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1.1

1. MATHEMATICAL BACKGROUND

The tools required to undertake the numerical solution of partial

differential equations include a reasonably good knowledge of the calculus

and some facts from the theory of partial differential equations. Also,

the reader should have some knowledge of matrix theory. A good reference for

the analysis is "Advanced Calculus" by Kaplan, and for matrix theory the

reader might try "Linear Algebra and Matrix Theory" by Nering. Of

course, there are many other suitable references. In this first chapter,

we will review some of the concepts we will need for the remaining chapters.

We will assume some familiarity with advanced calculus, including limits,

uniform convergence, continuity, etc.
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1.1 A Few Analytical Tools

1.1.1 Taylor series expansions for functions of one and two variables.

We will first consider a Taylor series expansion with remainder for

k k
the function f(x). We assume the derivatives of f d f/dx are continuous

in the interval a-r < x < a+r for 0 • k n n+l (r > 0). Then for each x in

this interval there is at least one point xI contained in the interval from

a to x (a < xl < x or x < xl < a) such that

2 n
f(x) = f(a) + (x-a)f (1a) + xa (a) + ... + f (a)

2 n!

n+l
(x-a) f(n+l)

+ f (x )(n+l) 1

k

Here f(k)(x) = denotes the kth derivative of f(x). For further details

dxk
see any advanced calculus text, in particular page 357 in the book by Kaplan.

A similar formula exists for functions of several variables. For example,

f(x,y) = f(a,b) + (x-a)fx + (y-b)f + -7 (x-a)2 f + 2(x-a)(y-b)fxy

21 1 F3 +(xa3* 2 *
+ (y-b)2f +- (x-a)f3 + 3(x-a) (y-b)f 2

yy L x x y

2* 3 *1
+ 3(x-a)(y-b) f 2 + (y-b) fy 3

xy y

S2 3

where f (a,b), f (a,b), f 3 3 ,y ), etc.
x ax xy axay x3 ax

x = a + T(x-a), y = b + T(y-b) with 0 < T < 1.
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1.1.2 Polynomial interpolation. To construct finite difference

approximations to derivatives, we will usually use polynomial interpolation.

This is generally a trivial matter and does not require even as much theory

as we will describe in this section. Usually we can obtain these

difference approximations from a Taylor series expansion. We will first

illustrate interpolation problems by a few simple examples.

Suppose we have a function f(x) and we happen to know the values of

this function f(x.) for the points xj, 0 • j j 2, x0 < x < x 2 . Then we

could approximate this function by the second degree polynomial

2
P2 (x) = a 2 x + a1x + a0 which agrees with f(x) at these points; that is,

P (xj) = f(x.) 0 5 j 2. A simple way to write this polynomial in

terms of the points x. and the values f. = f(x.) is the following

Lagrangian form of the interpolation polynomial:

(x-x ) (x-x 2 ) (x-x) (x-x 2 ) (x-x 0 )(x-x 1 )
P2(x) -= ff + 7- f + f (1.1-1)P2 (x) (x 0 -xl)(x 0 -x 2 ) 0 (x-x 0 ) (x-X 2 ) 1 (x 2 -x 0 ) (x 2 -xl) 2

The reader should inspect this formula and note that the expression is

a second degree polynomial and furthermore P2 (xj) = f. = f(x.), for
2 J

0 < j • 2.

Problem 1.1-1. Suppose x0 = -h, x = 0, x 2 = h. Evaluate the

coefficients a 2 , al, a 0 in terms of the values f0, fl, f2. Given

4 points x0 < xl < x 2 < x3 , write out the Lagrangian formula for the

interpolation polynomial. Now generalize this to a polynomial

n n-I
P (x) = a x + a x + ... + a . You may wish to use the product

notation
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2
S(x-xi) = (x-xo) (x-x)(x'x2)

i=0

and

2
S(x-x ) = (x-x 1)(x-x 2 )

i=0
i0o

We could obtain the coefficients a2, al, a0 in the above example

directly from the conditions P2 (x.) = f. for 0 • j • 2. From these

conditions we obtain three equations for the three unknowns a2 , al, aO.

2
a0 + alxO + a2X = 0

2
a0 + alxl + a2xl f

2 2
a0 + alx + a2x2 f2

Problem 1.1-2. Show that these three equations will have a

unique solution provided x0 < xl < x2. (You might show that the

determinant of the matrix is non-zero.) Solve these equations for

x0 = -h, xl = 0, x2 = h.

Next we will consider a related interpolation problem. Suppose we

wish to find an approximation to the second derivative of f(x) at x = xl

using the values f(x.) at three points x0 , xl, x 2 . We could do this by

differentiating the interpolating polynomial P 2 (x) which we have written

down in equation (1.1-1).
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Problem 1.1-3. Differentiate equation (1.1-1) to obtain an

approximation for f(2)(x 1 ). If x0 = -h, x = 0, x2 = h, show this yields

f2(x) (f 0 - 2f + f 2 )/h 2

This formula can be obtained with less effort by use of the Taylor

series for f(x). This approach will also yield an estimate for the error.

We assume x = -h, xl = 0, x2 = h. From the Taylor series we have

2
(1) (x0x (2)

f(x0) = f(x) + (x 0 -xl)f (xl) + f ()x( fx) (^ 2 (X4)

3 2

(x0-xl (3) (x 0-x f(4) O
3 f (xl 41 (0

where x0 < 0 < x l . A similar expansion holds for f(x 2 ). We thus obtain

(1) h (2) h (3) h (4 )
f =f - hf +- f - f +- f0 1 1 2 1 6 1 24 f0

2 3 4
(1) h ( 2 ) h f(3) h (4)f = f + hf +_ f +- f + f

2 1 + 2 1 +6 1 +24 ý2

If we add these equations we can obtain an expression for the second

derivative.

(2) (f 0 - 2fl + f 2  h 2 f(4) + f(4)
1 h 2  2 4 j•• 2

This expression is exact, but it contains the error term -h 2 f 4)/12.

Normally, we will not know the value of the fourth derivative, but the

2
knowledge that the error term contains the factor h is of great value.
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We can also use this interpolating polynomial to approximate the

integral of f(x).

Problem 1.1-4. Derive Simpson's quadrature formula. Let x0 = -h,

x1 = 0, x2 = h, then integrate P 2 (x) from equation (1.1-1) to obtain the

approximation

fh (x) d x f 0 +4f + f-h3
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1.1.3 The method of undetermined coefficients for construction of

the interpolating polynomial. We can look at this method of polynomial

approximation in a less direct way. This will frequently lead to an easier

derivation of the formula for an approximate derivative or integral. If

n n-1
we construct an interpolation polynomial P (x) = anx + a x + ... a

n n n-1 0

for a function f(x) based on the points x0 , ... xn, then the coefficients

ak = ak(fO, ... f , x0 , ... x ) are functions of the points x. and the
k k 0n n j

values f.. These functions produce an exact fit in case the function

f(x) is a polynomial of degree m where m . n. That is, the polynomial P (x)

is identically equal to the polynomial f(x). We will not bother to prove

this statement, although the proof is not difficult. The proof is based

on the fact that if a polynomial of degree m is zero at n+1 points where

m n n, then the polynomial must be identically zero; that is, all of its

coefficients are zero. We can use this fact to derive formulas based on

interpolation. For example, suppose we wish to approximate the second

derivative using a second degree interpolation formula (Problem 1.1-3).

From the form of the interpolating polynomial (equation (1.1-1) we know

our approximation will be linear in the values f0, fl f2. That is, it

has the form

f( 2 ) b f +b f +b f (1.1-2)
1 0 0 1 2 2

We must determine the unknown coefficients bO, bl, b2. We assume the

points xj are x0 = -h, xI = 0, x 2 = h. Note that we would get the same

formula for any set of equally spaced points x0 = x1 -h, x2 = xl+h. We

know our formula (1.1-2) should be exact if f(x) is a polynomial of degree

less than three. In particular, it is exact for f(x) = 1, f(x) = x,
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2
and f(x) = x . Therefore we have the

by substitution into equation (1.1-2)

functions f(x)

b0 + b1 + b2

-b0h
0

following three equations obtained

which is now exact for these

=0

+ b2h = 0

b0h 2  + bh2 = 2
0 2

2 2
If we solve this set of equations, we obtain b = b = 1/h b = -2/h

0 2 '1

which yields the same formula as before.

We can use the same method to obtain Simpson's quadrature formula.

We let f = f(-h), f = f(0), and f2 = f(h). We assume the following form

for our quadrature formula

+ f(x)dx „ b^ + bf + bfh f(x)dx a!b0f0 + b1f1 + b2f2-h

If we require this formula to be exact for the three functions f(x) = 1,

2
f(x) = x, and f(x) = x , we then obtain the following three equations:

b0 + b + b

+ hb2

= 2h

=0

S 2 =2h3
+hb2 3

2 3

-hb 0

h2b 0
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The solution of this system of equations is b0 = h/3, b = 4h/3, b 2 =h/3

which yields Simpson's rule.

Problem 1.1-5. Find a three-point interpolation formula for the first

derivative (a one-sided difference approximation). That is, determine the

b. in the approximation

f(1)(0) = b 0 f(x 0 ) + b 1 f(x 0 +h) + b 2 f(x 0 +2h)

Problem 1.1-6. Find a five-point interpolation formula for the

second derivative f(2)(x); that is, determine the constants b. in the

approximation

f(2)(x0) b0 f(x 0 -2h) + b1 f(x 0 -h) + b 2 f(x 0 ) + b3 f(x 0 +h) + b4 f(x 0 +2h)

Problem 1.1-7. Find a four-point quadrature formula; that is, find

the b in the approximation

h

f(x)dx = b0 f(-h) + blf(O) + b2 f(h) + b3 f(2h)

We can derive error estimates for these formulas based on a Taylor

series expansion. First we will consider Simpson's quadrature formula.

h f(x)dx L- f(-h) + 4f(0) + f(h)
-h

The Taylor series expansion out to fourth order is. (we assume f(4)(x) is

continuous)
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2 3 4
(1) x (2) x (3) x (4)

f(x) = f(0) + xf (0) + (0) +-) f (0 ) + G f 4 ( )

where ý| < Ixi. We let Q2 (x) denote the polynomial

Q2(x) = f0 + xf) + x2 (2)/2 where f0 = f(0). We know our quadrature

formula is exact for polynomials of degree no greater than two. We

derived it in such a way that it is exact for the polynomials f(x) = 1,

2
f(x) = x, and f(x) = x . Therefore, it is exact for any linear

combination of these polynomials, hence for any second degree polynomial.

For each x, we can choose ý = ((x) such that

f( 3 ) 4
f(x) Q2(x) 0 3 x (4)

f(x) = Q +-( x +- f ((x)) (1.1-3)

Since f ((x)) = 24[f(x) - Q2 (x) - x3 (3)/6]/x4, it is clear that

f (4)((x)) is a continuous function of x for x > 0. We will now assume

that this fourth derivative is bounded; that is, f 4)(f) i M if I|I < h.

By integration of equation (1.1-3) we obtain

h
(note that j x3 dx = 0)

-h

h h h 4

Sf(x)dx = Q2 (x) +5 e(x)dx where e(x) f( x)) (1.1-4)
-h -h -h

Since our quadrature formula is exact for second degree polynomials we

have

h Q2(x)dx = - Q2(-h) + 4Q2(0) + Q2 (h)

-h
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3 (3)Also f(x) = Q2 (x) + x f (/6 + e(x). Therefore, if we use this relation

to evaluate f(h), f(0), f(-h), and use the above relation for

h

h Q2 (x)dx
-h

h hh
- [f(-h) + 4f(0) + f(h)] = 2 (x)dx +3 [e(-h) + 4e(0) + e(h)]

-h

Now by substitution into equations (1.1-4) we obtain

h h
f(x)dx = [f(-h) + 4f(0) + f(h)] - [e(-h) + 4e(0) + e(h)] + e(x)dx

h -h

h
The error E = e(x)dx - [e(-h) + 4e(0) + e(h) can now be bounded. We

-h

have le(x) • |x M14/24 and therefore

h h M h ,5
5e(x)dx 5 J-e(x) dx 4 5 jx2 dx x =dx + h
-h -h -h 0

If we note that e(0) = 0 and jxj < h, we obtain

(h/3) e(-h) +4e(0) + e(h) + I h e(-h)| + e(h)| c h = h5M/36
3v e y < x Z/- 3n therfor

5 5
Mh Mh 5 5

Therefore our final bound is E + 6 ]- = 4Mh /90. If one is willing
60 36

to work harder, a better bound can be obtained, namely E • h M/90. See

the book by Isaacson and Keller for a derivation of this error bound.
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Problem 1.1-8. Show that the five-point interpolation formula for

the first derivative is

f (1) (x) [f(x-2h) - 8f(x 0 -h) + 8f(x0 h) - f(x 0 +2h)

Obtain an error estimate for this formula by the method used above.
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1.1.4 Fourier series. Next we will consider some properties of

Fourier series. We will consider functions f(x) for -1 . x . 1. If we

have a function defined on the interval A x ! B, then we can use the

transformation y = -1 + 2(x-A)/(B-A) to reduce the problem to the interval

-1 s y < 1. We will assume that f(x) is a complex valued function of the

real variable x, f(x) = f (x) + if.(x), where f (x) and f.(x) are real

(of course we may have f(x) real; that is, f.(x) - 0). We will look for

a Fourier series representation of f(x); that is

ikr
n x

f(x) = Z ake
k=-O k

The above statement can be written

k=K .
f(x) = lim E ake -1 x 1. (1.1-5)

K-) k=-K

We need to compute the coefficient ak in terms of f(x) so that this expression

holds for reasonable functions f(x). Note that the following formula holds

for all integers m and k.

1 2 if m = k
e e ==

-1 0 if m k

Suppose the above series can be integrated termwise, then

1 1 °° 00  1
- imx 1 i(k-m)x i(k-m)TTx

S f(x)e dx = J a -
e  = e = i-~ - ak mak m

-1 -1 -- -o0 -1

or a = f(x) e (1.1-6)
-1
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If the series is uniformly convergent, then the termwise integration

1 o 1

(that is, E = E ) is permissible. Thus we have an expression for
-1 - G -o -1

the coefficients a . The coefficients a are called Fourier coefficients.
m m

Suppose we are given a function f(x) such that the above Fourier coefficients

exist; that is, the integrals 1.1-6 exist. Under what conditions does the

Fourier series converge to f(x); when does equation (1.1-5) hold? The

Fourier series will converge if the derivative f'(x) is piecewise

continuous. Weaker conditions are also sufficient, but we will not need

them. We say f(x) is piecewise continuous on [-1,1] if there are a finite

set of points j, 1 • j n, -1 < 2 < 2 " < h 1, such that f(x)

is continuous except at the points j. and the following limits exist:

lim f( j+h) = f +() if . < 1
h-0O
h>O

lim f(j -h) = f (j ) if • > -1
h-*0
h>O

If f'(x) is piecewise continuous, then the Fourier series converges to

f(x) except at the points j where the series converges to (f (.j) + f (5 ))/2.

There are several properties of Fourier series which we will note,

although we may not use all of them. If f(x) is a real valued function,

then the Fourier coefficients satisfy the condition

ak = ak

where ak denotes the complex conjugate of akk k
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If f(x) is continuous and periodic and f'(x) is piecewise continuous,

then

ak = (2)

By periodic we mean f(l) = f(-l). We say ak is of order 1/k , written

ak = 0(1/k2), if there is a constant M such that iak : M/k2 for all non-zero

integers k. This can be generalized. If f(x), f(1)(x), ... , f(S-l)(x)

are continuous and periodic, and f(S)(x) piecewise continuous, then

ak =0 . This statement helps to decide how fast a Fourier series

converges; that is, the rate at which the coefficients ak approach zero.

Thus if f(x) = x for -1 : x x 1, the Fourier coefficients satisfy

ak = 0(1/k). If f(x) = Ixl, then ak = 0(1/k 2 ).

Problem 1.1-9. Prove the statements in the above paragraph.

The Parseval relation

1 2
f (x)dx = Z lak2

-1 -0

relates the L2 norm of f to the Fourier coefficients. We will refer the

reader to a text on Fourier series for the proof.

In certain cases the complex form of the Fourier expansion can be

simplified. For example, if f(x) is real valued, then

f(x) = ½ A0 + Ak cos krrx + Bk sin krx
k=
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where

1
Ak = f(x) cos knxdx,

-1i

1
Bk = f(x) sin krxdx

-1

If f(x) is a real valued odd function, f(-x) = -f(x), then

f(x) = Ck sin krrx
k=l

1
Ck = 2 5 f(x) sin knxdx

0

If f(x) is a real valued even function, f(-x) = f(x), then

f(x) = ½ CO + E Ck cos krTx
k=l

1
Ck = 2 5 f(x) cos krrxdx

0

We might remind the reader of the following fact which we will

sometimes use. If f(x) is defined by a convergent series f(x) = Z ak(>
k=l

the derivatives ak(x) are continuous, and the derived series

Z ak(x) is uniformly convergent, then f'(x) = Z ak(x). Also, a

k=l 1

uniformly convergent series whose terms are continuous can be integrated

termwise. If f(x) = Z ak(x) uniformly, then
1

Sf(x)dx = 5 ak(x) dx = ak(x)dx
1 1

),
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1.2 Vectors and Matrices

We will review some aspects of matrix theory. We will give the

definitions for the general n-dimensional case, but most of the

explanation will be for n=3.

1.2.1 Some fundamental definitions. The vector space E
n

(Euclidean n-space) is the set of all ordered n-tuples (x1 ,x2,...,xn)

of real numbers. The space C is the same except we use complex numbers.

By a scaler we mean a real number if we are working with E and a complex

number if we are in C . We use ordered n-tuples to insure that the vector
n

(1,2,3) is not the same as (2,1,3). In the case of n=3 we may regard

the three numbers (x1,x2,x3) as the Cartesian coordinates of a point

(x,y,z) in space. We may also think of a vector as a directed line

segement from the origin to the point (x,y,z). Much of the intuition

and nomenclature for vector spaces derives from the familiar 3-dimensional

case. We define the sum of two vectors and the product of a vector by

a scaler by the following relations:

x+-y = (x1+ 1 , x2+ 2 , ... , xn+Yn

c x = (cQxl, cx 2 , ... , Xn )

We simply perform the operations on the components. In three dimensions,

addition is the familiar parallelogram rule as shown below. Multiplication

by a scaler may change the length of the vector and possibly reverse its

direction.
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We define the scaler product of two vectors in the real case by

n

j=l

and in the complex case by

n
x'y = E x. y

j=l

where y. is the complex conjugate of y.. Note that xey y.x in the

complex case. The Euclidean norm (or length) of a vector is defined by

IxI = JVxx

Note that x'x > 0 for all x, and thus Ijx is real and is taken non-negative.

We summarize some important properties of these operations below. The

reader may wish to prove these relations. Here x and y are vectors (in En

or Cn) and a and 3 are scalers (real or complex).

1) IxI > 0 unless x = 0 (x = 0 if x = (0,0,...,0))

2) IoxI = 1cJ Ijx

3) Ix+yl < Ixi + lyl
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We say two vectors are orthogonal if x-y = 0. The reader can verify

that this definition agrees with the usual one for E2 or E .

We will frequently use the unit vectors defined by

k (0 if jk
e.

1J l if j=k .

1 2 3
In E3 we have e1 =(,0,0), e = (0,1,0), e 3  (0,0,1).

If a vector w is given by w = ax + 2 ... + mx where the x

are vectors and the ai scalers, then we say w is a linear combination

of the vectors x . We say a set of vectors x , 1 < j < m is linearly

independent if there is no nontrivial linear relation among the vectors.

1 2 m
In other words, if y x + a 2  + ... -+ c x = 0, then a = 2 = .' = = 0.

i 2 m 1 2 m

Problem 1.2-1. If the set of nonzero vectors xj are orthogonal,

then show they are linearly independent. By orthogonal we mean

j k 0 j k
x .x =

10 j=k

If a set {x } of vectors is linearly independent, then it is possible to

form an orthogonal set ([yj by using linear combinations of the x . This

I 1process is called the Gram-Schmidt orthogonalization. We let y = x

2 1 1
2 2 1 2 2 1and y = x - 1 1 . Clearly y *y = 0. If y = 0, then x and

y *y

2 2 3x are not linearly independent. Therefore y Z O. We now define y by
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3  i 1 3 2 2
3 3  x3y )y vx -y )(y

y 1 1 2 2-
(y .y ) ( .y )

1 3 2 3 1 2 3 1 2
Clearly y *y = y *y = 0 since y .y = 0. If y = 0, then x , x , and

3
x would be dependent since the equation

S3 1 1 3 2 2 1 1
x3 x y )x I 1 2 (x .y )x

1 1  2 2 1
(yy ) (y .y ) (y -y )

1 2 3 3
is a nontrivial relation among x , x , and x . Therefore y 0 and we

can continue this process to produce an orthogonal set y.

Problem 1.2-2. Show that if the vectors yJ in the Gram-Schmidt process

do not vanish, then the original vectors x are linearly independent.

1 2
Problem 1.2-3. Are the vectors x = (1,2,3,0) and x = (2,1,0,1)

1 2 3 3
linearly independent? What about the set x ,x ,x where x = (1,0,3,5)?

Use the Gram-Schmidt process and show that the yJ do not vanish.

Problem 1.2-4. Show that the unit vectors e are linearly independent.

We say a set of vectors (v ,v ,...,v ) spans the space E if anyn

vector x in E can be written as a linear combination of the v ; that is,

x = v + ca2v + ... + Y v . A linearly independent set of vectors v

which spans E is called a basis for E. Clearly the set ej, 1 j ! n
n n

is a basis for E since any x can be represented by

1 2 n
x = xxe + x^e + ... + x e .

1 2 n

Problem 1.2-5. Show that if tv ,...,v ) and {w ,...,w } are bases

for E , then m=p. Since te ,...,e } is a basis, we must have m=p=n.
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If

Hint: Suppose p > m. The set (v L...,v spans the space, therefore

1 1 m 1 m
so does the set w ,v ,...,v . We have w = v + ... + v At

least one of the scalers ai is not zero. We will assume without loss of

generality that it is cl. Then show (w ,v ,...,v m span the space. Now

1 2 2 m
consider {w ,w ,v ,...,v and continue the argument to show that

12 mn m+l
(w ,w ,...,w span the space. But this contradicts p > m, since w

is then a linear combination of the set {w l...,wm3.

Problem 1.2-6. Show that if vl ,... ,vn is an orthogonal basis, then

for any x we have x = 1vl + ... + onv where ak = (xv )/(vk.v . If

k k-
v kv = i, then show x-x = a"Ii + . + C na n. An orthonormal basis is an

orthogonal basis for which (vjvj) = 1. For an orthonormal basis the

above formula is simplified

x = (x.v 1)v + ... + (x.v v .

1 m
Problem 1.2-7. Show that any independent set of vectors (v ,...,v }

can be augmented by (w ,1..,w 3 so that (v ,... v ,w ,... w } is a basis

for E . Show that no linearly independent set of vectors in E can
n n

contain more than n vectors. Also show that if we have n independent

vectors [v ,...,v 3, then any vector can be written as a linear
n

combination of v ; x = a.v for all x.
j=l 3



1.22

1.2.2 Linear transformations and matrices. Now we are ready to

review the concept of a linear transformation. Let T be a transformation

of E into itself; that is, for each vector x in E , T defines another
n n

vector T(x) in E . We say the transformation T is linear if
n

T(cx + y) = cT(x) + BT(y) for all vectors x and y and all scalers c

and P.

Problem 1.2-8. Consider transformations T defined on E3 . Which of

them are linear?

1) T(x) = (x 3 , 10x 2 , 0)

2) T(x) = (x 1 , x 1+X2 , 1x31)

2
3) T(x) = (x2, xl, xl)

4) T(x) = (x 3 , x3 +x 1 , x 3 +x 2 )

5) T(x) = (sinxl, 0, 0)

Problem 1.2-9. Define a linear transformation T on E3 such that

1 2 3
[T(e ), T(e2), T(e3) do not span E , but do span a 2-dimensional

subspace (we omit the definition of a subspace).

We define a matrix to be a rectangular array of scalers; (aij),

1 ! i • n, 1 I j m. That is, an nXm matrix. An nXn matrix is said to

be of order n. We usually write out the matrix so that the first index,

i, denotes the rows.
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all a12 -. . aln

a21 a22 . . a2n

anl an2. ann

A matrix A = (ai) of order n defines a linear transformation by the

following rule. Given any vector x in E , then define y by

n
y = a..x, 1 • i < n. We use the notation y = Ax. Conversely,

j=l

given any linear transformation T on En, there is a matrix A of order n
n

such that T(x) = Ax for all x in E .

Problem 1.2-10. If T is a linear transformation on E , denote the
n

vector T(ej) by T(ej) = (alj,a2j,..,anj), 1 • i < n. Let the matrix A

be defined by these elements, A = (a..). Show T(x) = Ax for all x.

Thus we see that a linear transformation and a matrix are essentially

the same thing. We have used the basis (e ,...,e n to define the

relationship between a linear transformation and a matrix. We could have

used another basis which would have produced a different relationship.

We leave this point to the texts on linear algebra.

Now we will state some definitions.

The sum of two (nXm) matrices A and B is an (nXm) matrix C defined

by C = A-+B, C. = a.. + b.. for 1 • i < n, 1 < j < m.
13 1J IJ

The product of a scaler and a matrix is B = cyA, b.. = a...
1J 1J
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The transpose of an (nxm) matrix A is the (mxn) matrix B denoted

T
by AT, where b.. = a... The conjugate transpose for an (nxm) complex

1J J1

matrix A is an (mXn) matrix B denoted by A where b.. = a...

The identity matrix of order n is denoted by I and defined by

0 i/j
Iii = .i1J  11 i=j

The product of an (nXs) matrix A and an (sXm) matrix B is an (nXm)

matrix C defined by

S

c.. = a.ik bkjij a ik kj
k=l

We can regard a vector x as a column vector (an (nXl) matrix) or as a

row vector (a (1Xn) matrix). That is

x 1

X
n

or x = (x 1 ,x 2 ,...,x)

If we regard x as a column vector, then the linear transformation defined

by the matrix A is obtained from the matrix product Ax.

Problem 1.2-11. Let A and B be two matrices of order n. Let T

be the composite linear transformation defined by T(x) = TA(TB(x))

where TA(x) = Ax and TB(x) = Bx. Show that the matrix C corresponding

to T is the product matrix C = AB.
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Problem 1.2-12. Give an example to show that the matrix product is

not commutative. Find two matrices of order 2 such that AB BA.

Problem 1.2-13. Given vectors x and y, show that Ix.y <. x IxlyI.

Hint: First assume x and y are real. Then (x+Xy)*(x+-y) = Ix+Xy 2

x12 + 2Xx-y + X2 l2 0 for all real X. Show this quadratic in X

can have at most one real root. Then show Ix.yy2 ! Ix| |y2 . The
n n

complex case can be reduced to real case since i 1 xiyi iE 1xi. i

Problem 1.2-14. Let A be a matrix of order n. Let a be the maximum

of the lengths of the rows of A; that is,

n 2
• = Max 1 Ia.. 2

lisn \j=-l

If y = Ax, then show Iy|l 5 nfrxlx. Hint: Note that the components of y

are given by the inner product of the rows of A with x. Then use

problem 1.2-13.

We say a matrix of order n is singular if there is a nonzero vector x

such that Ax = 0, otherwise A is said to be nonsingular.

Problem 1.2-15. Show that if a matrix A of order n is nonsingular,

then for any y 6 En, there is a unique vector x such that y = Ax. Hint:

j n i
if the vectors Ae , 1 j < n are not independent, then E Qa.Ae = 0 for

i=l 1

some a.. Now use the linearity of A and the result of.problem 1.2-7.

For a nonsingular matrix A there is for each y a unique x such

that y = Ax. We can define a transformation T by T(y) = x. We can show
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1 1 2 2
this transformation is linear. If y = Ax and y = Ax , then

1 2 1 2 1 2 1 2
e 1y + Q2 y = A(ax + y2x ); therefore T(aloy + 2y = ox + a 2 x =

1 2
alT(y ) + a 2 T(y ). We denote the matrix of this transformation T by

A . It is called the inverse of A since A -Ax - AA- x = x for all x.

To summarize: for any nonsingular matrix A we define the inverse matrix

A to be the matrix such that A A = AA = I, where I is the identity

matrix. We have just shown that such a matrix exists. It is easy to

show that there is only one such matrix for the given matrix A. Note

that if a matrix has an inverse it must be nonsingular.

We define an orthogonal matrix to be a real matrix whose inverse is

T T
equal to its transpose; that is, A A = AA = I. We define a unitary

matrix to be a complex matrix whose conjugate transpose is equal to its

* *
inverse; that is, A A AA = I.

Problem 1.2-16. Show that an orthogonal transformation preserves

length. In other words, if A is an orthogonal matrix and y = Ax, then

I y = Ixi. Hint: Show that ly = y y = x A Ax. Show that the product

of orthogonal matrices is orthogonal.

Problem 1.2-17. Suppose we are given rows r and s of any matrix A.

Show that any element ask, 1 k - n, can be zeroed out by premultiplication

by an orthogonal matrix U of the following form. The elements u.. = 1 if

i r or s, u = cose, u =sine, u =-sine, u = cose, u.. 0
rr rs sr ss ij

otherwise. Use this to show there is an orthogonal matrix U such that

UA = T is upper triangular (t = 0 if i > j).
ij
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1.2.3 The definition of the determinant. We will now define the

determinant of a matrix of order n. First we need to define the set of

permutations. We let N be the first n positive integers, N = {1,2,3,...,n}.

A permuation n of N is a one-to-one mapping of N onto itself; that is, a

reordering of N. For example, if n = 4, then (2,1,4,3) defines the

permutation rr(l) = 2, n(2) = 1, T(3) = 4, T(4) = 3. We let k(Tr) denote

the number of pairs (i,j) of elements of N for which i < j and n(i) > r(j).

Then n is said to be even or odd if k(T) is even or odd. The permutation

defined by (2,1,4,3) is even; that defined by (2,4,1,3) is odd. Note that

there are n! permutations of N.

We define sgn(r) = (- 1 )k( ) to be +1 if TT is even and -1 if T is odd.

We define the determinant of A, denoted by IAI or det(A), as the scaler

evaluated by the formula below.

IA = Z sgn() a 1 (l) a 2 ( 2 ) ... anT(n)

Note that this is a sum of ni terms. In the case of a 2X2 matrix, there

are only two permutations (1,2) and(2,1), thus

A = all a22 - 12 a21

Problem 1.2-18. Using the above formula, write out the determinant

for a matrix of order 3.

We will refer the reader to the book by Nering for proofs of the

following statements. They follow rather easily from the definitions

of a determinant.
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A matrix A and its transpose have the same determinant, that is

1 = IATI

If B is a matrix obtained from A by multiplication of a single row

(or column) of A by a scaler a, then IBI = JAl

If B is obtained from A by the interchange of two rows (or columns),

then IBI = -AI.

If two rows (or columns) of A are identical, then IAI = 0.

If B is obtained from A by adding a multiple of one row (or column)

of A to a different row (or column), then IBI = IAJ.

The determinant of the product is the product of the determinants.

In other words, if A and B are matrices of order n, then IABI = AJ IBI.

This statement is somewhat more difficult to prove than the previous ones.

To wind up our discussion of the determinant we will give an

alternative method to compute it, again without proof. Given a matrix A

th
of order n, we form a submatrix of order n-l by deletion of the i row

th
and the j column. We denote by A.. the determinant of this submatrix

i-tj
times (-1) . The scaler A.. is called the cofactor of a... It is possible

13 13

to show that

n
IAI = Z a.. A..

j=l

We can choose any row, that is any value of i, in this expansion. We can

also expand on any column; that is,
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n

IA = Z a.. A..
i=l

As an example consider the expansion on the first row for a (3X3) matrix.

a22 a23 a21 a23 a21 a22
A=a - a +a

11 a32 a 12 a31 a3 13 a a3 2

The above methods for evaluation of the determinant are used mainly for

theoretical arguments. If we actually want the value of a determinant of

order greater than 3, we would normally use Gauss elimination to obtain it.
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1.2.4 Gauss elimination. Next we will describe the Gauss elimination

method for solving a linear system. Suppose we have a (3X3) system of

equations. In addition, suppose the system is upper triangular; that is

allx1 + al 2 x2 + a 1 3 x3 = bI

+a x =b
222 233 = 2

a 3 3 x3 = b3

Obviously, we can solve this system of equations by a "backward substitution",

first solving for x3 , then x 2 and xI

3 = b3/a33

2 = (b 2 - a23x3)/a22

x = (bl - al 3 x 3 - al 2 x 2 )/all

Now suppose we consider a general 3X3 system. If we can reduce it to upper

triangular form, then we can complete the solution by backward substitution.

Consider the system

a x + a x + a-x = b
11 1 12 2 13 3 1

a21x1 + a 2 2 x 2 + a 2 3 x 3 = b 2

a 3 1 xl + a 3 2 x 2 + a 33 x 3 = b3

If we multiply the first equation by the appropriate factor m2 1 and add to

the second, then multiply the first by m3 1 and add to the third, we will
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zero out the subdiagonal elements in the first column. The modified system

(1) (1)is the following where a ()= a., + m a b ) = b. + m b m = 1
3ij 1J 11 lj' i i 1' 1 1

mil = -a /al for 2 • i • 3. Note that the modified system has the same

solution as the original.

a l +a ( + ax x = b111 1 12 2 13 3 1
(1) (1) ( 1)

al)x + a( l )x = b
a22 2 23 3 2

(1) (1) (1)a 32 X2 3 3 3

Using the same method we can zero out the subdiagonal element in the

second column, namely a This leaves us with an upper triangular matrix.

Before elimination of the subdiagonal elements in a given column, we

normally interchange the rows of the system so that the multipliers m.
Ik

will not exceed unity in magnitude. That is, working on the kth column,

we choose the integer s, k 5 s < n, so that la 'k- = Max a (k) I.
sk k ik

th th
Then we interchange the k and s rows of the system to form a new

(k-1) (k-1)system. The multipliers m. = -a k /a ( will now have magnitude
Ik ik kk

bounded by unity. If we attempt to solve the system below, then we must

interchange rows, since all is zero and we cannot divide by it.

0 1 x1  1

2 3 x 2  2

It should be clear that this procedure can be generalized to a matrix of

(k-1)arbitrary order n. If all the elements a(l) for k • i • n vanish, then
ik
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the procedure will fail. However, in this case, the matrix is singular

and we might expect trouble (see problem 1.2-19). If we wish to solve

the system for two right-hand sides, then we simply perform the reductions

on both vectors simultaneously. For example, suppose we wish to solve

the system Ax = b for the two vectors b = (1,0) and b = (0,1) with the

same matrix

0.1 1.2
A =

1 2

We can write this problem in the form AX = B where X is a (2X2) matrix

and B = I is the identity matrix of order 2. Since AX = I, we see that

-I
the solution matrix X is the inverse of A, which we denote by A . The

Gauss elimination procedure for the above matrix is

0.1 1.2 1 0
X =

1 2 0 1

1 2 0 1
X =

0.1 1.2 1 0

1 2 0 1
X =

0 1 1 -0.1

-2 1.2
X =

1 -0.1

Problem 1.2-19. Use Gauss elimination to solve the following (4X4)

system.
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0.001x1 + 2.0002x2 = 2

5x1 + x 2 + x3 + 2x4 = 1

x + 1.2x2 + 42x + .2x4 = 5

xI + 2.2x2 + 8.2x3 + 20.2x4 = 10

Use Gauss elimination to find the inverse of the following matrix:

3 1 1

A= 1 4 0

1 1 5

Problem 1.2-20. During the Gauss elimination process the original

matrix is transformed into upper triangular form. Show that the

determinant of this upper triangular matrix is the same as A except possibly

for a difference in sign. This follows from the properties of the

determinant given previously.

Problem 1.2-21. Show that the Gauss elimination process will fail

due to a zero diagonal element only if IAI = 0. Show that a matrix is

nonsingular if and only if its determinant is nonzero.

Problem 1.2-22. Write a computer program to evaluate the determinant

of a matrix of order n. Use Gauss elimination.

Problem 1.2-23. Show that a matrix A is nonsingular if and only if

its rows (or columns) are linearly independent when regarded as vectors.
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1.2.5 Eigenvalues and eigenvectors of matrices. These concepts

along with the norm of a matrix will be quite important in providing a

better understanding of numerical methods for partial differential

equations. We say that a vector x and a scaler X are an eigenvector

and corresponding eigenvalue of the matrix A if Ax = Xx (x / 0). Note

that if x is an eigenvector, then so is Ox for all nonzero scalers .

For any matrix B we know that Bx = 0 has a nontrivial solution x if and

only if IBI = 0. Therefore we see that X is an eigenvalue of A if

and only if X is a root of the determinental equation IA - XII = 0. This

determinant is a polynomial in X of degree n called the characteristic

polynomial of A. This should be clear from the definition of a determinant

since

A - XII = sgn(Tr) (a ) - X1 (l a2( 2  - X62 .(2  .

anT(n) - nX6 (n)

Here 6.. is the Kronecker delta defined by

1 i=j

ij 0 i/j

Since a polynomial of degree n has at most n distinct roots, the matrix A

has at most n distinct eigenvalues.

The following two examples should prove illuminating. If A is the

2X2 matrix

2 1
A =

1 3
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then the characteristic polynomial is

2-X 1 2
= (2-X)(3-X) - 1 = X - 5X + 5

1 3-X

5 ± /5The eigenvalues are thus X = The eigenvector corresponding to

5 + /5
X - 2 is the solution of

1 ½-1 x2 0

Thus (x1 ,x2) must be orthogonal to the vector (-- , 1) and thus

(x1 ,x2) = (1, ½+ 4). The reader can verify that this is the solution.

The vector corresponding to X = (5 - /5)/2 can be found in a similar

fashion. The second example is the matrix

1 1
A =

0 1

The eigenvalues are both equal to 1 since the characteristic polynomial

2
is (1-X) = 0. Any eigenvector must satisfy the equations

2 = + x2 = x2

xI + x2 = \xl = xI

Therefore x 2 = 0 and xl is arbitrary. Therefore all eigenvectors are a

scaler multiple of (1,0). This set of eigenvectors does not form a basis

for the space. We cannot write all vectors as a linear combination of

eigenvectors. The subspace spanned by the eigenvectors is 1-dimensional.
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Problem 1.2-24. Find the eigenvalues and eigenvectors of the matrices

2 0 0

0 1 2

0 -2 1

1 1 0 0

0 2 1 0

0 0 3 1

0 0 0 4

Problem 1.2-25. Show that the eigenvalues of an orthogonal matrix

of order n must have absolute value unity.

