimension may be either fixed or unlimited.


Figure 2.1 Data organization in time and range, for a constant number of gates

### 2.3.2 Staggered 2-D storage - variable number of gates



Figure 2.2 Data organization in time and range, for a variable number of gates

### 2.3.3 Principal dimensions and variables for the case of a constant number of gates

Refer to figure 2.1.
The principal dimensions are time and range.
The primary coordinate is time and the secondary coordinate is range.

The time coordinate indicates the number of rays in the file. In the case of a constant number of gates, this may be either fixed or unlimited.

The range coordinate indicates the maximum number of gates for any ray in the file.
The time(time) coordinate variable stores the time of each ray, in seconds, from a reference time, which is normally the start of the volume (time_coverage_start) but may be a specified reference time (time_reference).

The range(range) coordinate variable stores the range to the center of each gate. All rays in the volume must have the same range geometry, but not necessarily the same number of gates..
The elevation(time) coordinate variable stores the elevation angle for each ray.
The azimuth(time) coordinate variable stores the azimuth angle for each ray.
The data fields are stored as 2-D arrays, with dimensions (time, range).

### 2.3.1 Additional dimensions and variables for the case of a variable number of gates

Refer to figure 2.2.
For a variable number of gates per ray, and additional dimension, $\mathbf{n} \_$points, is introduced. The time coordinate in this case must be fixed.
The ray_n_gates(time) variable stores the number of gates in a ray.
The ray_start_index(time) variable stores the start index of the moments data for a ray, relative to the start of the moments array.
The n_points dimension indicates the total number of gates stored in all of the rays. It is equal to the sum of ray_n_gates over all rays.
The data fields are stored as 1-D arrays with dimension (n_points). The data from consecutive rays is concatenated to form a single array. The ray_n_gates and ray_start_index values are used to locate the data for a given time in this 1-D array.

### 2.4 Sweep indexes - a "pseudo" third dimension

A set of one or more related sweeps, typically a complete 3-D radar or lidar scan, is referred to as a volume.

A volume scan is comprised of one or more sweeps.
Scanning may be carried out in a number of different ways. For example:

- horizontal scanning at fixed elevation (PPI mode)
- vertical scanning at constant azimuth (RHI mode)
- antenna not moving, i.e. constant elevation and azimuth (staring or pointing)
- aircraft radars which rotate around the longitudinal axis of the aircraft (e.g. ELDORA) For each of these modes a sweep is defined as follows:
- PPI mode: a sequence of rays at fixed elevation angle
- RHI mode: a sequence of rays at fixed azimuth angle
- pointing mode: a sequence of rays over some time period, at fixed azimuth and elevation
The volume may therefore be logically divided into sweeps. In CfRadial, we do not separate the sweeps in the stored field data arrays. Rather, we store arrays of start and stop indexes, which identify the rays that belong to each sweep. Some recorded rays may be in the transition region between defined sweeps, i.e. they may not belong to any sweep. For these rays we set the 'antenna_transition' flag to 1 .


### 2.5 Constant start range and gate spacing per volume

The CF/radial convention supports a varying number of gates per ray.
However, the range to each gate cannot vary within a volume. The range(range) coordinate variable stores the range to the center of each gate, and these values are applicable to all rays.
If the raw data range geometry changes over time within a volume, the data to be represented must be re-sampled using a common time-invariant range geometry for the volume.

### 2.6 No grid mapping variable

The data in this format is saved in the native coordinate system for RADARs and LIDARs, i.e. radial (or polar) coordinates, with the instrument at the origin.
A grid mapping type is not required, because the geo-reference variables contain all of the information required to locate the data in space.

For a stationary instrument, the following are stored as scalar variables (see section 4.6):

- latitude
- longitude
- altitude

Position and pointing references for moving platforms must take the following motions into account (see section 4.9):

- platform translation
- platform rotation


### 2.7 Calibration information

Radars must be calibrated to ensure that the moments data are accurate. Calibration for some types of lidar may also be appropriate.

A radar may have multiple sets of calibration parameters. Generally a separate calibration is performed for each transmit pulse width. Separate calibrations may be performed for other reasons as well. CfRadial supports storing multiple sets of calibration parameters, using the radar_calibration and lidar_calibration conventions.

The calibration applicable to a specific ray is indicated by the calibration_index variable.

### 2.8 Compression

The netCDF 4 library supports files in the following formats:

- classic
- 64bit offset
- netcdf4
- netcdf4 classic

The netcdf4 format is built on HDF5, which supports compression. Where data are missing or unusable, the data values will be set to a constant well-known _FillValue code. This procedure, combined with the use of the netcdf4 format, provides efficient compression.

It is therefore recommended that the netcdf4 option be used whenever possible, to keep data sets as small as possible.
However, for importing data into $3^{\text {rd }}$ party applications such as MatLab © , it is wise (at this stage) to store data in the NetCDF-3 classic format, which is uncompressed, since support for the compressed format is not yet widespread.

## 3 Convention hierarchy

The CF/Radial convention comprises a base convention, along with a series of optional subconventions for specific purposes.

At the time of writing, the following conventions are supported:

| Convention name | Type | Description |
| :---: | :---: | :---: |
| CF/Radial | Base | Radial data extension to the <br> CF convention. <br> Contains all necessary information for <br> interpreting and displaying the data fields <br> in a geo-referenced manner |
| instrument_parameters | Optional | Parameters common to both radar and <br> lidar instruments |
| radar_parameters | Optional | Parameters specific to radars |
| lidar_parameters | Optional | Parameters specific to lidars |
| radar_calibration | Optional | Calibration values for radars |
| lidar_calibration | Optional | Calibration values for lidars |
| platform_velocity | Optional | Velocity of the platform, in multiple <br> dimensions |
| geometry_correction | Optional | Corrections to the geometry <br> of the data set |

Note: items shown shaded are required, those not shaded are optional.
If a netCDF file conforms to a base convention and one or more sub-conventions, these are concatenated in the Conventions attribute as a space-delimited string.

The following are some examples:

- "CF/Radial instrument $\_$parameters"
- "CF/Radial instrument_parameters radar_parameters radar_calibration"
- "CF/Radial lidar_parameters platform_velocity"


## 4 CF/Radial base convention

The base CF/Radial convention covers the minimum set of elements which are required to describe a radar/lidar data set sufficiently for basic display and plotting. CF/Radial is a specialization of $C F$.
NOTE on units: in the following tables, for conciseness, we do not spell out the units strings exactly as they are in the netCDF file. The following abbreviations apply:

| Units string in netCDF file | Abbreviation in tables |
| :---: | :---: |
| "degrees per second" | degrees $/ \mathrm{s}$ |
| "meters per second" | $\mathrm{m} / \mathrm{s}$ |

### 4.1 Global attributes

| Attribute name | Type | Convention | Description |
| :---: | :---: | :---: | :---: |
| Conventions | string | CF | Conventions string will specify <br> Cf/Radial, plus selected sub- <br> conventions as applicable |
| version | string | CF/Radial | CF/Radial version number |
| title | string | CF | Short description of file contents |
| institution | string | CF | Where the original data were <br> produced |
| references | string | CF | References that describe the data <br> or the methods used to produce it |
| source | string | CF | Method of production of the <br> original data |
| history | string | CF | List of modifications to the <br> original data |
| comment | string | CF | Miscellaneous information |
| instrument_name | string | CF/Radial | Name of radar or lidar |
| site_name | string | CF/Radial | Name of site where data were <br> gathered |
| scan_name | string | CF/Radial | Name of scan strategy used, if <br> applicable |
| scan_id | int | CF/Radial | Scan strategy id, if applicable. <br> Assumed 0 if missing. |


| Attribute name | Type | Convention | Description |
| :---: | :---: | :---: | :---: |
| platform_is_mobile | string | CF/Radial | "true" or "false" <br> Assumed "false" if missing. |
| n_gates_vary | string | CF/Radial | "true" or "false" <br> Assumed "false" if missing. |

Note: items shown shaded are required, those not shaded are optional.

### 4.2 Dimensions

| Dimension name | Description |
| :---: | :---: |
| time | The number of rays. <br> This dimension is optionally UNLIMITED |
| range | The number of range bins |
| n_points $*$ | Total number of gates in file. <br> Required for variable number of gates. |
| sweep | The number of sweeps |
| frequency | Number of frequencies used |
| string_length $* *$ | Length of char type variables. |

Note 1: items shown shaded are required, those not shaded are optional.

* Note2: n_points is required if the number of gates varies by ray. It must not be included if the number of gates is fixed.
** Note3: any number of 'string_length' dimensions may be created and used. For example, you may declare the dimensions 'string_length", 'string_length_short' and 'string_length_long', and use them appropriately for strings of various lengths. These are only used to indicate the length of the strings actually stored, and have no effect on other parts of the format.