-l
If P is a nonsingular matrix and B = P AP, then we say that the

-1
matrix B is similar to A. The transformation P AP is called a similarity

transformation. If A and B are similar, then the eigenvalues of A and B

are the same. In fact, if (X,x) is an eigenvalue-eigenvector pair for A,

-x
then (X,P x) is a pair for B.

If there are n independent eigenvectors of A, then A is similar to a

diagonal matrix whose diagonal elements are the eigenvalues of A. (A

matrix A is diagonal if a.. = 0 for ifj.) To prove the above statement,

(1)
let P be the matrix whose columns are the eigenvectors of A; P = (p 1) .p

(i) (i)where Ap = Xp . If D is the diagonal matrix D = diag(.h), then
1 1

-lp
AP = PD, and thus P AP = D.

Conversely, if A is similar to a diagonal matrix, then A has n

independent eigenvectors. In this case, the eigenvectors span the space.

Problem 1.2-26. Find a matrix A which is not similar to a diagonal

matrix.
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Problem 1.2-27. Given an arbitrary set of scalers X., 1 s i n n,

and a set of n independent vectors x, define a matrix A with eigenvalues

i
X. and eigenvectors x .
1

We will now show that given any matrix A, it is possible to find a

unitary matrix U such that U AU is upper triangular. Since U is

* -1 *
orthogonal U = U , and therefore U AU is a similarity transform. (A

matrix A is upper triangular if a.. = 0 for i > j). We will first prove
1

this for a matrix of order 2. Let X be an eigenvalue and x the
1 1

corresponding eigenvector. Assume that x is normalized so that

1 1 2 1 2 2 2
x *x = 1. Choose x such that x *x = 0 and x .x = 1. Define the

1 2
matrix U so that its columns are the vectors x and x . Then U*U = I

and we have our reduction to triangular form since

1 1 1 2
X1x .x x *Ax

U*AU =
2 1 2 2

hlx *x x *Ax

In the n-dimensional case we choose the eigenvalue X and normalized

1 1 2 n
eigenvector x , then form an orthonormal basis (x ,x ,...,x } whose first

member is x . If we define U so that its columns are the vectors x,

S* -j
then UU1 = I. Note that the rows of U1 are just the vectors x . To form

U1Ul, we take the product of the rows of U1 with the columns of UI. Just

as before

U1AU =

S(1) ( 1)

11 al2 " . . aln

(1(1)0 a 2 an
22 2n

0 (1) a(1)
0 an . . . ann

I

A(I)
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The first column is thus in the desired form. Now let A( denote the

matrix of order n-I formed by the lower right corner of A , a ,3ij

2 • i n, 2 < j j n. Define the matrix U2 of order n-1 in the same way

that U1 was defined. Then

^* (I) A
U2 A U2 =

We define

21j = 0,

U2

a matrix

U2 =0
2i1

O

I

I
I

I
I
I

I

0 .

I

1

0

0

0

0

U2 of

for 2

(2)
2 3

(2)
a 3 3

(2)
3n

S(2)
2 n

(2)
nn

order n by U2ij = U2ij i 2, j > 2, and U2 1 1 = 1,

• i, 2 • j, that is

U2

Then careful inspection will show the following to be true

U* U* AUU
U U AU U
2 1 1 2

xI

0

0

0-o

S(2)

a(2)
23

a (2)33

(2)
an

a (2)
2 n

(2)a 3 n
3n

(2 )

a12

02

0

(2) (2)
n3 nn

If we continue this procedure, we will obtain the desired result.
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T
Problem 1.2-28. A matrix is said to be symmetric if A = A, and

Hermitian if A = A. Show that a symmetric (or Hermitian) matrix must have

real eigenvalues. Hint: Consider an eigenvalue-eigenvector pair X,x.

Note that x Ax = Xx x and now take the conjugate transpose of both sides

of this equation to obtain X = k.

Problem 1.2-29. Show that any symmetric matrix A can be reduced to

diagonal form by an orthogonal similarity transformation. There is a matrix

T T
U such that U U = I, U AU = D where D is diagonal. Stated otherwise, the

normalized eigenvectors of a symmetric matrix form an orthonormal basis in

E . Hint: This can be proved in the same way that we proved an arbitrary
n

matrix can be reduced to upper triangular form by a unitary similarity

transformation.

This property of symmetric matrices is very important. It makes them

particularly easy to deal with.

Problem 1.2-30. Assume a matrix A of order n has n independent

eigenvectors xj and the eigenvalues satisfy the condition IXll > Ixj

for 2 • j I n. Any vector y can be represented in the form

1 n 0 v+l V
y = x +... + an x. Assume aY 1 0. Let w =y, v =Aw,

v+ v+ v+l v 1
w = v /Iv for 0 • v. Show that lim w = jx , for some scaler ~, and

lim max v. /w. = X. This is the power method for finding the largest

eigenvalue and corresponding eigenvector.

If A has eigenvalues X., 1 • j • n, then we define the spectral radius

of A, denoted by a(A), to be a(A) = Max IX. . Suppose we have a sequence

lj~n
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of matrices A , all of order n, 1 ; v < a. For example, we might have

1 ½\ 1/4 1/8 -
A A A= A 2 2

1  1 2  1/8 1/4

2" 2'-1

We say lim A = 0 if all the elements of the matrices A approach zero

as v - c.

A fundamental fact about the spectral radius is the following. For any

matrix A, lim An = 0 if and only if the spectral radius a(A) is less than
n-*o

one (a(A) < 1). The book of Isaacson and Keller contains a proof of this

statement. It is easy to show that if the limit is zero, we must have

o(A) < 1. For suppose there is an eigenvalue X and eigenvector x with

n n n n n
|Ij Ž 1. Then A x = x. But lim A = 0, therefore lim Ax = 0 lim X x.

n-= n--o= n--mX

However, if IXI Ž 1, this is clearly impossible. Therefore we must

n
have c(A) < 1. We will omit the proof that lim An = 0 if c(A) < 1.

Problem 1.2-31. If A has n independent eigenvectors and a(A) < 1,

n n
then show lim A = 0. Hint: Show that lim Ax = 0 for all x, thereforen--=

lim An =
lim A = 0.
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1.2.6 Matrix norms. Next we will introduce the concept of the norm of

a matrix. This norm is useful in the study of the stability of finite

difference schemes. First we will state the requirements which the norm

of a vector must satisfy. A vector norm is a mapping which associates

a non-negative real number with each vector. It is denoted by ixtl. It

must satisfy the conditions

1) llx|l 2 0 and |lxll = 0 if and only if x = 0.

2) For any scaler a, \yxl\\ = \! \\x\\.

3) For all vectors x and y |lx+yl| 5 l x|l + \yl .

First we observe that the length of a vector is a vector norm, usually called

the Euclidean or L2 norm. We have denoted the length of a vector x by Ixi.

Another frequently used notation is l|x| 2 , that is

n

lxl12 = IxI = x 2
\j=1

The subscript 2 is used because we have the so-called L2 norm. The L

norm (p, a positive integer) is defined by

= ( Ixjlp

The maximum norm, sometimes called the L norm, is defined by

|Ix/| = Max Ix.j
a 1jin
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These norms all provide a way to measure the "size" of a vector x --

a different measure for each norm. The most commonly used norms are the

L and L norms. To gain some idea of how these norms measure the size of
2 O

a vector, we might look at those vectors in E for which lxii = 1. We will

do this for four norms.

1) Consider lxi|2 = x2 + x2  = 1. The set of points is a circle

of radius 1.

2) For the maximum norm we have |x|j| = Max( xl,Ix 2 1 = 1. This

set is a square of side length 2 centered about the origin.

3) For the L1 norm lxL1 = Ix11 + x2 1 = 1. This set is also a

square of side length /2 centered about the origin and rotated

45 degrees.

2 2x x1 x
a b

that this definition does satisfy the conditions for a norm.

The set is an ellipse whose axes have length a and b.

The figures below show the set ix\l = 1 for the four cases.

b
a

1 2 3 4
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Problem 1.2-32. Show that |lx1L and ||xll as defined above satisfy

the conditions for a norm. Let A be a symmetric matrix all of whose

eigenvalues are greater than zero--then A is said to be positive definite.

Show that the relation \XlA = x Ax defines a norm.

The reader might well ask if we are simply playing a mathematical

game. Why have so many different norms? As we will see, it sometimes

happens that we can prove a result using one norm but not another, or the

proof may be much easier using a particular norm. It is sometimes

desirable to define a special norm of the form x = xTAx in order to

prove that a finite difference scheme for a differential equation is stable.

Next we will pass on to the idea of a matrix norm. We will consider

only matrix norms which are induced by vector norms. Suppose \xl| is a

given vector norm. Then the corresponding matrix norm (defined for any

square matrix A) is defined by

A = Max
x/O l ll

Problem 1.2-33. Show that the above matrix norm satisfies the

following conditions:

1) HlA = Max llAx|l

2lxll

2) IIAli - o and hlAll = O if and only if A = O

3) lla/A = l Icl 1AII
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4) IjA+BII • 1|A| + UIBI

5) IIAB : |IA IIA B|

Problem 1.2-34. Let I|A|2, I|AII 1 and I\AILj be matrix norms induced by

the corresponding vector norms. Show that

1) IAI 2 = c(A A) where a(A A) is the spectral radius

n
2) HAl 1 = Max 2 a jk

k j=l

n

3) I|AIL = Max a jkl
j k=l

Note that it is usually rather difficult to determine the spectral radius

of a matrix. This usually requires a computer. However, we can quite

easily evaluate the norms IIAII1 and I|AI| when given the elements of the

matrix A.

Problem 1.2-35. Show that for any matrix norm and any matrix A

a(A) IIAJl. The spectral radius can not be greater than the norm. Give an

example of a matrix A where a(A) = 0 but I|AII can be arbitrarily large

depending on A.

We will illustrate the use of the matrix norm by a "perturbation

analysis". Consider the linear system Ax = b. Suppose the matrix A is

perturbed to form a new matrix A + 8A and the resulting system is

solved (A + 6A)y = b. We wish to estimate the difference between y and x.

The perturbation in A might be caused by errors in some physical measurement
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and we would be interested in the resulting perturbation in the solution.

Suppose we let y = x + 8x. We wish to estimate the magnitude of 6x.

First we prove a preliminary result. If ||BI| < 1, then I+B is nonsingular

and l(+B)-1 < 1/(1 - B). Since ||BI| < 1, we know the spectral radius

of B is less than 1. Therefore B cannot have an eigenvalue equal to -1

and thus I+B cannot have an eigenvalue equal to zero. Therefore, I+B

is nonsingular. We have I = I + B - B, therefore (I+B)-1 I - B(I+B)-1

Taking the norm of both sides we have \\(I- 1B)' 1 I 1 + ||B|| I(I+B)-1  or

l (I+B)- 1 \ (1 - ||B|) <• 1 or I(I+B)-1 5• 1/(1 - HlBIl) which is the desired

result.

Now we are ready to prove the main result. We have by assumption

Ax = b, (A + 8A)(x + 8x) = b. Therefore (A + 6A)8x = - 8Ax. If we

multiply by A 1 we obtain (I + A - 1 A)6x = - A 16Ax. Let B = A 8A

-1
and assume ||BlI < 1. Then we have (I+B)6x = -Bx and (I+B) exists.

Therefore 8x = - (I+B)- 1 x and ' 18x| 5 (I+B)- 1 1 ||B|| Hxl|. Using the

result above we obtain

and the relative error \ll8xl/1lxl1 is therefore bounded by \HB/\/(l - BI).

Note that |IB|| measures the size of the perturbation 8A, since

B = A-18A or AB = 6A and IAII |BI 8Al|. Therefore \BI| is a bound

for the relative perturbation in A since ISA /AI B \\B\\. However, we

could have 1l6A|/Il|AI quite small but A-i fairly large and hence B might

be fairly large. If A- is large we might expect 1|6xll to be

large compared with I\\SA/IIAII. Therefore we cannot expect a bound for
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|s6x|l in terms of 116AII/IIAII alone. Suppose we assume 6x and 6A are both

quite small. In the equation (I + A 18A)6x = - A -1Ax we might then

ignore the second order term A 18A6x to obtain 6x = -A 18Ax. This would

lead to the approximate bound 1xiI Ai 1-1 ||6AII. Note that the correct

bound is quite similar to this, namely

ll 1 - A 'A!!
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1.2.7 Discrete Fourier analysis. We will briefly describe the finite

Fourier representation of a vector in C (C is the complex n dimensional

space). We know that if f(x), -1 < x r 1 is reasonable, then it can be

represented by a Fourier series.

ikrrx
f(x) = E ake

-- 0O

1
S-iknxwhere ak =½ f(x)e . Suppose we consider the values of f on the
-1

discrete set xj., -J < j s J, x. = j/J. We will assume that f is

periodic so that f(-l) = f(l). Let f. denote f(x.). Then we can prove

that the following finite Fourier representation is valid.

J-1 ikrx.
f. = ake -J j < J (1.2-1)

k=-J

J-1 -ikrx.

k 2Jwhere ak 2J E f e
j=-J

We will omit the proof. Note that the formula for ak is an

approximation to the integral

-1 ikrx
½ f(x)e dx

-1

k k iknj/J
If we then define vectors cp in C2 J by the formula p. = e

-J • j < J, -J • k < J, then these vectors are orthogonal

km U2J if m=k)
cp * = -J s k, m < J

0 if m k
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To simplify the notation we ran the index j which denotes the components

k
of cp through the range -J < j < J. It is more common to start the

first component with index j=l, in which case the expression for the

k
vector cp becomes

ikrr ikrr(J+l) iki(- .) - i
k J J J
S= e = e , 1 j 2J

k
Since ([p is an orthogonal basis, we know that any vector v in CJ

2J

can be represented in the form

1 2J
v = CP + . . + 12 J C

where c. = v-cp /cpj .c

This is simply another way of writing the expansion given in equation

(1.2-1). The proof of this expansion thus reduces to a proof that the

k
vectors cp are orthogonal. We leave this proof to a problem in chapter 2.

An orthogonal basis for E can be constructed in a similar fashion.

Define the vectors cp by

k
S = sin kjr/(N+l) 1 j N, 1 k N

(j

Problem 1.2-36. Show that the above vectors cp are orthogonal.

First prove the formula

Z cos je = ½ -1 + if e9 2mnr

j=1 sin 2



1.49

J J+ je -jeNote that r e e +eNote that r = -r and use cos j =  Now use
l-r 2j=0

sinA sinB = ½ [ cos(A-B) + cos(A+B)] to prove orthogonality. What is

k k
the value of p *p ?
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1.3 Some General Comments on Partial Differential Equations.

We will attempt to classify partial differential equations (PDE)

into three types--elliptic, parabolic, and hyperbolic. The diversity

of PDE is such that it is not possible to neatly classify these equations

into three groups. However, the basic approach used for the numerical

solution of elliptic equations is quite different from that used for

the other two types. As we will see, elliptic equations are "pure

boundary value" problems whereas parabolic and hyperbolic equations are

"initial value" problems. Therefore it is important for the numerical

analyst to have some feeling for the nature of these equations, even if

the PDE problems frequently fail to fit nicely into one of these three

categories.

1.3.1 A classification of linear second-order partial differential

equations--elliptic, hyperbolic and parabolic. An explanation of the

classification of PDE can be based on the following equation

au + 2bu + cu + 2du + 2eu + fu = h(x,y) (1.3-1)
xx xy yy x y

Here a,b,...,f are assumed to be real constants,h is a known function,

u = u(x,y), u = 6u/ax, and similarly for the other derivatives. We
x

let X1 and X2 be the roots of the characteristic equation

aX - 2b + c = 0 .

If b -ac > 0, then these roots are real and distinct. If we introduce

the coordinate transformation y-Xlx = S+T1 and y-X 2x = S-T|, then

u = u(g, ) and equation (1.3-1) becomes
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u - u + 2Du + 2Eu + Fu = H(,T1) (1.3-2)

2
If b -ac > 0, then we say our original equation (1.3-1) is hyperbolic

and we regard the above equation (1.3-2) as the canonical form for a

hyperbolic equation.

By use of the following transformation of the dependent variable

-D§-ETI
u = ve E we can reduce the hyperbolic equation to

v v - v + kv = f(1,T) (1.3-3)

Problem 1.3-1. Show that the transformations described above

produce equation (1.3-3).

2
If b -ac < 0, then we say the equation is elliptic. In this case

we use the transformation y-Xlx = §+iT, y-X2x = §-i~ and our canonical

form is

v + vM + kv = f(ý,)

2

If b -ac = 0, then we have the parabolic case. The canonical form below

is obtained from the transformation y-X = -, cyy + 3x = where a and 3

are suitably chosen. The parabolic equation can be reduced to

v - v = f(,1) .

Most problems which arise in practice cannot be reduced to one of these

simple forms. However a study of these simple equations is essential

because it gives us some idea of how to proceed with a numerical solution
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of the more complicated equations. (These three equations are really

not so simple--much deep mathematics has been created in an attempt to

understand these equations.)
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1.3.2 An elliptic equation - Laplaces equation. Solution by

separation of variables. We will first consider Laplacds equation

u + u = 0. This is an elliptic equation. The separation of variables
xx yy

technique will yield a certain family of solutions to the problem. The

basic assumption involved in the separation of variables is the existence

of functions F(x) and G(y) such that u(x,y) = F(x)G(y). Substitution

into Laplace's equation yields

F"(x)G(y) + G"(y)F(x) = 0 .

This can be written

F"(x) = G

F(x) G(y)

The only way a function of x can equal a function of y (x and y are

independent) is to have both functions equal to a constant. If this

constant is positive, then we have

F"L(x= 2 f _.2
F(x) G(y)

The general solution of these equations yields

Xx -Xx
F(x) = Ale + A2e

G(y) = B1 sinkx + B2 coskx

If the constant is negative, then the trigonometric functions appear

in the solution for F and the exponentials in the solution for G.
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Note that Laplace's equation is symmetric in x and y, so we might expect

such an interchange. Obviously many functions satisfy Laplace's equation

u + u = 0. In order to get a unique solution we must impose some
xx yy

boundary conditions. Physical insight is frequently a great help in

setting up proper boundary conditions. We might look at Laplace's equation

from a physical point of view. The steady-state temperature distribution

T(x,y) on a flat plate satisfies Laplace's equation T + T , at least
xx yy

approximately. Suppose we have a square plate given by 0 < x 1,

0 < y • 1. We would expect the temperature distribution in the interior

of the plate to depend on the boundary conditions. If the side at

y = 0 is insulated, we would have T (x,O) = 0 for 0 • x < 1; that is, the
y

normal temperature gradient would vanish. Perfect insulation implies

zero heat flux which in turn requires zero temperature gradient. If

the side at y = 0 is held in a bath of boiling water, then we would have

T(x,0) = 1000C. We must specify a boundary condition on each side of

the square in order to obtain a unique solution for Laplace's equation.

This is a fundamental property of elliptic equations. In order to obtain

a solution, we must specify a boundary condition at all points of the

boundary.

Suppose we attempt to solve the following boundary value problem for

Laplace's equation.

u +u =0 0 <x< l, O < y
xx yy

u(x,0) = f(x)

u(x,l) = 0

u(y,0) = u(y,l) = 0
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We assume that f(x) is smooth enough to have a Fourier expansion

co oo

f(x) = E aksin krrx where E k21 ak < .
k=l k=l

Problem 1.3-2. Verify that the series below is a solution of the

above problem.

co
sinh krrl -y)

u(x,y) = 2 ak sinh kr T  s  Tn

k=l

Z -Z
where sinh z = ½(e - e ).
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1.3.3 A hyperbolic equation - the wave equation. Next we will

consider a hyperbolic equation. Suppose we have a string stretched

between two points on the x-axis. If we pluck the string, it will vibrate.

The displacement u(x,t) of the string from its undisturbed position

along the x-axis will then be a function of position x and time t. This

displacement will satisfy the hyperbolic equation below (c is a constant)

which is called the wave equation (a derivation of the vibrating string

equation can be found in many places).

2
u = c .
tt xx

In order to obtain a unique solution we need the boundary conditions

which state that the string is held fixed at x = 0 and x = 1.

u(0,t) = u(l,t) = 0

We also need the initial conditions

u(x,t) = f(x)

u (x,t) = g(x) 0 : x ; 1

These are also really boundary conditions. As we will see, the solution

of the wave equation can be obtained by "marching forward" in time. Hence

we call this an initial value problem, and these conditions are called

initial conditions. How do we know these are proper initial-boundary

conditions for the wave equation? We obtain them from physical insight

based on a derivation of the differential equation. We might then assume

the mathematician's role and prove that there is a unique solution of

the wave equation which satisfies these conditions. If our initial-
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boundary conditions are not correct, we may find that there is no solution

or there may be more than one solution. For the complicated nonlinear

PDE problems which arise in practice, we may not be successful in our

mathematician's role. We then have to depend solely on physical insight

and analogy with simpler problems for which proper boundary conditions

are known.

Instead of the initial-boundary problem given above, we will

consider the pure initial value problem for the wave equation.

2
U = C U
tt xx

u(x,0) = f(x) -0 < x < 0

ut(x,0) = g(x)

That is, we require the initial conditions to hold for all x. Our interval

has no boundary, and thus we have no boundary conditions. If we use the

following change of variables x = x+ct, T = x-ct, then the wave equation

becomes

= 0

If we integrate this equation with respect to we obtain

u = F()

If we integrate with respect to ( we obtain

u(,TO) = F1 (ý) + F 2(1)
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and thus

u(x,t) = Fl(x+ct) + F 2 (x-ct)

Now we must relate the functions FI(a) and F 2 (f) to the initial functions

f(x) and g(x).

Problem 1.3-3. Show that the above solution can be written in the

form

x+ct

u(x,tt) = [f(x+ct) + f(x-ct) g(T)dT

x-ct

Note that we can write this solution in the form

u(x,t) = ½[f(x+ct) + f(x-ct)] + ½[G(x+ct) - G(x-ct)]

x
where G(x) = g(T)dr.

0

This solution shows wave propagation. Suppose we have g(x) = 0

and

l+x -1 x < 0

f(x) = 1-x 0 <x < 1

0 otherwise

This is a tent shaped curve as shown in the figure below

u(x,0)

-1 0 1

x
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The term ½f(x+ct) represents a wave propagating to the left with velocity -c,

the term ½f(x-ct) propagates to the right with velocity c. After time

t = 1/c the solution would have the form shown in the next figure.

u(x,l/c)

-2 -1 0 1 2

X -

Problem 1.3-4. Choose a reasonable function for g(x), set f(x) - 0,

then describe the wave which is the resulting solution of the wave equation.

A fundamental property of hyperbolic equations is the tendency to

propagate "disturbances" in the initial conditions much as the wave

equation does in the example above. We will have more to say about this

in a later section.

Also note that this is an initial value problem. We need only to

specify the functions u(x,0) and ut(x,( at time t = 0. Also we have a

finite "interval of dependence." If we take a point (x 0 ,t 0 ), then the

value u(x 0 ,t 0 ) depends on the values of the functions f(x) and g(x) only

in the interval between x0 -ct 0 and x0 +ct 0 . The figure below illustrates

this interval of dependence.

(x_ t _

t T
x-ct=cons ant .t=cons ant

x0-ct0 x0 x0+ct0

X -
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We will show later that the elliptic equation u + u =0 cannot be
tt xx

treated as an initial value problem. In order to solve an elliptic problem

in the region 0 • t • T we would have to specify boundary conditions on

the upper line t = T. To solve an elliptic problem in a region bounded

by a closed curve, it is necessary to specify boundary conditions along

the entire closed curve. The hyperbolic problem is an initial value

problem. We "march" the solution ahead from t = 0 to t = T, using only

the initial values at t = 0. In general a hyperbolic problem may have

boundary conditions along "sides" such as the lines x = 0 and x = 1, as

well as initial conditions at t = 0, but we do not need boundary conditions

at the "toP' t = T. We will give an example of such a mixed initial-

boundary value problem for the wave equation in a later section.
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1.3.4 A parabolic equation - the heat equation. Next we will consider

an equation of parabolic type. This is the one-dimensional heat equation

ut = uxx, u = u(x,t). If we let u denote the temperature of a rod, then

u would satisfy (approximately) this equation. Then x would denote

distance along the rod and t the time. In order to obtain a unique

solution we would have to specify the initial temperature u(x,0). We

also need some boundary conditions. If the ends of the rod are at x = 0 and

x = 1, then we could specify the temperature at each end u(0,t) and u(l,t).

Instead of the temperature we could specify the heat flux at one or both

ends, u (0,t) and u (l,t). Suppose we consider the following problem
x x

for the heat equation

u = 1au
t xx

u(x,0) = f(x)

u(0,t) = u(l,t) = 0

We can obtain a solution for this problem by the separation of variables

technique.

Problem 1.3-5. We will assume that f(x) can be represented by a

Fourier expansion

f(x) = E ak sin knx where l ak1  < .
k=l k=l

Now assume u(x,t) = F(x)G(t). Using this assumption show that the

solution of the above problem is

0  
2 2

-ck a t
u(x,t) = E ake sin ktx

k=l
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Now we will look at some properties of this solution. First of all,

the solution decays with time,

lim u(x,t) = 0
t3»o

2 2
-ok2•2 t

The higher frequency modes (that is, ake sin kirx for large values

of k) decay more rapidly than the lower frequency modes. Since corners

(that is, discontinuities in the derivative) require greater amplitudes

at the higher frequencies, we might expect the solution of the heat

equation to become smoother with time. This is illustrated in figure 1.3-1

shown below. The initial function f(x) = u(x,0) is given by

1-x 0 _ x 1

f(x) = 1+x -1 < x • 0

0 otherwise

The curves of u(x,t) for fixed t are plotted for the values of t shown on

the figure. This curve was obtained from a numerical solution of the

heat equation using the method of finite differences. The curve was plotted

by the computer on a graphic display device: Note how the curve becomes

smoother and also spreads out with time.

The solution of the heat equation decays with time. Therefore we say

the term u is a dissipative term. We will define the energy E(t) by
xx

the relation

1
E(t) = ½ f u2(x,t)dx

0
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Then from the equation u = Ou we have uu = auu or
t xx t xx

½(u) t= (ux - (ux)2
x

Therefore if we integrate with respect to x and use the boundary conditions

u(0,t) = u(l,t) = 0 we obtain

1

0

1 1
(u2 tdx= - = " uu dx - cr ux2dx

0 x 0

E 21  2or - - a- u dx

If we now integrate with respect to t, we obtain

t t 1
dt = - a u 2 dxdt

0 t  0 0 x

t 1
or E(t) - E(0) = - a l Eux(c,t)]2dxdt

0 0

therefore E(t) < E(0) and we know that the energy is a nonincreasing

function. In fact E(t2) < E(tl) if t > t, unless u (x,t) 0 for2 1 2 1 x

t1 < t 5 t2. This integration by parts argument should make it clear why

the uxx term is an energy reducing term. In general the energy relationxx

for the heat equation is

at = Cu(l,t)ux(l,t) - u(0,t)ux(0,t) - a [ ux(x,t) dxx ' x0
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Therefore we would expect a contribution to the energy unless u or u
x

vanish at the boundary. Note that we must specify some boundary conditions

in order to obtain a unique solution for the heat equation. If the

boundary conditions are u(O,t) = u(l,t) = 0 then

lim u(x,t) = 0 0 x 5 1
t--X)

If u(0,t) = 0, u(l,t) = 1, then

lim u(x,t) = x
t-oC
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1.3.5 Properly posed problems - Hadamard's example. In order that

a PDE problem be properly posed there should be a unique solution for any

admissible initial-boundary conditions. However, an additional restriction

is usually imposed. We require that the solution depend continuously on

the data which defines the solution. By this we mean that a small

perturbation in the initial-boundary conditions should produce a small

perturbation in the solution. For example, we will consider the heat

equation. Suppose we restrict the discussion to homogeneous boundary

conditions u(O,t) = u(l,t) = 0. Suppose we have two solutions ul(x,t)

and u2(x,t) corresponding to the initial functions fl(x) and f2(x).

That is

Ult = Clxx u2t = u2xx

ul(x,O) = fl(x) u2 (x,0) = f2 (x)

We wish to show that if the functions fl and f2 are "close," then the

solutions ul and u are also close. We will say that fl is close to

f2 if the difference f - f2 is "small." We must now decide on a measure

to define the size of a function f(x). We will use a norm to define

the size of our functions. A norm for these functions is a rule which

assigns a non-negative real number to each function. Such a norm must

satisfy the same conditions as the vector norms we defined in section 1.2.

However, wewill not tarry on the technical aspects of such norms. One such

norm is the maximum norm defined by

flfI = max If(x)(
Osxsl
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A more convenient norm at this point is the L2 norm defined by

1lfll 2 = f (x)dx
0

Of course we must restrict the class of functions to those for which this

integral exists.

To return to our problem, let w = ul - u 2 . Then w is a solution

of the heat equation with the initial value w(x,O) = fl(x) - f 2 (x).
1

If we let Ew (t) = ww (x,t)dx, then we know from our previous
0

discussion that

E (t) • E (0) for t 2 0.
w w

If we rewrite this inequality we obtain

1

S[ul(x,t) - u2 (xt)] dx 5 [fl(x) - f 2 (x)]2 dx
0 0

or \\ul(t) - u 2 (t) <• |fl - f 211 where ul(t) denotes the function ul(x,t)

for fixed t. This is the result we wanted. It shows us that the size

of the perturbation in the solution is bounded by the size of the perturbation

in the initial function. In other words, the solution of the heat

equations depends continuously on the initial function f(x).

Suppose we next consider Laplace's equation. We look for a solution

2 2
u(x,y) defined over the unit disk x + y • 1. We assume the values of

2 2
u are given on the circumference of the disk x2 + y = 1. Then the

problem is to solve the equation
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u +u =0
xx yy

u(cose,sin9) = f(8)

2 2
x +y < 1

0 <8 e 2rr

x = cose, y = sine

It turns out that the solution can be written in terms of the "Poisson

integral formula" (see Garabedian's book, p. 249).

2n 2
u(rcose, rsine) = 2 (l-r )f&p)d

2T 0 1-2rcos(cp-9)+r 2
for r < 1

The boundary data for this problem is the initial function f(cp). We

could use this formula to show that u depends continuously on the initial

data f(p). Or we could use the maximum principle which states that u

cannot take on its maximum (or minimum) in the interior of the disk.

In any case we have

max lu(rcose, rsine)j ~ max If(e)l
0sr<l Oe~s2n

From this relation we see that u depends continuously on f provided we

use the maximum norm.

Now we come to the point of this discussion which is an example

due to Hadamard (Garabedian, p. 108). Consider the pure initial value

problem for Laplace's equation

u + u =0
tt xx

u(x,0) = f(x)

ut(x,0) = g(x)

u = u(x,t)

-o < X < 0

0 t
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Here we are treating Laplace's equation as if it were the wave equation.

It can be shown that, if the functions f(x) and g(x) are analytic, then

a unique solution u(x,t) exists which is also analytic. However, suppose

we set the following initial conditions

u(x,O) = 0

1
ut(x,0) = gn(x) = sin(nx)

where n is a positive integer. It is easy to verify that the solution

is given by

u(x,t) = - sin(nx)sinh (t)
n

nt -nt
where sinh nt = (e - e )2.

It is clear that the initial data can be made as small as desired

(uniformly in x) merely by choice of a large n. However, if we take a

fixed region (0 < t : 1, for example) it is clear that u(x,t) can be made

as large as desired by choice of a large n. That is

lim gn(x) = 0 for -o < x < oo
n--=

lim max u (x,t) = lim max - sin(nx)sinh (nt)= =
n 2

n-4 -oo<x<co n-oo -wo<x<a n
O0tl Ot l

In other words an arbitrarily small initial function can lead to an

arbitrarily large solution. Clearly the solution does not depend

continuously on the initial data. Therefore, the above initial value
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problem for Laplace's equation is not sensible physically. It is not a

properly posed problem. If we attempted to solve such a problem on a

computer, we would expect any small errors in the data to produce an

explosive growth of the solution.

We will give another example of the care required in formulating the

proper boundary conditions for a partial differential equation. The

numerical solution of this problem is discussed at length in the book

by Greenspan [Greenspan, 1965]. If we write Laplace's equation in

cylindrical coordinates (r,0,z) and assume that there is no 9 dependence,

we obtain

2 2
2 u 2 u 1 u 0
2  2 r r

br bz

We suppose that a solution of this equation is desired for the cylinder

0 ! z 1, 0 • r : 1. This solution might be the steady-state temperature

in the cylinder under the assumption that the temperature on the boundary

is specified; that is

u(r,0) = fl(r) 0 < r • 1

u(r,l) = f2(r) 0 < r < 1

u(l,z) = f3 (z) 0 < z < 1

Note that our region is the (r,z) square 0 < r I1, O ~ z i1. The

boundary segment (0,z) does not represent a physical boundary. Instead

we have a coordinate system singularity at r = 0. This is reflected in

the term (I/r)8u/Sr in the differential equation. We would not expect to

have to specify the value of u along the segment (0,z) for 0 • z • 1.
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Indeed it is possible to show that the above problem is properly posed

without the specification of u(0,z). However, if we consider the

differential equation

2 2
a2u 2u K u 0-r2 + +- = 0

2 2 r ar
fr Sz

with K < 1, then we must specify u(0,z) in order to obtain a unique

solution. If K 2 1, then we obtain a unique solution without specification

of u(0,z). We refer the reader to Greenspan [1965] for further

information which includes a careful treatment of a numerical approximation

for the solution of this equation. The point of this example is to show

that the proper boundary conditions for a problem are not always obvious.

Unless we know the proper boundary conditions, we are not likely to get

an accurate numerical approximation.
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1.3.6 The method of characteristics applied to a simple hyperbolic

equation. We have given the wave equation as a simple example of a

hyperbolic equation. To illustrate numerical methods we prefer to use

another less complicated hyperbolic equation, namely

u + cu = 0 u = u(x,t)t x

The pure initial value problem is properly posed for this equation. If

the initial condition is u(x,0) = f(x) for -o < x < o, then the solution

is u(x,t) = f(x-ct) as the reader can easily verify. It is clear that

this solution represents a wave which propagates to the right (if c > 0)

and is unchanged in form as it moves. We can show that "energy" is

conserved in the solution of this equation. This is obvious for this

simple equation since u(x,t) = f(x-ct). However, we will use a different

method to show energy conservation since this method can be applied to

more general cases. We will define the energy by

E(t) = 1½ u2(x,t)dx
-CO

We assume the solution is such that this integral exists. For example,

the solution might vanish outside some interval--the interval may depend

on t. We can then use the same method that we used for the heat

equation to obtain

uu = - cuu
t x

S (u)tdx = 2 (u2)x
-CO -- o
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= - lim [u (R,t) - u (-R,t)] = 06t  2

We have assumed our solution is smooth enough so that lim u(±R,t) = 0.
R-*m

Remember that f u2 dx exists so this is not an unreasonable additional
-00

restriction. Thus we have

BE
bt

or E(t) = E(0) = ½ J f 2 (x)dx
-0O

We will next return to the equation u + cu = 0 and define the
t x

characteristic curves for this equation. These are straight lines

x-ct = K (K is a constant). Along these lines u is a function of t

alone, u(t) = u(K+ct, t). If we take the total derivative of u with

respect to t and use the fact that u is a solution of the hyperbolic

equation we obtain

du dx-=u + u =u +cu =0
dt t dt x t x

Therefore u is a constant along these characteristics. This is the reason

dx
we defined the characteristics to be lines with slope r = c. If we

consider the point (x 0 ,t 0 ), then we see that the characteristic through

this point has the equation x-ct = K = x 0 - ct 0 . The point (x 1 ,0)

where x 1 = x0 - ct 0 lies on this characteristic, therefore u(x 0 ,t 0 ) =

u(x 1 ,0) = f(x 1) = f(x 0 - ct 0 ). The method of characteristics has thus

yielded the solution of the initial value problem u(x,t) = f(x-ct).
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This equation is too trivial to illustrate the power of the method of

characteristics. If we consider a more general equation, u + xu = 0,
t x

we can still use the method of characteristics even though the solution is

no longer obvious.

Perhaps more important the method will yield the solution of the

following initial-boundary value problem.

u + cu =0
t x

c > 0, x 0, t 0

u(x,0) = f(x)

u(0,t) = g(t)

If we take any point (x0 ,t0) with t > 0 and draw the characteristic

x-ct = K = x - ct0 through the point back toward the initial line t = 0,

then this characteristic may strike the line t = 0 or it may first

strike the left boundary line x = 0. The figure below illustrates the

situation.

t

t 3

(x .t )

(x 0 ,t 0)

0 x 1

In the case of (x 0 ,t 0 ) we have u(x 0 ,t 0 ) = u(Xo-ct 0 , 0) = f(x 0 -ct 0 )

as before. In the other case we have u(x 2 ,t 2 ) = u(0,t 3 ) = g(t 3 )

g(t 2 -x 2 /c). If the point (0,t 3 ) lies on the characteristic through2 2
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(x,t2), we have x - ct= -ct 3  or t= t - x2/c. Therefore the

solution is

S f(x-ct)
u(x,t) =

gg(t-x/c)

x 2 ct

x < ct

Problem 1.3-6. Given the problem

u + cu = 0
t x

u(x,0) = f(x)

u(0,t) = g(t)

what conditions should be placed on f and g to insure that ut and u
t x

exist and satisfy the equation along the line x-ct = 0.

Now suppose we have to solve the equation ut + cu = 0 in the

region t 2 0, x > 0 with c < 0.. What are the proper boundary conditions.

The characteristics now slope down to the right as the figure below shows.

t

0

x-ct=K

x

Therefore to obtain a

u(x,0) = f(x). We do

and in fact we cannot

solution (why?).

solution we need specify only the initial condition

not need any boundary condition along the line x = 0,

impose a condition u(0,t) = g(t) and expect to get a
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Problem 1.3-7. Suppose we wish to solve the hyperbolic equation

with c > 0 u + cu = 0 in the region t > 0, O x 1. What are the
t x

proper initial-boundary conditions? Write out the solution in terms of

these conditions. Do the same for the case c < 0.

Problem 1.3-8. Consider the hyperbolic equation ut + xu = 0 in
t x

the region -1 5 x < 1, t 2 0. The characteristics for this problem are

curves with slope dx/dt = x. These are curves on which u is a constant.

Find the equation of these characteristics. Find the proper initial-

boundary conditions for this problem. Write the solution in terms of

these conditions. Consider the initial-boundary conditions

u(x,0) = 1 - x 2 , u(-l,t) = u(l,t) = 0 (perhaps the boundary conditions

are not used). What is the nature of the solution u(x,t), regarded as

a function of x for fixed large t, for these initial-boundary conditions.