### 4.3 Global variables

| Variable name | Dimension | Type | Comments |
| :---: | :---: | :---: | :---: |
| volume_number | none | int | Volume numbers are sequential, relative to <br> some arbitrary start time, and may wrap. |
| platform_type | (string_length) | char | Options are: <br> "fixed", "vehicle"," "ship", "aircraft", <br> "aircraft_fore",""aircraft_aft"," <br> "aircraft_tail",""aircraft_belly", <br> "aircraft_roof",""aircraft_nose", <br> "satellite_orbit"," |
|  |  |  | "satellite_geostat" |
|  |  |  | Assumed "fixed" if missing. |


| Variable name | Dimension | Type | Comments |
| :---: | :---: | :---: | :---: |
| instrument_type | (string_length) | char | Options are: "radar", "lidar" Assumed "radar" if missing. |
| primary_axis | (string_length) | char | Options are: <br> "axis_z", "axis_y", "axis_x" <br> See section 7 for details. <br> Assumed "axis_z" if missing. |
| time_coverage_start | (string_length) | char | UTC time of first ray in file. <br> Resolution is integer seconds. <br> The time(time) variable is computed relative to this time. <br> Format is: <br> yyyy-mm-ddThh:mm:ssZ |
| time_coverage_end | (string_length) | char | UTC time of last ray in file. Resolution is integer seconds. <br> Format is: <br> yyyy-mm-ddThh:mm:ssZ |
| time_reference | (string_length) | char | UTC time reference. <br> Resolution is integer seconds. <br> If defined, the time(time) variable is computed relative to this time instead of relative to time_coverage_start. <br> Format is: yyyy-mm-ddThh:mm:ssZ |

Note: items shown shaded are required, those not shaded are optional.

### 4.4 Coordinate variables

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| time | (time) | double | seconds | Coordinate variable for time. <br> Time at center of each ray, in <br> fractional seconds since <br> start_time. |
| range | (range) | float | meters | Coordinate variable for range. <br> Range to center of each bin. |

Note: all items are required.

### 4.4.1 Attributes for time coordinate variable

| Attribute name | Type | Value |
| :---: | :---: | :---: |
| standard_name | string | "time" |


| Attribute name | Type | Value |
| :---: | :---: | :---: |
| long_name | string | "time in seconds since volume start" |
| units | string | "seconds since $y y y y-m m-d d T h h: m m: s s Z "$, <br> where the actual reference time values are used. <br> This unit string is very important and must be <br> correct. It should either match time_reference( if it <br> exists) or time_coverage_start. |

Note: All items are required.

### 4.4.2 Attributes for range coordinate variable

| Attribute name | Type | Value |
| :---: | :---: | :---: |
| standard_name | string | "projection_range_coordinate" |
| long_name | string | "range_to_measurement_volume" |
| units | string | "meters" |
| spacing_is_constant | string | "true" or "false" |
| meters_to_center_of_first_gate | float | Start range in meters |
| meters_between_gates | float | Gate spacing in meters. <br> Only applicable if <br> spacing_is_constant is "true" |
| axis | string | "radial_range_coordinate" |

Note: items shown shaded are required, those not shaded are optional.

### 4.5 Ray dimension variables

| Variable name | Dimension | Type | Comments |
| :---: | :---: | :---: | :---: |
| ray_n_gates | (time) | int | Number of gates in a ray. |
| ray_start_index | (time) | int | Index of start of moments data <br> for a ray, relative to the start of <br> the moments array |

Note: required if n_gates_vary global attribute is true. Do not specify if n_gates_vary is false.

### 4.6 Location variables

Note: for stationary platforms, these are scalars, and for moving platforms they are vectors in the time dimension.

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| latitude | none or (time) | double | degrees_north | $\begin{array}{c}\text { Latitude of instrument. } \\ \text { For a stationary platform, this } \\ \text { is a scalar. For a moving } \\ \text { platform, this is a vector. }\end{array}$ |
| longitude | none or (time) | double | degrees_east | $\begin{array}{c}\text { Longitude of instrument. } \\ \text { For a stationary platform, this } \\ \text { is a scalar. For a moving } \\ \text { platform, this is a vector. }\end{array}$ |
| altitude | none or (time) | double | meters | $\begin{array}{l}\text { Altitude of instrument, above } \\ \text { mean sea level. }\end{array}$ |
| For a stationary platform, this |  |  |  |  |
| is a scalar. For a moving |  |  |  |  |
| platform, this is a vector. |  |  |  |  |$]$

Note: items shown shaded are required, those not shaded are optional.

### 4.7 Sweep variables

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| sweep_number | (sweep) | int |  | The number of the sweep, in <br> the volume scan. <br> 0-based. |
| sweep_mode | (sweep, | char |  | Options are: <br> string_length) |
| "sector","coplane",rhi", |  |  |  |  |
| "vertical_pointing"," "idle", |  |  |  |  |
| "azimuth_surveillance"," |  |  |  |  |
| "elevation_surveillance", |  |  |  |  |
| "sunscan"," "pointing",", |  |  |  |  |
| "manual_ppi","manual_rhi" |  |  |  |  |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| fixed_angle | (sweep) | float | degrees | Target angle for the sweep. <br> elevation in most modes <br> azimuth in RHI mode |
| sweep_start_ray_index | (sweep) | int |  | Index of first ray in sweep, <br> relative to start of volume. <br> 0-based. |
| sweep_end_ray_index | (sweep) | int |  | Index of last ray in sweep, <br> relative to start of volume. <br> 0-based. |
| target_scan_rate | (sweep) | float | degrees/s | Intended scan rate for this <br> sweep. The actual scan rate is <br> stored according to section 4.8. <br> This variable is optional. <br> Omit if not available. |

Note: items shown shaded are required, those not shaded are optional.
NOTE2: this section must always exist, even if a volume contains only 1 sweep. The reason for the inclusion is that the sweep_mode and sweep_fixed_angle are necessary for fully understanding the sweep strategy.

### 4.8 Sensor pointing variables

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| azimuth | (time) | float | degrees | Azimuth of antenna, relative to <br> true north. |
| elevation | (time) | float | degrees | Elevation of antenna, relative <br> to the horizontal plane. |
| scan_rate | (time) | float | degrees/s | Actual antenna scan rate. <br> Set to negative if counter- <br> clockwise in azimuth or <br> decreasing in elevation. <br> Positive otherwise. |
| antenna_transition | (time) | byte |  | if antenna is in transition, <br> i.e. between sweeps, 0 if not. <br> If variable is omitted, the <br> transition will be assumed to <br> be 0 everywhere. <br> Assumed 0 if missing. |

Note: items shown shaded are required, those not shaded are optional.

### 4.8.1 Attributes for azimuth(time) variable

| Attribute name | Type | Value |
| :---: | :---: | :---: |
| standard_name | string | "beam_azimuth_angle" |
| long_name | string | "azimuth_angle_from_true_north" |
| units | string | "degrees" |
| axis | string | "radial_azimuth_coordinate" |

Note: All items are required.

### 4.8.2 Attributes for elevation(time) variable

| Attribute name | Type | Value |
| :---: | :---: | :---: |
| standard_name | string | "beam_elevation_angle" |
| long_name | string | "elevation_angle_from_horizontal_plane" |
| units | string | "degrees" |
| axis | string | "radial_elevation_coordinate" |

Note: All items are required.

### 4.9 Moving platform geo-reference variables

For moving platforms, the following additional variables will be included to allow georeferencing of the platform in earth coordinates. Only include this section for moving platforms, omit completely for fixed platforms.

See section 7 for further details.

| Variable <br> name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| heading | (time) | float | degrees | Heading of the platform relative to <br> true N, looking down from above. |
| roll | (time) | float | degrees | Roll about longitudinal axis of <br> platform. Positive is left side up, <br> looking forward. |
| pitch | (time) | float | degrees | Pitch about the lateral axis of the <br> platform. Positive is up at the front. |


| Variable <br> name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| drift | (time) | float | degrees | Difference between heading and <br> track over the ground. Positive drift <br> implies track is clockwise from <br> heading, looking from above. <br> NOTE: not applicable to land-based <br> moving platforms. |
| rotation | (time) | float | degrees | Angle between the radar beam and <br> the vertical axis of the platform. <br> Zero is along the vertical axis, <br> positive is clockwise looking <br> forward from behind the platform. |
| tilt | (time) | float | degrees | Angle between radar beam (when it <br> is in a plane containing the <br> longitudinal axis of the platform) <br> and a line perpendicular to the <br> longitudinal axis. Zero is |
| perpendicular to the longitudinal |  |  |  |  |
| axis, positive is towards the front of |  |  |  |  |
| the platform. |  |  |  |  |$|$

Note: if this block is included, all items are required.

### 4.10 Moments field data variables

Each moments field variable has the dimension n_points. The moments variables are stored as staggered arrays, using the auxiliary variables ray_start_index(time) and ray_n_gates(time) to locate the data for a ray.
The field data will be stored using one of the following:

| netCDF type | Byte width | Description |
| :---: | :---: | :---: |
| ncbyte | 1 | scaled signed integer |
| short | 2 | scaled signed integer |
| int | 4 | scaled signed integer |
| float | 4 | floating point |
| double | 8 | floating point |

The netCDF variable name is interpreted as the short name for the field.
Field data variables have the following attributes:

| Attribute name | Type | Convention | Description |
| :---: | :---: | :---: | :---: |
| long_name | string | CF | Long name describing the field. <br> Any string is appropriate. |
| standard_name | string | CF | CF standard name for field. <br> See section 6.2. |
| units | string | CF | Units for field |
| _FillValue | same type as field <br> data | CF | Used if data are missing at this <br> range bin |
| scale_factor | float | CF | Float value $=$ <br> (integer value) * scale_factor <br> + add_offset |
| add_offset | float | CF | Only applies to integer types. |
| coordinates | string | CF | See note below |

Note: scale_factor and add_offset are required for ncbyte, short and int fields. They are not applicable to float and double fields.

NOTE2: the "coordinates' attribute lists the variables needed to compute the location of a data point in space.
For stationary platforms, the coordinates attribute should be set to:

## "elevation azimuth range"

For moving platforms, the coordinates attribute should be set to:
"elevation azimuth range heading roll pitch rotation tilt"

## 5 Sub-conventions

The base CF/Radial convention, as described above, covers the minimum set of netCDF elements which are required to locate radar/lidar data in time and space.
The following sub-conventions augment the base convention with additional information for various purposes.

### 5.1 The instrument_parameters sub-convention

This convention stores parameters relevant to both radars and lidars.
Variables in this convention will have the string attribute meta_group, set to the value "instrument_parameters".

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| frequency | (frequency) | float | s-1 | List of operating frequencies, in Hertz. <br> In most cases, only a single frequency is used. |
| follow_mode | (sweep, string_length) | char |  | options are: "none", "sun", <br> "vehicle", "aircraft", <br> "target", "manual" <br> Assumed "none" if missing. |
| pulse_width | (time) | float | seconds |  |
| prt_mode | (sweep, string_length) | char |  | Pulsing mode <br> Options are: "fixed", <br> "staggered", "dual" <br> Assumed "fixed" if missing. |
| prt | (time) | float | seconds | Pulse repetition time. For staggered prt, also see prt_ratio. |
| prt_ratio | (time) | float |  | Ratio of prt/prt2. <br> For dual/staggered prt mode. |
| polarization_mode | (sweep, string_length) | char |  | Options are: "horizontal", <br> "vertical", " $h v$ alt", <br> " $h v$ sim", "circular" <br> Assumed "horizontal" if missing. |
| nyquist_velocity | (time) | float | $\mathrm{m} / \mathrm{s}$ | Unambiguous velocity |
| unambiguous_range | (time) | float | meters | Unambiguous range |
| n_samples | (time) | int |  | Number of samples used to compute moments |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| sampling_ratio | (time) | float |  | Number of samples for this <br> field divided by n_samples. <br> Assumed 1.0 if missing. |

Note: all items are optional.
The number of samples used to compute the moments may vary from field to field. In the table above, $n \_$samples refers to the maximum number of samples used for any field. The sampling_ratio is computed as the actual number of samples used for any field, divided by n_samples.

### 5.2 The radar_parameters sub-convention

This convention handles parameters specific to radar platforms. Variables in this convention will have the string attribute meta_group, set to the value "radar_parameters".

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| radar_antenna_gain_h | none | float | dB | Nominal antenna gain, <br> H polarization |
| radar_antenna_gain_v | none | float | dB | Nominal antenna gain, <br> V polarization |
| radar_beam_width_h | none | float | degrees | Antenna beam width <br> H polarization |
| radar_beam_width_v | none | float | degrees | Antenna beam width <br> V polarization |
| radar_receiver_bandwidth | none | float | s-1 | Bandwidth of radar <br> receiver |
| radar_measured_transmit_power_h | (time) | float | dBm | Measured transmit power <br> H polarization |
| radar_measured_transmit_power_v | (time) | float | dBm | Measured transmit power <br> V polarization |

Note: all items are optional.

### 5.3 The lidar_parameters sub-convention

This convention handles parameters specific to lidar platforms. Variables in this convention will have the string attribute meta_group, set to the value "lidar_parameters".

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| lidar_beam_divergence | none | float | milliradians | Transmit side |
| lidar_field_of_view | none | float | milliradians | Receive side |
| lidar_aperture_diameter | none | float | cm |  |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| lidar_aperture_efficiency | none | float | percent |  |
| lidar_peak_power | none | float | watts |  |
| lidar_pulse_energy | none | float | joules |  |

Note: all items are optional.

### 5.4 The radar_calibration sub-convention

Variables in this convention will have the string attribute meta_group, set to the convention name "radar_calibration".

### 5.4.1 Dimensions

| Dimension name | Description |
| :---: | :---: |
| r_calib | The number of calibrations available |

Note: required if any radar_calibration variables are included.

### 5.4.2 Variables

The meaning of the designations used in the calibration variables are as follows for dualpolarization radars:

- 'h': horizontal channel
- 'v': vertical channel
- 'hc': horizontal co-polar (h transmit, h receive)
- 'hx' - horizontal cross-polar (v transmit, h receive)
- 'vc': vertical co-polar (v transmit, v receive)
- 'vx' - vertical cross-polar (h transmit, v receive)

For single polarization radars, the ' $\mathbf{h}$ ' quantities should be used.

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| r_calib_index | (time) | byte |  | Index for the calibration <br> that applies to each ray. <br> Assumed 0 if missing. |
| r_calib_time | (r_calib, <br> string_length) | char | UTC | e.g. 2008-09-25 <br> T23:00:00Z |
| r_calib_pulse_width | (r_calib) | float | seconds | Pulse width for this <br> calibration |
| r_calib_ant_gain_h | (r_calib) | float | dB | Derived antenna gain <br> H channel |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| r_calib_ant_gain_v | (r_calib) | float | dB | ditto, V channel |
| r_calib_xmit_power_h | (r_calib) | float | dBm | Transmit power H channel |
| r_calib_xmit_power_v | (r_calib) | float | dBm | ditto, V channel |
| r_calib_two_way_waveguide_loss_h | (r_calib) | float | dB | 2-way waveguide loss measurement plane to feed horn H channel |
| r_calib_two_way_waveguide_loss_v | (r_calib) | float | dB | ditto, V channel |
| r_calib_two_way_radome_loss_h | (r_calib) | float | dB | 2-way radome loss H channel |
| r_calib_two_way_radome_loss_v | (r_calib) | float | dB | ditto, V channel |
| r_calib_receiver_mismatch_loss | (r_calib) | float | dB | Receiver filter bandwidth mismatch loss |
| r_calib_radar_constant_h | (r_calib) | float | $\mathrm{m} / \mathrm{mW}$ dB units | Radar constant H channel |
| r_calib_radar_constant_v | (r_calib) | float | $\mathrm{m} / \mathrm{mW}$ dB units | ditto, V channel |
| r_calib_noise_hc | (r_calib) | float | dBm | Measured noise level H co-pol channel |
| r_calib_noise_vc | (r_calib) | float | dBm | ditto, V co-pol channel |
| r_calib_noise_hx | (r_calib) | float | dBm | ditto, H cross-pol |
| r_calib_noise_vx | (r_calib) | float | dBm | ditto, V cross-pol |
| r_calib_receiver_gain_hc | (r_calib) | float | dB | Measured receiver gain H co-pol channel |
| r_calib_receiver_gain_vc | (r_calib) | float | dB | ditto, V co-pol channel |
| r_calib_receiver_gain_hx | (r_calib) | float | dB | ditto, H cross-pol |
| r_calib_receiver_gain_vx | (r_calib) | float | dB | ditto, V cross-pol |
| r_calib_base_1km_hc | (r_calib) | float | dBZ | reflectivity at 1 km for $\mathrm{SNR}=0 \mathrm{~dB}$ <br> H co-pol channel |
| r_calib_base_1km_vc | (r_calib) | float | dBZ | ditto, V co-pol channel |
| r_calib_base_1km_hx | (r_calib) | float | dBZ | ditto, H cross-pol |
| r_calib_base_1km_vx | (r_calib) | float | dBZ | ditto, V cross-pol |
| r_calib_sun_power_hc | (r_calib) | float | dBm | Calibrate sun power H co-pol channel |
| r_calib_sun_power_vc | (r_calib) | float | dBm | ditto, V co-pol channel |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| r_calib_sun_power_hx | (r_calib) | float | dBm | ditto, H cross-pol |
| r_calib_sun_power_vx | (r_calib) | float | dBm | ditto, V cross-pol |
| r_calib_noise_source_power_h | (r_calib) | float | dBm | Noise source power H channel |
| r_calib_noise_source_power_v | (r_calib) | float | dBm | ditto, V channel |
| r_calib_power_measure_loss_h | (r_calib) | float | dB | Power measurement loss in coax and connectors H channel |
| r_calib_power_measure_loss_v | (r_calib) | float | dB | ditto, V channel |
| r_calib_coupler_forward_loss_h | (r_calib) | float | dB | Coupler loss into waveguide H channel |
| r_calib_coupler_forward_loss_v | (r_calib) | float | dB | ditto, V channel |
| r_calib_zdr_correction | (r_calib) | float | dB | $\begin{gathered} \text { corrected }= \\ \text { measured }+ \text { correction } \end{gathered}$ |
| r_calib_ldr_correction_h | (r_calib) | float | dB | $\begin{gathered} \text { corrected }= \\ \text { measured }+ \text { correction } \end{gathered}$ |
| r_calib_ldr_correction_v | (r_calib) | float | dB | $\begin{gathered} \text { corrected }= \\ \text { measured }+ \text { correction } \end{gathered}$ |
| r_calib_system_phidp | (r_calib) | float | degrees | System PhiDp, as seen in drizzle close to radar |
| r_calib_test_power_h | (r_calib) | float | dBm | Calibration test power H channel |
| r_calib_test_power_v | (r_calib) | float | dBm | ditto, V channel |
| r_calib_receiver_slope_hc | (r_calib) | float |  | Computed receiver slope, ideally 1.0 H co-pol channel |
| r_calib_receiver_slope_vc | (r_calib) | float |  | ditto, V co-pol channel |
| r_calib_receiver_slope_hx | (r_calib) | float |  | ditto, H cross-pol |
| r_calib_receiver_slope_vx | (r_calib) | float |  | ditto, V cross-pol |