Answer the same questions for the equation u - xu = 0.
t x
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1.3.7 Further remarks on the classification of partial differential

equations. Given a system of partial differential equations, how can we

determine whether the system is elliptic, parabolic, or hyperbolic.

Actually a system may not fit into any of these categories. We will next

consider a few examples. Suppose we have a system of equations for the

vector unknown u(x,t) = (u(x,t), ... , uN(x,t)) T

ul 8au au2 uN
t- a -+a + . ++aN aat 11 x +12 ax IN ax

- =+ a + ... + a N
St aNl x N 2 x NN ax

It is quite profitable to write this equation in matrix form where we

regard u as a column vector.

au A au
-= Ax
at a bx

Suppose A has N distinct real eigenvalues (V1, ... , X~N. Then there is
-l

a nonsingular matrix P of eigenvectors such that PAP is a diagonal

matrix whose diagonal elements are the eigenvalues. We will assume that the

coefficients a.. are constants. If we define a vector w by w = Pu, then
13

the differential equation transforms into diagonal form

Pu = PAu
t x

-1
w = PAP Pu = Dw

t x x
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or - = X -
at 1 x

awN awN
at N ox

These equations are no longer coupled to one another, except possibly

through the boundary conditions, and each is a simple hyperbolic equation

which we can solve by the method of characteristics. Therefore it is

reasonable to call an equation u = Au hyperbolic if the matrix A has
t x

real distinct eigenvalues, or if it has a linearly independent set of

N real eigenvectors. If some of the eigenvalues of A are complex, then

A is not hyperbolic. Note that if we have a solution u(x,t) of the

2
wave equation u = c u , and we define v by

tt xx

x t

v(x,t) = ut(',t)dý + c J Ux(0,T)dT
0 0

then u = cv and v = cu . Therefore the wave equation is equivalent to
t x t X

T
the system of equations w = Aw , where w = (u,v) ,t <X

0 c
A =

c 0

The eigenvalues of A are ±c. The elements of A might be functions of

x and t. We would still have a hyperbolic system if the eigenvalues of

A were real and distinct for all x and t and also sufficiently smooth

functions of x and t. We might also have a nonlinear hyperbolic system
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such as ut + uu = 0. This equation has the character of a hyperbolic
t x

equation but the nonlinearity creates many interesting effects. We will

discuss this in a later chapter.

Suppose we look at examples of elliptic systems. Laplace's equation

in three dimensions where u = u(x,y,z) is certainly elliptic.

2 2 2

ax y2 z

We could also consider Laplace's equation in n dimensions for

u(X1,...,xn); that is

-- ... + =02 2ax ax1 n

We could have an elliptic equation with variable coefficients

2 2
a(x,y) -- + b(x,y) - =0

ax2 ay2
8x Sy

where a > 0 and b > 0 for all points (x,y) of the region in which the

equation is defined.

The equation below for u = u(x 1 ,...,xn) where the matrix of

coefficients A = (a.i) is symmetric and positive definite is elliptic.

2
a. u =0
ij ax. ax.

2. 3
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Problem 1.3-9. Let Q be the orthogonal matrix whose columns are

the eigenvectors of A; that is, QAQT = diag(X,...,Xn) where the X.

are the eigenvalues of A. Define the transformation (x 1 ,...,Xn) - (y 1 ,...,yn)

by y = Qx. Show that the equation then assumes the following form

2 y2  2y
X +X, + ... -tX = 0

1 2 2 2 n 2
yl 2 n

Note that the X. are all positive and therefore this is an elliptic1

equation. How does this tie in with the statement that the equation

au + 2bu + cu = 0 is elliptic if and only if b -ac < 0?
xx xy yy

The biharmonic equation

t 4 s4 p4u

2 2 2 + 2
ax ax by by

is also an elliptic equation. Note that this equation can be written as

2V (V2u) = 0

2
where V is the Laplacian operator

2 2

S 2 2
ax by

If we impose the boundary conditions V u = fl(x,y) and u = f2(x,y) on

the boundary of our domain, then the biharmonic equation can be solved in

two steps:
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2

cp = f2S y = f

2 f

on the boundary

on the boundary

An elliptic problem is a boundary value problem rather than a "marching

problem." This fact is of fundamental importance for the numerical solution

of these equations.

Lastly we will look at a linearized version of Burger's equation,

namely

u + cu = aut x xx

u(x,0) = f(x)

(1.3-4)

-oo< x < .

This is a pure initial value problem--no boundary conditions. Since

this problem is defined over the entire real line we will use the Fourier

integral transform to solve it. If f(x) is a continuous function such

that the following integral exists,

S lf(x) dx
-00O

then

f(x) - 2- eia F(a)dcý00
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where F(U) is the Fourier integral transform defined by

lax,

F(a) = f(x)ee dx
.00

The Fourier transform of the derivative (under suitable conditions) is

given by iaF(@). If we take the Fourier transform of u(x,t) with respect

to x, then we obtain

CO

U(a,t) = u(x,t)ei x dx
-00

If we take the transform of the differential equation (1.3-4), then we

obtain

U + iccU = - a 2U

CO

U(a,0) = fJ (x)ee dx = F(Oa)

The solution of this equation is

(-iac-a 2 ) t
U(c,t) = F()e - 0 )

Therefore the function u(x,t) is given by

a 2
u(x,t) = 2 U(ia,t)ea d = F()e(- i a c - 2c ) t + i a x dac

The reader should verify that if a = 0, then the above integral yields

u(x,t) = f(x-ct)
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This is the solution that we have already obtained for the equation

u + cu = 0. If we let g(x,t) denote the solution of the heat equation
t X

obtained by setting c = 0, then

00 2
1a- - at i2cx

g(x,t) - F(a)e e da
-00

By substitution of x-ct for x in the above equation we obtain

u(x,t) = g(x-ct, t)

The function g(x,t) represents a diffusion or dissipation with time of

the function f(x). If a is small, then the diffusion will be slow. The

function g(x,t) is simply a solution of the heat equation u = cu .t xx

When we add the term cu to the equation, we cause this diffused solution
x

to propagate with velocity dx/dt = c. Therefore this equation has a

mixture of hyperbolic and parabolic properties. However, strictly speaking,

it is a parabolic equation as long as a > 0. But the numerical analyst will

have to take the hyperbolic nature of the equation into account particularly

if a is much smaller than c.
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2. AN INTRODUCTION TO DIFFERENCE SCHEMES FOR INITIAL

VALUE PROBLEMS. THE CONCEPTS OF STABILITY AND CONVERGENCE.

Here we will be concerned with initial value problems such as

the heat equation,rather than pure boundary value problems such as

Laplace's equation. In chapter 1 we tried to point out the fundamental

difference between these two types of problems. An initial value

problem is a "marching problem". We solve it by marching forth with a

finite difference scheme, starting with the given initial values of the

solution. In chapter 2, we will deal with the very fundamental concept

of convergence - does the finite difference solution converge to the

solution of the differential equation. It will turn out that convergence

is closely related to stability. Roughly speaking, a difference scheme

is stable if a small perturbation in the initial values produces a

correspondingly small perturbation in the solution of the difference

equation. We will illustrate these ideas by looking at difference

schemes for the simple heat equation

2 2 2
au -a2u (u a2u 6 2)u-=or -= I-+-
at 2 at 2 2

dx 6x ay

or the simple hyperbolic equation

bu au
at + c = 0.

Of course, difference schemes are seldom used for such simple equations.

However, these problems provide us the intuition necessary to set up

difference schemes for more complicated problems. For such problems it

is always important to have a good knowledge of the physics from whence

the problems came. However, it is also important to understand the basic

nature of difference schemes and that is our concern here.
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2.1 A Finite Difference Scheme for the Heat Equation - the Concept of
Convergence.

We will describe a method for solving the following problem:

2
u 2 u

at x x)

u(x,0) = f(x)

We assume f(x) =

u = u(x,t)

0 x < 1 0 t (2.1-1)

u(0,t) - u(l,t) 0

Z a sin rnx where the series Z la l
r=l r r=l r

converges.

If we are going to solve this problem on a digital computer, we

must reduce it to the consideration of a finite set of numbers. The

strip 0 - x - 1, 0 < t clearly contains an infinite number of points.

Thus, our initial step is to make the problem discrete in the x-direction.

That is, we will compute the solution only at the finite set of points

{x.} where 0 < j i J, x0 = 0, x = 1, x. < x . We will take the points

to be equally spaced; that is, xj+ - x. = Ax where Ax = 1/J.

We thus need to restate the problem in terms of this discrete set of

x values. For the time being, we will not make the problem discrete in

time. It will remain on a continuum in the t-direction. We will approxi-

mate the second derivative 2 by the centered three point formulamate the second derivative • u/ax by the centered three point formula

2 u
2ax

u(x+Ax,t) - 2u(xt) + u(x-Ax,t)

x2
Ax

Problem 2.1-1. Show that

2
a u(,t)= (u(x+Ax,t) - 2u(x,t) + u(x-Ax,t))

ax 2Ax 2

S 2A 9b. I'LT tj
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where T(x,t) u 4(T,t)/12, where u 4= I-I < ax .
x x ax

Hint: Use the Taylor series expansion in x of u(x,t). Assume u is

sufficiently differentiable.

We will next use a notation which has become quite standard for

this type of problem. We let u.(t) = u(xj,t). Then we can write our

approximation as follows:

au. u - 2u. +u \
J, _7 I J+ 1  j j-l'1

t Ax2 2 /

u0(t) = u (t) = 0

uj(0) = f(x.) = f

We thus have a coupled set of

for the unknown functions u.(t) 1

(2.1-2)
1 < j - J-I

0 t

1 j < J-l.

ordinary differential equations

< j < J-l.

Problem 2.1-2. Solve the system of equations 2.1-2. Assume
co

f(x) = E a sin rrrx.

Hint: Try u.(t) = Z A (t) sin rrx. and solve for A (t).
r=1 r j
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We must now make the problem discrete in time in order to solve

these equations on a digital computer, One approach would be the

use of a standard integration scheme, such as "Runge-Kutta" or the

predictor-corrector "Adams-Moulton". This is usually not done for

reasons we will discuss later. Instead, we use a less sophisticated

method for solving this system of equations.

We illustrate the method of solution of the initial value

problem for the ordinary differential equation y'= f(y,t) y(0) = y.

Perhaps the simplest way to solve an ordinary differential equation

is the "Euler-Cauchy" scheme defined as follows. We approximate the

time derivative by

y ) v(t + At) - y(t)y (t) = AtAt

where At is the "step size". Then if we substitute into the differential

equation y' = f(y,t) we have

y(n+l) = y(n) +At f(y(n t )yyn

(0) =
y = Y0
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Here we have used the notation

y = y(t ) where t = nAt with n a non-negative integer.n n

The equations clearly define the sequence of values yn) by a "march-

ing procedure", starting with the given initial value y (0)

Now we will use the same "Euler-Cauchy" method on the system of

equations (2.1-2). We use the notation which is quite standard

(n)
u,= u(xj,tn) x. = jAx t =nAt

j J n j n

where Ax is the step size in the x-direction and At is the increment in

the t-direction. We have now made the problem discrete in both space

and time. We will hereafter write uý. instead of u() since it will be

th
reasonably clear that we do not mean the n power of u.. Hereafter,

n
we will usually use a capitol U. to denote the solution of the difference

equations and a lower case u(x,t) to denote the solution of the

differential equation. The marching scheme is now defined by the follow-

ing equations

n+ = U + 7t ( - 2Un + U-) 1 j J-1
U + 2 j+ j j-

0
U = f(x.) = f. 1 < j < J-1 (2.1-3)

U =U =0
0 J

n n n 2 n
Note that the term (U - 2U.n + j- L)/x takes the place of f(y ,t )

in the above Euler-Cauchy formula.
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0 n
We start with the given values U and march ahead to obtain U.. We will

J J

thus obtain an approximation to the values of u(x,t) on the discrete

mesh (x., tn) pictured below

j n

I
t

0 x 1

The fundamental question is the accuracy of the approximation. Given

values of the mesh spacing Ax and At and knowledge of the initial value

f(x), then what is an upper bound for the error in the finite difference

approximation. Since we will not know the solution u(x,t), we would

like the error bound to depend only on the "data" for the problem, namely,

f(x), At, and Ax. Usually, it is impossible to obtain such an "a priori"

error bound. Instead, it may be possible to show that the error approaches

zero as the mesh spacing goes to zero.

To simplify the description which follows, we will denote the vector

n n
u. 0 j b J by u , that is we simply suppress the subscript j. Perhaps

this is not really necessary, since it is usually clear when we are talking

n n
about the component u. and when we mean the vector u

n n n
What we wish to compute is the error vector e = u - U . The thing

of paramount interest to the numerical analyst is the accuracy of his
n

approximate solution, which in our case is the solution U of equation
0 0

(2.1-3). Usually the error is initially zero since u = U. f(x)

0 0 0 n
for 0 < j < J; that is, e = u - U = 0. To compute U , we "march"' forward
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computing Un+1 from Un. Each step in this marching procedure adds a

little error to the result. What we are interested in is the

accumulated error en

It is rather easy to compute the error in Un under the assumption

n n n
that there is no error in U , that is U = . = u(x.,tn) for 0 j < J.

n
We call this the truncation error and denote it by AtT.. The factor At

is used to normalize the definition. Its use avoids an awkward final

n n n
expression for the accumulated error e . If U = u , then from equation

(2.1-3)

n+l n n n n
j = u. + (Uj+l 2u. + Ujl) 0 < j < J

2
where ( = oAt/Ax2

n n+l n+l n+l n+l n n n n
Thus AtT. = e =u - U = u - u - (u - 2u, + u.)

3 j j j j j+l j j-l

for 0 < j < J.

n n
Note that the relation e = en = 0 follows from the boundary conditions.

Problem 2.1-3. Let u(x,t) be a solution of equations (2.1-1). Assume

the following bounds

2 4

1a21 1  1 a4 M2.at Bx

Then obtain the following estimate for the truncation error

2
IT1n A M +2 _x-M.2

jl 2 1 12 2
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Hint: To obtain this result, use a Taylor series expansion with remainder.

An expansion in t for fixed x yields

u., 2 a uj
u.(t + At) = u.(t) + At't(t ) + (

Sn tnt n 2 2
6t

where tn -! t + At. We used the notation u.(t) = u(xj,t). Similarly

we can obtain an expansion for the space difference.

n n n
u+ -2u. + u_ 2 n 2
+l j j-1 a (x) 224

2 2 J + 24-
Ax 8x

44 u
6x4 A)

where x 1 2 + x . If we use the fact that u(x,t) is a solution

of the differential equation, we obtain the result.

Note that we were able to obtain an expression for the truncation

error in problem 2.1-3 rather easily. To evaluate this expression, we

must know the unknown solution u(x,t) which seems to lead to a circular

argument. After all, if we knew u(x,t), we would not be trying to

compute it. However, the bounds M1 and M2 depend only on the solution

u(x,t) and not on the mesh. From such an expression for the truncation

error, we will be able to prove that the finite difference solution

converges to the solution u(x,t) of equation (2.1-1). We will obtain

n
an expression for the accumulated error e in terms of M1 and M2. We

n
can show that e approaches zero as the mesh spacing goes to zero.

However, we cannot evaluate the error for any particular mesh without

knowledge of M1 and M2.

We may write our definition for the truncation error in the more

common form
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n+1 n n n n n
u. = u. + P(u - 2u + u. ) + AtT (2.1-4)

j j j+l j -1 t j

Note that its evaluation depends upon a knowledge of the unknown solution

u(x,t). Also, note that the error AtT is not the error produced by

th st n n
stepping ahead from the n to the (n+l) time level, unless U = u

th
The difference solution must be exact on the n level.

The semantics of our definition leads us to the following specious

argument. Since the truncation error is the error in each step, then

the accumulated error is s imply the sum

n-1
n k
e.= Z AtT. 0 < j < J.

S k=0

k nT
If we have a bound T for the truncation error (IT. < 7), then e. T.

j j

Note that nAtT = t T TT.
n

The bound in problem 2.1-3 then yields

aM\
n 21 2

e. T TqM +- Ax2 < j< J.y 201 12
n

Thus, we have convergence since the error e approaches zero as Ax goes

to zero. However, the first step in this argument is not correct (why?).

n n n
We proceed to obtain an estimate for the error e = u - U . By

substraction of equation (2.1-3) which defines the finite difference

scheme and equation (2.1-4) which defines the truncation error, we have

an expression for ean expression for e.
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Un+l n n+ U

J j j+1

t+l n nu+

j j j+I

n+1
e.

J

n n
e= e + 4e

3 J+1

-2Un +nn n
- 2u +

n i-
- 2e. + e.3 J-1

n
+ AtT.

n
+ atTJ

(2.1-3)

(2.1-4)

0 < j < J.

Now we use the maximum principle to bound the error. Taking the absolute

value of both sides of the last equation, we obtain an inequality

n+1 n n n n
lej <1-2 ejI +1 ej+1 +@ejl +At 7Tj

n n
Now we let e denote the value of the largest component of the vector e

that is

n n|
S= Max le.

0<j<J J

We now require that p < ½. We will discuss the significance of this

requirement later. For the present, we simply observe that we cannot use

the maximum principle without this requirement. Taking the maximum of

both sides of the above equation over the mesh index j, we obtain

n-l n n n n
e" 1 < (l-2p) e + p P + Pe + At Maxla.

j J

Observe that Maxju. + w. < Max u.l + Maxlw.. and 1 -241 = 1-2p since
J J JJ J
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Now we assume that we do not integrate past t = T, that is nAt < T.

We let

T = Max IT n.
0<j<J

nAt<T

A bound for 7, in terms of the unknown function u(x,t), is provided by

problem 2.1-3. The above inequality thus becomes

n+l n
e < e + AtT

By induction we have

n n-1 n-2 0
e + AtT + t 2AtT < ... e + nAtT.

0 0 0
But e = 0 since U =u , thus

n n nMax u. - U TT
O<j<J J

2
We have assumed c = cAt/Ax to be less than ½. We will also assume that

4 is a constant independent of Ax. Then if we fix the number of mesh points J,

At is determined by At = p4Ax2/C = p/(4J2). Thus, we can speak of a limit with

respect to Ax; we need not consider At separately since At is determined

by Ax. Of course, not all values of Ax are allowed since Ax = 1/J. We should

really speak of our mesh as being a function of J rather than Ax.

In problem 2.1-3, we obtained a bound for T, namely

2
At 2

2 1 12
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2
Using p = cAt/Ax we have

T -M1 +~I Ax2

Therefore

n n2
Max u. - U.I CAx

0<j<J
nAt<T

_ M2
where C = T •~M + 1

We have no way of evaluating C unless we know the unknown solution u(x,t)

since the constants ML and M are bounds for the derivatives of u(x,t).
£ 2

However, the value of C is independent of the mesh and of the finite

difference approximation. It depends only on the solution of the equation and not

on our scheme for approximating the differential equation (except for the

constant p). This permits us to say that our scheme is convergent, that is

lim Un
lim U = u(x,t). (2.1-5)
Ax-O ]

nA t- t
jAx- x

The existence of the above limit means that given x, t and > 0, we can

find a 6 > 0 such that if Ax < 6, nAt-ti< 6, and |jAx-x| < 6, then

Un - u.< e. In this case, 6 is independent of x and t, 6 depends only

on e. Therefore, we have uniform convergence. However, we do not have,

strictly speaking, an error estimate. Even though eI CAx 2 , 0 < j < J,

nAt < T, we are unable to evaluate C without knowledge of the solution

u(x,t). What we have is an asympotic error estimate.
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That is, we have

n 2
Utl = u(x.,t ) + 0(x 2 ) 0 < j < J, nAt • T.
j j tn) natT

Note: we write f(x) = 0(x) if there is a constant C such that If(x)l - Clxi

for sufficiently small x; that is, we say f(x) is of order x at zero.

We have demonstrated the convergence of our difference scheme by

use of a maximum principle argument (which works only because the

coefficients in our finite difference scheme are positive). Next, we

will prove convergence by use of the Fourier representation of the

solution of the difference scheme. This will give us considerably more

insight into the behavior of the difference scheme.

In chapter 1, we obtained a solution of the heat equation (2.1-1)

by separation of variables. We might briefly review this. If

u(x,0) = f(x) = ak sin rrkx then we look for a solution in the form

u(x,t) = Ak(t) sin rkx.

By substitution into the heat equation, we obtain an ordinary

differential equation for Ak(t), namely

dAk 2k2A
d-- = -o kdt k

Ak(0) = ak
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The solution of this equation is

2k2
Ak(t) = ake- k t

and thus

2k2
u(x,t) = ake sin nkx.

The heat equation is linear. Thus, if v(x,t) and w(x,t) are solutions,

then u = Av + Bw is also a solution for arbitrary constants A and B.

Therefore, if

m
u(x,0) = f(x) = E ak sin nkx

k=l

m 2 2
-crr k t

u(x,t) = Z ake sin rkx
k=l

the desired solution. If we make the

be a little careful, since we must be

and differentiation, that is

then

is

above sum infinite, then we must

able to interchange the summation

at at .k=l k=l

This is certainly possible if t > 0. Thus, we have a solution for our

problem in terms of a Fourier expansion.

We will now obtain a solution of the difference equation (2.1-3) by

0 n
the same technique. Suppose U. = ak sin Tkx. Assume U = Ak(n) sin .kx,

j k =A(n) sin rkx,
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then we must solve for the sequence of values Ak(n). Note that

sin rkx. - 2 sin nkx. + sin nkx
j+1 j j-

2 Tk
= -4 sin sin nkx.

2J j

n
Therefore, if we substitute our expression for U. into the difference

scheme (2.1-3) we obtain

Ak(n+l) =
/ \

2  
k

S- sin2 k A(n)2J Ak(n)

Ak(0) =a k

If we make the definition

2 kT
M(k) = 1 - 4p sin 2

then the solution of the above equation for Ak(n) is

n
Ak(n) = [M(k)] ak

th
That is, raise the constant M(k) to the n power to obtain the

solution on the nth time level. Note that Ak(n) = M(k)Ak(n-l) =

[ M(k)] (n-2) ... =(k)(k)nAk(0). Therefore, the solution of the

0
difference scheme is (for U. = f(x.) = a sin rkx.)

n
Un = a [M(k)] sin nkx.
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Thus, we may regard M(k) as an amplification factor. It depends on the

frequency k of our Fourier mode. It also depends on the mesh ratio

2
S= oAt/Ax and on the mesh spacing Ax = 1/J.

If f(x) = Z a sin rkx then
k=l

we can use the linearity of our finite difference scheme to write the

solution as

00 nn r
U = k a LM(k)j sin knxj

k=l k

Since our amplification factors are uniformly bounded

JM(k)I 11+4ýI and since we have assumed E lakl < m we know that
k=ln

this series will converge. Therefore U. is a solution. Since a finite

difference operator will always commute with an infinite sum, unlike a

differential operator, we do not have the same concern that we had with

the heat equation itself.

Now we are ready to consider the convergence of our difference scheme.

We first look at the case of a single mode that is f(x) = a sin rkx.

We need the following result.

Problem 2.1-4. Let f(x) be a complex valued function of the real

argument x such that

lim f(x) = a
x-0
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then

n at
lim (l+xf(x)) =e .
x-0

nx->t

We need to consider the behavior of the solution U as Ax approaches

2
zero. We assume the ratio 7 = 0At/Ax is a constant. Then At is

determined by Ax and At-.0 as Ax-0. Note that Ax = 1/J.

Problem 2.1-5. Show that our scheme converges for a single mode, that is

im U = u(x,t).
Ax-0 ]

nAt- t
jAx-*x

The meaning of this multivariable limit is hopefully clear. It was

defined for equation (2.1-5). Note that

n'2k n
U = a 1 - 4 sin2 n sin kx.j k L 23

2 2
-aO k t

u(x,t) = ake sin rkx.

Now for an interpretation of this result. The above problem shows

that we have convergence regardless of the value of . Note that for

small enough values of kAx we have

.2 rkAx 2I- 2 2.
1 - 4 ~ sin 1 - O k At.

Therefore, the amplification factor M(k) is less than one, if Ax is

sufficiently small (note that k is fixed). This statement holds regard-

less of the value of p. Our solution has the form
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n
U = ak M(k) sin rrkx

j J

and therefore Un-O as n-=0 for a fixed k and fixed Ax provided

Ax is sufficiently small. Thus, the solution of the difference

scheme has the right behavior as the discrete time n approaches infinity -

the solution decays to zero. Now suppose p > ½. Then for a fixed but

small Ax we can always find a frequency k such that IM(k)l > 1, simply-in n
take k so that sin (rkAx/2) is close to one. But then LM(k)nJapproaches

infinity as n becomes large; the mode for this value of k will grow

rather than decay. If there are only a finite number of modes present

in the solution, then we can always take Ax small enough so that M(k)

will be less than one for all these modes. Then the solution of the

difference equation behaves in a reasonable way; it decays to zero as

n approaches infinity. However, if 4 > ½ and an infinite number of modes

are present in the solution (that is f(x) = Z ak sin krx and ak# 0 for

infinitely many k) then some of these modes will grow, no matter how

small we take Ax. We can no longer base our argument on the behavior

of a single mode. We cannot expect convergence in this case, since there

will always be some modes which are growing at an exponential rate. Note

that if pL 2 ½ then IM(k)I r 1 for all values of k.

We have here the notion of stability, which is basic to the use of

finite difference schemes. We say a scheme is stable, if the solution Un

remains bounded independent of the mesh spacing Ax. That is, there is
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a constant C such that HIUn 1  C ! UO for nAt < T independent of U and

Ax. Here |Un denotes some suitable measure of the "size" of Un

such as its Euc.lidean length unl or its largest component Max Un
j=0

We will have much more to say about this concept of stability later.

Another way to look at this concept is to note that a small perturbation

in the initial values UO should produce a correspondingly small perturba-

tion in the solution Un. For the present, we simply note that under

suitable restrictions, a stable scheme is always convergent.

We will let the reader prove that our scheme is convergent if < 2

and will diverge, at least for some f(x), if 4 > ½.

Problem 2.1-6. If p = .55, J = 100 and lakl > 0 for all k, then find the

lowest frequency mode which will amplify under the difference scheme (2.1-3).

Problem 2.1-7. If p < ½ and

f(x) = Z a sin nkx where Z lak < m
k=l 1

then prove convergence, that is

lim U = u(x,t).
Ax-O0

nAt- t
j Ax-'x

Hint. We have

00  nn 2 n2xk
U = ak[M(k) sin nkx M(k) = 1 - 4|j sin Ax

J k=l

Show that if p, < ½, then the above series converges uniformly.



2.20

Then note that

co

lim U = E
Ax-0 J k=l

= L
k=l1

nr-
lim ak M(k) sin rrkx
Ax-.0 

L

2 2
-CTT k t

ake sin nkx = u(x,t).k

This problem provides an excellent illustration of the necessity for care

in the use of the calculus. We really need the uniform convergence. If

we assume that-.W can interchange the limit and the infinite sum

lim E = E lim, then our difference scheme is convergent regardless of
Ax-0 k=l k=l Ax-0

the value of . This would be an erroneous conclusion.

Problem 2.1-8. In problem 1.2-37 we have shown that for integers k and m

J | if k m+2rJ
Z sin nkx. sin nmx. = (0 in kx sin 2 where r is an integer

^ 0 otherwise

Remember that x. = 1/J. Now assume
J

g(x) = ak sin nkx, EZak < o
1 1

Then show

1 2
S g (x.) = E

j=0 k=l r=-co
k+2rJl 1

k k+2rJ
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The solution of the difference scheme is given by

co

Un = Z ak Mn(k) sin Tkx.
S k=l J

M 2 TkAx
M(k) = 1 - 4p sin --2

Show that

ij j=

2

N 1
- k=k=l r_-co

r=-Jlk+2rJ1l
Mn (k) ak+2rJk 2r

Problem 2.1-9.

given by

Assume that p > ½. Assume that initial function f(x) is

f(x) = Z ak sin krrx
k=l

1
where ak = -

kP

with p an integer p 2 2. Then show that the finite difference scheme

does not converge uniformly. Hint: If U. converges uniformly to

u(x,t), then show that Z (U must be bounded independent of n and

Ax. Then use problem 2.1-8 to show that this sum is not bounded if

M > 5.

To illustrate this problem of stability, we programmed the scheme

of equations (2.1-3) for the computer. We used the initial function

u(x,0) = 4x(l-x) and 41 points in the mesh (J=40). We plot the vector

U for the values of T = nAt shown on the graphs. The graphs were

drawn by the computer (a CDC 6600) using a microfilm recorder (the CDC

dd80). We made two runs, one for 4 = .45 and one for i = .55. The

instability is quite obvious. It is also quite mysterious, if one
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does not go through the type of analysis that we have just completed.

The instability has nothing to do with the physics of the problem

from which the heat equation might have been derived. It is a property

of the finite difference scheme and thus cannot be explained by looking

back to the physical origin of the problem. (See Fig. 2.1-1 and 2.1-2.)

The study of this finite difference scheme gives us a good idea of

the relation between stability and convergence. Let us assume that

C O CO
f(x) = ak sin rkx where E ak < oo

1 1

We will assume that infinitely many modes are present; that iJ, given any

k we can find k > k such that ak 0. If kLx is small, that is
0 0 k

kAx << 1, tnen a tinite difference approximation to the second derivative

of sin nkx will be a good approximation. Thus, for a given single mode

sin rkx, we might expect the finite difference solution to converge to

the solution of the heat equation. This is exactly what happens,

regardless of the value of , as we have shown in problem 2.1-5.

However, we have infinitely many modes present. At a given Ax there

are always some modes foi which ak / 0 and kAx is large. Since kAx

is large, we cannot expect the finite difference approximation of the
Co

derivatives to be valid for these modes. However, the series Z ak1
ko k=l

is convergent, therefore, lim Z lakl-~0. If we take Ax small enough the

k-lower frequency modes k=K
lower frequency modes (kAx « 1) will be accurately represented by
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the difference scheme. If . lak << 1, then the error due to inaccurate

k=K
treatment of these higher modes will be small, simply because their

total contribution to the solution is small. However, this is true

only if the finite difference scheme does not permit these higher modes

to grow. If the mode in the finite difference solution is given by
n

M(k) ak and IM(k) >l then this mode can become large even if ak is

small. Also, this mode is not accurately treated by the difference

scheme, if kAx is not small. Therefore, the error contribution from

this mode can become large. This leads us to the requirement of

stability; namely, llUn l M ||UO where M is a constant independent of

the mesh spacing and independent of the initial vector U . A stable

scheme permits only a modest growth in any mode. The stable difference

scheme may not accurately represent the given mode, but at least there

is no exponential growth of the mode.

As we have seen, an unstable scheme may converge for some initial

functions f(x) (see problem 2.1-5 and problem 2.2-8). However, an unstable

scheme is useless in practice, even for these initial functions. An

unstable scheme will amplify roundoff error on a computer. This error

is small initially, but it will grow exponentially and eventually

ruin the solution. Note that roundoff error tends to be high frequency

and will therefore usually amplify rapidly with an unstable scheme.
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2.2 Difference Schemes for a Hyperbolic Equation

Here we will consider the following simple hyperbolic differential

equation:

au bu
-+c 0 u = u(x,t) (2.2-1)

-1 x 1 0 < t

u(x,0) = f(x)

u(-l,t) = u(l,t)

We have imposed periodic boundary conditions u(-l,t) = u(l,t). This is

usually unreasonable from a physical point of view, but it does simplify

our analysis of the difference scheme. If the function f(x) is defined

for all x(-co < x < o), periodic (f(x+2) = f(x) for all x), and differentiable,

then the solution of this problem is u(x,t) = f(x-ct).

Now we will consider two difference schemes for this problem.

The mesh is defined by the points x. where -J < j < J, x. = j/x, Ax = 1/J.

The values of u(x,t) are sought at the points (x.,t ) where t = nAt.
j n n

The solution of the finite difference scheme is denoted by U. and is an

approximation to u(x.,tn). Just as for the heat equation, we use a capital

U to denote the solution of the difference equation and a lower case u to

denote the solution of the differential equation.

Our experience with the heat equation suggests use of the same scheme

for the hyperbolic equation; namely, a forward difference in time and a

centered difference- in space.
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n+l n un nU - U U - U
S+ c +  01 - = 0 -J • j • J (2.2-2)
At 2Lx

U = f(x)
J J

n n
Ui = U for n 2 0 and -J < j < J
j±2J j

As we will now explain, the last equation is an expression of the periodic

boundary conditions. If we look at the above scheme for j = - J, we see

that the value Un is required for the approximation of the spatial
-J-1

derivative. This value is an approximation to u(x , tn), but the
-J- l n

point xjl = (-J-l)Ax - - -Ax lies outside the mesh interval. To

resolve this problem we use periodicity; that is, we assume u(xi2,t) = u(x,t).

n = n
In the finite difference scheme this becomes U = U, for all j. Thus

J±2J j
n n

we have Un = U and x does lie in the mesh interval. Similarily,
-J-1 J-1 J-1

we let Un = U and then the difference scheme (2.2-2) is defined for
J+l -J+l

-J < j • J. Note that we need compute U. only for -J < j < J since
J

n n
the periodicity condition gives us U U .

J -J

0 0
Problem 2.2-1. Assume that f(x) is periodic, then U = U

-J J

Suppose we compute U. from equation (2.2-2) for -J < j < J (then we
J

nn n
do not use the condition U = U ). Next, suppose we compute U. from

-J J J

equations (2.2-2) for -J < j < J and use the condition Un = U . Do-J J

we get the same result? Or to phrase the question differently, are we

being consistent in our treatment of the boundary condition?
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We will show (problem 2.4-3) that the "forward-centered" scheme given

by equations (2.2-2) is not stable, and therefore it is useless.

We will now describe a stable scheme for this problem.

n+1 - +n n
J U-l +U.I U - Un_

2 __. __l_
+ c 1  = 0 (2.2-3)At 2Ax

U = f(x)

n n
U J -J j J
ji2J j

The only difference is in the approximation of the time derivative.

n n Un
Instead of using U , we have used U + U•).J +1+J1)

We may write the first scheme as

U+1 n - (U+ - -) (2.2-4)

and the second as

n+1  + U - - Un (2.2-5)

where X = cAt/Ax. We will assume that the mesh ratio X is held constant

2
during an integration, just as p = oAt/(Ax) was held constant for the

heat equation. Note that the above equations clearly show that if we

are given the vector .U0 ,then we can obtain the vector for any

simply by marching forward starting from UO. We will need the truncation

error for these schemes. Remember that the truncation error Tn is obtained

by substitution of the solution u(x,t) into equations (2.2-4) or (2.2-5)

and equating the remainder to AtT..
J
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Problem 2.2-2. Assume that the solution of equation (2.2-1) has

td
continuous 3 order partial derivatives. Suppose

2 2 3
-t 1 M4, - M2, 2 - 3 M3 for Ixltl, t < T.
6t2 ox ox

Then show that a bound for the truncation error for equation (2.2-4) is

M1I IcIM3  2
i7nN --- At +n---ax

j 2 6

and for equation (2.2-5)

II M1 I icM3 2
I T 51 At + M2x +- x

j 2 2X 2 6

We can use the maximum principle to prove that the scheme given by

equations (2.2-3) converges. If we rearrange (2.2-3) we have

Un+l Un + n 1 X
j j-1 j+ 2 2

n+l n n nu. = au + (l-a)u + At T ..J .-1 j+1 j

n
Problem 2.2-3. Asrume that the truncation error T. in the above

J

equation is bounded, IT.! • T for all j and for nAt • T. Using the max-

imum principle, show that the error e(n) = Maxju. - U is bounded by

e t T, t - T.
n n

Note that this result implies convergence, since problem 2.2-2 shows

7 = 0(Ax) and thus lim T = 0.
Ax-0

Next we will prove convergence for the scheme by use of a Fourier

expansion just as we did for the heat equation.



2.28

Given any sufficiently respectable function f(x) -1 < x < 1 we can

expand it in a Fourier series

ikrx
f(x) = Z akT

k=-CO 
k

1 \iknx
where a = f(x)e-

-1

If f(x) is real valued then a = ak where ak denotes the complex conjugate

of ak'

We will assume that our function f(x) is smooth enough to insure the

series Z klaki converges (that is Z klakl < C ) although we may not
k=-00 -0O

always need this.

0
Next we assume that U is given by a single Fourier mode, that is

inkx.
0 iTTkx

U. = ake , -J < j J.

The solution for this simple case will provide considerable insight into

the general case.

Problem 2.2-4. Let Un be a solution of equation 2.2-3 (or equation 2.2-2)
J inkx

where U 0 f(x.) is given by U
where U = f(x) is given by U = ae . Show that U. is given by

J J J

inkx.
n n j

U. = ak(Mk) eJ k

where Mk = cosnkAx-iXsinnkAx for equation (2.2-3)
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and Mk = l-i-sinrrkAx for equation (2.2-2).

Next we will show that the scheme given by equations (2.2-3) converges.

Problem 2.2-5. Let Mk = cosTkAx-iXsinrkAx for the scheme (2.2-3).

Assume hI < 1 (X = cAt/Ax). Then show I|k < 1.

Problem 2.2-6. Assume that h is a constant. Then show that

lim Mk(Ax)n = e-iTkct
Ax-0

nAt-t

Note that Ax = 1/J and since J is an integer Ax cannot take on arbitrary

real values in the finite difference equation. We could write the above

limit in terms of J and thereby stay closer to the difference scheme.

Note that if we fix Ax, then At is fixed by X = cAt/Ax. Thus the require-

ment nAt-it merely fixes the rate at which n goes to infinity as Ax-0.

We could simply set n equal to the integer part of t/At = tc/(hAx) = Jtc/X.

Problem 2.2-7. If jxJ < 1, then show that scheme 2.2-3 is convergent,

that is

CO
n -iknT(x-ct)

lim U = ake u(x,t)
Ax-O k=--o

nAt- tx.'xX .- X
J

Problem 2.2-8. Let the initial function f(x) be given by

ikrrx
f(x) = Z ake ak = l/k.

and let X have any fixed nonzero value. Show that the scheme (2.2-2)

converges for this f(x).
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2.3 Representation of a Finite Difference Scheme by a Matrix Operator

In this section we will study finite difference operators using

concepts from matrix theory, especially the norm of a matrix. To

simplify our notation, we will frequently replace Ax by h and At by k.

This is a standard practice in the literature on difference schemes.