Note: all items are optional.

### 5.5 The lidar_calibration sub-convention

Variables in this convention will have the string attribute meta_group, set to the value "lidar_calibration".

At the time of writing, this convention has not been defined.

### 5.6 The platform_velocity sub-convention

For moving platforms, include the following variables to indicate the velocity of the platform at each time. Omit entirely for fixed platforms.

Variables in this convention will have the string attribute meta_group, set to the value "platform_velocity".

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| eastward_velocity | (time) | float | $\mathrm{m} / \mathrm{s}$ | EW velocity of the platform. <br> Positive is eastwards. |
| northward_velocity | (time) | float | $\mathrm{m} / \mathrm{s}$ | NS velocity of the platform. <br> Positive is northwards. |
| vertical_velocity | (time) | float | $\mathrm{m} / \mathrm{s}$ | Vertical velocity of the <br> platform. Positive is up. |
| eastward_wind | (time) | float | $\mathrm{m} / \mathrm{s}$ | EW wind at the platform <br> location. Positive is eastwards. |
| northward_wind | (time) | float | $\mathrm{m} / \mathrm{s}$ | NS wind at the platform <br> location. Positive is <br> northwards. |
| vertical_wind | (time) | float | $\mathrm{m} / \mathrm{s}$ | Vertical wind at the platform <br> location. Positive is up. |
| heading_rate | (time) | float | degrees/s | Rate of change of heading |
| roll_rate | (time) | float | degrees/2 | Rate of change of roll of the <br> platform |
| pitch_rate | (time) | float | degrees/s | Rate of change of pitch of the <br> platform. |

Note: if this block is included, all items are required.

### 5.7 The geometry_correction sub-convention

The following additional variables are used to quantify errors in the georeference data for the platform. These are constant for a data set.
Variables in this convention will have the string attribute meta_group, set to the value "geometry_correction".
If any item is omitted, the value is assumed to be 0 .

| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| azimuth_correction | none | float | degrees | Correction to azimuth <br> values |


| Variable name | Dimension | Type | Units | Comments |
| :---: | :---: | :---: | :---: | :---: |
| elevation_correction | none | float | degrees | Correction to elevation values |
| range_correction | none | float | degrees | Correction to range values |
| longitude_correction | none | float | degrees | Correction to longitude values |
| latitude_correction | none | float | degrees | Correction to latitude values |
| pressure_altitude_correction | none | float | meters | Correction to pressure altitude values |
| radar_altitude_correction | none | float | meters | Correction to radar altitude values |
| eastward_ground_speed_correction | none | float | m/s | Correction to EW ground speed values |
| northward_ground_speed_correction | none | float | m/s | Correction to NS ground speed values |
| vertical_velocity_correction | none | float | $\mathrm{m} / \mathrm{s}$ | Correction to vertical velocity values |
| heading_correction | none | float | degrees | Correction to heading values |
| roll_correction | none | float | degrees | Correction to roll values |
| pitch_correction | none | float | degrees | Correction to pitch values |
| drift_correction | none | float | degrees | Correction to drift values |
| rotation_correction | none | float | degrees | Correction to rotation values |
| tilt_correction | none | float | degrees | Correction to tilt values |

Note: none of these items is required. If missing, 0 will be assumed.

## 6 Standard names

To the extent possible, CfRadial uses standard names already defined by CF.
Section 6.1 lists the proposed standard names for metadata variables, and section 6.2 lists the proposed standard names for moments data.

### 6.1 Proposed standard names for metadata variables

Use of the standard names for metadata variables is optional, since the variable names themselves are reasonably self-explanatory. However, use of the standard names does enhance clarity and makes the file more self-documenting.

| Variable name Standard name | Units | Already <br> supported <br> in CF? |
| :---: | :---: | :---: |
| altitude_agl <br> altitude_above_ground_level | meters | no |
| altitude $\qquad$ correction altitude correction | meters | no |
| altitude <br> altitude | meters | yes |
| antenna_transition <br> antenna is in transition between sweeps | unitless | no |
| azimuth_correction azimuth_angle_correction | degrees | no |
| azimuth beam azimuth angle | degrees | no |
| drift_correction <br> platform_drift_angle_correction | degrees | no |
| ```drift platform_drift_angle``` | degrees | no |
| eastward_velocity_correction <br> platform_eastward_velocity_correction | $\mathrm{m} / \mathrm{s}$ | no |
| eastward_velocity <br> platform eastward velocity | $\mathrm{m} / \mathrm{s}$ | no |
| $\begin{aligned} & \text { eastward_wind } \\ & \text { eastward_wind_speed } \end{aligned}$ | $\mathrm{m} / \mathrm{s}$ | yes |
| elevation_correction beam_elevation_angle_correction | degrees | no |
| elevation beam_elevation_angle | degrees | no |
| time_coverage_end data volume end time utc | seconds | no |


| Variable name Standard name | Units | Already supported in CF? |
| :---: | :---: | :---: |
| fixed_angle <br> target fixed angle | degrees | no |
| follow_mode <br> follow mode for scan strategy | unitless | no |
| frequency radiation frequency | $s-1$ | no |
| heading_change_rate platform heading angle rate of change | degrees | no |
| heading_correction platform heading angle correction | degrees | no |
| heading platform heading angle | degrees | no |
| instrument_name name of instrument | unitless | no |
| instrument_type type of instrument | unitless | no |
| latitude_correction latitude correction | degrees | no |
| latitude latitude | degrees_east | no |
| lidar_aperture_diameter <br> lidar aperture diameter | meters | no |
| lidar_aperture_efficiency <br> lidar_aperture_efficiency | unitless | no |
| lidar_beam_divergence lidar beam divergence | radians | no |
| lidar_constant <br> lidar calibration constant | unitless | no |
| lidar field_of_view lidar field of view | radians | no |
| lidar_peak_power lidar_peak_power | watts | no |
| lidar_pulse_energy <br> lidar pulse energy | joules | no |
| longitude_correction longitude correction | degrees | no |
| longitude longitude | degrees_east | no |
| northward_velocity_correction platform_northward_velocity_correction | $\mathrm{m} / \mathrm{s}$ | no |


| Variable name Standard name | Units | Already supported in CF? |
| :---: | :---: | :---: |
| northward_velocity <br> platform northward_velocity | $\mathrm{m} / \mathrm{s}$ | no |
| northward wind northward wind | $\mathrm{m} / \mathrm{s}$ | yes |
| nyquist_velocity unambiguous doppler velocity | $\mathrm{m} / \mathrm{s}$ | no |
| n_samples <br> number of samples used to compute moments | unitless | no |
| pitch_change_rate platform pitch angle_rate_of change | degrees | no |
| pitch_correction <br> platform pitch angle_correction | degrees | no |
| pitch <br> platform pitch angle | degrees | yes |
| platform_is_mobile platform is mobile | unitless | no |
| platform_type platform type | unitless | no |
| polarization_mode <br> transmit receive polarization mode | unitless | no |
| prt_mode <br> transmit pulse mode | unitless | no |
| pressure_altitude_correction pressure_altitude_correction | meters | no |
| primary_axis <br> primary axis of rotation | unitless | no |
| prt <br> pulse repetition time | seconds | no |
| prt_ratio <br> multiple pulse repetition frequency ratio |  | no |
| pulse_width <br> transmitter pulse_width | seconds | no |
| radar_antenna_gain_h <br> nominal radar antenna gain h channel | dB | no |
| radar_antenna_gain_v <br> nominal radar antenna_gain_v channel | dB | no |
| radar_beam_width_h <br> half power radar_beam width_h_channel | degrees | no |
| radar_beam_width_v <br> half_power_radar_beam_width_v_channel | degrees | no |


| Variable name Standard name | Units | Already supported in CF? |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { radar_receiver_bandwidth } \\ & \text { radar_receiver_bandwidth } \end{aligned}$ | $s-1$ | no |
| radar_transmit_power_h <br> radar transmit power $h$ channel | dBm | no |
| radar_transmit_power_v <br> radar transmit power $v$ channel | dBm | no |
| range_correction <br> range to center of measurement volume correction | meters | no |
| range <br> projection_range_coordinate | meters | no |
| roll correction <br> platform roll angle correction | degrees | no |
| $\begin{aligned} & \text { roll } \\ & \text { platform roll angle } \end{aligned}$ | degrees | yes |
| rotation_correction <br> beam rotation angle relative to platform correction | degrees | no |
| ```rotation beam_rotation_angle_relative_to_platform``` | degrees | no |
| r_calib_antenna_gain_h calibrated radar antenna gain $h$ channel | dB | no |
| r_calib_antenna_gain_v <br> calibrated radar antenna gain $v$ channel | dB | no |
| ```r_calib_base_dbz_1 km_hc radar_reflectivity_at_Ikm_at_zero_snr_h_co_polar_channel``` | dBZ | no |
| r_calib_base_dbz_1km_hx <br> radar_reflectivity_at_1km_at_zero_snr_h_cross_polar_channel | dBZ | no |
| r_calib_base_dbz_1km_vc <br> radar reflectivity at $\overline{1} \mathrm{~km}$ at zero snr v co polar channel | dBZ | no |
| r_calib_base_dbz_1km_vx <br> radar reflectivity at $\overline{1} \mathrm{~km}$ at zero snr v cross polar channel | dBZ | no |
| r_calib_coupler_forward_loss_h <br> radar calibration coupler forward loss_h_channel | dB | no |
| r_calib_coupler_forward_loss_v <br> radar calibration coupler forward loss v channel | dB | no |
| r_calib_index calibration data array index per ray | unitless | no |
| r_calib_ldr_correction_h calibrated radar_ldr_correction_h_channel | dB | no |
| ```r_calib_ldr_correction_v calibrated radar ldr correction v channel``` | dB | no |


| Variable name Standard name | Units | Already supported in CF? |
| :---: | :---: | :---: |
| r_calib_noise_hc <br> calibrated radar receiver noise $h$ co polar channel | dBm | no |
| r_calib_noise_hx <br> calibrated radar receiver noise $h$ cross polar channel | dBm | no |
| r_calib_noise_vc <br> calibrated radar receiver noise $v$ co polar channel | dBm | no |
| ```r_calib_noise_vx calibrated radar receiver noise v cross polar channel``` | dBm | no |
| r_calib_noise_source_power_h <br> radar calibration noise source power $h$ channel | dBm | no |
| r_calib_noise_source_power_v <br> radar calibration noise source power $v$ channel | dBm | no |
| r_calib_power_measure_loss_h <br> radar calibration power measurement loss h channel | dB | no |
| r_calib_power_measure_loss_v <br> radar_calibration power_measurement_loss_v_channel | dB | no |
| r_calib_pulse_width <br> radar calibration pulse width | seconds | no |
| r_calib_radar_constant_h <br> calibrated radar constant $h$ channel | $(\mathrm{m} / \mathrm{mW}) \mathrm{dB}$ | no |
| r_calib_radar_constant_v <br> calibrated radar constant $v$ channel | $(\mathrm{m} / \mathrm{mW}) \mathrm{dB}$ | no |
| r_calib_receiver_gain_hc <br> calibrated radar receiver gain $h$ co polar channel | dB | no |
| r_calib_receiver_gain_hx <br> calibrated radar receiver gain $h$ cross polar channel | dB | no |
| r_calib_receiver_gain_vc <br> calibrated radar receiver gain $v$ co polar channel | dB | no |
| r_calib_receiver_gain_vx <br> calibrated radar receiver gain v cross polar channel | dB | no |
| r_calib_receiver_mismatch_loss <br> radar calibration receiver mismatch loss | dB | no |
| r_calib_receiver_slope_hc <br> calibrated radar receiver slope h co polar channel | unitless | no |
| ```r_calib_receiver_slope_hx calibrated radar receiver slope h cross polar channel``` | unitless | no |
| r_calib_receiver_slope_vc <br> calibrated radar_receiver_slope_v_co_polar_channel | unitless | no |
| ```r_calib_receiver_slope_vx calibrated radar receiver slope v cross polar channel``` | unitless | no |


| Variable name Standard name | Units | Already supported in CF? |
| :---: | :---: | :---: |
| r_calib_sun_power_hc <br> calibrated radar sun power $h$ co polar channel | dBm | no |
| ```r_calib_sun_power_hx calibrated radar sun power h cross polar channel``` | dBm | no |
| r_calib_sun_power_vc <br> calibrated radar sun power $v$ co polar channel | dBm | no |
| r_calib_sun_power_vx <br> calibrated radar sun power $v$ cross polar channel | dBm | no |
| r_calib_system_phidp calibrated radar_system phidp | degrees | no |
| r_calib_test_power_h <br> radar calibration test power $h$ channel | dBm | no |
| r_calib_test_power_v <br> radar calibration test power $v$ channel | dBm | no |
| r_calib_time <br> radar calibration time utc | unitless | no |
| r_calib_two_way_radome_loss_h <br> radar calibration two way radome loss h channel | dB | no |
| r_calib_two_way_radome_loss_v <br> radar calibration two way radome loss v channel | dB | no |
| r_calib_two_way_waveguide_loss_h <br> radar calibration two way waveguide loss $h$ channel | dB | no |
| r_calib_two_way_waveguide_loss_v <br> radar_calibration_two_way_waveguide_loss_v_channel | dB | no |
| r_calib_xmit_power_h <br> calibrated radar xmit power $h$ channel | dBm | no |
| r_calib_xmit_power_v <br> calibrated radar xmit power $v$ channel | dBm | no |
| r_calib_zdr_correction <br> calibrated radar $z d r$ correction | dB | no |
| scan_name <br> name of antenna scan strategy | unitless | no |
| scan_rate antenna angle scan rate | unitless | no |
| site_name <br> name of instrument site | unitless | no |
| spacing_is_constant <br> spacing_between_range_gates_is_constant | unitless | no |
| sweep_end_ray_index <br> index of last ray in sweep | unitless | no |


| Variable name <br> Standard name | Units | Already <br> supported <br> in CF? |
| :--- | :--- | :--- |
| sweep_mode <br> scan_mode_for_sweep | unitless | no |
| sweep_number <br> sweep_index_number_o_based | unitless | no |
| sweep_start_ray_index <br> index_of_first_ray_in_sweep | unitless | no |
| sweep_unambiguous_range <br> unambiguous_range_for_sweep | meters | no |
| threshold_field_name <br> name_of_data_field_for_thresholding | unitless | no |
| threshold_value <br> value_applied_to_threshold_field | degrees | no |
| tilt_correction <br> beam_tilt_angle_relative_to_platform correction | no |  |
| tilt <br> beam_tilt_angle_relative_to_platform | megrees | no |
| time <br> time | meconds | no |
| time_coverage_start <br> data_volume_start_time_utc | unitless | no |
| unambiguous_range <br> unambiguous_range | noters | no |
| vertical_velocity_correction <br> platform_vertical_velocity_correction | no |  |
| vertical_velocity <br> platform_vertical_velocity | nes |  |
| vertical_wind <br> upward_air_velocity | no |  |
| volume_number <br> data_volume_index_number | ness |  |