We will first consider the following difference scheme for the

heat equation which we studied in section 2.1.

n+l n n n n 2
Un = Un + .(U+ 2U +U ) = k/h2 0 j < J

n = Un = 0 U= f(x)
0 j j (xj

If we denote the vector IU- 1 1 j J-1 by Un, then we may write the

above equations in matrix form

n+l nU = hU

where the matrix Lh is given by

0 1 -2p p 0

. . . . . . . . .. .. 0 -2

(2.3-1)Lh

1 1 el .f-
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Note that Lh is a symmetric tridiagonal matrix. We use the subscript

h in the notation for the finite difference matrix, because the order

of the matrix depends on h (h = 1/J and the order is J-l). For some

difference schemes the terms of the matrix will depend explicitly on h;

here we assume 4 is a constant independent of h.

Next we might look at the two schemes we have used for the simple

hyperbolic equation U + CU = 0. The first is equation (2.2-2).
t x

n+l Un U n  - Un) = ct
j j 2 2 j+l j-1

-J <j <J

n n
j+2J j

The matrix equation is U n+ L Un The matrix L and vector Un are given

The bym
by

1 -- 0 x
2 2

1 - 0 0
2 2

I x

2 . . . . . . . . . . 0 2 1

n
,U =

n
U--j

n
U-J+

2

n
J-1

The other scheme for this equation is

n+1  n n n n
j j+l j 2 j+ j-.1

Lh

The other scheme 
for this equation 

is

Un+l 
= ½ 

+ Uj_ 
(Uj 

n • 
•k (unj+l 

- un •j-

3 

+i
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and the matrix is (a = ½ + -)
2

0 a 0 I-C

l-c 0 a 0 0

a 0 .. . . . ... 1-cY 0

,Un

n
1-J
n
-J+2

n
UJ I

J-1

Next we will recapitulate the properties of a matrix norm. First

the vector norm. Given a vector (possibly complex) u = u- 1 - j < J

J 2
we define the L norm by IUI2  2 IU.I , the maximum norm by Max u. ,

2 2 -j=l lj<J J

J
and the L norm by |luI 1 = Z uj . These norms all provide a measure of

j=0

the "size" or "length" of u. Given any vector norm, we can define an

induced matrix norm. If A is the matrix, then the norm of A is defined by

I lAu| MI(A = max A = max JAul
II-l .o U0 1  1ýu =1

The norm used on the right is the vector norm from which the matrix norm

is induced. The matrix norm is a measure of the maximum expansion caused

by the mapping Au of the vector space into itself. Important inequalities

for the matrix norm are the following (A and B are square matrices, u a

vector)

IIA + BI < IIAI + IIBI

iIABIJ 1 IIAI I Bi

IIAull I< iAi iiuii

Lh
I I
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There is an obvious relation between the eigenvalues X.(A) of a matrix

A and the value of its norm ||A |, namely, IX.(A)I 5 Al. We define the

spectral radius o(A) of a matrix A to be the maximum modules of its

eigenvalue,

o(A) =Max IX.(A)I
J

then c(A)< | Al.

The three matrix norms mentioned above can be characterized by

iT TiAl 2 = 1/(A A) A denotes the transpose of A

J

IA = max a. ij
i j=l

J
AI = max Z a..1

j i=l

For a symmetric matrix [AII = o(A).

Next we will study the matrix which defines our finite difference

scheme for the heat equation. This is the symmetric, tridiagonal matrix

given in equation (2.3-1). Note that this matrix Lh has order J-l.

2 2
The mesh points are x. = jh, 0 - j < J, h = Ax = 1/J, 4 = At/Ax = k/h.

Problem 2.3-1. Verify that the eigenvalues of Lh (equation 2.3-1) are

2 r
X = l-4psin (nrh/2) and the eigenvectors QUj, = sinTrrx. where 1 • r < J-1

and 1 < j < J-l. Show that
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1l-4psin -- <<2
2

"A2  ( 2 T(J-l)

4psin 2J >

(i =½
4p-1 >

Now we are ready to talk about stability. First the definition:

We assume that we have a finite difference scheme represented by a matrix

0
operator Lh. We are given the initial vector Uh and succeeding vectors

n+l n
are defined by U = LU . Here we use the subscript h to denote the

fact that the vectors and I:he matrix depend on the mesh spacing. As h

approaches zero, the order of the matrix approaches infinity. We are

not working in a vector space of fixed dimension. We say the scheme

n+ = LUn is stable provided there is a constant M such that

lU < M IU for all U0 , all h > 0, and all n provided nAt < T. The
h

0
constant M must be independent of Uh, h and n. However, M may depend on

n nO
the time limit T (we require nAt = t < T). Since Uh = U ourn h h
stability requirement is the same as placing a bound on the power of L.

We could require a constant M, such that IL|l < M for nAt < T.

Why is this concept of stability so important? One reason is the

Lax-Richtmyer theorem which states that a stable scheme with sufficiently

small truncation error is a convergent scheme. We will consider this

theorem in section 2.5. Stability has another very important consequence.
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It insures that a difference scheme is not unduly sensitive to small

perturbations. For example, the effect of roundoff error is that of a

small perturbation on the finite difference calculation. Suppose we

n

let U denote the solution of the unperturbed equation Un+l = LhU .

We let V denote the perturbed solution. What do we mean by

a perturbation? For one thing, we could have a

0 0 0 0 0
perturbation E in the initial data, that is V = U + E . Let e

0 0 0 01
denote the magnitude of the perturbation. Then 0 = U - V0 = E

We might also assume that we have a perturbation at each stage of the

n n+l n n 0 0 0
solution denoted by p , thus V h= + p V U +E . For

example, roundoff error creates such a perturbation as we will see

in section 2.6. Suppose we let e = Vn - Un denote the error result-

ing from this perturbation. We also suppose that we know an upper

bound for these perturbations; thus Ip nl < p for some constant p.

We would like to obtain an estimate for the error en in terms of

0
e and p. We have the following equations

n n-lU =LhU

n n- I n-1v =^ +p

n n n-1 n-1 n-1V U (V PU ) +p
n n n

Therefore, if we let E = V - U,

En = LhEn-1 n-1

n-1 n-2 n-2
E = LE + p
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If we combine these equations we obtain

En nEn-+2 n-2 n-I
E= L Lp + p

If we continue this process by induction we obtain

En L EO+ n- 1 0l n-2 1 + -3 2 +n-E + p + Lh P + + .. + P

Now if we take the norm of both sides and use the fact that I|AB'' < Ai ,B}

and iiA + B| < Ai + |IB|l we obtain

Sn0 n-l n-2 -Now suppose the sheme is s1 able, the 1  for al p  A o, by

Now suppose the scheme is stable, then |L| < M for all n. Also, by

assumption nlp < p.

Therefore: en 5 Me + nMp

0

This is our desired estimate of the error in terms of e and p. For

this estimate to be useful, p must be small enough so that np does not

become large; for example, p might depend on At such that p < kt for

some k. Then if nAt < T, np < KT.

n-I 0
If the scheme is not stable, then Lh p may become large. For

example, if Lhl > 1.2, then growth at the rate 1.2 (n-) is possible.

4
It is worth pointing out that n frequently exceeds 10 in some initial

200 16
value problems and (1.2) 10 . In section 2.6, we show an example

of the disastrous growth of roundoff error for a unstable scheme.

What we have demonstrated is that a stable scheme is not unduly sensitive
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to a small perturbation - hence, the name stable. Note our essential

use of the concept of norm, not only for proofs, but for the definition

of stability. This concept is a valuable tool for the understanding

of stability.

We terminate this section with some problems to illustrate

the concept of a matrix norm.

Problem 2.3-2. If Lh l 1 + kAt, then I eekT provided

nAt < k.

Problem 2.3-3. Find a matrix A whose spectral radius is unity,

c(A) = 1, but such that IAAn1 l 1 n.
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2.4 Analysis of Schemes for Linear Problems with Constant Coefficients and

Periodic Boundary Conditions - the Use of Finite Fourier Analysis.

We will restrict ourselves to initial value problems with a single

unknown function u(x,t) on the interval -1 < x - 1. The initial function

is u(x,0) = f(x). We assume the problem is periodic u(x i 2,t) = u(x,t),

f(x i 2) = f(x). The mesh is the set of points x., -J - j < J, x = jh,
J J

n n
h = 1/J. We assume the periodicity condition U = U . We assume

J±2J J

the finite difference scheme can be written in the form given below.

n+l n
Un+1 = E C U (2.4-1)

S l V j+j

In the case of the scheme defined by equations (2.2-4); s = 3, C1 = 1,

= , C2 = -X/2, j 2 = 1, C3 = X/2, j 3 = -. For the scheme defined by eon(2.2-5);

s = 2, C1 = 1/2 - X/2, j= 1, C2 = 1/2 + /2, j 2  -.

Some of the values j + j may lie outside the allowable range -J < j+j ' J.

We invoke the periodicity condition to bring these values back into range.

For example, consider the finite difference scheme defined by equation (2.2-3).

n+l n + Un
U. = cU. + (l-c)U -J j < J.

j j-1 j+I

When j = -J the value U = U is outside the range. But
j-1 -J-1

U = U = U which lies inside the range. Thus, the equation
-J-1 -J-1+2J J-1

above for j = -J becomes

n+l n n
U = 'U + (l-)-)U
-J J-1 -J+1
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We will need to use a finite Fourier series to represent our

mesh functions Un. Given a smooth function f(x), -1 < x < 1, it can

be represented by an infinite Fourier series

CO
iTTkx

f(x) = E ake
-0O

n n
We are dealing with discrete functions U. J - j < J or vectors U

m .m
We will define a set of vectors cp = -J - j < J, 0 • m < 2J such

that given any vector fu there is a set of coefficients a (these may be
L jJ m

complex) such that

2J-1

U. = Z a mP (2.4-2)
m= m

Furthermore, the following orthogonality condition holds

J-1 0 n m
J nl pm T (2.4-3)

j j j 2J n =m

The coefficientsa are given bym

J-1
a = -- U. p (2.4-4)

m 2J jj

Thus the set - of vectors forms an orthonormal basis for the 2J

n
dimensional complex vector space in which our vectors -ujn lie.
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Problem 2.4-1. Let pm be defined by

inrmx.
m j
p. = e
J

x. = j/J.
J

Show that the orthogonality condition of equation (2.4-3) holds. Show

that if the coefficients a are given by equation (2.4-4), then equation
m

(2.4-2) is true. Also, show that equation (2.4-2) implies equation (2.4-4).

Hint: 2J-1 i
inmj /J

Z e
j=0

2J-1- 2JE 1- Z= =- = 0if Z 1.
l-Z

j=0

Problem 2.4-2. Let I|UI| denote the L norm of the vector U

J-1
UII2 1 J IUj2

2J=.j
j=-J

Suppose the Fourier

2 1
Then show [|u| = 2-

2J

2J-1
representation for U is U = 2 a cp

2J-1 m= m

E la m 2 .
m=0

We can use the finite Fourier representation to study the stability

of the difference scheme given in equation (2.4-1). We first assume

that Un is equal to one of our Fourier modes cpm

irmnx.
n m j

U. = = e
J J

-J • j < J

Then Un+l is equal to this same Fourier mode multiplied by a complex

constant which we call an amplification factor
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s irrmhj iTx.
U = c e e

J v=1 v
= Ah(m) cp

Note that x.j = x. + j h. The reader should verify this formulaby

substitution into the difference scheme of equation (2.4-1).

For example, consider the difference scheme

n+l n n
U.= cU. + (l-c)Un

j J-1 j+I

The amplification factor for this scheme has already been determined in

section 2.2 and is given by

Ah(m) = cosnmh + i(l-2)sinrmh.

Now suppose
2J-1 i Tmx.

n m m ]
U is given by the sum E a cp where p = e

m=0 m J

n+l
Then U. = Z

v=l

s 2J-1 2J-1c Un m
c U. = c a cp = Z
V J+jv v=1 V m=0 m v m=0O

s
m

a Z c p. +jm z1 V J+jV=1
2J-1Un+l 7

U+ = Z=
J m=0

am (m)cpm

Thus, to go from the nt to the n+th level, we simply multiply the

amplitude a of each mode by the amplification factor for that mode.
m 2J-1

0 m
Thus, if the initial vector is given by U = a cp

m=0

(2.4-5)
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then the expansion for U is

2J-n1n n m
U =E am LAh(m)

m=O

Now suppose that the amplification factors satisfy the so-called

"von Neumann" condition, that is, there is a constant k independent of

h and m, such that

Ah(m) l< + kAt

2
We assume that there is a constant mesh ratio such as 4 = aAt/Ax or

X = cAt/Ax (h = Ax) so that At is a function of h and lim At = 0. Given
h-0

this von Neumann condition, we know from problem 2.3-2 that

i n kT
S (m) < e k where nAt < T.

Then from problem 2.4-2 we have

2 2J- 1 l 12n kT 1 2J-1 2
IUnll E ai L j() e - I1 = e kTiO

m=0 m=0

Therfore, the von Neumann condition implies that our difference scheme

is stable.

Suppose there is a real number p such that p > 1 and for any h > 0,

I
we can find an integer m, 0 i m< 2J, J -< , and Ah(m) > p. That is,

we can always find an amplification factor greater than p no matter how

small we choose h. Then it is clear that the scheme cannot be stable.
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For given any h let m be chosen so that Ah(m) > p. Then let

inmx.
O m iX.Uj = p = e . Let nh be the largest integer, such that nh6t 1.

nh - nh m
Then U = Ah(m) cp and clearly

r l > i i ii .
nhn

nh
But since nhr as h->0, and p > 1, p -co as h-0. Therefore, the scheme

can not be stable since stability would imply

Iunfl < M |U1O for some M.

Problem 2.4-3. Show that the difference scheme given by equation

(2.2-2) is unstable. Use the Fourier analysis, or von Neumann method.

Problem 2.4-4. Show that the difference scheme given by equation

(2.2-3) is stable provided \I\ < 1 (X = cAt/lx) and unstable if I1 > 1.

Note that our proof of convergence for the scheme of (2.2-3) very nearly

provides the solution for this problem. We merely have to switch from

the infinite Fourier series to the finite Fourier expansion.

The von Neumann method for the determination of stability is very

important in the design of finite difference schemes for initial value

problems. We will use it constantly in the remainder of our discussion

of initial value problems. We will next give a few problems which

review the methods for the analysis of stability.

The first problem uses the maximum principle (which is really an

"energy method" - see chapter 3); the second is almost identical with the

first except we work with the norm of the matrix operator; and the third

uses the von Neumann analysis.
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Problem 2.4-5. Consider the simple hyperbolic equation

au au-S+ c ,= 0 0 x 1, 0 t, c > 0.bt 6x

The initial and boundary conditions are u(x,0) = f(x), u(0,t) = g(t),

g(0) = f(0). The solution of this problem is f(x-ct) for x > ct and

g(t - x/c) for x - ct (see section 1.3.6). Consider the following difference

scheme for this problem.

x. = jh, 0 < j < J, h = 1/J

U. =U -(U - 1 j < J
J J J J-1 Ax

n 0
S = g() = f(xj) 0 j s J.

By use of the maximum principle, prove that this scheme is stable

provided X < 1.

Problem 2.4-6. For the scheme given in problem 2.4-5, write out

the matrix Lh defined by the scheme

n+l -,n n n'
U = LhU U = Uj 1 j J.

Show that if X < 1 then Lh•l = 1 where this norm is the one induced by

the maximum norm, What are the eigenvalues of Lh. What can you say

about iLhii 2 (the norm induced by the L vector norm). Can you prove

stability using this norm.



2.45

Problem 2.4-7. Suppose we modify the above problem to have periodic

boundary conditions.

n+l n n UnU U. - (U - ) -J j < J, x = jh.
J J j j-l

n nU U
j±2J j

U = f ()
J j

nWe must then solve for U., 0 < j < J. Use the von Neumann method to

analyze the stability of this scheme. Note that we were forced to make

the boundary conditions periodic in order to prove stability with the

von Neumann method,
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2.5 The Relation Between Stability and Convergence - the Lax-Richtmyer
Theorem.

We will restrict our discussion to linear initial value problems

of the form

u = u(x,t) g = g(x,t)

- = L(u) + g
u(x,0) = f(x)

We assume u is defined over some region in space. Space may be more

than one dimensional, for example, a planeor a cube in which case x is

a vector, x = (xl, x2 , x3). We assume a discrete mesh is imbedded in

our region. The points of this mesh are denoted by x.(h), or just x..
J J

The parameter h is used to denote the mesh. We will be a little loose

about exactly how to define h, in some sense h must determine the mesh

and as h approaches zero, the mesh spacing must also approach zero.

n th thWe will let u denote the value of u at the j mesh point on the n
J

ni
time level. Then ujji where n is fixed and j ranges over the mesh is

a finite dimensional vector. Our finite difference scheme can be

represented as a family of matrix operators

n+l LUn+ Gh

where Un and Gh are vectors. We have assumed, of course, that our

finite difference scheme is linear. In many cases, perhaps most, the

problems one puts on a computer are non-linear. We will assume that

, does not depend on the time level n. This can happen only if the

original differential operator L in the equation

-- Lu +g
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is independent of the time t. Next we will give some examples to

indicate the diversity of problems which can be placed in this framework.

We have already discussed the heat equation on the interval

0 - x 5 1, namely

au a 2u
at 2

ax

We assume that the values of u on the boundary are given by u(0,t) = A0(t),

u(l,t) = Al(t) where A0 and AL are known functions. Here x. = jh,

0 - j < J, h = i/J. The order of the matrix Lh is J-1 and we use the

same finite difference scheme as in section 2.1

1-24 p 0

p 1-2p 1 0

0 p I- 2p i 0

0 . . . . . . . . .. 0 1-2

n,
,U =

n

n
J-1

n
,G =

AA(t )
0

0

0

wAl(t )

2 n

where u = GAt/Ax . Note that we have picked up an inhomogenous term G

because of the boundary conditions. The difference equation centered

n+1 n n n n n n
at j = 1 is Uj = U + (U - 2U1 + U) = U2 + (1-2p)U1 + IAO(tn) since

n
U= A0(tn).

The heat equation on a square leads to a similar matrix equation.

The differential equation is

Lh



2.48

au 2 2 u = u(x,y,t) u(x,y,0) = f(x,y)

at 2 2t x ay 0 - x < 1, 0 < y - 1

We assume that the boundary conditions require u to vanish on the sides

of the square. The finite difference scheme is basically the same as

in the one dimensional case. We let x. = j/J, y = k/K, 0 - j s J,
j k

0 k K, uj = u(xj, y , t ). Then the difference scheme is
jk j k n

n+l n n n n n
U = U + U -2U + + Un 2U

jk jk x-L j+1,k jk j-l,k yL j,k+l jk jk-l

2 2
where 4 = At/Ax , = At/Ay . Usually we have used a single index j

x y

to label our mesh points. Here we have used two indexes, j and k. We

could use a single index r to label the mesh, that is (x,y) = (x.,yk)r  k

where r = j + k(J+l) + 1. Thus 1 < r - (J+1)(K+1) since 0 - j < J and

0 • k < K. We would use a somewhat different algorithm to obtain a

single index for the unknown values Ujk, since we know the boundary values

and thus the range is 1 < j < J-l, 1 < k - K-l. We would define our

single index r by r = j +(k-l)(J-l). Therefore, 1 r r (J-1)(K-l).

The ordering of the components of the vector Un given below is simply

an ordering by increasing values of this index r. We form the vector

U n
U by ordering the terms U.k varying first j then k. Consider the case

jk

J = K = 3 for which there are only four unknowns, the other values of

ujk being zero because of the boundary conditions. The mesh and

difference scheme are then
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((2)2)(1,2) . - .(2,2) .

__(1, 1) _ _ (2,1) .

n
U"

n
21

n _

U-U = n ' Lh
U12

n
U2 2

In general L is a

the following form

n
U

U
21

U
UJ-1,1

U = U12

UJ-1,2

U1 K- 1

UJ-1,K-l

S2x y Ix y

1- 2 L - 2 , 0
*x * x y

y 0 1-2~x-2,y

0 igy x

block tridiagonal matrix of order

C

D

0

D

C

D

0

D

C

0

y
Gn=

lx

1-2px-2y

(J-l) x (K-l) of

D

0 D

0

C

D

D

C
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The matrices

(a = 1-2 -
x

C =

O! PJ1x

I-1 a

x u

C and D are square matrices of order J-l given below

24 )
y

0

x 0

0 K

0

y, K

Sy

0

0

0

0

Problem 2.5-1. Compute the eigenvalues, eigenvectors and

"L2 n norm of h, ILhI 2. Also, compute the maximum norm L/h .

condition on x and p will insure stability of this difference
x y

Hint: Try eigenvectors of the form W = sinTrrx.sinrsy, 1 < r

1 • s • K-l.

= , I
Sy

the

What

scheme.

SJ-l,

A system of equations can be treated in the same fashion. For

example, consider the wave equation

2 2
2u 2 2u
- C

2 2
8t ax

u = u(x,t)
-1 x < 1I

The initial conditions are

u(x,0) = fl(x)

|t(x,0) = f 2 (x)

(2.5-1)
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We assume periodic boundary conditions

u(x+2,t) = u(x,t)

fi(x+2) = f(x)
1 1.(7 1 i i < 2.

This is not in the form

6u
t = L(u)

since we have a second order time derivative. However, the wave equation

is equivalent to the system of equations

v(x,0) = fl(x)
x

w(x,0) = f 3 (x) = f 2 (T)dT

-1

A difference scheme for this system is

n+1 n n n n
V 1 = (V + V ) + (W - W )

Sj+l J-1 2 j+l j-l

n+i n w n n
w =- (W +W-w ) + -2(Vl j-)

j j+1 j-1 2 j+1 j-1

Ax = 1/J

-J < j < J

x = cAt/Ax

Let the vector Un be defined as below, then the matrix L for this scheme

is as given below. The order of the matrix is 4J.

av awi
mp = c

at bx

aw bv6 t ax
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1
2

S

2

1

0 0

0 0

1 kAm

0 0 0 0 . . . . .

0 0 0

2

1

2

0 0

0 0

L h0 0 2 2

X 1
0 0 -- 2

2 2

0 0 0 0

0 0 0 0

n
V

-J

nW-J
vn
Wn
-J+1

0 0 . . . . . . . . . . . . 2-
2

-- 0
2 2

1
0 0 2

0 0 2
2 0

0 0 0 0

O 0

Problem 2.5-2. For the above difference scheme determine the eigen-

vectors and eigenvalues of the matrix Lh. Also, compute the maximum norm

of Lh, ILho

We will obtain yet another example of a finite difference scheme by

dealing directly with the wave equation.

2

at

2 22u
c 22x

We will approximate the second order derivatives directly to obtain the

following difference scheme

n+l 2 Un + Un-1 2 nU 2 +U. = (U
3 J 3 j+l

-J - j < J, \ = cAt/Ax

- 2U. + U. )
J3 -1

We will assume periodic boundary conditions as before. We can write this

1
2 2

12
2

J-1

J-1

n
Lh

2

2

1
2

2

2

1
2

2

1

2

4
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scheme in the following matrix form

Un 1  Un U 1  where Lh is a matrix of order 2J (2.5-2)

Note that we have 3 time levels involved here, instead of two. In order

to compute Un+l, we must already know Un and Un-. Therefore, in order

to start this scheme we must know the values of UO and U . These values

can be obtained from the initial conditions in equations (2.5-1) as follows.

0
U. =f(xj) since u(x,0) = fl(x) (2.5-3)

a 1 0 su
and U = U + Atf(xj) since (x,0) = f (x)

j j 2j at 2

Equation (2.5-2) is not in the form U = LhU. Our theory of difference

scheme will apply only to schemes which involve two time levels, n+l

and n. However, we can change variables and write equations (2.5-2)

in the two level form. Let Wn, 1 5 n, be a vector of order 4J defined as

follows

n

-J
n

-J+1

unJ-1
n-1

U
-J

n-1

-J+l

n-1
U 1
J-1
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n n n-I
We may write W as the composite of two vectors U and U each of

order 2J, that is

Un
Wn

Un- 1

Then the difference scheme given by equation (2.5-2) can be written

un+l n n- U" 1  n^ -

Wn+l = =iw

" I u" I 0 Un-

where Lh is a matrix of order 4J formed by the submatrices L and I

which are of order 2J.

L-I

1 0

If we write this matrix out explicitly we obtain

2 2
a X 0 . . . . . . -x -1

2 2
-X2 a 2  0 ... 0 0

0 2 2 00 -X h O .

0 ....... 0 -h2

1 . . . . . . . . . . .

aO

. 0

. 0

0 0

-1 0 0

0 -i 0 . . . 0

0 . . . . . . . -1

0 . . . . . .. . 0

0 . .

0 . . . . . . . . . . . . . 1

Lh
X2

1

0

O · · · · · · · O I
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Note that W is known since U and U can be determined from the boundary

conditions, as shown in equation (2.5-3). Thus, we have a marching

scheme

Wn+l n= W 1 nW :LW

which falls within our standard format, except the vector W now approximates

the solution u(x,t) at two time levels.

Problem 2.5-3. Find the eigenvectors and eigenvalues of the matrix

t given in equation (2.5-2). Show that these eigenvalues X lie in the

range - 2 - X < 2.

Problem 2.5-4. Let Xk 1 < k 2 2J be the eigenvalues of the matrix

Lh of equation (2.5-2). Let L be the composite matrix defined above,

that is

Lh-1

Lh I 0

Show that the eigenvalues of L are + and c_, each repeated 2J times

2
where a and a are the roots of a -a k + 1 = 0,

or c = - . Is the scheme W n+ LW stable?

A

Hint: The eigenvalues k of L are distinct and thus have linearly

independent eigenvector U(k). Show that the eigenvectors of L are
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U(k)( u(k) 24 2U(k)
The purpose of the above examples is to show that a wide variety

of finite difference schemes fit into the format that we have been

discussing. Now we are ready to move on to a slightly more formal

definition of the concepts of truncation error, stability and convergence.

We assume that we have an initial value problem represented by

a partial differential equation defined over some spatial domain. We

assume (without loss of generality) that the initial conditions are

given at time t = 0. Usually, we will require our initial value problem

to be of the form (first order in time)

BuS= L(u) + g

u(x,0) = f(x)

Here the point x is restricted to lie in some region of space (space may

be multidimensional, thus x = (x1 , x2 , x3 , ... xn ) The operator L is

formed of partial derivatives with respect to the spatial variables.

We require L to be linear, that is L(alu + a2u2) = alL(ul) + a2 L(u2).

Many practical problems are not linear and the nonlinearity can cause

considerable difficulty. In addition, there will usually be some

boundary conditions imposed on the solution u. We will not attempt to

give a precise definition of an initial value problem. The reader



2.57

can refer to the book by Richtmyer and Morton for this. We will be a

little vague about specification of boundary conditions and also the

number of continuous derivatives we require of our solution u.

We will assume that a finite mesh is laid down on our domain.

Actually, we have a family of such meshes, each mesh being labeled by

n
the value of a parameter h. We compute an approximation U. to our

solution at these mesh points x.. The vectors U are computed by a

marching procedure from the relation

Un+l = LUn+ Gn

The operator L is a matrix. The vectors Gn are known functions which

may depend on h but not on Un. The starting value U is obtained from

the initial conditions. We will assume the time step At is a function

of the parameter h. We also assume that

lim At = 0

h--0

Definition 2.5-1. Truncation Error The truncation error

associated with a solution u of the differential equation is obtained by

n
substitution of u into the difference scheme. We let Th denote the

h
n

truncation error. We use the subscript h because T is a family of vectors,

n n
one vector for each value of h. The components of Th are Th,j correspond-

ing to the mesh points x.. The truncation error is defined by

n+l n Gn + n
•uLu + + th
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nwhere u = u(x., t ) is the vector defined by the solution u.
j j n

Definition 2.1-2. A Consistent Difference Scheme We say our

scheme is consistent if for all sufficiently smooth solutions u of the

n
differential equation the truncation error T approaches zero with h.

By sufficiently smooth we will usually mean the solution must have

all its derivatives continuous up to a certain order. The estimates

of truncation error will usually use a Taylor series expansion which

requires certain derivatives to be continuous. Using the maximum

norm, we can state our requirement on T as follows. Given e > 0 and

T > 0, there is a 6 > 0 such that 1IThl < e for all h < 6 provided

nAt < T. This means that for each mesh point x. IT e. Note that
J hj

we are requiring T to approach zero uniformly over the mesh and also

uniformly in time.

Definition 2.5-3. A Stable Scheme We say a scheme is stable if

there is a constant M such that IfHi < M if nat < T. Note that this

must hold for all h and n provided nAt < T. We have not specified the

norm here. Usually, we will use the "L " or Euclidian norm II 1 2 ; however,

we may use any norm. For example, we might use the maximum norm L I
A scheme may be stable in one norm and unstable in another. LStetter

Definition 2.5-4. A Convergent Scheme We say a finite difference

scheme is convergent if for all sufficiently smooth solutions u of

the differential equation the corresponding solution (one with the same

initial and boundary conditions) of the finite difference scheme converges

to this solution u.



2.59

That is

lim tUn - u(x,t)Il 0
h-0 J

x .-•x
J

t -t
n

This definition also leaves open the specification of the norm. We

require the limit to be uniform, relative to x and t, that is for any

e > 0 and T > 0, there is a 6 > 0 such that

U - u(x,t) l< e

provided h < 6,xj.-xl < 6,1t - tj < 6, t • T. This must hold independent

of x and t providedt • T.

Next, we treat a fundamental result - the Lax-Richtmyer theorem.

This theorem tells us that stability and convergence are really the

same property.

Theorem 2.5-1. If a consistent finite difference scheme is stable,

then it is convergent. The converse is also true (convergence implies

stability) although we will not offer a proof (see the book by Richtmyer

and Morton).

The proof goes as follows. Suppose we choose an initial function

f(x) and let u(x,t) be the solution of the differential equation for this

initial function (u(x,0) = f(x)). Let Uh be the finite difference scheme

corresponding to f(x), thus
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n+l + n
Uh =LUh Gh

0h

This means that for a given mesh (denoted by h) we have a vector

n x0
Uh, 0 j < J, I = f(x.). We will assume that the solution u ofh,j' h,j h

the differential equation is in the class for which the consistency

condition holds. For u in this class the truncation error approaches

zero as the mesh parameter h goes to zero. Convergence only holds

for initial functions f, such that the corresponding function u lies

in this class. If we let Th denote the truncation error then we haveh
Un+l = LhUh + Gh

n+l n n n
u =Lhu + Gh +t h

n
Now we let eh denote the error on a particular mesh, that is

n n n . ne . = u. - U = u(x., t ) - U
h,j j h,j j' n h,j.

Then, by combining the above equations we have

n+l n n
e e + AtT
h Lh h h

0 n 0
Note that u. = f(x.) = U , thus eh 0. Also, note that we have made

essential use of the linearity of the matrix operator Lh in deriving the

expression for the error vector eh. By using the above equation recursively,

starting with n = 0 we obtain
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0 0
= e+ AtT

1 + h =20 0 1+ h
- Lheh + AtTh Lheh + LtLhTh + AtTh

1
eh

2
eh

3
eh

3e0 +t2 0T + 2+Leeh + Lt ý1- h +. 41T h +
0

the general formula is (note that eh 0)It is clear that

n n-1 0 n-2 1 n-1i
eh = At h hh

Now using the properties of the norm lIAB|| IAJ|| |IB|/, |A+BlI • Ai' + |IBi|,

we obtain

n .n- 0 n-2 1 n-i
hlleh • Atll i 1I Ul + I i-211 'Il + ... + flTh

k
Since our scheme is consistent, we know that we can make ||Thl small if we

make h sufficiently small. We first choose a time limit T. Then for any

e > 0

1k

provided h < 6 and kAt • T.

Lh M if11ý111 !! m
Since our scheme is stable

knt T T.

n
Therefore our inequality for eh becomes

leh1 AtMne
c~thl I ntMns

2 2
L= h + At7h
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But for nAt 5 T,

llejl MTc

We can rewrite this as

lUh - u(xjtn)l MT

provided h < 6, nAt < T.

Then we have

flUh - u(x,t)l| lUh• - u(xjtn)l + lu(xj,tn) - u(x,t)|l

|Uh - u(x,t)| • MTe + Hu(xjtn) - u(x,t)ll

This inequality makes it clear that

lim Uh = u(x,t)
h-0O

x .-*x
J

t - t
n

Therefore we have convergence.
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2.6 The Relation Between Stability and the Growth of Roundoff Error.

Roundoff error is caused by the finite word length on a computer

(60 bits on the Control Data 6600). Truncation error occurs when

derivatives are replaced by finite differences. It would be better to

call this discretization error, as does Henrici [1962], since it is

caused by a discrete approximation to a continuous problem. For finite

difference solutions to partial differential equations, the roundoff error

is usually much smaller than the truncation error, thus roundoff is

usually no problem (on a machine with a 48- or 60-bit word length). In

this section we will estimate the roundoff error for the finite difference

approximation to the heat equation which is described in section 2.1. First

we will discuss the roundoff error as it occurs in the basic arithmetic

operations on a computer.

Most computers store numbers as a sequence of bits; that is, a

sequence of zeros or ones. Then a number may be represented in the form

tS X k-1
2 X E xk 2

k=l

where xk is either zero or one and S is an integer. On the Control

Data 6600 t = 48 and -2 < S < 21. Instead of stating our analysis

for a binary machine, we will assume we have a decimal machine where the

numbers are stored in the form

t
0s X (k-1)

k=l

where xk is an integer 0 < x < 9.
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The theory is the same for a binary machine, but it is more difficult

to describe the binary case. We will first assume we have a 4-digit

machine with a 2-digit exponent. Some sample numbers would thus be

(t = 4, -99 5 S • 99)

1.0 = 0001(-0)

0.1 = 0001(-1)

1.25 = 0125(-2)

0.0001414 = 1414(-7)

123400 = 1234(+2)

Now consider the error in addition, subtraction, multiplication, and

division. We assume our machine has an "accumulator register" of length

2t (eight digits in our case). The arithmetic operations are to be done

in this register. For example, to add a = 12.12 = 1212(-2) and b = .3456

3456(-4) we would first place the larger number a in the register, left

adjusted so that 4 zeros are added to the right. We then have in the

accumulator

12120000(-6)

We then shift the decimal point in b so that its exponent matches the

accumulator, thus b = 00345600(-6). We then add these representations

of a and b to obtain an 8-digit number.

12465600(-6)

In order to store this number we must reduce it to 4 digits. We denote

the result of an exact addition by a+b. The result of our computer

addition we denote by f£(a+b) which stands for the floating point sum
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of a and b. We obtain fl(a+b) by reducing the 8-digit number to 4

digits, rounding if necessary. In the case above we thus have

ff(a+b) = 1247(-2). We have not stated exactly how our computer performs

arithmetic operations, nor do we intend to. We merely want to make the

following estimates plausible. We assume that the roundoff error is

such that the following relations hold. These relations will be true

for any computer, although we might have to enlarge the upper bound for

cp somewhat and change to a binary or hexadecimal representation (then we

might have fa(a±b) = (a±b)(1 + p2-t) with Ip| ½). If our machine had

an accumulator of length t, we would have to change the first relation to

f2(a±b) = a(l + p lO-t) + b(l + C 2 l0-t)

where 1p.il 5.

Our assumed bounds for the roundoff error are the following:

fI(a±b) = (a±b)(1 + cplO )

f2(ab) = ab(l + cpl-t) p < 5

fa(a/b) (a/b)(l + pi0-t)

For a more detailed discussion of rounding error, see the books and papers

by Wilkinson [1963].

Now we are ready to consider the roundoff error in our finite difference

solution of the heat equation. We let Un denote the exact solution of

the finite difference equation, starting with U = f(x.), 1 < j < J-l,
J then

then
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n+l n nn \Un+ = Un + j - 2U + Un) j  -1
j j j+1 j J-/

n n 2
U = U = 0, = aAt/x 2 , Ax 1/J.

We let Vn be the solution obtained by using floating point arithmetic

0 0
on our computer. There may be some difference between U and V

because of errors made in the evaluation of f(x.). The value of V

will depend on the order in which the arithmetic operations are done

on the computer. However, our estimate of the error (the difference

between Un and Vn) will be independent of this order. We first look at

n n
the result of an exact computation of D = V. - 2V. and the computer

e j+l j

floating point computation D = f(Vn+ - 2V.) (we really should write
a j+l j

this f(Vn - f2(2V )) but the latter is too clumsy). We want to
j+l j

estimate the difference between the exact result D and the approximate

result D . Using the estimates for the error in the individual
a

arithmetic operations, we obtain an estimate for the composite result.

D a (+1 - 2Vn-1 (1 + C1 1 0 )) + 2 0

We have cpii < 5, and we will assume t > 3 so that ~i 10 -t < .01,

Then

Da + 1 - 2V. - 2V 10 + Vj - -2V - 2V. 1  
10 ) 2 t

a 3+1 j-1 j-1 1 j+1 j-1 j-1 1 2

If we let iVijn = Max |vj, then
lajS J-1 -

D = Vn -- 2Vn +l n
a j+l j-l

where \T\ <• 25.1 x 10-t
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Problem 2.6-1. Find an estimate for the roundoff error in the

computation of Vn from Vn. Show that

n~n n n n _2n+n+
f V + V - 2Vn + Vn = Vn + (v - 2V + V + '

f + j+1 j j- j j+1 1 -

where |^ - 80 x lO-t (assume 0 -< 1).

Note that in the above problem we compute only the error caused by

the arithmetic used to go from the nt to the n+l st age. There is

already some error in Vn; that is, a difference between Vn and Un. We

must now estimate the growth or accumulation in the error. We do this

from a knowledge of the error committed at each time level. The method

is the same as that used to prove convergence in section 2.1. There we

knew the truncation error at each time level, and we wanted to compute

the accumulated error. We know stability has a profound effect on this

error growth. We have the following equations

n+l
U.

J

n+l
V.

J

= n (n
J j+l+

= V + V

n +  n
1 n.1 1- V

Now suppose we are able to

lvnl M. Then Ien" S^,

shortly, but first we will

n n2U.+ U.

J J- /where -8 x 10

where ^ = 8 x l

compute a bound for |lVn lO if nAt

where NM = ^. We will find such

n n n
estimate the error E = V. - U..

J J J

< T,

a bound

We will

again use the maximum principle as we did in section 2.1. If we subtract

the equations above we obtain
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E =E.+ E - 2E + E + e.j j j+l J j- J

En+1 n. n n n
or E = (1 - 2p)E + E+pE + pjE'I +

j j+ j-1

We now assume p < ½ and take the absolute value of both sides to obtain

IEI - (I (1- 2p)IE|j + n + p +

n

If we let e = Max Ei we obtain
lj<J-1 j

n+l n Ae • e +

By induction we thus have

n 0
e • e +ne

Note that e = Un - Vnj is a measure of the error growth in terms of

0 0
the initial error e . For most problems this number e + nE is very

small compared to the truncation error. On the Control Data 6600, we

-13
could take t = 14, thus s = 8 x 10 x M. Therefore n could be quite

large and still ne would be quite small. For this scheme one can obtain

a better result; both the truncation and roundoff error are bounded by

a constant (at a fixed Ax) which does not grow with n. That is, convergence

is uniform in time. We need not add the restriction nAt • T. The reason

this occurs is the fact that the norm of the difference operation Lh is

bounded by ||Lh|| - 1 - 0(At). The difference operator is strongly

dissipative, as is the differential equation. Hence the errors are

dissipated to zero as time advances. Therefore we may run as many time
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steps as we wish without a disastrous accumulation of error. We will not

prove this statement [see Gary, 1966]. We leave the computation of a

bound for lVn~i as a problem.

Problem 2.6-2. Assume

n+l n (V n nn ni n

V = V. + p . -2V.. j J-1
j J j-l j j+ J

Vn nI • 51/vn)\m, 0 'g . Show that
with Vn = V = 0, < , how that

0 j

Vnunl ! ! (l+I)n@vO _ e•n |IvOM

Hint: Use the maximum principle to prove

lvn+l (l+) Vlnf

Now proceed by induction. To show (1+E) n e n, first show 1+ý e•

(remember 0 : !).

Examples: 1) Stable run n - inhomogeneous heat equation

2) p = .55, f(x) 2 sin Trx

To provide an example of the effect of roundoff error, we solved the

heat equation on the Control Data 6600. We used the difference scheme

given by equations (2.1-3) with the initial function f(x) = sin rrx. If

we neglect the effect of roundoff error, we can then solve the difference

scheme to obtain (-=/) Wusscheme to obtain Un = Mn sin Tx. where M = 1-4psin2(whx/2). We used
j J

2 Ax3
J = 40, therefore Ax = 0.025 and M = 1 - a 2 At + 0( x3 ). We used

p = 0.55 so that the difference scheme is not stable. However 0 < M < 1,

and therefore lim Un = 0 if we do not consider roundoff error. The scheme

will converge for f(x) = sin Tx even if 4 > ½. However, we have
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neglected the effect of roundoff error. This in effect introduces a

high frequency perturbation into the equation (why is it high frequency?).

This perturbation will grow since p > ½. A perturbation in the initial

conditions of the form f(x.) = e sin r(J-l)x. will grow to an amplitude

SJ 
n

given by e 1 - 4 sin (Mr(J-1)/2J) = M . In figure 2.6-1 we show

the result of this computation. We plotted the solution for various

values of T = nAt. The effect of roundoff error is clearly evident for

T = 0.060. To reach T = 0.06 requires about 175 time steps and the

corresponding value of M1 is 4 x 10. The amplitude of the perturbation
J0- 1

is about 0.05. An initial perturbation of the form e sin T(J-l)x. with

-17
e 1. x 10 would grow to this amplitude after 175 steps. The

Control Data 6600 uses a 48-bit mantissa so we might expect a perturbation

-48 -15
of 2 -8 4 x 10 . Thus our growth rate is somewhat less than the

predicted maximum. This we might expect due to statistical fluctuation.

The numbers seem to be reasonable.

Problem 2.6-3. If you make an attempt to solve the heat equation

using the scheme of equations (2.1-3) with J = 100, f(x) = sin 2rx,

, = 0.6, how many time steps would you expect to run before the roundoff

error exceeded 10 percent?
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3. THE CONSTRUCTION OF FINITE DIFFERENCE SCHEMES

In this chapter we will consider several of the standard methods

for the construction of finite difference schemes. Most of these schemes

can be explained by their application to the heat equation

2
au a u
6t 2

5x

or the simple hyperbolic equation

au u
T- + c - 0
8t 8x

We will consider some schemes which

dimensional spaces such as the heat

au u 8 u
t x 2 yx2 yJ

apply to problems defined over multi-

equation

u = u(x,y,t)

We will defer to chapter 4 the treatment of systems of equations such as

the wave equation

au awat ax
aw auat ax

However, the schemes discussed in this section can, in most cases, be

applied to such systems. We will also defer to later chapters complications

due to boundary conditions or nonlinear terms in the differential equations.
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3.1 The Leapfrog Scheme

We will illustrate this scheme as it applies to the equation

6u bu
- + c - = 0.

bt dx

We will assume periodic boundary conditions u(x+2,t) = u(x,t), -1 x • 1,

with initial condition u(x,0) = f(x). We will use a centered difference

in space to approximate 6u/6x (we use the usual notation u = u/6t and
t

u = x u/8x). Then we have

(un i+ -1 + Ax 2  u
x ax

This can be shown by use of a Taylor series with remainder (see problem 2.1-1).

2
We thus have a second order truncation error; that is, T = 0(Ax2). In

order to obtain a finite difference "marching scheme" we might approximate the

time derivative as follows

n+1 n
u. - u. 2

(ut)n 1=. 1 + At 2(xj u
t At 2 2 ) t tn+

If we substitute these expressions for u and u into the differentialt x

equation we obtain

n+1 n h n nU+1 n . ( - X cAt/Ax . (3.1-1)
3 j 2 j+l

0 n
If we start with U = f(x.) we can then compute U. for all values of n

and j by "marching" forward. However, in section 2, we showed that this

scheme is not stable; it will not work. We will have the catastrophic
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growth of error at high frequency which is typical of unstable schemes.

Even if this scheme were stable, there would still be a disadvantage from

the standpoint of accuracy. An explicit scheme for a hyperbolic equation

will usually diverge unless the mesh ratio |xi is less than one (see the

discussion of the Courant-Friedrichs-Lewy condition in section 4). This

means that At = 0(Ax) and therefore the truncation error due to the u

2
term is 0(Ax) and due to the u term is 0(Ax ). Of course, this

x

imbalance is due to the use of a centered difference for the u term and
x

a forward difference for the ut term. Suppose we use a centered difference

for the ut term

n+l n-1
u - u2 3

u)n = At2 a u(xj)
tj 2At 6 t3

2t

Our finite difference scheme would then become

n+l =U - X(U - U(3.1-2)
J 3 j+I j-1

This is still a marching method, except we need to know the values of U.

st th n+l
on both the n-l and n time levels in order to compute U . If we

J

knew the vectors UO = [U.-J • j < J} and U , then we could compute

U U , ... U ... in that order. We obtain the n+1st level if we

l f a s h e fthh stlel
leapfrog across the n level from the n-1 level.

Note that we are only given U. = f(x.) from the initial conditions.

In order to start this scheme, we must somehow compute the U . We could

1 0 1 0 0 2
simply set U. = U.. Since U. = U. + AtU + 0(At ) this would introduce

j J j J tj

an error which is first order; that is, 0(At). This is sometimes
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satisfactory because our system may be primarily dependent on an

external driving force rather than the initial conditions. This means

that any error in the initial data will have a small influence on the result.

Problem 3.1-1. Consider the heat equation with a driving function

au a 2 u- -+ sint sinrrx
6t 2

5x

u(x,0) = f(x) = ZaksinTrkx

Find an expression for the time T such that the effect of the initial

conditions is less than e for t Ž T. The solution will depend on the ak.

We could use our unstable scheme to compute U

1 0 X 0 0U. = U. (U -u U )
i j 2 j+l j-1

This will cause some growth in the high frequencies, but we only use this

for one step so this growth will be very limited. This gives us U with

2an accuracy 0(At ) which is consistent with the accuracy of our leapfrog

scheme. We know the error in the integration of a differential equation

by a stable difference scheme is proportional to the truncation error T.

That is, if

n+l un n n
U = LU + AtT T n, T

n+l -un 0 0
U = LU , U = = f(x.)

then Max Un - unI MT.
n A tsT
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Thus if T = 0(Ax2), then the error lUn - un is 0(Ax 2 ). However, the

error in a single time step is 0(ALt), rather than 0(T). The following

problem should illustrate this.

Problem 3.1-2. Suppose we have a stable finite difference scheme

2
with truncation error T = 0(Ax ) (that is, there is a constant M which may

depend on the solution u but not on Ax such that ||Tns MAx2 if nAt < T).

Suppose we make an error in the initial conditions so that U0 - u\ = 0(X 2).

Show that the error is 0(Ax ), U - un = 0(Ax 2 ).

0 0 0 1
Note that if U were exact, U = u , then the truncation error in U

1 1 2 2
would be UL - u = 0(AtAx ) rather than 0(Ax ). That is, we can tolerate

2
an error 0(x2 ) in a single step, but if this error occurs in all steps,

2 2
then it must be 0(AtAx ) in order that the final error be 0(Ax ). This

is exactly what one would expect since the number of time steps is bounded

by T/At. Usually the error is approximately proportional to the number of

time steps, but not always (see problem 3.7-3).

1
We will now consider another method to compute U in order to start

our leapfrog scheme. If we have a complicated differential equation to

1
solve, we may not care to write a separate program to compute U . We

would like to use the same leapfrog scheme which computes U from

Un-1 and Un. This could be done as follows. Choose p such that p = At2-s

AO ^0 0
for some positive integer s. Define the vector U by U. = U. =f(x.),

j j xjJ J

-J < j < J. Use the leapfrog scheme to compute U for 1 < v < s.

Start with the time increment equal to p and double this time increment

at each step.

uv = U0 - (v-) u(- 1  v < s
j j 2Ax j+l j-1
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Then the vector U is an approximation to u(x,t ) where £ = 2 p. Thus

As 1 1
U is an approximation to U.Once we have U, then we can use the

leapfrog scheme to compute the vectors Un, n > 1. Note that the error we

-S
make at the first step is 0(p) and therefore if we choose s so that 2 At

2 (V)
then this error is 0(At ). The truncation error T made in computing U

2 1 ^s 2
for v 2 1 is also 0(At ), so our final error in U U is (t ).

Now we are ready to consider the stability of the leapfrog scheme given

by equations (3.1-2). The truncation error we leave as an easy exercise.

Problem 3.1-3. Compute the truncation error for the leapfrog scheme

given by equation (3.1-2). Assume the mesh ratio is bounded by |Il < 1.

Show that the truncation error is 0(Ax2), TIJ MAx2, and find an estimate

for M.

We will study the stability by use of the finite Fourier analysis

(note that we have assumed periodic boundary conditions). We assume U0

and U1 are given and Un is computed from equation (3.1-2) for n > 2.

The finite Fourier representation of Un is

J-1 inkx.
n (n) iTJj .

U = E a) e -J < j < J
k=-J k

(see section 2.4). We must compute the coefficients ak . If we substitute

the above expression for Un into the finite difference scheme and equate

terms with the same exponential factor (that is, the same value of k) we

obtain
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(n+l) inkx ( (n-l) e inkAxa e E a -
k kk k -inkAx (n) i inkx- e a e

(n+1) (n-1) (n)a (= a - 2iX sinrrkdx a.(n
k k k

We can solve this two-term recurrence relation in the form

an = Ak[+(k) + Bk[B (k)]n

where P are the roots of the quadratic±

2  2
Z + 2iYkZ- 1

.k = Xsin kTrAx

2 (0)
Thus B~ = -iY ± 1 - Y (see section 1.6). The values of ak and

a are known since U and U are given. Then Ak and Bk are determined

by solving the 2x2 system of equations

A + B = a
k k k

Ak+(k)+ Bk .(k) = ak

If 1Ykl < 1, then + _ and the solution is possible. If |I 1,

then

a n)I < Aki + Bk

We give the remainder of the proof of stability as an exercise.
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Problem 3.1-4. Show that there is a constant M independent of n

and Ax such that la(n) MIa . Assume a = a(0) + Atb + 0(A 2
k k. k k k

-J • k < J, where b is some complex vector. Why is this a reasonable

assumption?

This completes the proof of stability under our assumption of periodic

boundary conditions since

lUnl 2  1 J I (n) 2 M2 O2
2 2J .k=-

Note that our proof of stability breaks down if I\\ > 1 since we no longer

have Iykl < 1. It is not difficult to show that the scheme is unstable

if |XI > 1.

We could try the leapfrog scheme on the heat equation. The scheme

for the heat equation based on a forward time difference is

Un+l = U + P - 2  + U = oAt/Ax

2
This scheme is stable and the truncation error is 0(At) + 0(Ax2). Since

2
At = O(Ax2) we would gain little if we made the truncation error

2 2 2 2 2
0(At ) + 0(Ax ) since in this case O(At) + O(Ax ) = 0(At ) + 0(Ax2) =

0(Ax2). In fact the leapfrog scheme is unstable for the heat equation.

Problem 3.1-5. Show that the following scheme is not stable; take

2
= aAt/Ax to be constant.



1 j 5 J-l

= f(xj)

U 0 0
= .+ p .3 - 2U. + U)

J j-l/

n
=U =0

J

Sometimes it is useful to have a difference scheme for the heat

equation which is centered in time. The reason will be apparent in

section 3.7 when we discuss dissipative difference schemes. Such a

centered scheme is the DuFort Frankl scheme.

un+1 n-l1
U. =U. + 24.j+lJ J \J+1l

n+1  n-1 + u
-U. - U. + U.

J J-1

Problem 3.1-6. Show that the truncation error for the DuFort Frankl

2 2 F/At- s e
scheme is 0(At ) + 0(Ax2) + 0 2 . Show that the scheme is stable for

all values of P.

3.9

n+l3 = Un- + 2•Unj j+l - 2Un + Un

u00U.
J

u1
U.

3J

n
U00
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3.2 Construction of a Difference Scheme by Use of a Taylor Series Expansion

We will illustrate the method by derivation of the Lax-Wendroff scheme

for the simple hyperbolic equation u + cu = 0. If we differentiate this
t x

scheme we obtain

2 2 2
u _ u 2 u2 = -c - = c -

a,2 ~ tarx 2St ax

Now consider the Taylor series

2n+l t +(x.2tu(X +O(At 3
u = u +At) = (xxtt+t)) + Atu (x.,t ) u+ 0(t3)] j n j n t j n 2 tt j n

2
From the differential equation we have u = -cu , u = cu . Therefore

we can replace the time derivatives on the right by space derivatives

2 2
un+ = un - Atcu (x,t ) c u (x.,t ) + 0(At3)

j x j n 2 xx j n

2
We know u = (u +- u l)/2Ax + 0(Ax ) (we assume the solution u(x,t)x j+1  J-1
is sufficiently smooth to permit this error estimate). We have a similar

expression for u . Thus we obtain
xx

n+1  n n n n n + u + 0(tx 2u = u - - u. +- - u+  +  (t 2)
j \J+ 3-l j+l 3 J-

+ O(At2Ax2) + 0(At3)

Using periodic boundary conditions we then obtain the following difference

scheme.
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n+l Un U n I n n nU =U -2U - U + - 2 + _-J j < Jj 2j+1 j2 -j+1 J -

U = f(x.) = ct/Ax (3.2-1)

n n
U = Un-

j±2J j

As always, we have the fundamental question of stability before us.

Since we have a linear difference scheme with constant coefficients and

periodic boundary conditions, we can answer this stability question by

consideration of the Fourier modes. We let Un be represented by

i-nkx.
U = [M(k)] e

For notational convenience we denote [M(k)]n by Mn, here we mean the

nth power of M and not the value of a function at the nt level, that is

not M(n). Substituting into equation(3.2-1)and dividing out the

n inrrkx
term M e we obtain

M = 1 - iXsin9 + X2(cose-1) where e = nkAx (3.2-2)

If we can show that this amplification factor M is less than 1 for all 9,

then we know our difference scheme is stable. We have

INM2 = 1 (cos + 22( cose--) + 2(cos 2 2 sin22 - 2 22sinG

= 1 - X2(1-cos6)2 (1-X2)

If IXI < 1 then IM2 • 1, since 2(1-2X ) • • and (1-cos9)2 • 4. Therefore

the Lax-Wendroff scheme is stable provided (lX < 1.
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Suppose we had based our difference scheme on only the first two

terms of the Taylor series expansion for u(x,t).

n+l n 2
u. = u + tu (x.,t ) + 0(At )

J J t j n

Using the relation u -cu we would obtain
.t x

n+l =n - • n -
j j 2 j+l j-

We know this scheme is not stable. Therefore the Taylor series method

may not produce a usable difference scheme.

Suppose we attempt to use a Taylor series to produce a scheme for

the heat equation such that truncation error is fourth order, T = 0(Ax ).

2
By differentiating the equation ut = uxx, we obtain u = a U . If

x

we substitute into the Taylor series we obtain

2
n+l nAt 2 3

Un+ = U + t + At (x ) + u 4(x,t ) + 0(t 3  .
j j xx j n 2 x j n

Suppose we assume p = aot/Ax2 is to be held constant, then At = 0(Ax2)
4

In order that the truncation error T be fourth order T = 0(Ax ), we must

4 2
approximate u with error 0(Ax ) and u with error Ax.

xx x
x

Problem 3.2-1. If u(x) is a sufficiently differentiable function,

show the following difference approximations are valid.

-u 2 + 16u 1- 30u + 16u._ - u.+ 4

u (x.) -= -180+2 + u 5(x j) + 0(x5)
xx 12Ax 2 x
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u - 4u. + 6u. - 4u + u 2
i-2 - +1 2 _ Ax 3u 1(x) u x.) + 0(Ax3)4 4 144 6x Ax x

If we use the above difference approximations in the Taylor series we

obtain

n+l n (TUn n un n
U U +  - + 16U - 30U + 16U -

jU 12 j-2 J-1j+1 j+2

2+  j - 4Un + 6Un - 4U + Uj + 02(Atax)
2 -2 j-1 j j+i

Again, the fundamental question is stability. Also, we should ask if it

is wise to use a high order difference formula. Our error estimate

(a = 0(Ax )) is not valid unless u possesses derivatives up through

the sixth order. Our solution might not be this smooth. (Our simple

heat equation has an analytic solution; but if a is no longer a constant,

for example a might be a discontinuous function of x, then 6u/8x might

not be continuous.) In this case a high order difference scheme might

do more harm than good.

Problem 3.2-2. Determine if the above fourth order difference

scheme for the heat equation is stable. Once you have an expression

for the amplification factor M(k), you might wish to use a computer to

see if |M(k)1 • 1 for all relevant k (with Ax and p fixed).

Next we will consider the simple, nonlinear hyperbolic equation

3- +u = 0
at 8x

u(x,0) = f(x)
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We assume periodic boundary conditions. Since this equation is nonlinear

the theory of stability and convergence which we have developed does not

apply. However, it still provides a useful example for the construction of

a finite difference scheme. If we are to use the Taylor series we must

compute u . This is

2
u = -u u - uu = u(u ) + u(uu )
tt tx xt x x x

2 2
We could also use u = -k(u ) which leads to u = -(uu ) = (u u ).

t x tt tx xx

If we substitute the first expression into the Taylor series and replace the

spatial derivatives by finite differences we obtain (X = At/Ax)

n+1 Un X n n n n n

x j++l n n

U = U -- u u  - u  + - u .

2 j 2 j+l[ u -

Note the method used to difference (uu) . We h
xx

term by

u(x +) Ux(xi+) - u(x ) ux(x _)
Ax

2n
-j-1

(3.2-3)

un n i
i +u-1 n nu - u
S2 j uj-

ave approximated this

If we had used

u(x.i+) u (xi+) - u(x i) Ux(Xi-)

2Ax

we would have obtained a difference relation involving values at the five

points x.j2, x.1, x, xj+l, xj+ 2 , instead of three points, namely
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u. -i)- u (i- u2u +2 -u 1' 1-2
j+l 2Ax j-i 2Ax

2Ax

As a general rule, one uses as few points as possible in a finite difference

scheme. With a larger number of points, the scheme is more likely to be

unstable, especially if the boundary conditions are not of the periodic type.

We will have more to say concerning nonlinear equations in a later chapter.
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3.3 Predictor-Corrector (or two-step) Schemes

These schemes make an initial guess for the values of u on the

n+lst level, and then correct this initial guess. For complex nonlinear

systems of differential equations, these two-step schemes are easier to

program than the schemes based on a Taylor expansion. We will illustrate

the idea by use of the hyperbolic equation ut + cux = 0 [Burstein, 1965].

Given the vector Un we first predict an approximation for

An+l
u(x. + Ax/2,t ). Denote this prediction by U+ . Using this prediction

j n+1 J+ "

we then correct it to obtain Un+. The definition of the scheme is given

below (assume periodic boundary conditions):

An+l Un -Jnj<J cn n
S +1 j, j+l j

(3.3-1)

n+l = Unn n Un_ n+l n+l
U U -v-U -U. -U -U -J s j<J

j j 4 j+1 2 j " U.jJ <j

These schemes represent an attempt to center the finite differences at

time t n = t + At/2. We could write the second equation as
n+½ n

n+1 n r n Un on+1 ^n+l
U. -U. U -0 U U. US - = = cAt j+l j-l + +-

At 2 2Ax Ax

The time difference is certainly centered at time tn+. The spatial

difference on the right is the average of spatial difference terms at tn

and t n+l; therefore the right side is also centered at t n+. The error
n+1 n+½

^an4l 2 5n+l An+l\/
in the U terms is 0(At ) so that the error in U - U. is

also 0(At2). Multiplication by cat/2 will produce an error 0(At3)

so that the truncation error is second order, T = 0(At2).
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We will next prove the stability of this method by the usual Fourier

analysis. We will compute the amplification factor for the Fourier mode
inrkx.inkx n j ke . Let U =e . ThenJ

^n+l e2 k
U.1 = cose/2 - 2iX sin/2 e

where A = cAt/Ax, e = ,kAx, xj x= x.+Ax/2. Next we substitute this

n+l
expression into the equation for U to obtain

Un+l = isine - iksine/2 (cose/2- 2iXsine/2) e
j 2 2 i (x.

= 1 - 2 2 sin2 /2 - 2iXsin9/2 cose/2 e

= 1 + X2 (cose-1) - ixsin U = M(k)Un

Therefore the amplification factor for this scheme is the same as that

for the Lax-Wendroff scheme given in equation (3.2-2). Therefore this

predictor-corrector scheme is stable. In fact, for this simple

linear hyperbolic equation, the predictor-corrector scheme is the same as

the Lax-Wendroff scheme.

Problem 3.3-1. Show that the difference scheme given by

equations(3.3-1) is the same as the Lax-Wendroff scheme given by

equations (3.2-1)o

We can do the predictor-corrector scheme in various ways. Consider

the nonlinear equation 5u/Bt + u au/5x = 0 which we will use in the



3.18

2
form bu/It + ½ ju /8x = 0. The nonlinear equivalent of the scheme given

by equations (3.3-1) is

n+l = + - 2 - U 2  = At/Ax (3.3-2)

j+l J) 2 lJ)j

n+l n X
U. =U -
J j 4

+

If we lift the predictor to the tn+ level instead of the tn+ level we

obtain

+½ = ½ + + U - + - 2 X = At/Ax (3.3-3)

)22Un+l Un X (un+12/ [n+J2j

j =j • j- 4) - Q j- (

We are dealing with a very simple differential equation here. For a

complex system of differential equations, the latter two-step scheme

can be much simpler than the Lax-Wendroff scheme of equations (3.2-3) which

is based on a Taylor series. For a complex system of PDE the computation

of the second derivatives, such as utt can involve many terms.

Another two-step version for this nonlinear equation is the following:

^n+l = n + .U Un

j j+1 j-1 ) j+1 j-

(U8U l) [U.1+11=U 2 + (1

We will discuss some properties of these variations in a later chapter.
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Problem 3.3-2. Devise a predictor-corrector scheme for the heat

equation and determine its truncation error and stability.

Problem 3.3-3. Is the following predictor-corrector scheme for the

equation u + cu =0 stable?
t x

j j 2 j+l

un+1 Un X •
U. = Uj +
J j 4 Lj+l

- Un ) = cAt/Ax

n + 1 -n+l]
j-1 j+l uj-1

Problem 3.3-4. Suppose we try several predictor-corrector iterations.

We let S be the number of iterations. If S = 2 we have the scheme

described in problem 3.3-3. The scheme is the following

^0 n
U =U.

j J

U = Un U - iUn U1 , - ^-
j j 4 +1 j-1 j+l j-

jj • ~ n Jjv- " 1 v < S

n+1 AS
U = U

Show that this scheme is stable if S = 3 provided IXl < 2. In general,

the scheme is unstable if S is even and stable for odd S provided xi < 2

[Gary, 1964].
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3.4 Implicit Difference Schemes for One-Dimensional Problems

These schemes are obtained if we center both space and time differences

th st
midway between the n and n+l s  level. We do this without using a

predictor; therefore, we obtain for the heat equation u = ou
t xx

n+l n n _ + nn n+l n-n+l n+lU =u + U j 2U + U- + Uj+- 2U + Uj1 (3.4-1)

U = f(x.) j J-l Ax = 1/J
J J

n n
U = U =00 J

This difference scheme for the heat equations is known as the Crank-

n+lNicholson scheme. These equations involve U on the right side

in the space difference terms. They cannot be solved explicitly for the

n+lU. terms; that is, we cannot obtain a simple algebraic expression for

the U term. We must invert a tridiagonal matrix to find the Un+l

n+lthe U are defined implicitly by the above equation. To see this we

write equation (3.4-1) in matrix form where C is a matrix of order J-l.

S- C)Un+= (i+ C+ Un2 2
-2 1 0 . . . . . . .. 0

1 -2 1 0 . . . . .. 0

0 1 -2 1 0 . . . 0

0 . . . . . . . . . . 1 -2

n
U-

n
U1

n
U2

n
J-1

C
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Note that we can write this scheme in the form

Un+l = Un

where Lh is the matrix operator I - C I +1C . We must solve a

system of equations whose matrix is the tridiagonal matrix I - C

(I is the identity matrix). If we write out the matrix I - C we

have

0 . . . . . . . . . . . . 0

-p/2 0 . . .

1+4 -/2 0 . . .

1+0

-p/2

0

0 . . . . . . . . . . . . 0 -p/2 l+iL

This matrix is diagonally dominant. The diagonal element in each row

is greater than the sum of the absolute value of the diagonal element in

that row; that is

Ibii. > Z b.ji i 13j/i for 1 < i n .

Therefore the matrix is nonsingular, and we can solve the system of

equations (3.4-1). In fact, the matrix I - C is symmetric and positive

definite. For further discussion of these matters from matrix theory see

section 1.2 and section 5.2.2. We can write down the eigenvalues and

eigenvectors for the matrix C and-therefore for I - Ceigevectrs C

I - C = B*2
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Problem 3.4-1. Show that the eigenvectors of C are U = sinrrx.
J

2
1 - j < J-l, 1 , r < J-l. The eigenvalues of C are -4sin (rrAx/2),

Ax = 1/J. Therefore the eigenvalues of I - C are 1 + 2psin2(-rAx/2).

This problem is very similar to problem 2.3-1.

We have to solve the system I- C U1= I + CUn. Since the

matrix I - C is symmetric and positive definite we can solve this system
2

by Gaussianelimination without interchange of rows. Normal Gaussian

elimination requires the interchange of rows in order to maximize the

"pivot elements." We need to solve the system Bu = f where B is a

tridiagonal matrix, u is the unknown vector, and f the known vector.

This is done with a forward sweep followed by a backward sweep. We

start with the equations in the form

1 YI

o 2 82 Y2

0 P3  3 Y3

0 . . . . . . . . . . ~J-.L J-1

U1

UJ-l

The forward sweep transforms this to a triangular system of equations

th th
by adding a multiple of the j equation to the j+l equation in order

to eliminate the u j+l term. The algorithm is

1 1 1 1 1 1

f J -
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A - 9' . +
j+l j - j+lj+1 p°) j- +1^1 - -^ +^j

yj+l Nj+l

1 j < J-2

The system then takes the form

^2 0Y2 " " "

Y3
0 . . .

A

OJ-2

. . . . . . . . 0

J-2

pJ-1

This system is then solved by a simple backward substitution

A A
UJ-1 J-1 J,1

U. = 2----- - y U.j
J JI J

S- - j+1 uj+l
J-1

J-2 - j 2 1

With a computer where division is much slower than multiplication we would

A A A ^

probably compute 1/%j, then Caj+l*(l/ýj), i j+l' fj Thus we would perform

1 division, 5 multiplications, and 3 additions for each component U.

(except U1 and UJ-1). Thus we do a total of about 9(J-1) floating point

operations. Thus we pay a slight additional price for use of the

implicit scheme--we have to solve a system of linear equations. This

price is frequently small compared with the total computation required to

81 1i

0 ^

o o

0....

u .U

I 1

A
f

fJ-1

B3
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solve the problem. The advantage of the implicit scheme is the lack of

a stability restriction on the size of At. For the explicit scheme of

section 2.1 we must have c = aAt/Ax2 < , or At Ax2/(2a). The implicit

scheme is stable for all values of At. We will discuss this later.

First we will describe another way to derive the solution of our

tridiagonal system of equations. This is taken from the book by Richtmyer

and Morton and results in essentially the same algorithm as Gaussian

elimination. However, it involves a somewhat different point of view

which is sometimes useful. We have to solve the system of equations

S jU-l + BUU + Y'Uj+ = f 1 < j J- (3.4-2)

U = U = 0O J 0

Suppose we consider those sequences U. which satisfy the equation and the

left boundary condition U = 0, but not the right boundary condition

U = 0. This is a one parameter family of solutions since we may specify

U arbitrarily but then the remaining values of U., 2 < j • J, are
1

determined by the equation for f.. Suppose we assume that U can be
J J

specified as the parameter rather than U1 ; that is, we assume U can

be specified arbitrarily, then the remaining U. determined to satisfy the

equation for f. as well as the left boundary condition U = 0. It seems

reasonable to look for such a solution in the form of a linear relation

U. = E.U. + F., 0 < j < J. If we substitute into the equation for

f. we obtain
J

j.(E.U. + F. + l .U. + = f 1 j j J- 1

j - + Fj- +jj jUj+I j
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y f.- a.F.
U. + U. = 1- and we have the

j .E . + j+1 .E +
S j j-1 j 3 j- i j

following condition

-Y.
E = 1 +E --- ]--

j =  jEj + pj
j i-i J

f. - a.FF
F = 1 1 1-1

j j j + j

The equation for U is U0 = EU1 + F0. Since U1 is arbitrary we must

have E = F= 0. Thus we have the forward sweep
0 0

E =0
0

F0 =0
0

E. = - y/(.E + .)
j j J j

f. - c.F.
F =1 1 1-1

J cjEj._ + PjJ J-1 j
1 j J-l

followed by the backward sweep

Uj = Ej U + F
j j J+l j

J-l j 2 1 .

A comparison with the Gaussian elimination algorithm shows

-Y
E.=--

J bj

ocr+.Y.1
or ~. =o.E l1

:i j j - j j -l B

Problem 3.4-2. Assume that we have diagonal dominance with positive

diagonals, Bj > lcjl + IYj.I Prove (use induction) that IE.jl 1 for all

j and p. > 0 for all j.

Either process for solving the system will fail only if p. vanishes.

The above shows that this cannot occur. Also, the numbers involved in

the process E. and F. do not become unreasonably large as long as theJ J

Therefore

U =0
J
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solution U. is reasonably bounded. If IUj.l M, then from

U. = EjUj + Fj, IE.l 1, we have IF.j • 2M. Since none of the numbers

involved become large, we will probably not lose accuracy due to

cancellation in computing the solution to the recurrence relations.

This reasoning is usually valid, although sometimes not as the problem

below will show. However, we can use the error analysis of Wilkinson

to show that the above solution will not produce a disastrous accumulation

of roundoff error.

Problem 3.4-3. Consider the recurrence relation Xn+l = ax + 3.n+1 n
Suppose B = A - cA, x0 = A; then the solution is xn = A. What would you

expect for the behavior of roundoff error? Try it on a computer. You

might try a = 1//2, A = iT, or y = 2, A = 2, or a = T, A = /2, or

a = n, A = 1. Can you explain the results?

Problem 3.4-4. We could solve the system of equations (3.4-2) as

follows. First set U1 = 1 and solve the equations, that is

S(1) = 1 __- .( f -) . U(1)
0 ' Yj- (j-1 j-1 j-1 -1 j-2

2 j j J

Now solve the corresponding homogeneous equations

(2) 2) = U(2) (2) (2) 2 j•JU jO, U j- 1

Then it is easy to see that we can obtain the solution of equations

(3.4-2) by a linear combination of U(1) and U(2), namely
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U(1)

U. = U - U(2)
j j U(2) j

J

Show that this method will produce a disastrous accumulation of roundoff

error for the heat equation problem, . = =  + Y

might try it on a computer, then explain the result. Or you may do it

analytically. Hint: The general solution of the recurrence relation

j+I + U. + yUj- = 0

1 . 2
is given by U. = Az + Bz where z are the roots of yz + pz + y = 0

(assume z z ). The values of A and B are determined by the starting

(2)values U and U . Show that U.( will grow very rapidly. What is the0 l

significance of this growth to roundoff error?

Problem 3.4-5. The implicit scheme requires the solution of the

equation Bvn = f for each time step. Since B = I - 2 C does not depend
-l

on n, we could compute B once, store it, and then simply compute

n -ln
v = B f . Why is this a bad idea? Consider both storage and computing

time. However, we could speed up the process outlined above by storing

the appropriate three vectors. What should be stored?

We have engaged in a long discussion of methods used to solve the

system of equations produced by the implicit difference scheme for the

heat equation. Now we should consider the reason we use this scheme.

This scheme is unconditionally stable. We can base our choice of At

solely on accuracy considerations; there is no stability restriction.
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This unconditional stability will frequently result in a much larger

time-step and a corresponding reduction in computing time. The

following problem will illustrate this.

Problem 3.4-6. Consider the heat equation u = au + f. The
t xx

term f = f(x,t) represents a source or sink of heat. Let

u(x,t) = 4x(l-x)sin wt. Then u is a solution provided

f = 4 x(l-x)w cos wt + 8a sin wt. We take the boundary conditions to

be u(0,t) = u(l,t) = 0. Code this problem for a computer using both

the explicit scheme of section 2.1 and the implicit scheme given above.

Solve this problem for 0 < t• T using appropriate values of c, w, T,

At, Ax. Compare accuracy and computer time for the two schemes.

To perform the stability analysis we assume periodic boundary
inkx.

conditions and consider the modes U.= [M(k)]e . If we substitute
inrkx.

into equation (3.4-1) and divide out the factor Mne we obtain

M= 1 + (2cose-2 +(2cose-2)M), = nkAx

Solving for M =M(k) we have

1 - 1 (l-cose) 1 - A
M = + -(l-cos) i + A where A = 4(l-cose)

Since A - 0 it is easy to see that |M(k) l 1. Therefore the amplification

factor is bounded by 1 independent of k, Ax, and M. The implicit

scheme is unconditionally stable. The proof for the boundary condition

u(0,t) = u(l,t) = 0 can be done the same way.
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Next we will give a proof of stability for the implicit scheme based

on the energy method. The idea of the energy method is to define a

norm for the vectors U and then prove something like the following

inequality Ulun+l \ (l+kAt)llUn1 . The constant k must be independent of
kt

n, Ax, At, and the solution Un. Then j 1Un11 < (l+kAfnlUO 1 e e n 0\

and this implies stability. The norm, in some sense, measures the length

of the vector. For example, the Euclidean or L norm is most frequently2
J J

used, 1Ui 2 = lu 2 . We might use the L1 norm IUl\1 = l ju.
j =0 j=0

or the maximum norm U = max IUjl. If A is any symmetric positive
Oj•J J

definite matrix, then the following relation defines a norm

lUIA = UAu = E u.a..u.. As we noted in chapter 1, the following
i j

properties characterize a norm: 1) I|Ull Ž 0 and IlUI| = 0 iff U = 0,

2) I\cyUl = laJIIllU for any scaler a, and 3) IlU + +Wl |iu|I + llw|l.

We will use the ordinary L2 norm to prove that the scheme given

by equations (3.4-1) is stable. First we will need the following identity.

Problem 3.4-7. Given a vector ,j, 0 < j : J where = J = 0, prove

that

J - 1  / J - 1  2

Si j +1 j j- l) =- -
j=l j=0

Now take equations (3.4-1) and multiply by U+l + UJL. We obtain

(U <+I u•(•. ++ .- (U• 4 1.+Iu.+l (Un+l n

(U1 + U) +1 - = 1 +  L +1 n+ U+ -2 1 + U

+ un+l nI
j-1 +j-1.
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n+l n
If we let . = Un + Un, we can sum these equations and use the above

problem to obtain

J- 1 n+ 2  J-l 2
E (U - E U

j=l \ / j=l

J-l {
2 jl

J- (

2 j j+l1

Therefore

J- 1

j=l J

J-1 /
• E (u.

j=l \J/
or \\Un+ll\2 < n2

The energy decreases (or at least does not increase) at each time step,

and therefore we certLinly have r stable scheme.

Note the similarity between this proof and the derivation for the

following energy inequality for the heat equation which we discussed in

chapter 1. Multiply both sides of this equation by u and integrate

with respect to both x and t to obtain

1 t t 1  1
S uudtdx = (u 2 dtdx = u(x,t)dx - u(xO)dx

0 0 0 0 0 0

1 t t
= O uu dtdx = C [u(l,t)u(l,t) - u(0,t)u (0,t)]dx - (u ) dxdt

SJ  txx x  x x
0 0 0

Since u(l,t) = u(0,t) = 0 we have

- 2j. + -l) =
S j 1

2 4) O
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1 1 t 1
Su 2 (x,t)dx - 2 u2(x,0)dx = - a (u  2dxdt 50 (3.4-3)
0 0 0 0

12
This implies that the function E(t) = ½ u2(x,t)dx is a non-increasing

0
function of t.

We proved that the explicit scheme for the heat equation described

in section 2.1 was stable by use of a so-called maximum principle. We

can regard this as a proof by the energy method since we showed that

Un+l l l

where Ugn\ = max |un..1 oo Oj•J J "

Problem 3.4-8. Consider the implicit scheme for the simple

hyperbolic equation ut + cu = 0 with periodic boundary conditions.
t x

n+l un X n+l n+l n _ýunU.j = U. Uj+ - U J1 + + U -U X = cAt/Ax

Show that this scheme is unconditionally stable by use of the Fourier

analysis method. Prove the same thing by means of the energy method.