### 6.2 Standard names for moments variables

Below is an incomplete list of standard names suggested for this convention. (Please suggest additions as needed.)

| Standard name | Short name | Units | Already in CF? |
| :---: | :---: | :---: | :---: |
| equivalent_reflectivity_factor | DBZ | dBZ | yes |
| linear_equivalent_reflectivity_factor | Z | Z | no |
| radial_velocity_of_scatterers_away_from_instrument | VEL | m/s | yes |
| doppler_spectrum_width | WIDTH | $\mathrm{m} / \mathrm{s}$ | no |
| log_differential_reflectivity_hv | ZDR | dB | no |
| log_linear_depolarization_ratio_hv | LDR | dB | no |
| log_linear_depolarization_ratio_h | LDRH | dB | no |
| log_linear_depolarization_ratio_v | LDRV | dB | no |
| differential_phase_hv | PHIDP | degrees | no |
| specific_differential_phase_hv | KDP | degrees/km | no |
| cross_correlation_ratio_hv | RHOHV |  | no |
| log_power | DBM | dBm | no |
| log_power_co_polar_h | DBMHC | dBm | no |
| log_power_cross_polar_h | DBMHX | dBm | no |
| log_power_co_polar_v | DBMVC | dBm | no |
| log_power_cross_polar_v | DBMVX | dBm | no |
| linear_power | PWR | mW | no |
| linear_power_co_polar_h | PWRHC | mW | no |
| linear_power_cross_polar_h | PWRHX | mW | no |
| linear_power_co_polar_v | PWRVC | mW | no |
| linear_power_cross_polar_v | PWRVX | mW | no |
| signal_to_noise_ratio | SNR | dB | no |
| signal_to_noise_ratio_co_polar_h | SNRHC | dB | no |
| signal_to_noise_ratio_cross_polar_h | SNRHX | dB | no |
| signal_to_noise_ratio_co_polar_v | SNRVC | dB | no |
| signal_to_noise_ratio_cross_copolar_v | SNRVX | dB | no |
| normalized_coherent_power | NCP |  | no |

## 7 Computing the data location from geo-reference variables

Weather radars and lidars rotate primarily about a principal axis (e.g., "zenith" for plan-positionindicator mode in ground-based radar), slew about a secondary axis, orthogonal to the primary axis (e.g., range-height-indicator in ground-based radar), or slew on a plane by changing both primary and secondary axis (e.g., COPLANE in ground-based radar). In the ground-based radar convention, a point in space relative to a radar is represented in a local spherical coordinate systems $\mathbf{X}_{i}$ by three parameters, range ( $r$ ), azimuth $(\lambda)$, and elevation $(\phi)$. A ground-based radar is assumed "leveled" with positive (negative) elevation, $\phi$, above (below) a reference plane (a leveled plane orthogonal to the principal axis and containing the radar). The azimuth angle, $\lambda$, is the angle on the reference plane increases clockwise from the True North (TN) following the Meteorological coordinate convention (e.g., TN is $0^{\circ}$ and East is $90^{\circ}$ ). Further processing and manipulating radar data (e.g., interpolation, synthesis, etc) typically are performed in a Cartesian coordinate systems $\mathbf{X}$ (a right-handed XYZ, geo-reference, coordinate systems) where Y is TN and X is East (Fig. 7.1). Hence, a coordinate transformation between $\mathbf{X}_{i}$ (radar sampling space) and $\mathbf{X}$ (geo-reference space) is required.
Based on the principal axes, remote sensors can be classified into three types, $\mathrm{X}, \mathrm{Y}$, or Z type. The purpose of this chapter is two-fold: (1) to define a consistent terminology for the CfRadial format, and (2) to derive coordinate transformation matrices for each type of remote sensor. Many sensors (e.g. fixed ground radars) are of the Z-type, have a fixed location, are leveled and are aligned relative to True North (TN). Dealing with such sensors is much simpler than for those on moving platforms. Therefore, they will be dealt with first, and the more complicated treatment of all three types of remote sensor mounted on moving platforms will be covered in the later sections.


Figure 7.1: Right-handed XYZ coordinate system.

### 7.1 Special case - ground-based, stationary and leveled sensors

Ground-based sensors (radars and lidars) rotate primarily about the vertical (Z) axis (Z-Type), and the reference plane is a horizontal XY plane passing through the sensor. The Y-axis is aligned with TN, and the X -axis points East.

Azimuth angles $(\lambda)$ are positive clockwise looking from above ( $+Z$ ), with 0 being TN.
Elevation angles $(\phi)$ are measured relative to the horizontal reference plane, positive above the plane and negative below it.
A ground-based, leveled vertical pointing sensor can be classified as a Z-Type with $\phi=90^{\circ}$.

### 7.1.1 LIDARs

For LIDARs, the assumption is generally made that propagation of the beam is along a straight line, emanating at the sensor. The coordinate transformation between $\mathbf{X}_{\mathrm{i}}(r, \lambda, \phi)$ and $\mathbf{X}(x, y, z)$ is as follows:

$$
\begin{aligned}
& x=x_{0}+r \cos \phi \sin \lambda \\
& y=y_{0}+r \cos \phi \cos \lambda \\
& z=z_{0}+r \sin \phi
\end{aligned}
$$

where
$x$ is positive east
$y$ is positive north
$\left(x_{0}, y_{0}, z_{0}\right)$ are the coordinates of the sensor relative to the Cartesian grid origin and the azimuth angle $(\lambda)$ is the angle clockwise from TN.
The sensor location is specified in longitude, latitude and altitude in the CfRadial format. Locations in the earth's geo-reference coordinate system are computed using the sensor location and the ( $x, y, z$ ) from above, using normal spherical geometry.

### 7.1.2 RADARs

The propagation of radar microwave energy in a beam through the lower atmosphere is affected by the change of refractive index of the atmosphere with height. Under average conditions this causes the beam to be deflected downwards, in what is termed 'Standard Refraction'. For most purposes this is adequately modeled by assuming that the beam is in fact straight, relative to an earth which has a radius of $4 / 3$ times the actual earth radius. (Rinehart 2004.)
For a stationary and leveled, ground-based radar, the equations are similar to those for the LIDAR case, except that we have one extra term, the height correction, which reflects the beam curvature relative to the earth.

The height $h$ above the earth's surface for a given range is:

$$
h=\sqrt{r^{2}+R^{\prime 2}+2 r R^{\prime} \sin (\phi)}-R^{\prime}+h_{0}
$$

where $R^{\prime}=(4 / 3) \bullet 6374 \mathrm{~km}$ is the pseudo radius of earth. See Rinehart 2004, Chapter 3, for more details.

The $(x, y)$ location for a given range is:

$$
\begin{aligned}
& x=x_{0}+r \cos \phi \sin \lambda \\
& y=y_{0}+r \cos \phi \cos \lambda
\end{aligned}
$$

where $x$ is positive east, $y$ is positive north, and remembering that azimuth is the angle clockwise from true north.

### 7.2 Moving platforms

For moving platforms, the metadata for each beam will include:

- longitude of instrument
- latitude of instrument
- altitude of instrument
- rotation and tilt of the beam (see section 7)
- roll, pitch and heading of the platform
- platform motion $\left(\mathrm{U}_{\mathrm{G}}, \mathrm{V}_{\mathrm{G}}, \mathrm{W}_{\mathrm{G}}\right)$
- air motion ( $\mathrm{U}_{\text {air }}, \mathrm{V}_{\text {air }}, \mathrm{W}_{\text {air }}$ )

For ground-based moving platforms (e.g., Doppler on Wheels), the earth-relative location of the observed point is:
$x=x_{0}+r \cos \phi \sin \lambda$
$y=y_{0}+r \cos \phi \cos \lambda$
$h=\sqrt{r^{2}+R^{2}+2 r R^{\prime} \sin \phi}-R^{\prime}+h_{0}$
Note that for airborne radar platforms, correcting for refractive index does not apply. Therefore, for airborne radars, use the straight line equations for LIDARs.

Refer to the sections below for the computation of elevation $(\phi)$ and azimuth $(\lambda)$ relative to earth coordinates.

Then apply the following equations, as before, to compute the location of the observed point.

$$
\begin{aligned}
& x=x_{0}+r \cos \phi \sin \lambda \\
& y=y_{0}+r \cos \phi \cos \lambda \\
& z=z_{0}+r \sin \phi
\end{aligned}
$$

### 7.3 Coordinate transformations for the general case

This section details the processing for the general case.
Sensors which do not fall under section 7.1 above must be handled as a general case.