Is the matrix equation for Un+l tridiagonal? How would you solve the

matrix equation? Suppose the values of U +at the boundary are given;

n+l n+l
that is, U = g(t ) , U g(t ) . In this case the matrix

is tridiagonal. Show that this trin+ diagonal matrix is nonsingular

is tridiagonal. Show that this tridiagonal matrix is nonsingular.
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3.5 Implicit Schemes in More Th n One Dimension; Alternating-Direction-

Implicit (ADI) Methods

We have seen that there is a great advantage in the use of implicit

schemes, especially for the heat equation because of the restrictive stability

condition At - Ax2 /(2a). What happens if we try an implicit scheme for

a problem in two dimensions? For example, consider the heat equation on

a square

u y + , 0 x , OO•xy <at 2 2ax by
u(x,y,0) = f(x,y)

We require u to vanish on the boundary; that is, u(x,y,t) = 0 if x = 0,

n
or x = 1, or y = 0, or y = 1. We let ujk = u(xj,ykt), x = jAx,

yk = kAy, Ax = 1/J, Ay = l/K, 0 • j _ J, 0 k k • K. The following would

then be a two-dimensional implicit scheme.

n+1 n +1  n2 U n+1 n+ U n+1 +nU = U + 1 U + i - 2 + U + U + U..
n+1 n n+1 n + n+1 Un

+ U + U . - 2U + U + +
S k+ j,k+l jk jk jk- jk-

2 2
where ý = At/(2Ax ), 2 42 = CAt/(2Ay ). In matrix form this scheme is
where nx ya t/( n), vy

(I+C)Un+l = (I-C)Un. The matrix C is given by (here we have

y = 1 + 2ix + 2 y)
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y - x0 0 . . . . . . . . . . 0 . . . . . . . . 0a

. . . .
x •x * . ." .

* •

x y

-4•yx . y . . . . . . . . . 0

* '* x Y x 0 * * .

0 . . . . . . . . - y 0 0 - Y . . . . . . . . . - y

We have described the matrix operator for a two-dimensional explicit

problem in section 2.5. The order of the matrix C (and the dimension of

the vectors Un) is (J-1) X (K-l). The matrix C can be partitioned into

submatrices each of order J-l; that is,

1

D
x

D
y

0

2

D
y

3

0

K-i

D D
x y

D D D . . . .
y x y

0 . . . . . . . . . D D
y x

C =

* . . .
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where D is a tridiagonal matrix and D a diagonal matrix.
x y

Y -X ° *

-Y - 0 . . .
x x

0 . . . 0 -. , Y
A

D
y

y = 1+2p +2w
x y

n+l n+l =

In order to determine U we must solve the system (IC)Un+ = (I-C)Un

The matrix B = I+C is not tridiagonal--it is block tridiagonal. Thus B

is a banded matrix with band width 2J-1, that is b.. = 0 if li-jl > J-l.
2J

To solve such a banded matrix by Gaussian elimination would require far

too much computing. This solution has to be done at each time step,

and there may be hundreds or thousands of time steps.

Problem 3.5-1. Show that the matrix I+C above is nonsingular.

Estimate the number of floating point operations required to solve

(I+C)Un = (I-C)U if the matrix is treated as a banded matrix.

In 1955 Peaceman and Rachford and also Douglas devised a very

effective scheme for the heat equation. This is the alternating-

direction-implicit method. It is unconditionally stable, has second-

order accuracy, and requires nothing more than the solution of a

tridiagonal matrix system. We will apply the ADI method to the heat

equation problem described above. We use the notation

2 U U - 2Un + U 2 Un 2 Un +U nThe
x j+l,k j,k j-l,k' y j,k+l jk jk- The

straight forward implicit scheme described above is then

D
x

~Ly

IL~r
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Un+l = U+ 6(Un+l + n 2 (un+ + U n.
Ux Un + xy (y\

The ADI scheme is a two-step scheme, defined as follows:

U = Un 2 1 +U n n 6 2( 2 Un) (3.5-1)
U= +xx y yU

Un+l =n • x2 + n 62 Un+l U
U U + X 6 xU +U 6 U

The reader should convince himself that both operators involved here are

tridiagonal matrix operators. This is true if we order the U vector

n+l
with the x index first, and U with the y index first; that is

1 1 i1 1 - ^1 ^1 ^3T
U U U U U *T U02 KT U)U ' 21' 312' " 1*** U ,1 1,2 - ,K-

Un+l / n+l n+l n+l n+l n+l n+l
=U U U UIU

S11 ' 12 ' K-1 2,1' 2,2 "" J-1K-

Since the matrices are tridiagonal, the solution of these equations

requires only a modest effort.

If our problem were three-dimensional, 0 • x 1I, 0 < y Il,

2 2
0 < z : 1, then we would have a third operator 8 similar to 6 and

z x

62. The ADI scheme would then be a three-step scheme
y

= -n + ^~ ( ul + •n)+ ( + u n)+ •U(2UUn)
2^n (x2 2 +  n2 2 n+l (n 5

U U + nP x U + n + %K2U + U + 7
z 6 2 +U

n+1 = + x 1 + U yy 2 + z 2 Un+1 Un
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It might seem more reasonable to use the term x 6 2 + U rather than

62 U( + Un) since we would then be using the latest and presumably best
xx

approximation to Un+. However, this would not produce an unconditionally

stable scheme.

Problem 3.5-2. Show that the ADI scheme given by equations (3.4-1)

2 2 2
has truncation error 0(At2) + 0(Ax2) + 0(Ay2).

We will analyze the stability of this scheme by use of Fourier

analysis. Since our problem is two-dimensional, we will need a two-

dimensional Fourier analysis. If f(x,y) is a suitably smooth function

defined on the square -1 • x • 1, -1 s y : 1, then we have the Fourier

series representation

O CO i,(rx+sy)
f(x,y) = E ar e

rs
S=-co r=-oo

1 1
\ -i•(rx+sy)dxd y

a = P , f(x,y) e dxdy
rs J •Jrs -1 -1

This representation has a discrete analogue just as in the one-dimensional

case. Given a vector Ujk, -J • j < J, -K • k < K, then we have

K-l J-1 irr(rx. + syk)
U = Z a ejk rs

s=-K r=-J

SK-l J-l -in(rx + sy)
a =-- U.e x = j/J, y = k/K

rs 4JK k=-K j-J J  kk=-K jff-J
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If we have a linear finite difference scheme with constant coefficients

and periodic boundary conditions in two dimensions, we can determine its

stability by the same method used for the one-dimensional problems. We

simply substitute the Fourier modes into the difference schemes and compute

the amplification factor. If we substitute the Fourier mode

n iT(rx.+syk)
Ujk e into the ADI scheme defined by equations (3.5-1) we

obtain the following:

A1 A inT(rx +sy n+ irr(rx +syk)
U = M, e k  U =Me k

jk 1 jk

where

A A

M = 1 + px 2(cos9-l)(M +l) + 4y (cos*-l)

M = 1 + px 2(cos9-1)(MI+1) + y 2(cos*-l)(M+l)

Q = rrrAx , A = rsAy

If we let px 2(cos9-l) = gx, y 2(cos--l) = g , then

gx(Ml-1) = M - 1 - 2g

(l-gx)M = I + gx + 2gy

(l-gy)M = 1 + M - 1 - 2gy + gy

(l-gx)(l-gy)M = (l-gx)MI - (l-gx)gy
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(1-gx)(l-gy)M = + gx + 2gy - gy + ggy

(1+g )(l+g )
M = yM (1-gx)(1-gy)

Since gx 0, gy 0, we have IMI s 1 for all values of r, s, n, Ax,
x y

Ay, At. Therefore we have an unconditionally stable scheme.

Problem 3.5-3. Consider the following scheme:

1 = 2 nl +n2 2n
U n  2 i + un + 2 62 un + 2 2 n

Uxux yxy z z

02 =n u+ + n•2 + U2+ (22 + 2)+ +

Un+l Un + ( + U + 6 2 + Un) +~z 2 n+l + U)

Show that it is not unconditionally stable. Thus we should not use

the "best available estimate" for U+ at each step.

Problem 3.5-4. Show that the three-dimensional ADI scheme described

by equations (3.5-2) is unconditionally stable.

Problem 3.5-5. Suppose you have an ADI problem for a three-dimensional

heat equation where the fields Un and Un+ are too large to fit in the

fast memory of the computer. Suppose you can store these fields on a

drum. Assume you have a 50X50X50 mesh, 32,000 fast memory locations

available for data storage, a drum rotation time of 34 milliseconds, and

a transfer rate of 100,000 words per second. Assume your computer
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averages 2 PseC per floating point operation, including logical overhead

such as indexing, tests, etc. Can you devise an ADI algorithm including

the storage allocation and buffered transfer from the drum so that your

computation will not be I/O bound?

Problem 3.5-6. Devise an ADI scheme for the inhomogeneous heat

equation on a rectangle

S 2 2
- -- + + f(x t)at y x 2  a 2

2 2 2
which has second order truncation error, T = O(At2) + O(Ax2) + 0(Ay2).

Problem 3.5-7. Suppose you must solve the inhomogeneous heat

equation as in problem 3.5-6. Suppose there is room for only two

t d n n+l n n+
two-dimensional fields in our computer, Uj, Uk k or U , fjk

for example. Is it possible to devise an ADI algorithm storing

n+½
only two fields at once and computing the fjk array only once per

time step?
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3.6 The Method of Fractional Time Steps.

This is a method somewhat related to the ADI method which has been

developed by Soviet mathematicians. The idea is to represent the

difference operator for a multidimensional problem as the product of

one-dimensional operators. If the norm of each of the one-dimensional

operators is bounded by unity, then the norm of the product is bounded

by unity, and we have a stable scheme. Also, the amplification factor

for the multidimensional scheme is simply the product of the

amplification factors of the one-dimensional scheme. If the one-

dimensional operators are stable, then we might expect the multi-

dimensional scheme to be stable.

We will illustrate the method by applying it to the two-dimensional

heat equation. We first advance the solution from the time t to
n

t + At/2 = t by use only of the terms involving x-derivatives.
n n+-

Then we advance from tn+½ to tn using only the y-derivative terms.
nr (U n

n+1, = Un X2n+ + Un Px = At/(2Ax 2 ) (3.6-1)

Un+l = Un+½ i 62 Ln+l + n+) = At/(2y 2 )
= 2 yA (t/(2Ay2)

4x 2 v 2
If we define the operators B and B byB =- 6, B = 2 then

x y x 2 x y 2  yt

U = (I-B) - (I+B)U 1 , Un+ = (I-B ) (I+• )U .
x x y y

If the one-dimensional operators satisfy the conditions

-1 -1ll(I-B )-i(I+B )I- 1(I-B )-(I+B ) < 1x x 'y y
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then \Un+1  (I-B1) (I-y3 ) (I-B) 1 (I+Bx)ll IIUnll < \ Un . If we can

prove the above bounds for the one-dimensional operators, then we have

stability for the two-dimensional operators. In section 3.4 we used the

energy method to show that the above inequalities do hold for the

one-dimensional operators.

Problem 3.6-1. Determine the truncation error for the scheme given

by equations (3.6-1).

Problem 3.6-2. Consider the nonlinear hyperbolic equation defined

on a square with periodic boundary conditions.

au 6u + u
at 6x 6y

Apply the method of fractional time steps to this problem. You might

use the Lax-Wendroff (Taylor series) technique for the one-dimensional

operators. What is the truncation error for your scheme? What is the

result of applying the Taylor series technique directly to the two-

dimensional problem?
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3.7 The Use of Dissipation to Stabilize Finite Difference Schemes.

We will introduce this section with a study of the following

differential equation (see section 1.3.7).

2
J+ auc = , -1 <x 1 (3.7-1)
bt 8x ax

u(x,0) = f(x)

We assume periodic boundary conditions u(x±2,t) = u(x,t), f(x±2) = f(x).

2 2
The term a au/ax is a dissipative term--it tends to reduce the energy

in the solution. We can see this if we multiply equation (3.7-1) by

u and then integrate over x and t. We obtain

+(u a2)+½c ax* -

at C  x xx a

Sf (x,t)- u (x,O)dx + c f (l,t) - u2(-1,t) dt
-1 L 0 L

= u(1t)u (1t) - u(-,t)u (-1,t) dt- (ux)2 dxdt
0 0 -1

1
We may consider E(t) = ½i u2 (x,t)dx as a measure of the energy in the

-1
flow at a given time. Looked at in another way E(t) is just the L

norm of u at a given t. Note that if E(t) = 0, then u(x,t) = 0 for

-l £ x • 1. If u is a velocity, then it is quite natural to regard

the integral of its square as an energy. If we use our periodic boundary

condition, then the above equation becomes
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11 1
E(t) = E(0) - o , (u )" dxdt

0 -1

The integral term on the right is certainly non-positive, in fact the

term is negative unless u is constant. Therefore E(t) < E(0), and

we have an energy inequality for our equation (3.7-1). The diffusion

2 2
term a 1 u/ax takes energy out of the solution. If a = 0, then the

energy is constant since E(t) = E(0) for all t 2 0.

We can obtain more information from the solution of equations (3.7-1)

inkx
We will look for solutions in the form u(x,t) = Ak(t)e . Substitution

into the equation yields

A' + inrkcAk + rr2 k A .e = 0k k k

If we require Ak(0) = ak, then the solution must be

22
-orr k t-irrkct inkx irrkx

u(x,t) = ak e e where u(x,0) = ak e

i kx
From this we can obtain the general solution. If f(x) = Z ake

k=-cO

then, sin-.e our equation is linear and since we know the solution for

each term in the Fourier series, we can write the general solution as

00  2 2
S-m2 k t iTTk(x-ct)

u(x,t) = E ak e e
k= -- k

CO

We may wish to impose some requirement on f(x), such as Z k akI < co
-- O00

or perhaps Z k21akl < c. Why might we need such as requirement?
-- co
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The form of this solution tells us something about the nature of the

energy dissipation. It is highly sensitive to frequency. If the term

on 2k2t is quite small, then the solution approximates that of the

iiT(x-ct)
hyperbolic equation u + cu = 0, namely Z ak e However, each

t x
2 2

term in the series is reduced by the amount e- k t. Obviously, the

reduction is much greater for the higher frequencies. We know that

instability in a difference scheme is usually due to rapid growth

of the higher frequencies. This suggests the addition of a diffusion

type term to the difference equation, say the finite difference analog

of a 82u/ax2. If a is sufficiently small, then this term might kill

the high frequency growth without affecting the desired solution too

much.

As an example, consider the unstable difference scheme for the hyperbolic

equation u + cu = 0.t x

n+1 n X n n
U Un - ( - U X = cAt/Ax

j j 2 \j+l

The Lax-Wendroff scheme for this same equation is

Un+ 1  - U - + n - 2 Un + U- (3.7-2)
J j 2 j+l j- 2 j+l j3 j1

(see section 3.2). It is stable provided IlX < 1. We could regard this

scheme as an obvious difference approximation to the equation

2 2 2
u + cu = eu where e = X Ax /(2At) = c At/2. We simply approximate

t x xx

u by (U + 1 - U)/At, u by (Un - Un /2Ax, anduxx by

Ut x + N j- Axx
n n n 2

(Un - 2U + Uj )/Ax . Note that e = 0(At), therefore in the limit as the
j+1 j j-l
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mesh spacing approaches zero, our differential equation becomes

u + cu = 0. Therefore, we might expect the solution of the difference
t x

scheme to converge to the solution of the hyperbolic equation. Also

note that we have taken an unstable scheme for u + cu , added a
t x

diffusion type term and thereby stabilized the scheme. In the case

of the Lax-Wendroff scheme, we even improved the accuracy from 0(At)

to 0(At2). This improved accuracy comes from the Taylor series expansion

which produced the difference scheme. As a fortuitous by-product

we obtain the dissipative nature of the Lax-Wendroff scheme. There is

a theorem due to Kriess which states that a wide class of difference

schemes for hyperbolic equations can be stabilized by the addition of

a diffusion type term [Kreiss, 1964].

Problem 3.7-1. Consider the difference scheme

n+l n n n n 2 n + n 2U U7 U + G t -2U.+UX
j j 2• + j +1 j-1 • j+ 3

For what range of e is this scheme stable. We have already shown it

2 2
to be stable for e = X2Ax /(2At) = 0(Ax).

A second example can also be obtained starting with the leapfrog

scheme

Un+l = Un-I X i -U i) (37-3)
j j j+ l j-1> (3.7-3)

We consider the DuFort-Frankl approximation to the term Q2u/ax2, namely

Un n+l n- n 2 n+1 n-l Un n
U - U. - U. + U. x . If we form U. = U. -- n n .
j+l j j J- J j J+1 j-1

+ U - U.+l - U +j- , we see that this is equivalent to
j+1 J J 3-
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n+l n n n n
U = + U  - - U• (3.7-4)

2 j+1 j- 2 j -+l

Note that this is equivalent to adding the term eu to the hyperbolic
xx

equation, with e = Ax2/At, and then using a DuFort-Frankl approximation

for u
xx

Both the leapfrog scheme of equation (3.7-3) and the scheme above

(equation (3.7-4)) are stable. However, the amplification factor for

the leapfrog scheme lies on the unit circle for all frequencies k.

Therefore no Fourier mode is attenuated although the higher frequencies

will suffer large phase shift (if there were no phase shift, the

leapfrog scheme would be perfectly accurate for all frequencies--nature

is usually not this generous). Since the high frequencies are not

accurately represented, it may be better to dissipate them; that is,

force the magnitude of the amplification factor to be less than one.

Otherwise, in a nonlinear hyperbolic equation such as u + uu = 0,
t x

these high frequencies may interact to produce an explosive error growth

(nonlinear instability, see chapter 8). The addition of the DuFort-

Frankl form of the diffusion term to the leapfrog scheme does just this.

In figure 3.7-1 below we have plotted the magnitude of the amplification

factors for the leapfrog scheme (equation 3.7-3), the Lax-Wendroff

(equation 3.7-2), and the scheme of equation (3.7-4) (sometimes called

the Friedrichs scheme). For the Lax-Wendroff scheme the amplification

2
factor is M(k) = 1 - ixsine + X (cose-l), 9 = nkAx (see section 3.2).

For the leapfrog scheme there are really two amplification factors

(we will speak more of this in chapter 4) since it is a three-level scheme.
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However, both factors have magnitude one. The amplification factor for

the third scheme is cose - iXsine. A dissipative scheme will have

JMI < 1 if 0 < 1le. As we will see in chapter 8 this question of

dissipation frequently is quite important in the choice of a difference

scheme. Most physical systems are actually dissipative even if our

idealized model of the physical system is not dissipative. Therefore,

it may be reasonable to add a proper amount of dissipation to our

model--the problem is to determine what is proper. Of course, a closed

system must conserve energy. But frequently we model only part of the

total system; for example, we neglect the heating of a fluid due to

viscosity, but include the viscosity damping in the momentum equations

(the Navier-Stokes equations, for example). Thus our model is dissipative.

If we neglect viscosity altogether, our model would be conservative.

Problem 3.7-2. Is the implicit scheme discussed in section 3.4

dissipative when applied to the hyperbolic equation ut + cu = 0.t x

Problem 3.7-3. Consider the problem ut = Cuxx + g(x,t),

u(0,t) = u(l,t) = 0, u(x,0) = f(x). Use the implicit difference scheme

on this problem. Show that if we choose Ax small enough, then we can

run this scheme forever at this fixed Ax (n - co) and still the error

will remain less than e for all n. That is, the convergence of this

scheme is uniform in time. Also, show that roundoff error will cause

no trouble no matter how many time steps we take. Note that part of

this problem is to formulate it precisely. We have merely supplied

the meaning of the problem.
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In order to prove a stable scheme is convergent, we limit the time

interval; that is, we require nýt < T. Convergence is not uniform in

KT
time. Also, the roundoff error may grow like e . We cannot expect

to run the difference scheme indefinitely without eventually losing

all accuracy. However, if our scheme is sufficiently dissipative

(for example L|| - 1 - KAt where K > 0 is independent of the mesh

spacing), then we do not get an error buildup. Devise a computer program

to check the error in the solution of the above heat equation. You might

use the code written for problem 3.4-6.

Problem 3.7-4. Consider the hyperbolic equation ut + cu = f with
t x

periodic boundary conditions. Consider the implicit scheme for this

problem. Do you think you could run this scheme indefinitely with no

serious buildup of error? In other words, is convergence likely to be

uniform in time? Why? Write a computer program to verify your conclusion.

Problem 3.7-5. Consider the following unstable scheme for the

hyperbolic equation u + cu = 0 (assume periodic boundary conditions).
t x

n+l= Un U - U X = cAt/Ax
j j 2j+i j-1

If we add the dissipative approximation to u , X + - 2U. + U ) /2,
xx j+l J j-1/ '

we obtain the Lax-Wendroff scheme. Suppose instead we add the term

2 n - 2Un + U 2 )/8. This is an approximation to

2 2
Sc u = --- u , so we may also regard the following scheme as being

2 xx 2 tt

derived from a Taylor series.
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n+l = n n - Un - U u+2j j 2uj+l -j1 + 8 ++2 - 2U + Uj j- 2

Determine the truncation error and stability for this difference scheme.

Is this added term dissipative, that is,is

J-1
SUn - 2Un + u ' 0 .
SJ j+2 j j-2

j=-J
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3.8 The Effect of Lower Order Terms on Stability

Suppose we take the heat equation ut = uxx and add terms to the

right side which contain only lower order derivatives, for example,

u = au + au . Or we might modify the hyperbolic equation u + cu = 0
t xx x t x

to yield u + cu + au = 0. Suppose we have a stable difference scheme
t x

for the equation u + cu = 0 and modify it to include the au term.
t x

What is the effect on stability? In general, there is no effect.

n+l n + CU = 0, and we
For example, if we have the scheme U 1 = L.Un for ut + cux 0, and we

modify it so that Un+l= LhU + AtaUn, then our new operator is

(Lh + aAtI). But ||Lh + aAtIll <• iiLh + lalAt, and if \\Lh\\ 1 + 0(At),

then the same statement is true for the augmented operator. Thus we

would expect no effect on stability. However, we have to be a little

careful with this argument as the following example will show.

Suppose we consider the modified heat equation ut = uxx + aux'

u(x,0) = f(x). We assume periodic boundary conditions. We have already

obtained the solution to this equation in section 3.7. Now consider

the explicit difference scheme

1+l n ( n n n aAt n 1n n
U+ =U + - 2U + U + - -U (3.8-1)

J j j+l j jl 2A(x +1 j-

Problem 3.8-1. Show that the above scheme is stable if

S= oAt/Lx2 < ½. Show that the scheme is strongly stable if At < 2c/a2

By strongly stable we mean that the amplification factor h(k)

for the mode eikrx satisfies |Ah(k)J < 1 independent of the mesh

spacing h and the frequency k. By stable we mean lAh(k) • & 1 + CAt
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where C is independent of h and k. If Ah(k) satisfies this condition,

and for all h there is at least one k such that |Ah(k) 2 1 + C1At (C 1 > 0

and independent of h), then we say that the scheme is "weakly unstable."

Note that some modes in the solution of the difference equation will grow
Ct

like e n in this case. However, the solutions of the differential

equation u = au + au do not grow; in fact, they will decay. This
t xx x

weak instability can make a difference scheme useless for some applications,

such as long-running problems in numerical weather prediction.

The first condition in the above problem is our normal stability

condition for the heat equation. If a is very small, we can expect

trouble since for a = 0 the above scheme is an unstable approximation

to the hyperbolic equation u = au . And indeed we do have troublet x

as a approaches zero since the second condition requires At < 2c/a2

For fixed c and a this condition will certainly be satisfied if we

take the mesh spacing Ax to be sufficiently small since 4 < ½ implies

At < Ax2/(2a). But this may require a very small Ax. Our general

argument shows that the lower order term abu/bx cannot influence

stability if the mesh spacing is small enough. We may not wish to use

such a small Ax. The numerical analyst must be somewhat suspicious of

arguments which are true "for sufficiently small" Ax or At.

If a is much smaller than a, then the above equation is more like

a hyperbolic equation than is a parabolic equation. Therefore we might

try the following difference scheme since it is stable for n = 0, \ / 0.
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n+1 n Un+1 2Un+l +n+1 n 2Un + Un-
U. U+ + -2U +U+
S2 +1 j j-1 j+ j j-1

(3.8-2)
U n+1 n+1 Un n

+ ~Uj+I U + Uj -

2
where p = oAt/Ax , X = aAt/Ax.

Sometimes it is not desirable to make the first order terms implicit.

This is particularly true if we are dealing with a system of equations

where the first order terms involve several different variables but the

second order term contains only the variable on the left side of the equation.

An example is the following Navier-Stokes equations.

t x y x R xx y R

1 2
v + uv + vv + p = V v , u + v = 0

t x y y R x y

The second order term in the u equation (V2u) involves only u, and in

the v equation only v, therefore we can use an implicit formula to

difference this term and have only a tridiagonal matrix equation to solve.

If we made the first order terms implicit, we would have a non-tridiagonal

matrix equation to solve. We might also have to solve a nonlinear equation.

If we difference the lower order hyperbolic term in the leapfrog style

and make the parabolic term implicit, then we can modify the difference

scheme of equation (3.8-2) to obtain the following:

n-l n-l F n+l n+l n+l n- n-l n- li
Un+ 1 = Un- 1 + Uj+ 1 - 2U 1 + + U -2U. +U

j j [+1 j j-l j+l j j-lj

+ (U U- ) 
(3.8-3)

+ j+1 j-1
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Problem 3.8-2. Analyze the stability of the schemes given in

equations (3.8-2) and (3.8-3).

Next we will consider a type of weak instability which can arise in

the solution of the equation u + cu + au = 0 by use of the leapfrog
t x

scheme.

Problem 3.8-3. Assume the solution of the hyperbolic equation

u + cu + au 0 has periodic boundary conditions u(-l,t) = u(l,t) and
t x

initial value u(x,0) = f(x). Obtain the Fourier series representation

for the solution u(x,t).

ik(x-ct)-at

u(x,t) = ak eik(xct)
k=-c-o

ikx ikx

Hint: Let f(x) = ak e , u(x,t) = A(t)e and solve for A(t).

o00

Assume E kiaki < , then show that the Fourier series is a solution.
--O

-at
Note the factor e in the solution. Such an exponential decay

in the solution can cause trouble when the leapfrog scheme is used.

This scheme possesses a "weak instability" similar to that shown by

Milne's method for ordinary differential equations [Henrici, 1962, p. 242].

If the leapfrog scheme is used to solve the primitive equations which govern

the motion of the atmosphere, the terms representing the Coriolis force

can cause such a weak instability [Kasahara, Washington, O'Brien]. These

are undifferentiated terms like au in the above equations. The leapfrog

scheme for the above equation is

Un+1 Un-1 n - U - 2AtaUn X = cAt/Ax
j j j+i j- J
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ikx
Problem 3.8-4. Assume that U K e . Show that

J

K(n) = AZ+ + BZn

where Z are roots of

2
Z + 2iyZ-l = 0, y = X-ia, P = hsin kAx, a = aAt

Z = -iy ± \ - y2

Note that if a = 0, then JZ I = 1. Show that if IYI << 1, then

Z± = (1 - y2) - iY + 0(Y4)

Show that for small y we have IZ_i > 1, IZ+ < 1 if a 0.

Therefore the term BZn will grow and we have a weak instability since

the solution u(x,t) should decay as t increases. Note that Z =-1 + 0(At)

and thus jZ | eKt for some K. Also B = 0(At) and therefore we have

a weak instability since the growth will not be objectionable if At is

small enough. However, if we have to run out to large values of t, it may

not be possible to take At small enough to insure that the term BeKt

is small. Therefore we might consider the following scheme.

Problem 3.8-5. Analyze the stability of the following scheme for

u + cu + au = 0 to show that it does not suffer from the weak
t x

instability described above.

nn+l - • 
n  

Tn+ n-
n+l = n- -- - + = cAt/Ax
J j + j-1

Note that this scheme is effectively explicit,
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3.9 An Experiment Concerning the Accuracy of Finite Difference Approximations.

In these experiments we solve the equation ut + ux = 0 for 0 < x • L,

u(x,0) = f(x). In the first three cases we used the Lax-Wendroff scheme

n+ 1  n nU. = Un .IUj 3 2 j+l
n x) + (Un+
3- u+ 1uJ-V 2^j -

+ jn

J J-1/

In the first case

0

f(x) = ½+½cosx

i

0 < x 7

nT • x • 2r

2n • x L

The boundary conditions are u(0,t) = 0, u(L,t) = 1. As long as t S (L-2r),

the solution is u(x,t) = f(x-t), and thus we can compute the error for t in

this range. We computed the solution of equation (3.9-1) and also the

error which is given in the table below.

Error X = 0.99

Ax = 0.188

4.4(-4)

8.5(-4)

1.4(-3)

Ax = 0,094

2.2(-4)

3.5(-4)

5.8(-4)

In the second case we used the same Lax-Wendroff scheme with periodic

boundary conditions u(0,t) = u(2TT,t) and initial function f(x) = sinx,

0 < x _ 2n. The error is given in the second table.

Ax = 0.251

3.1(-4)

1.3(-3)

2.6(-3)

Error X = 0.99

Ax = 0.126

8.5(-5)

3.3(-4)

6.6(-4)

Ax = 0.063

2.0(-5)

8.2(-5)

1.6(-4)

X = At/Ax (3.9-1)

Time

0.95

1.90

4.04

Ax = 0.377

9.0(-4)

1.7(-3)

3.4(-3)

Time

0.95

3.96

8.01
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The third case is the same as the second except X = 0.8.

Ax = 0.251

6.1(-3)

2.3(-2)

4.8(-2)

Error X = 0.8

x = 0.126

1.5(-3)

6.0(-3)

1.2(-2)

Ax = 0.063

3.7(-4)

1.5(-3)

3.0(-3)

In the fourth case we used the scheme

n n

2 2 j+ j-1
X = At/Ax

with periodic boundary conditions u(0,t) = u(2n,t) and u(x,0) f(x) = sinx.

The error is given below.

Ax = 0.251

3.7(-3)

1.5(-2)

3.1(-2)

Error X = 0.99

Ax = 0.126

2.0(-3)

8.0(-3)

1.6(-2)

Ax = 0.063

9.8(-4)

4.0(-3)

8.0(-3)

Problem 3.9-1. Derive the following expression for the truncation

error of the Lax-Wendroff scheme.

t3
6 33

t x
24 4t4 - -4• +x o (t5)
+ '\t4 ux

We denote 3u/at3 by u 3. We have assumed that all the derivatives
t

required for the above derivation are continuous.

Time

1.02

3.96

8.06

Un+1

J

Time

0.95

3.96

8.08
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Problem 3.9-2. Explain the following facts concerning the above

results: 1) In the first table we seem to have E(Ax) = O(Ax) and in the

second E(Ax)= O(Ax2). Here E(Ax) denotes the error. 2) The error is

much smaller in the second table than in the third. 3) In the fourth table

E(Ax) = O(Ax).
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4. DIFFERENCE SCHEMES FOR SYSTEMS OF EQUATIONS

Thus far we have only considered problems with a single equation for

a single unknown function u. Usually one has several unknown functions and

must thus deal with a system of equations. For example, the equations for

incompressible two-dimensional viscous fluid flow are the following (u and

v are the velocity components in the x and y directions, p the pressure and R

the Reynolds number).

1
u + uu + vu + p =- (u + u )

t x y x R xx yy

v uv +vv + py - (vx +v )
t x y y R xx yy

u +v =0
x y

Note that these are nonlinear equations. Only two of these equations

involve a time derivative. The pressure must be obtained by some means

other than a marching procedure--it is a diagnostic variable rather than a

prognostic variable. We will say more about this in section 4.5. In

order to set up a finite difference scheme, we need more than the above

equations--we must specify the boundary and initial conditions. The

proper treatment of boundary conditions causes the numerical analyst

considerable difficulty. Here there is but little theory to guide him.

If our theoretical stability analysis implies that a difference scheme is

stable, then it usually is, except an instability may develop near the

boundary. Sometimes we also have a failure of the theory because of nonlinear

terms. Our stability analysis is usually valid only for linear equations

with periodic boundary conditions. However, the extension from a single
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equation to a system usually does not cause a problem in practice, although

it may make a theoretical analysis more difficult. Also, it may greatly

increase the computer time required for a solution. Most schemes that

are stable for a single equation will also be stable for a system of the

same type.

4.1 VonNeumann stability analysis for systems of equations. The

von Neumann condition for a single equation is based on the computation

of the amplification factor for the scheme. This is a complex number Mh(k)

and we require Mh(k) = 1 + 0(At) for stability. In the case of a

system of equations this amplification factor is a matrix Mh(k). If the

scheme involves only two time levels (Un = LUn) and there are N

unknown functions ul(x,t), ... , UN(x,t), then the order of this

amplification matrix Mh(k) is equal to the number of unknown functions,

namely N. To analyze stability we must determine a bound for the power

of the matrix operator L, that is I •jI M for nat < T. By using the

Fourier representation, we reduce the stability problem to that of finding

a bound for the power of the amplification matrix Mh(k). We pay a price

for this reduction, since our stability analysis is now valid only for

periodic boundary conditions. In the case of a single unknown (N=1)

this factor Mh(k) is a scaler, which makes the analysis much easier. For

the case N > 1 we must deal with the norm of a matrix; that is, find a

bound Mlh(k)/l < M. The original matrix operator Lh has order approximately

N*J where J is the number of mesh points. Thus the Fourier representation

has reduced the order of the matrix considerably, but we must still deal with

a matrix. If the norm 1Mh(k)l| is bounded independent of the mesh spacing h
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and the wave number k, then the eigenvalues X.(h,k) of Mh(k) must satisfy

the condition

IX.(h,k) l 1 + CAt (4.1-1)

where C is independent of h and k. The reader should verify this statement.

The above condition on the eigenvalue is the von Neumann necessary condition

for stability. It is frequently easier to find such a bound for the

eigenvalues than it is to find one for the norm. Considerable effort has

been expended to find conditions on the matrix or difference scheme which

will insure that the von Neumann condition is sufficient for stability,

as well as necessary (see Richtmyer and Morton, 1967). It is usually

rather difficult to bound the norm of a non-symmetric matrix. Note that

the von Neumann condition is sufficient if there is only one unknown

function (N=l).

We will now consider the von Neumann method to determine the stability

of schemes for systems of equations. This is based on Fourier analysis

for a vector. This is a trivial extension of the scaler case--we simply

look at each component separately. Suppose we have a vector function

u(x), -1 < x ! 1; that is, u(x) = (ul(x), u 2 (x), ... , UN(x)). We may

represent each component in a Fourier series.

inkx
u (x) = Z a k e

-- CO

Then the function can be represented in the form

S= inkx
u(x) = Z ak e

-00
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where the a are vectors of order N. Similarly for a mesh function we
k

have a finite Fourier analysis

J-l inkx.
U. = a e

J k=-J k

J-l inkx.
ak 1 U. e

k j=J J

where Uj and ak are vectors.
J k

2
For an example we will use the wave equation utt - c uxx 0. We will

write this as a system of equations

v - cw =0
t x

w - cv =0
t x

v = v(x,t)

w = w(x,t)

-1 S X 1

The function v is then a solution of the wave equation. We assume periodic

boundary conditions. The initial conditions are v(x,0) = fl(x),

w(x,0) = f2(x). We can write this system in matrix form as ut + Aux = 0,

u(x,0) = f, where

-v
u =w

w

0 -c
A =

-c 0 f 2

'- I
t !·

The mesh is x. = j/J,

single equation

n
u.

J

-J < j • J. The notation is the same as for a

n
v.j

n
wj
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The Lax-Wendroff scheme can be derived by the same sort of Taylor series

as before except we are now dealing with vectors and matrices. Namely,

n+l n n 2 n 3  2
u. u. + Atu + -At u + 0(At), and u = Au . Therefore the

J j tj tt j tt xx

scheme is

n+1 n B n Un 2 n Un Un
j j 2 j+l j-1 j+l1
nrl - -- - U.) + -1-i)

B = A = = cAt/Ax
-Ax 0

Next we use the Fourier representation

J-l irrkx.
Un = [M(k)]n ak e (4.1-2)

k=-J

where Mh(k) is the amplification matrix. If we substitute this into the

difference scheme and equate the coefficients of the complex exponentials, we

obtain an equation for the factor Mh(k). This is exactly the same as for

a single equation, except we use vectors and matrices instead of scalers.
irrkx.

We can obtain the same expression for Mh(k) if we let Un = e and

substitute this expression for U. into the difference scheme (that is,

take the Fourier transform or work with one frequency component at a time).

We obtain

n+l nU = k) = (I - isin9B + (cose-1)B2)Un, = nkAx
j h(k)Uj ]J

2

and thus Mh(k) = I - isin9B + (cose-l)B . This is the same as the single

equation case (equation (3.2-2)) if we replace the scaler X by the matrix B.
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A little computation shows us that the matrix Mh(k) is

2
1 + X (cose-1) iXsine

Mh (k) = (4.1-3)
iXsine 1 + X2(cos-1l)

To determine the eigenvalues of this matrix Mh(k) we can use the

following result.

Problem 4.1-1. Let the matrix M of order N be represented by a

polynomial in the matrix B; that is, M = C01 + C B + ... + C Bn" If

the eigenvalues of B are .i 1 • i • N, then the eigenvalues X. of M

2 n
are X. = C + C + + ... + Cn. Hint: For any matrix B there is

a unitary matrix U such that U*U = I and U*BU is upper triangular. The

eigenvalues of a triangular matrix are the diagonal elements.

Using the result of this problem we see that the eigenvalues of M

are 1. = 1 ± iXsine + X2(cos-l1). Note that the eigenvalues of B are ±X.

We have already shown in section 3.2 that .i <• 1 independent of 6 = rknx.

Therefore the von Neumann criterion is satisfied for this difference scheme.

The von Neumann criterion is only a necessary condition so we still have no

proof that the scheme is stable.

In order to prove stability we must find a bound for the following

norm ([Mh(k)]njl. We will prove that llh(k)li 1 independent of k and h

(h = Ax) provided IxI < 1 (X = cAt/Ax). This provides a bound for the

norm of the n power of the matrix, namely [Mh(k)] • 1. We will use

the Euclidean (sometimes called L2) norm. The elements in our matrix are

complex numbers since we used the complex form of the Fourier series.
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The norm of a vector (u.i, 1 < i < N, containing complex elements is--.
N N

1 1 uu. = U u. 2
Ju2 i=l - i=l i12

(here u. denotes the complex conjugate of u.). The norm of the matrix M

is defined by

IM 2 = max IMu12
u\l\==1

Problem 4.1-2. We define the spectral radius of a matrix A as

a(A) = max IXj(A)I where X,(A) are the eigenvalues of A. We denote the
J

transpose conjugate of a matrix A by A , thus the elements of A are

(a ).. = a... Prove the following relation for the L norm of a
1J J31 2

matrix, IIMl2 = C(M*M). See problem 1.2-34.

Now we will estimate the norm of the matrix M given by equation (4.1-3).

We could use the result of problem 4.1-2, but we will give an independent

proof since our matrix is so easy to deal with. If we denote the elements
N

of M by mi.., 1 i, j s N and let w = Mu, then Mul = Z w.w. =
i=l

N N kN N N N
m .. ui E . u = . E E m. .m. u . A moment's reflection

i=l j=l k=l i k j=l k= l I

will show that we can write the right hand triple sum as u (M M)u (note

that w Aw = Z 2 w. a.. w. for any vector w and matrix A). If we compute
j i 1  1 J  J

the matrix M M for the matrix M of equations (4.1-2) we obtain the scaler

matrix
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2+2 2
0 2 2 0 a = 1 + X(cose-1)

0 2 2 0 1 p = Xsine

* * * 2 2 * 2 2 * 2 2
If ||u 2 = 1, then u u = and uM Mu = (2 +P )u Iu = ( +P )u = a +3 .

2 2 I 2 2 2-
In section 3.2 we have shown that + 2 = 1- X(l-cos9) (- ).

2 2
Obviously (ca2+02) • 1 independent of 0 (thus independent of h) provided

Ix\ < 1. Hence we have stability.

Normally it is not so easy to determine a bound for the norm of the

powers of the amplification matrix IM (k).ll In practice, instead of

computing the norm, we usually use the von Neumann stability criterion.

This requires knowledge of the eigenvalues of Mh(k) rather than the norm.

Determination of the eigenvalues can be difficult but usually not so

difficult as the norm. The von Neumann condition is a necessary condition

for stability, but it is not sufficient. A stable scheme must satisfy the

the von Neumann condition, but a scheme which satisfies this condition may

not be stable. The von Neumann condition simply requires that the eigenvalues

. of Mh(k) satisfy the condition .jl = 1 + 0(At); that is, there exists a

constant c independent of h (h=ŽAx) and the frequency k such that 1 |i| 1 + cft.

The fact that this condition is only necessary for stability and not

sufficient, is not too serious. After all, this analysis of stability is

dependent on the Fourier representation of the solution. This only works

for linear equations with constant coefficients and periodic boundary

conditions. Usually these requirements are not met in practice, so our

theory is not rigorously applicable. However, the von Neumann criterion

is an invaluable guide to the selection of finite difference schemes.
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If M is a normal matrix, then the von Neumann condition is sufficient to

bound the norm |Mnll of the powers of M. Other sufficient conditions are

given in chapter 4 of the book by Richtmyer and Morton.

Problem 4.1-3. Consider the hyperbolic system u + Au = 0 where A
t x

is a real matrix with real, distinct eigenvalues and u is a vector function.

Assume we have an initial value problem with periodic boundary conditions.

Use the Friedrichs finite difference scheme.

U -+1 + - A +I - U - , = t/Ax
i = iiij+l J 2 + J-l' X

Use the von Neumann criterion to obtain the stability condition for this

scheme (IAt.i/AxI < 1 where ýi are the eigenvalues of A). Show that this

is also a sufficient condition for stability in this case.

Problem 4.1-4. Show that the implicit scheme below for the hyperbolic

system of problem 4.1-3 is unconditionally stable (use the von Neumann

criterion).

n+l n /Xn+l -n+1 n n = tx
S4 j+l j-1 j+l j-

If -J < j < J and if there are N components in the vectors Un, then at

each time step we must solve a linear equation of order 2JN. Show that

the matrix for this system of equations is block-tridiagonal. Is this matrix

non-singular? What method would you use to solve this matrix equation on

a computer? Can you provide an operational count for this method?
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Problem 4.1-5. Consider the parabolic system of equations u = Dut xx

Here u is a vector of order N and D is a symmetric positive definite matrix

of order N. Assume an initial value problem with periodic boundary

conditions on the interval -1 < x . 1. Define the energy in this system

2 1  N  2
by |u| = u.(x,t) dx (u is the vector whose components are u.(x,t)).

-ii=i 1  j '

Show that this energy is non-increasing. Extend the Crank-Nicholson implicit

scheme of section 3.4 to this system. Use the von Neumann criterion to

show that the scheme is unconditionally stable. The implicit scheme

requires the solution of a matrix equation at each time step. Show that

this matrix is nonsingular.

Problem 4.1-6. Find a family of matrices Mh depending on a real

parameter h such that |Mh,1i 2 and a(N) < 1 for all h. Here IIiM

is based on the maximum norm and c(Mh) is the spectral radius of Mh.

The family should have the additional property that \Mhin is not bounded

as n -- co even if hn < 1. This is most easily done with a matrix of order 2.

Problem 4.1-7. What is the error in the following argument? Let

the family of matrices Mh of order N have spectral radius bounded by

c(MN) • 1 + cAt (assume At = At(h) is a function of h). Assume there are

N independent eigenvectors of Mh for each h. Denote these eigenvectors
N

by vh 1 - i • N. Then for any vector u we have u = a~vh .,
h,i i h,ii=1

N
Therefore if lull = 1, we have |Mull = i h,i i h . Since

i= ,i i

Ct Ct

|h,i 1 1 + cat, Ih,i < e n, and therefore |Mh ul <• e n provided

|lull 1.
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4.2 Multilevel Difference Schemes. The leapfrog scheme for the

hyperbolic equation u + cu = 0 is an example of a multilevel difference
t x

scheme.

n+1 Un-1 Un
Un+l = X = cAt/Ax (4.2-1)

We must know Un-l and Un to predict U n+. Many schemes use only the

single time level U to predict Un+. Our theory of stability--the

von Neumann criterion, for example--applies only to such single-level

schemes. However, we can reduce a multilevel scheme to a single-level

scheme. Consider the leapfrog scheme given above. Define the column

vector Wn by Wn n+l un+l n+l n n nT
vector W by W , U , ... , UU Uj, U,- ... , Uj .-J -J+1J-1 -J -J+1- J-1

That is Wn= (n+, U n . The difference scheme for Un can be written as

Un+l IUn- + B where I is the identity matrix of order 2J and B is also

a matrix of order 2J, namely,

0 -X 0 ... X

X 0 -X 0 .. . 0

0 X 0 -X 0 . . .

*

-X . . . o X 0

n+2 n n+l n
Since U = IU + BU , we can write the scheme in terms of W as

B I
Wn+ LhWn where LI = (4.2-2)

Sh I 0

Note that L is a matrix of order 4J. To determine the stability of the

difference scheme for W we must investigate L |. Our proof that

B



4.12

stability implies convergence for a consistent scheme no longer applies

to this multilevel scheme. We have changed the structure of our problem

since the values of W approximate the solution u on two time levels. However

this change creates no real problem. We refer the reader to chapter 7

of the book by Richtmyer and Morton.

We will

analysis for

(Wn} I • jJ

nwi

now use the Fourier series method to perform a stability

the difference scheme written in terms of Wn. The vector

4J can be represented in the following form (why?)

J-1 inkx.
I ak(n) ea e

k=-J k

J-l irkx.
b(n)e J

k=-J

1 5 j < 2J, x. = (j-J-1)/J

2J+1 ! j < 4J, x. = (j-3J-l)/J

(n) (n)Note the coefficients a and b are the Fourier coefficients for
k k

Un+1 and Un respectively.

Problem 4.2-1. Substitute the above expression for Wn into

equation (4.2-2) or equivalently, into (4.2-1). Obtain the following

equation for the coefficients a( and b .
k k

(n+l) (n)
k k

S = (k)

b(n+) b(n)
k k

Find an expression for the 2x2 amplification matrix Mh(k). Note that



4.13

(n)a (O)aa
k n kk = [Mh(k)] k

b(n) b (0)
k k

(0) (0)where the coefficients a0 and b( are determined from the given initial

vector W (we must have U and U in order to define WO). Find the

eigenvalues of the matrix M = M.(k). Show that the maximum norm IMIC

is bounded independent of Ax and n. Using this result prove that the

scheme is stable. Show that the L norm of M is greater than one. Does

the L2 norm satisfy the condition |lMh(k)ll 2  1 + 0(At) independent of h

and k. Given any matrix must this condition be satisfied in order that

ll (k)jý be bounded? Note that the L2 norm is given by M\\2 = _c(M*M)

where a(A) denotes the spectral radius of A.

Problem 4.2-2. Use the von Neumann criterion to show that the

following multilevel scheme for the heat equation ut = ou is stable.
t xx

-3Un+l 4 - un -=2 +I- 2Un - + + 1, = h At/Ax 2

4.3 The Courant-Friedrichs-Lewy stability condition for hyperbolic

equations. We will first look at the wave equation written as a system of

two first-order equations.

yv bwS-- = 0
at ox -1 < x < 1

_ -c_= 0 O
vt

at bx

v(x,0) = v0 (x)

w(x,O) - w0(x)



4.14

We assume periodic boundary conditions v(x±2,t) = v(x,t), w(x±2,t) = w(x,t).

If we change variables by setting ul = v+w and u2 = v-w, then the above

equations become

uI I = °
c = 0at ax

at F x
ul(x,0) = v 0 (x) + w0 (x)

u 2 (x,0) = v 0 (x) - w0 (x)

The solution of this system is

ul(x,t) = v 0 (x+ct) + w0 (x+ct)

u 2 (x,t) = v 0 (x-ct) - w0 (x-ct)

The value of ul is constant along the lines x+ct = K and the value of u

is constant along the lines x-ct = K. If we consider any point P = (x,t)

in the x-t plane and draw the two lines downward from this point with slope

-l
±c , we obtain a"domain of influence" for the point P. The values of ul

and u 2 (hence v and w) at P are determined by the values at the inter-

section of these lines with the initial line t = 0 (see Figure 4.3-1

below).
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t

-c

0
x

Figure 4.3-1

Values outside the domain of influence for the point P can have no effect

on the values at P.

Next we will look at more general hyperbolic systems.

u+ A + Bu = g (4.3-1)

where u is a vector of dimension N and A and B are constant matrices of

order N (see section 1.3.7). We assume that there is a nonsingular matrix

-1
P such that P AP = D is a diagonal matrix. Then the diagonal elements

are the eigenvalues of A and the columns of P are the eigenvectors. If

-l
we change variables to w = P u, then we obtain the system

-1
(P l) + -1 APP- + P-'PP-u = p-
at x

(4.3-2)

+ D - + Cw = g
at 8x

- -1
where C = P BP, g = P g. Suppose we denote the elements of the diagonal
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matrix D by i., 1 < i < N. Consider the lines L.(K) given by x - t.t = K.
1I

Along such a line w(x,t) is a function of t alone and the chain rule for

dw dx
derivatives gives us = w + = wt + .i w . If we write out thedt t dt x t x
vector equation (4.3-2) into components we have

Sw. aw. N1i i+ = c..ij w + g
at i x j=l 3 3 i

or

dw. N
t = Z . w. +g

dt j=l 1J j iJ~j
Therefore we can solve for w along any line by integration of a system of

ordinary linear differential equations. Now consider any point (x,t) in

the x-t plane. From this point we may draw the N lines with slope

dx/dt = F. where . are the eigenvalues of A (see Figure 4.3-2).
i i1

t

0
x

Figure 4.3-2

The values of w (and therefore of u = Pw) are found by integrating along

the lines L1 through LN. Therefore only initial values which lie inside
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the triangle determined by these lines can influence the value at the point P.

The lines L. are called characteristics of the differential equation. Only

hyperbolic equations can be properly solved by this "method of characteristics."

Next we will discuss the use of these concepts in the evaluation of finite

difference schemes. Suppose we lay out a mesh to solve equations (4.3-1).

We assume the mesh ratio At/Ax = X is constant, independent of Ax. Suppose

we have an explicit three-point difference scheme. Then the values of

n+l n n n
U can be obtained from a knowledge of U U., and U The domain

j j-I' j j+l1

of influence of the point (x., tn+l) in the difference scheme is the

thst
interval [xjl., j+l ] on the n time level and [xj 2 , xj+ 2 ] on the (n-1)

time level. It is clear that the domain of influence for the difference

scheme is bounded by lines of slope Ax/At = ±X extending downward from

a mesh point (see Figure 4.3-3).

t

0 x

Figure 4.3-3

If the solution is initially zero on the lower side of the triangle, then

it will be zero within the triangle. This is true even if we halve the

-1
mesh spacing since the triangle is determined by lines of slope ±1 and

-l
X is not dependent on the mesh spacing. Now suppose the demain of

influence for the differential equation is not contained within that for

the finite difference scheme (see Figure 4.3-4).

0 \
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t

0 -A- B - x

Figure 4.3-4

If the initial function on the interval A is not zero, then we can assume

the value of the solution at the point P will not vanish--if it did vanish,

we could change the initial function on A. However, if the initial function

does vanish on the interval B, then the solution of the finite difference

scheme must vanish at P regardless of how small we take the mesh spacing Ax.

But this means convergence is impossible--zero values cannot converge to

a nonzero value. This leads us to the following condition.

Definition 4.3-1. We say a finite difference scheme for a hyperbolic

system satisfies the Courant-Friedrichs-Lewy (C-F-L) condition if the

domain of influence of the finite difference scheme contains the domain

of influence of the differential equation. The C-F-L condition is a

necessary condition for stability, but it is not sufficient (can you find

an example of a scheme which satisfies the C-F-L condition but is unstable?).

If the eigenvalues of A are •i, then the C-F-L condition clearly

requires that X-i > il for 1 <.i < N, or At| i /Ax < 1. Thus the value

of At is limited. The values = dx govern the speed with which wavesi dt
or disturbances are propagated by the differential equation. A moment's

reflection will show that the maximum speed of propagation for disturbances

in the mesh is Ax/At = -l The C-F-L condition then states that the meshin the mesh is Ax/At = X . The C-F-L condition then states that the mesh

V%
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disturbances must have a velocity no less than that of the physical

disturbances.

Problem 4.3-1. Consider the hyperbolic system

u u 0
a t ax

2 1
A=

1 2

with initial conditions u(x,0) = f(x) and boundary condition u(0,t) = g(x).

Use the "upstream difference" scheme

n+l n nn
U. =U. - AU. UJ Jj- X = At/Ax

Choose X so that the C-F-L condition is satisfied for this scheme. Is it

possible to satisfy the C-F-L condition with this scheme if A is given by

-2 1

A = .
1 -2

Problem 4.3-2. What is the domain of influence for the following

implicit scheme for u + cu = 0?
St x

X = cAt/Ax .

What does the C-F-L condition say about the stability of this scheme? Does

this agree with the von Neumann criterion?

4.4 Implicit difference schemes for systems. Implicit schemes offer

the same unconditional stability for systems as for a single equation.

Unl n X Unni~+l +J 7 1+1 ý. J-1
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However, the solution of the implicit equations for a system can require a

prohibitive amount of arithmetic (see problem 4.1-4). At each time step

it is necessary to solve a block-tridiagonal matrix equation rather than

a scaler tridiagonal matrix equation. If there are N variables in the

system, then these blocks are NXN matrices. The amount of arithmetic

3
required for each block goes up roughly in the order N

Suppose we have a hyperbolic system of equations

IU + A au 0at ax

The Crank-Nicholson type of implicit scheme for this system is given in

problem 4.1-4. It is

n+l = n X n+l l n+l 1
U =  AU - U + Uj j 4 j+l j-l j+l

U.l)

As noted above, we must solve a block tridiagonal matrix equation at each

time step to obtain Un. We might try a modification of this implicit

scheme which requires only the solution of N scaler tridiagonal matrix equations

each time step (N is the order of the matrix A; that is, the number of

unknowns in the original equation). The idea is very similar to the Gauss-

Seidel iteration for the inversion of a matrix. We illustrate this under

the assumption that A is of order three (N=3). We use the notation

n n n n
U = U - U . Let the components of U. be U U and
x,j j+l j-1 3 ,j' 2,j 3,j

The scheme is the following:

Un+1 =n - a n+l -T (1 l2U) \ a 2Un (4 4-)\n+l n all x + ) - X a 2 12  - (4.4-1)
1 1 4 4ll\lx x12 2 4 x
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n+-l n un+l i+ Tj nX n+ 1  n 2U n
U = U - - a - U -

2 n+l n 4 2 i U n+l 2x 2 l4 23 2U3

Un+ = Un - a3 1  nIx + - a32 nn + U - a33 Ux +

We have dropped the mesh subscript j from Un , thus Un does not mean the

three-dimensional vector with j = 1, but rather the 2J dimensional vector

formed from the first component of Un (a terrible notation). Note that this

scheme involves the inversion of three scaler tridiagonal matrices at each

time step.

Problem 4.4-1. Show that the truncation error of the scheme of

equations (4.4-1) is T = 0(At) + 0(Ax2). How could you improve the accuracy

to T = 0(At2) + 0(Ax2)?

The above scheme can be shown to be unconditionally stable if the

matrix is symmetric and positive definite. If A is symmetric and not

positive definite, then the scheme is unconditionally unstable [Gary, 1964].

Mitchell and his collaborators have a series of papers on implicit

difference schemes for hyperbolic systems of equations. Some of these require

nothing worse than the inversion of a scaler tridiagonal matrix [Mitchell, 1966].

4.5 An initial value problem coupled with a boundary value problem.

In some cases we have initial value problems in which some variables are

not differentiated with respect to time. The Navier-Stokes equations for

viscous fluid flow mentioned at the beginning of this chapter are one such

example. We will consider a contrived example of such a system which is

simple enough so that we can analyze it. The system is
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2
S+ a = 2 u = u(x,t) (4.5-1)at  bx2

2
-+ u = 0 w = w(x,t)

ax

u(x,0) = f(x) 0 x < 1 0 t

The boundary conditions are u(0,t) = u(l,t) = w(0,t) = w(l,t) = 0. Note

that once u(x,t) is known for a given t, then w can be found for the same

t by solving a two-point boundary value problem. For this we need u and

the boundary conditions on w. Therefore we do not need an initial condition

on w. If w were known, then we could find u by integrating the

inhomogeneous heat equation

bu 8 ut- - cw + -- r+ .
bt 2ax

We must solve for u and w simultaneously, but only for u do we use a

marching method. Before we discuss difference schemes for this problem,

we will study the differential equation.

Problem 4.5-1. Assume f(x) can be represented as

f(x) = Z ak sinnkx where 2 lak < .

Show that u = Z ak e sinrkx is the solution. Find
k=l k

the expression for w. Prove that these series converge and satisfy the

differential equation for t > 0.
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Problem 4.5-2. Assume the functions u and w and the appropriate

derivatives are continuous. Show that the following energy equality

holds.

I t I t 1
[u(xt)]- [u(x,0) 2 dx0 = - a (xdxdt - 0 (u dxdt

0L 0xt)J 00 0W) 3 ( ) d

Use this result to show that the solution of equation (4.5-1) is unique,

provided it is sufficiently smooth (assume cu,a > 0).

Now we are ready to consider finite difference schemes for this

problem. First we will look at the obvious analog of the explicit scheme

for the heat equation.

n+1 n(n n n~ TUn
Un + U - A = - 2U. + U. 1 j < J-1 (4.5-2)

j J J J+l j j-l

= CAt/Ax 2

The values of W are obtained by solving the following system

n n n 2 nW - 2W. + W. = Ax2U j J-l (4.5-3)
j+l j j-l J

n n=0
0 J

The matrix for this system is tridiagonal. We start the integration by

using the initial condition U = f(x.), x. = j/J. Then we can solve

equations (4.5-3) for the vector W0 . Then we can use equation (4.5-2)

to obtain the vector U . Now we can repeat the process finding first

W1, then U2
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J-1
Problem 4.5-3. Using the finite sin series U.= Ak sinrkx.

3 k=l

determine a stability condition for the above difference scheme.

Consider the predictor-corrector scheme defined as follows. Assume

Un is known.

A 2 n
Wj+ - 2W. + Wj = - A  j J-
J+1 3-l j

U. n - tW. + u 2Un + U + U - 2U. + U^
j j j + j j i j+i j j-1

A A

W 2W + W .+U.j-l 2

Wn+ wn+l
0 J

U. = U - AW + - 2U + U + - 2
J J J 2 j+1 j -1 j+l J j-1)

n+1  n+1
U = U = 00 J

Problem 4.5-4. Determine the truncation error and stability condition

for this predictor-corrector scheme. Assume oy > 0 and a > 0.

Next we will define an iterative difference scheme. We wish to iterate

toward the solution of the following system of equations.
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~Wn+ - 2W + Wn+ = n + U + 1
j+l- j Wj-1 2 +

n+I
S = W = 0

0 J

n+1 n n+, -
J 2 + 2 j3 1

n+l n+l
U =U
0 J

1 < j • J-l

(4.5-4)

n+1 n+1 n+1- 2U + U. +Un+ - 2U + fl+
j j-l 3j1 j -1

1 • j J-l

Problem 4.5-5. Suppose we are able to solve the

equations (4.5-4) at each time step. Prove that this

is unconditionally stable (assume c!,a > 0).

above implicit

difference scheme

Problem 4.5-6. Extend the predictor-corrector scheme of problem 4.5-4

to obtain an iterative scheme for solving equations (4.5-4). Under what

conditions will this iterative scheme converge?

Problem 4.5-7. Eliminate W from equations (4.5-4) to obtain a

n+l n+1 n
matrix equation for U in the form AU = BU. Here A and B are

matrices of order J-1. Show that A is pentadiagonal; that is, a..j = 0

if li-jl > 2. Prove that the matrix A is nonsingular.
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5. CONSTRUCTION OF DIFFERENCE SCHEMES FOR ELLIPTIC EQUATIONS

In this chapter we will be concerned with the construction of finite

difference approximations for the solution of elliptic partial differential

equations. This involves the selection of a set of mesh points to approximate

the region and its boundary. Using this mesh we must derive a finite

difference approximation to the differential equation. This leads to the

question of convergence and error estimation. That is, how good is our

approximation. These are the questions we will treat in this chapter.

These schemes require the solution of a large system of linear equations.

There is a formidable amount of literature concerning the solution of these

large systems. We will consider these techniques in chapter 6. Much of the

material in this chapter is patterned after chapter 6 in the book by

Varga [1962]. The books by Wachspress [1966], Greenspan [1965], and

Forsythe and Wasow [1960] have also proved useful, as did an article by

Spanier [1967].

5.1 Derivation of the heat equation. We wish to determine an

equation for the temperature u(x,y,t) in a two-dimensional domain. We

assume that the flux of heat energy through a line segment ds is

k(Bu/8n)ds where k is the conductivity of the medium and Bu/8n is the

derivative of u in a direction normal to the line segment. Let p be the

density of our material, c the specific heat per unit mass,

Au = u(x,y,t+At) - u(x,y,t) the change in temperature during the time

interval At, AA = AxAy measure the area of a rectangular region containing

the point (x,y). Then the increase of energy in the region is given by

AE = pcAAAu
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and this is equal to the energy which flows into the region due to the

temperature gradient at the boundary. The region is pictured below.

T
Ay/2

Ay/2
I

- Ax/ 2-- A x/ 2 -

The net flow of energy per unit time is

k(x,y + ) uyx,y + ) - k(xy - ) ux,y - Ax

+  +  +  - - ,y) x -

If we equate these two energy terms and take the limit as Ax, Ay, At

approach zero, we obtain the heat equation

6u 6u
u k ax ak(k x ) ku

at ax ax xpc' + = ku +
S/ x v  

y

A somewhat "cleaner" way to derive this formula involves the use of

the divergence theorem [Kaplan, 1952, chapter 5]. We will state the

theorem in three dimensions although it applies to the plane as well.

If F is a vector, then

SvF dv = F*n ds
V av
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SF F 6F
Here V-F = - + + - is the divergence of F = Fi + F + F k

- x -y z - x- z-

and n is the outward-drawn normal to the volume V. The surface integral

on the right is taken over the boundary of V, denoted by 5V. The heat

flux through a surface element into V is given by the derivative of u in

the direction of the outward normal to the surface multiplied by the heat

conductivity, kau/6n. We have kau/8n = kVu.n where v u is the gradient

of u (vu = u i+ u + u k) and therefore the rate at which heat energy is

being conducted into the region V through the boundary aV is given by

kVu*n ds
av

The rate at which heat energy is changing within the volume V is given by

20 pcudv
at

V

Therefore we obtain (assume p and c do not depend on time t)

Spc au dv = vu-n ds = j .(k-Vu)dv (5.1-1)
V tV V

Therefore at any point in the region V (assume that all the derivatives

are continuous), we must have the heat equation

pc -- = -(kvu) or
at

pc = u + kuy + ku (5.1-2)
*x y A



5.4

Cases for which the conductivity is not continuous are of great practical

interest [Wachspress, 1965]. Our region may be composed of two different

materials which meet along an interface. Along this interface, the

conductivity may not be continuous. Along this interface we will require

the flux of heat energy to be continuous, that is kau/an is continuous.

If k is not continuous, then clearly bu/an cannot be continuous. Therefore

the derivatives used in the heat equation do not exist along the interface.

We must solve the equation in regions where k is continuous and then piece

the solutions together by means of the requirement that kIu/6n be continuous

along the interface. We will see that the integral formulation of equation

(5.1-1) is better suited for this than the differential equation (5.1-2).

In order to solve the heat equation we must have some boundary conditions.

We could specify the temperature on the boundary to obtain u(x,y,t) = g(x,y,t)

on aV where g is a known function defined for points (x,y) on the boundary aV.

This is called a boundary condition of the first kind or a Dirichlet boundary

condition. We might also specify the heat flux to obtain au/8n = g on 6V.

This is called a boundary condition of the second kind, or a Neumann boundary

condition. Another common boundary condition is a u + 3u/an = g where

a and 3 are functions defined on 6V such that a- 0 and P f 0. This is a

boundary condition of the third kind. We can give a simple physical

interpretation of this boundary condition by consideration of the

temperature in a rod. This temperature is governed by the one-dimensional

heat equation ut = cUxxu where a = k/pc is assumed constant. Suppose the rod

occupies the interval 0 < x < 1. Suppose the end of the rod is in contact

with a heat reservoir at x = 0. Also, suppose there is a thin film on

the end of the rod, perhaps an oxide coating. We assume the film is so thin
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that it has a constant temperature gradient. We suppose the film extends

from x = -6 to x = 0. Then the heat flux through the film is

kf(u(-6,t)- u(0,t))/(-6), and this must equal the flux through the end

of the rod ku (0,t). We assume the temperature at the end of the film
x

is that of the heat reservoir, thus u(-6,t) = g(t). If we combine these

equations we obtain

kf(g(t) - u(0,t))/(-6) = ku (0,t) or
k f x

k8
u(0,t) - k- u (0,t) = g(t) or

au k6
u(0,t) + - g(t)

f

and du/an denotes the outward normal derivative. All of these boundary

conditions yield a properly posed problem.

We will consider only steady state problems in this chapter, although

the methods used to derive the steady state equations will apply to the heat

equation. By a steady state solution we mean one which is independent

of time t. In one dimension our problem thus becomes a boundary value

problem for an ordinary differential equation. That is, the problem

l = kux u(0,t) = u 0
u(,t) =

u(l,t) = ul

under the assumption u = u(x) becomes
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d du
d- k(x) -- = 0dx dx) u(0) = u 0

u(l) = ul

We will first treat the derivation of difference schemes for one-dimensional

problems. The basic principles are the same in higher dimensions but the

details are considerably more complex.

5.2 The derivation of difference schemes for ordinary second-order

boundary value problems. We will consider the differential equation

d (c 2 (x)i t+ (( x) u + c (x) u = f (x)
don the interval A x B with boundary conditions

on the interval A •! x <-B with boundary conditions

(5.2-1)

aAu(A) + BAu'(A) = gA

a B(B) + B) = ggBB B

We will denote the operator on the left

and define the inner product (u,v) by

2 2 0
GA +A

(5.2-2)

2 2

B B# 0

side of equation (5,2-1) by L(u)

B

(u,v) = f u(x)v(x)dx
A

We say a problem is self-adjoint if (u,Lv) = (Lu,v) for any two functions

u and v which have continuous second derivatives and satisfy the boundary

conditions (5.2-2) with gA = g= 0. We will see that self-adjoint problems

lead to a symmetric system of finite difference equations provided an

appropriate difference scheme is used.
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Problem 5.2-1. Show that the problem defined by equations (5.2-1)

with cl(x) - 0 and boundary conditions (5.2-2) is self-adjoint.

5.2.1 Difference schemes based on a Taylor series expansion. Suppose

we assume the boundary conditions are u(0) = g and u(l) = gl and write

the differential equation in the form

c2(x)u" + (c2(x) + cl(x))UI + (cl(x) + cO(x))u = f(x)

For simplicity we will assume the coefficients are constant, c.(x) = ci,

0 < i 2. We will assume that we have an equally spaced mesh x. = j/J,

o < j • J. We denote u(x.) by uj = u(x.). We can represent the boundary

conditions by u0 = g, u = gl. Then we must obtain a system of equations

for u., 1 < j < J-l. We will make a further assumption that c = 0.

We will look for a difference approximation in the form

j,l uj + u,2u + u j,3 Uj+l a c2u"(xj) + c0u(xj) (5.2-3)

If we let h = 1/J denote the mesh spacing, then we can expand uj_1 and uj+1

in a Taylor series in h with the derivatives evaluated at x.. If we

substitute these expansions into equation 5.2-3 and require equality for

the h , h , and h2 terms we obtain three equations which can then be solved

for c. j ,2, and a.j That is (let ak = Y ,k k=1,2,3)j12 j)2 313  k  jk
Su. +c u + a u = c u.

1 j 2 j 3 j 0 j

-clhu + chu' = 0
l j 3 j

2 2
h a h , /

1• U + 23 j = c2 j
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2 2
The solution is a, = c = c2/h and a = c - 2c /h . From the differential

3 2 2 0 2

equation we have c 2u" + c 0 u = f(x), therefore the finite difference scheme

is

2  2C 2- Uj + c -- U +-. U = f(x)
h2 -l 0 h 2  j 2  j+l (5.2-4)2h)( h(5.2

UO 0 U = gl

If we write out this equation in matrix form, we have AU = F where

2a 0 . . .
I22 3

0 •1 •2 o3 0 . . .

11 2 3

0. . . 0 cy a
1 2

fl I0
f2

f3

J13 u-
^-l-,.

Note that we have a tridiagonal matrix equation to solve. We have already

discussed methods to solve such systems in section 3.4. We could have

obtained the same formula by simple substitution of the centered difference

approximation for u" (that is u"(x.)• (u - 2u. + u. )/h2) into the

differential equation. However, there is sometimes an advantage in regarding

this as a Taylor series substitution, as demonstrated in the book by

Greenspan [1965].

5.2.2 Irreducible, diagonally dominant matrices. Now we will digress

for a moment to consider some concepts from matrix theory which are

especially relevant to the solution of elliptic equations. For more details

on these concepts, we refer the reader to the book by Varga.

U1

U 2

U_ .

J-I

(5.2-5)A- F

--
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Definition 5.2-1. A permutation matrix is a square matrix P such that

each row and each column contains a single nonzero element which is equal

to one.

If we premultiply A by such a matrix, then PA is a matrix in which

the rows of A have been interchanged or permuted. Postmultiplication, AP,

permutes the columns.

Problem 5.2-2. Show that if P is a permutation matrix, then P T = I.

Definition 5.2-2. A square matrix A is reducible if there is a

permutation matrix P such that

A1,1 A1,2

PAP =

0 A,22,2
where AII and A22 are square submatrices. A square matrix is irreducible

if it is not reducible.

Problem 5.2-3. Show that the following matrices are reducible.

3 1 0 1 0 5 1

2 1 0 2 4 1 2

3 2 1 1 0 3 1

3 0 2 6

Definition 5.2-3. We will define a graph associated with the nXn

matrix (aij). We choose n distinct points in the plane P ',...,P which

we call nodes. A directed path of length 1 is curve joining P. to P..
A set of directed paths is called a directed graph. We may also define

A set of directed paths is called a directed graph. We may also define



5.10

a directed graph on n nodes in nongeometric terms as a set of order pairs

(ik, k) 1 k k < m where I e ik n, 1 jk n. Associated with a matrix

of order n is a directed graph defined by all pairs (i,j) such that

a.. i 0. The directed graph associated with the first matrix in

problem 5.2-3 is

1 2 3

Definition 5.2-4. A directed path of length r joining nodes i and j

is a set of pairs in the graph

(i0,1i), (i ,i2), (i2,i3), ... , (ir-l' r

where i = i and i = j. A directed graph is strongly connected if there
0 r

is a directed path between every pair of nodes i and j.

Problem 5.2-4. Show that a matrix is irreducible if and only if it is

strongly connected. Hint: Suppose there is no path from node iI to node i2

Let M be the set of nodes which can be connected to iI. Permute the matrix

so that these M nodes correspond to the last M rows of the matrix. This

permutation shows that the matrix is reducible.

Problem 5.2-5. Show that if al 0 0, a 3 a 0, then the matrix A in

equations 5.2-5 is irreducible.

Definition 5.2-5. A matrix is diagonally dominant if

Ia. . | la. .1 for all i

j/i

with inequality for at least one i.
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Problem 5.2-6. Show that a diagonally dominant irreducible matrix is

nonsingular. Hint: Suppose Ax = 0 and let IXk = max xjlx. Then

|akkl k Z akj I J . In case Ixjl < |xkl and ak 0, this leads to
jLk J \k

a contradiction. Now consider the remaining cases.

If the coefficients in equation 5.3-4 satisfy c 2 > 0 and co 0 0, then

the matrix A in equation 5.3 is irreducibly diagonally dominant and thus

nonsingular. Irreducible diagonal dominance frequently holds for matrices

derived from elliptic problems.

5.2.3 Derivation of the difference scheme using integrationby parts.

Suppose we wish to approximate the self-adjoint problem

S 2 (x) ) + c 0 (x)u = f u(0) = g0  (5.2-6)

u(l) = gl

on the mesh 0 = x 0 < x1 < ... < x =1. If we integrate this equation from

x. 1 = (x. + x.)/2 to x. we obtain

X. x. X.

c2 (x)u'(x) + c0 (x)u(x)dx = f(x)dx (5.2-7)
x. x. x.

If c2(x) is piecewise continuous with possible discontinuities at the

interior mesh points x., then the above differential equation does not hold

at the mesh points. However, the integration which produced equation 5.2-7

is still valid since we did not integrate across a mesh point. To derive

the difference scheme we use the condition that c 2 (x)u'(x) must be

continuous (we make this assumption because it is true for the heat equation).
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If we form a second equation similar to 5.2-7 by integration from x. to

x. and add the two equations using the continuity of c (x)u'(x) we obtain
JX++2

x
c2(x. )u'(x j) - c2(x j )u'(xj- ) + c0(x)u(x)dx = F(x.j) - F(x. -)

2 j+ j+12 2 j -1 j2 - 0 1+2xj

x
where F(x) = § f(T)dT. If we approximate the integral on the left side

xo
1- 1 x

of the equation by C(x.+) - C(xj ) u(x.) where C(x) c 0 (T)dT and

0

use an obvious difference approximation for u'(x. ) we obtain

(U -U.) (U.-U.)
c2(x ) -xj 1 - c (x -1 - + (C -C 1)U. = F.+ - F. 1(xj+2- (xj+1 j) (xj- xj-xj-l J J- J J+ -2

(5.2-8)

This equation holds for 1 j j : J-l. If we use u0 = g and u = gl we can

solve this system of equations.

Problem 5.2-7. If c 2 (x) > 0 for 0 5 x 1 and c 0 (x) < 0 for 0 < x 1,

then show that the system of equations (5.2-8) for (U1 ,...,U 1 ) has a

unique solution, that is the matrix is nonsingular. Show that this matrix is

symmetric.

Problem 5,2-8. Suppose instead of Dirichlet boundary conditions in

equation 5.2-6 we have Neumann boundary conditions u'(0) = go, u'(1) = g .

Modify the above integral method to obtain a finite difference scheme for

this problem.
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5.2.4 A difference scheme based on a variational formulation. We will

modify our notation slightly and ask for a solution of the equation

- 2(x)'(x) + c 0 (X)U(X) = f(x) 0 E x 1 (5.2-9)

where u(0) = g0 , u(l) = gl. We suppose f(x), c 2 (x) and c 0 (x) are continuous,

with c 2 (x) > 0 and c 0 (x) Ž 0. The variational problem is to find a minimum

of the functional

F(w) = 0 c2(x)(w'(x))2 + c(x)(w(x))2 - 2w(x)f(x) dx (5.2-10)

2
We ask for the minimum over the set of all functions w E C2[0,1] which satisfy

the boundary conditions w(0) = g0 , w(l) = gl. (w E C2[0,1] if w(x) has a

continuous second derivative on the interval 0 f x 1.) We call such functions

w(x) admissible. We will now show that if such a minimum exists and is

given by F(u), than u must satisfy the differential equation (5.2-9). Let

u(x) be the minimizing function. If w(x) = u(x) + ev(x) is an admissible

function, then F(u) ! F(w) by assumption. Note that w(x) will be admissible

for any real e, if u is admissible, v E C2[0,1], and v(0) = v(l) = 0.

Problem 5.2-9. Show that the admissible minimizing function u(x)

satisfies the differential equation. Hint: Show that

2
F(u+ev) = F(u) + 2eG(u,v) + e 2F(v) where

1 (5.2-1)
G(u,v) =0 -(c(x)u'(x)) + Co(X)U(X) - f(x) v(x)dx (5.2-11)
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Show that if F(u) : F(u+ev), then G(u,v) = 0 for all v which satisfy the

conditions above. Now use the continuity of u(x) to show that the

bracketed term in equation (5.2-11) must vanish--that is, u must satisfy

the differential equation.

Problem 5.2-10. Show that if u(x) is admissible and satisfies the

differential equation (5.2-9), then u minimizes the quadratic form in

equation (5.2-10).

Now we are ready to construct the finite difference scheme. Suppose

we use the mesh 0 = x 0 < x < ... < x = 1. We use the integral

approximations shown below.

x 2

X. 2
J+l 2 + w

j (x)(w(x)) dx j c (+x (x+ - x )

x
xj+1 ( x +1) + w (x.)

w(x)f(x)dx 1j 2f(x )(x - x.)
X. \ j+ j+ J
X.

If we now substitute these approximations into the expression for F(w), we

obtain an expression which is quadratic in the components of the vector

W = (W1',W2 ,...,W-) T (note that W. approximates w(x.)). We can write

the approximation for F(w) in matrix form as

F(w) :WTAW - 2WT b + d

where b = (b ,...,b ) is a vector and d a scaler.
4-·· J- Ll
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Problem 5.2-11. Assume an equally spaced mesh x. = j/J.

Write out an expression for A, b and d in terms of c 2 , c0 , and f. Note

that A is a symmetric tridiagonal matrix.

Now in order to find the vector W which will minimize the above

approximation for F(w) we differentiate the expression with respect to

the components W. and set these derivatives to zero. We then obtain

AW = b

This is our finite difference scheme.

5.2.5 The effect of a discontinuous coefficient c(x) in (cu') = f.

First we will consider an improper method for the solution of this problem.