### 7.3.1 Coordinate systems

In addition to the previously-defined $\mathbf{X}_{\mathbf{i}}$ and $\mathbf{X}$ coordinate systems, the following intermediate right-handed coordinate systems need to be defined to account for a moving, non-leveled platform:

- $\quad \mathbf{X}_{\mathrm{a}}$ : platform-relative coordinates, +Y points to heading, +X points to the right side $\left(90^{\circ}\right.$ clockwise from +Y on the reference plane XY$),+\mathrm{Z}$ is orthogonal to the reference plane.
- $\mathbf{X}_{\mathrm{h}}$ : leveled, platform heading-relative coordinates, +Y points heading, +X points $90^{\circ}$ clockwise from heading, and Z points up (local zenith).
The goal here is to derive transformations from $\mathbf{X}_{\mathbf{i}}$ to $\mathbf{X}$ via $\mathbf{X}_{\mathrm{a}}$ and $\mathbf{X}_{\mathrm{h}}$.


### 7.3.2 The earth-relative coordinate system

The earth-relative coordinate system, $\mathbf{X}$, is defined as follows, X is East, Y is North, and Z is zenith. Azimuth angle, $\lambda$, is defined as positive clockwise from TN (i.e., meteorological angle) while elevation angle, $\phi$, is defined positive/negative above/below the horizontal plane at the altitude $\left(h_{0}\right)$ of the remote sensor.

### 7.3.3 The platform-relative coordinate system

The general form of the mathematic representation describes a remote sensing device mounted on a moving platform (e.g., an aircraft, see Figure 7.2). This figure depicts the theoretical reference frame for a moving platform. (We use the aircraft analogy here, but the discussion also applies to water-borne platforms and land-based moving platforms.)
The platform-relative coordinate system of the platform, $\mathbf{X}_{a}$, is defined by the right side, $\left(\mathrm{X}_{\mathrm{a}}\right)$, the heading, $\left(\mathrm{Y}_{\mathrm{a}}\right)$, and the zenith, $\left(\mathrm{Z}_{\mathrm{a}}\right)$.
The origin of $\mathbf{X}_{\mathrm{a}}$ is defined as the location of the INS on a moving platform.
The platform-relative coordinate system is defined by 3 rotations in the following order: heading $(H)$, pitch $(P)$ and roll $(R)$ angles from $\mathbf{X}$. These angles are generally measured by an inertial navigation system (INS).
The platform moves relative to $\mathbf{X}$, based on its heading $H$, and the drift $D$, caused by wind or current. ( $D$ is 0 for land-based platforms). The track $T$ is the line of the platform movement over the earth surface.

NOTE: -see Lee et al. (1994) for further background on this topic, and on the corrections to Doppler velocity for moving platforms. Usually, the platform INS and the sensor may not be collocated. The Doppler velocity needs to be compensated by the relative motion between these two.


Figure 7.2 Moving platform axis definitions and reference frame (reproduced from Lee et al., 1994,originally from Axford, 1968) ©American Meteorological Society. Reprinted with permission.

Figures 7.3 a through c show the definitions of heading, drift, track, pitch and roll.


Figure 7.3(a): Definition of heading, drift and track.


Figure 7.3(b): Definition of pitch


Figure 7.3(c): Definition of roll

### 7.3.4 The sensor coordinate system

In the sensor coordinate system, $\mathbf{X}_{\mathrm{i}}$, each data location is characterized by a range, $r$, a rotation angle, $\theta$, and a tilt angle, $\tau$. Following the ground-based radar convention, the rotation angle, $\theta$, is the angle projected on the reference plane, positive clockwise from the third axis (counting from the principal axis in $\mathbf{X}_{a}$ ) looking towards the sensor from the positive principal axis. The tilt angle, $\tau$, is the angle of the beam relative to the reference plane. A beam has a positive/negative $\tau$ depending on whether it is on the positive/negative side of the reference plane, using the principal axis to determine the sign. Each gate location $(r, \theta, \tau)$ in $\mathbf{X}_{\mathrm{i}}$ can be represented in $(r, \lambda, \phi)$ in $\mathbf{X}$.

Table 7.1: Characteristics of 3 types of sensors.

| Sensor Type | Type X | Type Y | Type Z |
| :--- | :---: | :---: | :---: |
| Principal Axis | $\mathrm{X}_{\mathrm{a}}$ | $\mathrm{Y}_{\mathrm{a}}$ | $\mathrm{Z}_{\mathrm{a}}$ |
| Reference Plane | $\mathrm{Y}_{\mathrm{a}} \mathrm{Z}_{\mathrm{a}}$ | $\mathrm{Z}_{\mathrm{a}} \mathrm{X}_{\mathrm{a}}$ | $\mathrm{X}_{\mathrm{a}} \mathrm{Y}_{\mathrm{a}}$ |
| $0^{\circ}$ Rotation Angle | $+\mathrm{Z}_{\mathrm{a}}$ | $+\mathrm{X}_{\mathrm{a}}$ | $+\mathrm{Y}_{\mathrm{a}}$ |
| $90^{\circ}$ Rotation Angle | $+\mathrm{Y}_{\mathrm{a}}$ | $+\mathrm{Z}_{\mathrm{a}}$ | $+\mathrm{X}_{\mathrm{a}}$ |
| Examples | EDOP, Wyoming Cloud <br> Radar, Wind Profiler, <br> downward scanning <br> radar on Global Hawk | Tail Doppler <br> radars on NOAA <br> P3 and <br> NSF/NCAR <br> ELDORA | Ground-based radar/lidar, <br> aircraft nose radar, <br> NOAA P3 lower- <br> fuselage radar, <br> C-band scatterometer |

### 7.4 Coordinate transformation sequence

The following transformations are carried out to transform the geometry from the instrumentbased $\left(\mathbf{X}_{\mathrm{i}}\right)$ to the earth-based coordinate system ( $\mathbf{X}$ ):

- translate from $\mathbf{X}_{\mathrm{i}}$ to $\mathbf{X}_{\mathrm{a}}$
- rotate from $\mathbf{X}_{\mathrm{a}}$ to $\mathbf{X}$


### 7.4.1 Transformation from $X_{i}$ to $X_{a}$

The details of this step depend on the sensor type: Z, Y or X (Table 7.1)

### 7.4.1.1 Type $\mathbf{Z}$ sensors

The characteristics are:

- the primary axis is $\mathrm{Z}_{\mathrm{a}}$
- the reference plane is $\left(\mathrm{X}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{a}}\right)$
- the rotation angle $\theta$ is 0 in the $\left(\mathrm{Y}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{a}}\right)$ plane, i.e. along the +Y axis. Rotation increases clockwise from +Y , when looking from above (i.e. from +Z )
- the tilt angle $\tau$ is 0 in the $\left(\mathrm{X}_{\mathrm{a}}, \mathrm{Y}_{\mathrm{a}}\right)$ plane, positive above it (for $\left.+\mathrm{Z}_{\mathrm{a}}\right)$ and negative below it.

The transformation to $\mathrm{X}_{\mathrm{a}}$ coordinates is:

$$
\left(\begin{array}{l}
x_{a} \\
y_{a} \\
z_{a}
\end{array}\right)=r\left(\begin{array}{c}
\sin \theta \cos \tau \\
\cos \theta \cos \tau \\
\sin \tau
\end{array}\right)
$$

### 7.4.1.2 Type Y sensors

The characteristics are:

- the primary axis is $\mathrm{Y}_{\mathrm{a}}$
- the reference plane is $\left(\mathrm{Z}_{\mathrm{a}}, X_{a}\right)$
- the rotation angle $\theta$ is 0 in the $\left(\mathrm{Z}_{\mathrm{a}}, \mathrm{X}_{\mathrm{a}}\right)$ plane, i.e. along the $+\mathrm{X}_{\mathrm{a}}$ axis. Rotation increases clockwise from $+X$, when looking from +Y .
- the tilt angle $\tau$ is 0 in the $\left(\mathrm{Z}_{\mathrm{a}}, \mathrm{X}_{\mathrm{a}}\right)$ plane, positive for $+\mathrm{Y}_{\mathrm{a}}$.

Note that the definition of $\theta$ is different from the convention defined in Lee et al. (1994) ${ }^{1}$. Let $\theta^{\prime}$ is the rotation angle defined in Lee et al. (1994), $\theta=\bmod \left(450{ }^{\circ}-\theta^{\prime}\right)$.

[^0]The transformation to $\mathbf{X}_{\mathrm{a}}$ coordinates is:

$$
\left(\begin{array}{l}
x_{a} \\
y_{a} \\
z_{a}
\end{array}\right)=r\left(\begin{array}{c}
\cos \theta \cos \tau \\
\sin \tau \\
\sin \theta \cos \tau
\end{array}\right)
$$

### 7.4.1.3 Type $X$ sensors

The characteristics are:

- the primary axis is $X_{a}$
- the reference plane is $\left(\mathrm{Y}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{a}}\right)$
- the rotation angle $\theta$ is 0 in the $\left(\mathrm{Y}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{a}}\right)$ plane, i.e. along the $+\mathrm{Z}_{\mathrm{a}}$ axis. Rotation increases clockwise from $+Z_{a}$, when looking from $+X_{a}$.
- the tilt angle $\tau$ is 0 in the $\left(\mathrm{Y}_{\mathrm{a}}, \mathrm{Z}_{\mathrm{a}}\right)$ plane, positive for $+\mathrm{X}_{\mathrm{a}}$.

The transformation to $\mathrm{X}_{\mathrm{a}}$ coordinates is:

$$
\left(\begin{array}{l}
x_{a} \\
y_{a} \\
z_{a}
\end{array}\right)=r\left(\begin{array}{c}
\sin \tau \\
\sin \theta \cos \tau \\
\cos \theta \cos \tau
\end{array}\right)
$$

### 7.4.2 Rotating from $X_{a}$ to $X$

Rotating $\mathbf{X}_{\mathrm{a}}$ to $\mathbf{X}$ requires the following 3 steps (in the reverse order of the rotation):

- remove the roll $R$, by rotating the x axis around the y axis by $-R$.
- remove the pitch $P$, by rotating the y axis around the x axis by $-P$.
- remove the heading $H$, by rotating the y axis around the z axis by $+H$

The transformation matrix for removing the roll component is:

$$
M_{R}=\left(\begin{array}{ccc}
\cos R & 0 & \sin R \\
0 & 1 & 0 \\
-\sin R & 0 & \cos R
\end{array}\right)
$$

The transformation matrix for removing the pitch component is:

$$
M_{P}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos P & -\sin P \\
0 & \sin P & \cos P
\end{array}\right)
$$

The transformation matrix for removing the heading component is:

$$
M_{H}=\left(\begin{array}{ccc}
\cos H & \sin H & 0 \\
-\sin H & \cos H & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We apply these transformations consecutively:

$$
\begin{aligned}
& X=M_{H} M_{P} M_{R} X_{a} \\
& M_{H} M_{P} M_{R}=\left(\begin{array}{ccc}
\cos H & \sin H & 0 \\
-\sin H & \cos H & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos P & -\sin P \\
0 & \sin P & \cos P
\end{array}\right)\left(\begin{array}{ccc}
\cos R & 0 & \sin R \\
0 & 1 & 0 \\
-\sin R & 0 & \cos R
\end{array}\right) \\
&=\left(\begin{array}{ccc}
\cos H \cos R+\sin H \sin P \sin R & \sin H \cos P & \cos H \sin R-\sin H \sin P \cos R \\
-\sin H \cos R+\cos H \sin P \sin R & \cos H \cos P & -\sin H \sin R-\cos H \sin P \cos R \\
-\cos P \sin R & \sin P & \cos P \cos R
\end{array}\right) \\
&=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
\end{aligned}
$$

### 7.5 Summary of transforming from $X_{i}$ to $X$

We combine the above 2 main steps for transform all the way from the instrument coordinates to earth coordinates:

### 7.5.1 For type $Z$ radars:

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) r\left(\begin{array}{c}
\sin \theta \cos \tau \\
\cos \theta \cos \tau \\
\sin \tau
\end{array}\right) \\
& =r\left(\begin{array}{c}
m_{11} \sin \theta \cos \tau+m_{12} \cos \theta \cos \tau+m_{13} \sin \tau \\
m_{21} \sin \theta \cos \tau+m_{22} \cos \theta \cos \tau+m_{23} \sin \tau \\
m_{31} \sin \theta \cos \tau+m_{32} \cos \theta \cos \tau+m_{33} \sin \tau
\end{array}\right)
\end{aligned}
$$

### 7.5.2 For type Y radars:

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) r\left(\begin{array}{c}
\cos \theta \cos \tau \\
\sin \tau \\
\sin \theta \cos \tau
\end{array}\right) \\
& =r\left(\begin{array}{l}
m_{11} \cos \theta \cos \tau+m_{12} \sin \tau+m_{13} \sin \theta \cos \tau \\
m_{21} \cos \theta \cos \tau+m_{22} \sin \tau+m_{23} \sin \theta \cos \tau \\
m_{31} \cos \theta \cos \tau+m_{32} \sin \tau+m_{33} \sin \theta \cos \tau
\end{array}\right)
\end{aligned}
$$

### 7.5.3 For type $X$ radars:

$$
\begin{aligned}
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) r\left(\begin{array}{c}
\sin \tau \\
\sin \theta \cos \tau \\
\cos \theta \cos \tau
\end{array}\right) \\
& =r\left(\begin{array}{l}
m_{11} \sin \tau+m_{12} \sin \theta \cos \tau+m_{13} \cos \theta \cos \tau \\
m_{21} \sin \tau+m_{22} \sin \theta \cos \tau+m_{23} \cos \theta \cos \tau \\
m_{31} \sin \tau+m_{32} \sin \theta \cos \tau+m_{33} \cos \theta \cos \tau
\end{array}\right)
\end{aligned}
$$

### 7.5.4 Computing earth-relative azimuth and elevation

We can then compute the earth-relative azimuth and elevation as follows:

$$
\begin{aligned}
& \lambda=\tan ^{-1}(x / y) \\
& \phi=\sin ^{-1}(z / r)
\end{aligned}
$$

### 7.6 Summary of symbol definitions

$\mathbf{X}_{\mathrm{i}}$ : instrument-relative coordinate system, $(r, \theta, \tau)$ or $(r, \lambda, \phi)$
$\mathbf{X}_{\mathrm{a}}$ : platform-relative coordinate $\operatorname{system}\left(x_{\mathrm{a}}, y_{\mathrm{a}}, z_{\mathrm{a}}\right)$ - see figure 7.2
$\mathbf{X}_{\mathrm{h}}$ : coordinate system relative to level platform (no roll or pitch) with heading $H$.
$\mathbf{X}$ : earth-relative coordinate system $(x, y, z), x$ is positive east, $y$ is positive north, $z$ is positive up.
$H$ : heading of platform (see figure 7.3)
$T$ : track of platform (see figure 7.3)
$D$ : drift angle (see figure 7.3)
$P$ : pitch angle (see figure 7.3)
$R$ : roll angle (see figure 7.3)
$\lambda$ : azimuth angle
$\phi$ : elevation angle
$\theta$ : rotation angle
$\tau$ : tilt angle
$r$ : range
$h$ : height
$h_{0}$ : height of the instrument
$R^{\prime}:$ pseudo radius of earth $=(4 / 3) 6374 \mathrm{~km}$

## 8 Change log

### 8.1 Version 1.2, released 2011-06-07

- Formalized the concept of required vs. optional dimensions and variables. In this document, required variables are shown shaded, and footnotes were added to each table,
- Added scan_id global attribute.
- Added time_reference variable. If this exists, the time(time) variable is computed relative to this time rather than relative to time_coverage_start.
- Added radar_receiver_bandwidth variable.
- Fixed various errors.


### 8.2 Version 1.1, released 2011-02-01

- Version 1.1 is the first operational release for CfRadial.
- All changes made subsequent to this version must be backward-compatible.
- A major change was made for version 1.1 - changing the storage of moments variables from regular (time, range) arrays to staggered arrays. This change supports a variable number of gates per ray, which makes the storage of operational data more efficient. For example, the NEXRAD data format supports changing the number of gates for different sweeps.


## 9 References

Axford, D. N., 1968: On the accuracy of wind measurements using an inertial platform in an aircraft, and an example of a measurement of the vertical structure of the atmosphere. J. Appl. Meteor., 7, 645-666.

Lee, W., P. Dodge, F. D. Marks Jr. and P. Hildebrand, 1994: Mapping of Airborne Doppler Radar Data. Journal of Oceanic and Atmospheric Technology, 11, 572 - 578.

Rinehart, R. E., 2004: Radar for Meteorologists, Fourth Edition. Rinehart Publications. ISBN 0-9658002-1-0


[^0]:    ${ }^{1}$ The rotation angle, $\theta^{\prime}$, defined in previous airborne tail Doppler radar convention (Lee et al. 1994) was positive clockwise looking from the tail toward the nose of an aircraft (i.e., looking from the $-\mathrm{Y}_{\mathrm{a}}$-axis) that has been the convention for airborne tail Doppler radars. $\theta^{\circ}=0^{\circ}$ points to +Z . However, this convention is different from that used in the ground-based radars. The $r$ and $\tau$ were defined the same way in the current convention.