Suppose we write the equation as

c(x)u"(x) + c'(x)u'(x) = f(x) (5.2-12)

Suppose we have boundary conditions u(0) = 0, u(l) = 1. If we simply

ignore the discontinuity in c(x), we might construct a difference scheme

as follows:

x = jh , 0 < j J , h = 1/J

U = 0 , U =1

(U - 2U. + U. ) U -U.
c(xj) 2U+1 + c'(x.) 2h 1-1 = f(xj) (5.2-13)

1 < j < J-l
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Now if c(x) is as given below and J is odd, then the discontinuity in c(x)

will never fall on a mesh point. Therefore we might naively expect the

above scheme to give a reasonable approximation. It does not. If

c(x) =
2

O<x< ,
f(x) 0 , (5.2-14)

then a solution of equation (5.2-12) based on the continuity of cu' is

4x
3u-(X)u(x) =
I 2x

+- 3

-<x2-1

Problem 5.2-12. Show that the solution of the system of equations

(5.2-13) is u. = x., independent of the mesh spacing h.
j j

Obviously the difference scheme does not converge. A difference scheme

based on the integral method of section 5.2.2 is

UO = 0 ,
0

U = 1
J

c(x h) - c (xj+f h j--2
U. - U

S1  ) = hf(x.) for 1 < j J-l

(5.2-15)

Here we want the discontinuity in c to occur at a mesh point. If the

discontinuity is at x = ½ we should take J to be even since h = 1/J.

Problem 5.2-13. With c(x) given by equations (5.2-14) show that the

solution of differential equation (5.2-12) is also a solution of the

difference equations (5.2-15). Thus the difference scheme gives us an

exact result in this case,
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Next we will give

of equation (5.2-15).

u(x) =

e(x-)

2
e

1

c(x) =
2

the results of a numerical experiment with the scheme

We defined u(x) and c(x) by

0 x

½ x

0 < x-

Then the right side f(x) is

1
e

f(x) =

1 2*^e

0 x •<

½ <_x 1

1 1
The boundary conditions are U0 = e , U = e. Using the above definitions

of f(x) and c(x) we can compute U. from equation (5.2-15). Then we

determine the maximum relative error E = max IU. - u(x.)/max u(x.)1.

j J

This error is listed in the table below.

J

10
20
40
80

Error

3.3(-3)
1.6(-3)
8.1(-4)
4.1(-4)

J

11
21
41
81

Error

8.2(-2)
8.0(-2)
3.1(-3)
7.9(-2)

In the case where J is even the discontinuity in c(x) occurs at a mesh

point, as it must if the derivation of the difference scheme is to be valid.

In this case the error seems to be proportional to Ax. Apparently we
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have a first-order scheme. If we take J to be odd we apparently do not

have a convergent scheme. We must always be careful with limited

experimentation such as this. Although we can sometimes gain considerable

insight through such experiments, they do not prove anything. This is

particularly true if we only run one case such as the above.

Problem 5.2-14. Determine the truncation error for the above example.

Suppose the scheme of equation (5.2-8) was used instead of equation (5.2-15).

Would there be any difference in the truncation error? Program scheme (5.2-8)

and run the above example to compare the scheme of equation (5.2-8) with

that of (5.2-15).

5.2.5 An example to illustrate the treatment of Neumann boundary

conditions. In this section we will show that the difference approximation

used for the Neumann boundary conditions must have the same accuracy as

that used in the interior. The overall order of accuracy is the minimum

of that for the boundary and the interior. Perhaps this is no surprise

but we think it is worth an example. We will consider the equation

/

(cu') = f (5.2-16)

with Neumann boundary conditions u'(0) = go, u'(l) = g 1.

The first scheme is derived from an integral method. We use the

mesh x. = (j-½)h, 1 < j < J, h = 1/J. The difference equation for j = 1

is then

c(x3/2)u'(x 3 / 2 ) - c(x 1 / 2 )u'(x/2) = hf(x)
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The difference approximation is

2 1U -U
(x3 / 2) h - c(x1/ 2 )g 0 = hf(x)

Note that x3 / 2 = h, x/2 = 0, x1 = h/2. In the interior, the difference

approximation is

U -U. U. U.
c(x ) +1 - c(x ) - - = hf(x.) (5.2-17)

j+h j- h

At the upper boundary

U •U - Uj-
c(x )g,- c(x-) K h = hf(x)

The reader should note that if we divide these equations by h, then

substitute for U., the solution of the differential equation u(x.),

the error will be 0(h2). We have a scheme of second-order accuracy.

In the second case we use a slightly different mesh, x. = jh where

h = 1/J. For the unknowns U., 1 j • J-l, we have the equation (5.2-17)

except x. = j/J in this case and x. = (j-½)/J in the first case. For

the unknowns U0 and U we use the boundary conditions

U- U U- U
1  0 J J-1

h 0  h 1

Note that these boundary equations have only first-order accuracy.

We could obtain a third scheme in case c(x) and c'(x) are continuous.

This scheme will have second-order accuracy. We use the mesh x. = (j-l)h,3
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0 - j J J, h = 1/(J-2). Note that x= -h and x = lh. Thus these

points are outside the interval 0 < x < 1 on which the differential equation

is defined. Nevertheless we will define mesh variables U0 and U on

these "fictitious" mesh points. We use the differential equation in the

form

c(x)u"(x) + c'(x)u'(x) = f(x)

The difference scheme for interior points is

U. - 22U. + U. U - U
c(x.) + c x.) I = f(xj) 1 < j < J-1

+ c (xj)

Jc h2  + 2h j

To complete the set of equations we use the boundary conditions

U - U U - U
2 0 J J-2

2h g0  2h g

Note that these equations are of second-order accuracy. Also note that

these difference schemes for the Neumann boundary condition do not have a

unique solution. If the vector [U.} is a solution, then so is (U.+K}

where K is an arbitrary constant. This is proper since the differential

equation (5.2-16) with Neumann boundary conditions has the same property.

This means that [U.j is the solution of a singular system of linear

equations. Therefore we have to modify the usual Gauss elimination in order

to obtain [Uj.. We assume that all the pivots (the diagonal elements in

the upper triangular reduction of our system) will be nonzero except the

last (or bottom-most). We know the exact solution in these test cases.

Thus we simply set the last component Uj equal to the exact value u(xj).

Then we use the backward substitution to obtain the remaining components.
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In the third case we have Dirichlet boundary conditions for

equation (5.2-16). We use the following difference scheme which is based

on the integral method.

/U - U U - U

c(x +1 1 - c(x ) = hf(x ) 1 j J-I
h jh

(5.2-18)

where UO = g0 , U = g, h = 1/J.

These experiments were run on a Control Data 6600 computer. In the

x/2 x/2
three cases below we have c(x) - 2, u(x) = e/2. Then f(x) = ex/2

In the Dirichlet case the boundary conditions are g = 1, gl = e 2 ; in the

Neumann case g = ½ g = ½e2 . The error is the maximum relative error,

namely e = max u(x.) - U. / max |u(x.) . The results are listed in the
J J

table below.

Error

I. Second-order II. First-order
J Neumann Neumann III. Dirichlet

10 4.6(-5) 7.7(-3) 5.4(-6)
20 1.2(-6) 3.8(-3) 1.3(-6)
40 3.1(-6) 1.9(-3) 3.2(-7)
80 7.8(-7) 9.5(-4) 8.0(-8)

Note that the error for cases I and III is reduced by a factor of 4 when the

mesh spacing is halved. In cases II the error seems to be proportional to Ax

2
rather than Ax2. Error estimates for Laplace's equation on a rectangle using

Neumann boundary conditions are discussed in a paper by Giese [1958].

Numerical solutions of Laplace's equation for Neumann boundary conditions

show this same sensitivity to accuracy at the boundary.
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5.2.7 A convergence proof by the method of Gerschgorin. We wish to

prove that the solution of the finite difference scheme for equation (5.2-1)

converges. The method of Gerschgorin which we will use is described in

considerable detail in the book by Forsythe and Wasow [1960, pp. 283-328j.

We will illustrate the method by applying it to the simple equation

(c 2 u')= 0 u(0) = g c 2 (x) > 0 (5.2-1)

u(l) = gl

The same method can be applied to certain difference schemes for Laplace's

equation. We will first consider the trivial problem

u =0 u(0) = g

u(l) = gl

Problem 5.2-15. Show that the solution of equation (5.2-19) satisfies

the following maximum principle. The maximum (and minimum) of u(x) is taken

on at the boundary. That is, min[g 0 ,gl] * u(x) • max[g 0 ,g 0 x 1.

Does this maximum principle apply to the equation -(c 2 u') + c0 u = 0

where c 2 (x) > 0, c0 (x) ) 0?

Now we will demonstrate that the same sort of maximum principle applies

to the finite difference approximation for equation (5.2-19). Use the

difference scheme of equation (5.2-18), namely

c 2 (xj ) (U - Uj) - c2(xj) (U. - Uj_) = 0 1 j J- 1

2j+, 2 j+1 -
2 j-*2 3 -

gJ= 1.U0 = 0
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Problem 5.2-16. Show that if g0  g1 , min[g 0 ,g 1 ] < U < max[g 0 ,gl

1 • j • J-l.

Next we will introduce some notation, even though it is not needed

in this trivial case. The same notation will be used for the treatment

of Laplace's equation in two dimensions. We denote the interval 0 - x < 1

by R; its boundary, x = 0 and x = 1, by aR; the mesh points by

Rh = x.j, 0 _ j • J};and the mesh boundary by Rh = (x 0,,xj. Let

be the finite difference operator defined by

Lh(U) = c2(x +) (Uj - Uj) - c2(xj ) (U. - Uj.) 1 j < J-I

We will need the following result.

Problem 5.2-17. -Let V = (Vj be a mesh function such that Lh(V) 0

for some subset R of (Rh - Rh). Note that L is not defined on the

boundary Rh. Then

max V. - max V.
J nx R Ex jRh-R

We need to consider the truncation error of this difference scheme before

we prove convergence.

Problem 5.2-18. Suppose u is a solution of equation (5.2-19) with

enough continuous derivatives, and assume c2(x) is also sufficiently

differentiable. Then show that Lh(u) = 0(h 4 ), that is |Lh(u)| _ h M.

Gerschgorin's method requires the construction of a comparison mesh

function W such that Lh(W) < -1 on R and W 2 0 on Rh-R where Rh-R contains
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the boundary aRh. If we let the solution of the difference scheme be U,

and the solution of the differential equation be u, then the error function

is E = u-U; and if T is a bound for the truncation error, we have I (E) < T.

Now suppose R = R - Rh. If we define the mesh functions p by

Ci = E - TW, then (cp ) > 0 on Rh - BRh, and therefore

max • - max , . But u = U on -Rh, and thus cp = -TW - 0 on 6Rh.
Rh-\ Rh Rh

Therefore cp • 0 on Rh - "Rh. This in turn implies ±E • TW or |u-U| <TjW|

on Rh - 5Rh. This is our error estimate. Obviously, this error estimate

depends on the choice of the comparison function.

We will choose a comparison function for the case c 2 (x) - 1, which leads

to the trivial problem u" = 0, u(0) = go, u(l) = gl with solution

(1-x.)
0 + x(gl-g0 ). If we let W. = xj , then W. > 0 on .Rh. The operator

L is given by L(W) = Wj+ - 2W + Wj., and for the W given above

2
LW = -h2. Therefore we can use

x.(l - x.)
W. = 1

S 2h 2

4
as the comparison function. A bound for the truncation error is T = h M

according to problem 5.2-16. Therefore our error estimate is

Mh x.(l-x.) Mh2

luj - Uj I <TW = 21-
J J J 2h 2  8

Problem 5.2-19. Return to the difference scheme of equation (5.2-18)

where c 2 (x) > 0. Assume the mesh is not necessarily equally spaced, but

0 = x 0 < x1 < ... < xJ = 1. This requires a slight modification in the
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difference scheme. Construct a comparison function for this case and obtain

an error estimate. Hint: Try something of the form

x +
Z G. 1 (x. - x. ) , G

- j J- j+½ cj

Varga [1962, pp. 165] has a more general proof of convergence for this

problem based on the properties of a Stieltjes matrix. A Stieltjes matrix is

a symmetric positive definite matrix with nonpositive off-diagonal elements;

-1
a.. < 0 if i L j. If a Stieltjes matrix A is irreducible, then A > 0.

Note that by B > 0 we mean b.. > 0 for all i and j. This property can be

used to obtain an error estimate for the equation -(c 2 u') + c0 u = 0 with

c2 > 0, c 0. Since this equation does not satisfy the maximum principle,

we would not expect Gerschgorin's method to work at least as we have stated

it.

5.3 A finite difference approximation for Laplace's equation on a

rectangle. In this section we will be concerned with the following problem:

2 2
a u 2 u"x+ y
ax By

u = u(x,y)

0 <x a

p = P(x,y)

0 s y b

u(x,0) = fl(x)

u(x,b) = f2(x)

u(0,y) = f 3 (y)

u(a,y) = f 4 (y)

We will assume that the data for this problem; that is, the functions p

and f.; are such that the solution is as smooth as required for our purposes.

First we will construct the difference approximation. We define the

(5.3-1)
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mesh (x.,yk) as follows (J and K are positive integers):

x. = jAx, 0 < j s J+l, Ax = a/(J+l)

Yk = kAy, 0 k • K+1, Ay = b/(K+1)

The mesh then appears as follows for the case J = K = 3.

b

0~~~ 0------
0

0 a

Using the usual centered approximation for the second derivatives, we

obtain a set of equations for the values of u(x,y) at the mesh points.

We let ujk denote u(xjyk). Then we have an equation for each interior

point. For an interior point we must have 1 < j • J and 1 < k • K. Note

that the values of ujk are known at the boundary points j = 0, j = J+l,

k = 0, and k = K+I. Therefore we have a linear system of J*K equations in

J*K unknowns. The equations are

U. - 2U + U U - 2U + U
j+l,k k 1-1,k ,+ k  1,k 1-1 = p (5.3-2)

2  2  jk (5.3-2)
Ax Ay

1 j j J

1 < k<K

The values of U0, U , U., and U. are given by the boundary
0,k' J+1,k j,O ,K+1

conditions. We may write these equations in the form
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Ux - (U + U. ) - (U + U ) = - 6 p (523-3)
j,k j-lk j+ ,k y jk-1 j,k+l j,k

Ssj < J

1 s< k K

2 2 2 2
Ay Ax 2 Ax Avwhere = 6 = Ix

x 2(Ax 2  2 ' y 2 2 ' 2 2
S2Ax + Ay ) 2(Ax + y ) 2(Ax + Ay)

We will define a matrix operator based on a multiplication of these equations

by -1, namely

~(U) = (Uj-lk + Uj+lk) + e(U + U U (53-4)
x j-1,k +1,k y jk- j,k+1 j,k"

Note that Lh is an mXn matrix where m = J*K, n = (J+2)*(K+2). We use

the subscript h to denote the fact that Lh depends on the mesh.

Problem 5.3-1. Let J = K = 3. Let the vector U be given by

U = (U1  U2  U3  U U2  U3  U U2  U3  ) The above1= ,1' ,' 3,1' 1,2' 2,2' 3,2' 1,3' 2,3' T h e a b o v e

difference scheme can then be written in matrix form as AU = f where A is a

matrix of order 9 and f is a vector. Write out the matrix A and the vector f.

Problem 5.3-2. With J = K = 3 write out the (9x25) matrix operator

Lh. Hint: Show that the matrix has the block form

Lh = (Li,j) 1 i 3

1 j < 5

where the L. . are 3X5 matrices. Then describe the structure of these
L,j

blocks.

5.3.1 The convergence of the finite difference scheme. In this

section we will use the method of Gerschgorin to prove convergence. The
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technique is the same as that described in the preceding section for the

ordinary differential equation u" = 0.

Problem 5.3-3. Let u(x,y) be a sufficiently differentiable solution

of equation (5.3-1). Define the truncation error by Lh(u) - 62 p = T where

2
Sand 6 are defined by equation (5.3-3). Show that

2 Ax 2 M(4) + Ay2 M(4)
12 x y

where M and M are bounds on the fourth derivatives of u with respect
x y

to x and y.

Let Rh denote the set of mesh points (x.,yk) 0 - j • J+l, 0 • k < K+l

and let 6Rh denote the boundary points j = 0, j = J+l, k = 0, and k = K+l.

Problem 5.3-4. Let W = {Wjk} be a mesh function defined on Rh.

Suppose Lh(W) - 0 on a subset Rh of Rh. Assume that Rh does not contain

any points of SRh, that is Rh C Rh - Rh. Then show that

max W max W
Sjk ' jk

Xjk Rh xjikh

2  2
a a

Problem 5.3-5. Show that the function W = x. is ajk 4 2
suitable Gerschgorin comparison function. That is Wjk Ž 0 for boundary

points (xjk E Rh). And also Ih(W) • -1.

Problem 5.3-6. Let T be the bound on the truncation error from

problem 5.3-3. Let u be the solution of the differential equation, U the

solution of the difference equation, and let E = u-U. Then define the

functions cp = ± E - TW. Continue as in section 5.2 to obtain an estimate

on the error
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max lu. - Ujkjk jk

5.3.2 Properties of the matrix equation. In this section we will

consider the matrix equation AU = f defined by equations (5.3-3). Here

the vector U consists of the unknown values U jk} for 1 • j < J, 1 < k < K.jk
Note that the known boundary values are not included in the vector U. When

we operate with the matrix Lh, then these known boundary values are included

in the vector U. In this case U = {Ujk 0 j < J+l, 0 < k < K+l and there-

fore the matrix Lh is not a square matrix. To define the matrix A (or L)

we must specify the order in which we write the components of the vector U.

We will order U by running down the rows first. That is,

T
U = (U11, U2 1 , ... , UjI u 1 2  ... , U*K ... K UJK). The reader should

verify the following block tridiagonal form for the matrix A.

1 2 3 4 . . . K

D B 0 0 . . .

B D B 0 . . .

0 B D B . . .

O B D B

0 . . .. 0 B D

There are K blocks each of which is a square matrix of order J. Each of

these blocks represents a row in the mesh. Equation (5.3-3) links each mesh

point to its four nearest neighbors. Thus each row is linked to the row

immediately above and the row immediately below. Hence the block tridiagonal

form of the matrix A. The matrices B are diagonal matrices and D tridiagonal

matrices both of order J.

A



-9 0 0 .
y

0 -e 0 .
y

* 0

0 . . . . 0

Problem 5.3-7. Consider a different ordering

run through the columns first instead of the rows.

UT = (U 1 ,1 U1 2, UK' U 2,1' U2K, ...

that the matrix A has a block tridiagonal form for

determine the submatrices.

of the vector U, namely

Thus

UJ,' ... , UJ,K). Show

this ordering and also

Problem 5.3-8. Order the vector U by running along the diagonals of

the mesh; that is, group the components Uj,k for which j+k is constant.

Then UT = (U1 ,1 , U2 11 U 2 , U3 1  U2 2  U3 1  U4 1 , ... , UJ). Show

that A has block tridiagonal form and determine the form of the submatrices.

Note that the blocks are not all of the same order, and the off-diagonal

blocks are not square.

Later it will be convenient to write the matrix A as

A = I - C +C - C +CT
x( x x) Y(y y y

where C and C are defined by
x y

5.30

0

0

- 0

0 -9
y

-e
x

1

-e

0

-9
x

1

0...

0-e

1

-e

0

0

-e 1

0 -e x

. . . 0

0

-9
x

1

· ·

· ·
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1I

0

1

0

2

0

0

1

J*K0 . .

0 • .

• •

•· •

0 ... 1 0 0

0 . . . 1 0

C =-
y

1

0

IJ

0

0

2

0

0

0

K3,

0

0

0

Ij

0 .. . . 0 I J

wher

equal

e I is the identity matrix of order J and 9 , 0 are defined in
J x y

tion (5.3-3). That is

1 r s+1 1 r = s+J

C = C =<x  yrs 0 otherwise s 0 otherwise= otiherwisi

where 1 e r < J*K, 1 s s • J*K.

Problem 5.3-9. Show that the matrix A is symmetric, irreducible, and

diagonally dominant.

Note that a.. = 1 for 1 < i J*K and a.. 0 if i j. We will next
1 l iji

determine the eigenvalues of A. This will show that A is positive definite.

Problem 5.3-10. Verify that the eigenvectors of A are given by

W(P.q) 1 p < J, 1 ! q < K, where

Wj = sin- sin I j J, <1 k K

Also show that the eigenvalues of A are given by

(pq) = 4 sin2 2- + 4 sin22 Tq
x 2(J+1) y 2(K+1)

C =
x

O
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Note that the eigenvalues of A lie in the interval 0 < (pq) < 2.

Therefore A is positive definite.

5.4 Difference approximations for Laplace's equation in two dimensions.

In this section we will be concerned with the construction of finite difference

approximations for Laplace's equation in a planar region. In the preceding

section we were concerned with a rectangular region. Now we wish to consider

more general regions. We will first use an integral method which is based

on the Green's theorem relating line and surface integrals. Here we will

generally follow the presentation given in a paper by Spanier [1967]. This

is also described in chapter 6 of the book by Varga [1962].

5.4.1 A scheme based on the integral method. We assume we have the

elliptic equation

x -D 6x + Eu =f (5.4-1)
Sx\ x/ yx ay/

E = E(x,y) 2 0

D = D(x,y) > 0

f = f(x,y)

defined on some region R of the plane with boundary conditions

6u
U(T)a + P(T)u = g , a 2 0, p 2 0, c~-2 > 0 (5.4-2)an

given on the boundary 6R. The parameter T is used to describe the curve cR.

2 2
For example, we might let R be the disk x + y • 1 and the boundary curve

would be x = cosT, y = sinT, for 0 < T <. 2n. We will define a mesh region Rh
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which approximates R. We first lay out a rectangular mesh whose mesh

points are (xj,yk). That is, we specify points x. for 1 • j < J and y

for 1 k k K, such that x. < j+l and k < y . This gives us a mesh
J+such as the oe k+

such as the one below.

Y66-

Y
5Y4

y.2
Y3 xY2

Yl

xl x2
x x4 x5

Note that we do not allow a "non-product" mesh such as the following:

We next form a boundary curve in this mesh composed of straight line segments

joining mesh points. These segments may be vertical, horizontal, or

diagonal. To approximate a quadrant of the disk we might have used the

following mesh.
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P
-- 8

Y7

V_ '• P_F1Jl Jo0 -

xl x 7

Note that we were forced to use unequal mesh spacing in order that the boundary

mesh points (PI,...,P 8 ) lie on the boundary circle. The mesh boundary

is then composed of the straight lines joining the points P0 ,P 1 ,...,P 8 , P0.

The set Rh is composed of all mesh points on or inside this boundary curve.

Given any mesh point (x.,yk) we form a region r.k by forming a rectangle

of sides xj+½(xj+l-x), .x-½(x-xj1), Y k+(y -y ), Y -½(Y -Y ). The

region r.jk is formed by taking the intersection of this rectangle with the

region Rh (note that we sometimes mean Rh to be the set of mesh points and

other times the region bounded by the rectilinear mesh boundary ORh)*

Examples of the definition of rjk are illustrated below.
J 9,k

k k

rk
j,k

rjk
j ,k

JJ
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We allow the coefficient function D(x,y) to have discontinuities along the

vertical, horizontal, or diagonal lines joining the mesh points. Thus

D(x,y) is continuous in the eight regions R1 ,...,R 8 shown below.

We integrate the differential equation over each of these regions and then use

Green's theorem to replace surface integrals by line integrals. Green's

theorem states that for any smooth functions T(x,y) and S(x,y)

§ (S - T )dxdy = Tdx + Sdy
R Rx y R

where the boundary integral is taken in the positive, or counter-clockwise

sense. Application of this formula to the differential equation (5.4-1)

yields

S -Duxdy + Du dx + Eudxdy - fdxdy 0 (5.4-3)
BR xR R

Note that in our case these line integrals are always over straight line

segments. If we describe these segments by a paramete: T, then

x = x0 - Tsine, y =y 0 + Tcose where 9 is the angle that the normal to the

segment makes with the positive x-axis and (x0,y0) is the initial point

for the segment.
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(xj

We have 0 < T - L where L is the length of the segment. If 6u/5n denotes

the derivative of u in a direction normal to the segment, then

6u/8n = u cose + u sine. On the segment dx = -sinedT, dy = cos9dT,
x y

therefore equation (5.4-3) becomes

- . D(T) dT + f Eudxdy = §f fdxdy (5.4-4)
SR R R

At each mesh point (xj,yk) of Rh where uj,k is unknown, we use the above

integral to derive an equation for this unknown. For example, we will

assume D(x,y) and E(x,y) are constant and derive an equation for the point

below.

r k

8y

Ly1
Axl j Ax2



5.37

Problem 5.4-1. Derive a difference equation for the unknown u.
j,k

at the mesh point shown above (D and E are constant). Hint: Approximate
u ~ u

the normal derivative on the right side of r by i+lk - k , and
j,k Ax2

similarly for the other sides.

Problem 5.4-2. Assume D(x,y) = 1 in the upper diagonal part

and D(x,y) = 2 in the lower diagonal part of rj k (see the figure

Using the fact that Dau/an must be continuous along an interface,

difference equation at the point (x.,yk).

k

of r.
J,k

below) .

derive a

j

Hint: Use equation (5.4-4) integrating first over the vertical cross-hatched

region, then over the horizontal cross-hatched region, then add the integrals.

Note that the line integrals along the diagonal will cancel under the

addition.

Next we will consider application of the boundary condition

(5.4-2). If a = 0 at a point on the boundary, then the value of

that point is determined trivially from the boundary conditions.

that if (x.,yk) lies in the interior of Rh, then the region rk
r j,k

of equation

U at
j,k

Note

also
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lies in the interior and we have the situation described in the previous

problems. As an example, consider the figure below.

j

If C(T) 7 0, then we can derive an equation as follows. We will consider

the case illustrated in the figure below.

C

I2

j

Problem 5.4-3. Assume D and E are constant, and a(T) 0 along the

boundary segments shown above. Derive an equation for the unknown boundary

value u. . Hint: On the side labeled S1 , approximate the line integral by
J,k 1
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-D dr E -D(xjX, Yk )n(x ½Yk
S 1

Here L is the length of the segment between (x ,yk) and (xj+l ,yk) and

au
(x+i ,y ) is the midpoint of this segment. Note that u =- can be

j+ i k-1 n an
evaluated in terms of the boundary values of Uj,k from the boundary

condition of equation (5.4-2). What would you do if a(x.,yk) 0,

but a(xj+,yk) = 0?

The derivation of these difference equations can be done by the computer.

Otherwise the scheme would be difficult to use. This is described by

Spanier [1967]. One inputs a description of the mesh geometry along with

the boundary conditions to the computer program, and the latter constructs

the coefficients in the difference scheme in accordance with the method

described above. This method will lead to a matrix equation for the unknown

uj,k' namely AU = F, where U is the vector of unknowns. Note that the

matrix will depend on the ordering of the components of the vector U.

Problem 5.4-4. Show that the matrix A is symmetric, diagonally

dominant, with positive diagonal entries. It is possible to show that

A is positive definite. (Assume 3 f 0 on the two line segments joining

at least one boundary point.) To prove this you must specify exactly what

is done in case a = 0 for some boundary points. Note that you must also

specify the method used to approximate the integral

SS Eudxdy
R

You might need to change the method used to approximate the line integral

in problem 5.4-3.
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5.4.2 Difference schemes based on interpolation. We will briefly

describe two difference schemes for Laplace's equation with Dirichlet boundary

conditions on a general (i.e., nonrectangular) region. For further

information we refer the reader to the book by Forsythe and Wasow [1960]

and also to Greenspan [1965].

We first describe the mesh. We cover the domain R with a rectangular

mesh (x.,yk), 1 j J J, 1 k K. We assume x. < x j+, Yk k+l We

also assume that 4 f the point (x,y) is in R, then xl x x xj, y y y

That is, we assume the domain R is contained within the mesh. We let R

denote the set of mesh points which lie in the interior of R. We will assume

R is connected in R. By this we mean that any two points of R can be

joined by a series of mesh segments (that is (xj,Yk) - (xjl,Yk) or

(x ,yk) -* (x ,ykil)) which lie in the interior of R. We wish to exclude

cases such as the one illustrated below. The points of R are marked by "'".
I

We say that a point of R is a regular point if the line segments joining

the point to its four neighbors all lie in the closure of R. The closure

of R is the interior of R plus the boundary curve 6R of R. If a point

of R has a line segment joining it to a neighboring mesh point and this

line segment is not contained in the interior of R, then the segment must
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intersect the boundary. We choose that boundary point on the segment which

is cloest to the original point and add it to the mesh. The set of such

points we denote by 5Rh. Our mesh Rh is then composed of the union of R

with aRh. If we have Dirichlet boundary conditions, then we know the value

of the solution at all points in 6Rh. We need to obtain a difference equation

for each point of R . The figure below illustrates the situation when R is

the first quadrant inside a circle.

reguiLr J jJu.LLsL ý nnintcq nf P

Sirregular points

-i "l A n w-- -Y 4 n f- c, 4 » ^

-T

L

I\ -' ALLAC .iL Y Wr'J L r 0 J-LL '.1

D1
Now that we have defined the mesh we are ready to construct the finite

difference approximation. Since we are mainly interested in methods to

approximate the boundary conditions on a nonrectangular domain we will only

discuss Laplace's equation u + u = 0. We will further restrict our
xx yy

discussion to Dirichlet boundary conditions.

Problem 5.4-5. We will first describe the approximation of u at
xx

the point (xj,Yk). Denote uxx(j ,yk) by uxx(P), and use u(E) for

u(x+,y ), u(W) for u(xj.lY). Let h = xj - x , hE = xj+- x.

Assume that u(x,y) is sufficiently differentiable. Show that the following

difference approximation is valid.

IIIL~

C-----~

~------f;

1

~---~

t~l~

1J

t---(

~-----~

r--------·s

\

~-------~

UhrCI1 ~ Irr~~4

k Y n II lIa. -I r II1I I I s I T II1I r rK
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u(E) - u(P) u(P) - u(W)
hE " hW

u (P) = h + R"(P)
xx h + hE x

2

2 2
htW - h h hhE + hE

where R"(P) = 3 u (P) - u (,p)
x x

xp-hW h W xp+hE

Note that if we use an equally spaced mesh (h = h = h), then our

error term is 0(h2) instead of 0(h) for hE / hW. However, it may be to

our advantage to use an unequally spaced mesh if the solution changes rapidly

in one part of the region. We may then get by with fewer mesh points. Near

the boundary we may need to add more mesh points.

At a regular interior point P = (x.,yk) we will use the differential

equation to obtain an equation for the unknown uj,. We denote the neighbors

of P by E = (xj+l,Yk), W = (Xjl,Yk), N = (xj,Yk+l), S = (j,yk-1), and

hE, h , hN, hS have the obvious meaning. The difference scheme is

U(E) - U(P) U (P) - U(W) U(N) - U(P) _ U(P) - U(S)
hE hw hN h

Lh(U)(P) += hE +hwh + h S =

2 2
(5.4-5)

Some of these neighboring points may be boundary points, in which case

the values of U at these points are known. These values would then be

moved over to the right side of the equation to form a matrix equation

(square matrix A) AU = F for the unknown interior values of U. Note that

the above equation reduces to the usual equation (5.3-2) in case h = h ,
hE W

hN = h'
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Next we will describe three methods to obtain an equation for the

irregular interior points of the mesh. The first is a very crude interpolation.

If P is an irregular mesh point, one of its neighbors must lie on the

boundary of the mesh. Denote the closest such neighboring point by Q and

let u(P) = u(Q) be the equation for u(P). Note that u(Q) is known since

Q lies on the boundary aR. Instead of u(Q) we might use an average or

integral of u(T) along the boundary 6R, for example

N N
u(P) = (T)dT dT

E E

where the integrals refer to the path shown below.

This is a rather crude approximation.

The next method requires the choice of a neighboring point Q' on the

boundary mesh 1Rh closest to P. We then let Q" denote the neighboring

point on the opposite side of P from Q'. We use simple interpolation to

form the equation

h"u(Q') + h'U(Q")
Lh(U)(P) = U(P) - h' + h"
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Two examples are illustrated below.

Problem 5.4-6. Let R be the triangle with vertices (0,0), (0,1.),

(0.5,0). Let the mesh be determined by x. = (j-l)/6, 1 j j < 4,

yk = (k-l)/6, 1 k : 7. Then Ax = Ay = 1/6. Note that there are four

points in the interior R of this mesh. Assume we wish to solve Laplace's

equation with Dirichlet boundary conditions on this mesh. Write out the

finite difference scheme obtained from the second of the above methods.

A third difference scheme is one due to Shortley and Weller [1938].

In this case we simply use equation (5.4-5) at all points of R .

Problem 5.4-7. Write out the finite difference equations for the mesh

in problem 5.4-6 using the method of Shortley and Weller.

Problem 5.4-8. Show that all three of these methods lead to matrix

equations for the unknown values of U. whose matrices A are irreducible
j ,k

and diagonally dominant and also satisfy a.. < 0 if i j, a.. > 0. We

have assumed that the mesh is connected in the sense described in the beginning

I
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of this section. Give an example to show that the matrix may not be

irreducible unless the mesh is connected. Are these matrices symmetric?

We know the matrices obtained from these methods are nonsingular since

these matrices are irreducible and diagonally dominant. Therefore we can

solve these systems of equations for the unknown vector U.
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6. THE ITERATIVE SOLUTION OF LINEAR EQUATIONS

In the preceding chapter we considered finite difference approximations to

elliptic partial differential equations such as Laplace's equation. These

methods all require the solution of a linear system of equations. The order

of this system may be very large--in some cases over 100,000. However, these

linear systems frequently have special properties which permit us to construct

particularly efficient iterative methods for their solution. The purpose

of this chapter is to discuss two iterative methods for the solution of

these systems--the successive overrelaxation (SOR) and alternating-direction-

implicit (ADI) methods. A great deal of work has been done on the

development of these methods. For more information the reader can consult

books by Forsythe and Wasow [1960], Varga [1962], or Wachspress [1965].

There are many journal articles on this subject. We will start with some general

comments on iterative methods and then consider the SOR and ADI methods.

6.1 General remarks on the convergence of iterative methods. We will

consider iterative methods for the solution of the matrix equation Ax = b,

where x and b are n-dimensional vectors, and A is a matrix of order n. We

are trying to find the zero of the vector function f(x) = Ax-b. We can

convert this to a fixed point problem by defining the function g(x) by

g(x) = x-f(x) = (I-A)x+b. Then we are looking for fixed points; that is,

vectors x such that x = g(x). The easiest iterative method for this problem

is to choose an initial guess x(0) for the vector and then define

x(v+l) = g(x ()) for 0 < v. Under the proper conditions the vectors x(V)

will converge to the solution x. An introductory course in numerical analysis

will usually consider conditions under which this iterative process will

converge for scaler functions g(x) of a single unknown x. We need to consider
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this question for matrix equations in the form

x = Mx + b

Here M is a matrix of order n, x and b vectors of dimension n. The iterative

process is

x(+ 1 ) =Mx() +b, x(0) given (6.1-1)

If we denote the error x-x) by e(), then by subtraction of the above

equations we obtain

e = Me

From this equation we have e = Me , e(2 = Me = Me , and by

induction we can prove

e = Me(O)

th

Thus convergence is dependent on the v powers of M. We need to find

conditions under which M will approach zero. If M is in some sense small,

we would expect convergence. The following problem verifies this.

Problem 6.1-1. If the absolute row sums of M are strictly less than one,

then the iterative process of equation (6.1-1) will converge. The condition

n
is E 1m.. < 1 for 1 < i < n. Hint: Let e = max e.i where e i

j=l 1 w h l i<n

is the error vector, e. = x - x . Then show e < e . This implies
1 1 1 V+1 .

lim e = 0.
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6.1.1 The convergence rate of the matrix iteration. We say that a

matrix M is convergent if lim M = 0 (the zero onthe right side denotes a

matrix whose elements are all zero). There is a close relation between this

property and the spectral radius o(M) of the matrix. (The spectral radius is

defined by c(M) = max |Xi1 where X. are the eigenvalues of M.) In fact, a
i 1

matrix M is convergent if and only if a(M) < 1. We refer the reader to the

book by Isaacson and Keller [1966, p. 14] for a proof. A special case of

this result is the following.

Problem 6.1-2. Suppose a matrix M of order n has n linearly independent

eigenvectors. Show that M is convergent if and only if o(M) < 1. Hint:

Given any vector x we have x = a 1v + ... + v(n)where v( are the

eigenvectors. Use this to show that Mnx 0 for all x. Then show

lim Mn =0.V--=
Problem 6.1-3. Given an integer m and positive number e, define a (2x2)

matrix M and a vector x such that llxl 2 • 2, lMx|12 Ž 1 for v • m and

S•ilm < e, 1 : i - 2, X1 1 X2' where Xi are the eigenvalues of M. Hint:

Find a matrix M whose eigenvectors are (1,0) and (l,e).

This problem shows us that even if a matrix M is convergent and has n

independent eigenvectors, the powers M may grow quite large before beginning

to decay to zero. The condition o(M) < 1 on the spectral radius insures

convergence, but it does not tell us how many iterations will be required to

reduce the error M"e to a certain level. In the case of a symmetric or

Hermitian matrix the spectral radius does give us an upper bound for the norm

|MVx \. This is due to the fact that the eigenvectors of a symmetric matrix

form an orthogonal basis.
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Problem 6.1-4. Let M be a symmetric matrix. Show that \Mx 2 • (c(M))lxl 2

n 2
for any vector x. Here we use the Euclidean norm lx l 2 = E x

i=l1

The spectral radius can also fail to provide a good indication of the

initial rate of convergence if there is an "eigenvector deficiency." By this

we mean that there are fewer than n eigenvectors where n is the order of the

matrix. The following problem will illustrate this case.

Problem 6.1-5. Let the matrix M be defined by

p 1
M =

0 p

Show that

v V-P

M =

0 p

Also show that given any e > 0 and any R > 0 it is possible to choose p > 0

such that for some v, p < e and M 2 > R.

Even though the spectral radius is not an ideal indicator of the

convergence rate, it is usually the best we can do and generally provides

reasonable results. Most analyses of iterative methods are based on the

spectral radius.

We can define an average convergence rate as follows:

InllnMV 2
R VR (M) -
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Then

-vR

|!Mxi\2 M ',2 xll x 2 e lxI2 (6.1-2)

The larger R , the smaller the error. Note that -lnllMl2 2  R R for all v,

thus we have a lower bound for R . This may not be too useful, since we can

have IMl 2 > 1 even though M is convergent. If R were bounded below by R

R Ž R, then 1/R would bound the number of steps required to reduce the norm
-i

by e . This follows from inequality (6.1-2). If v - 1/R, then

-vR
lMxýxl , e - y xR l • el 1x .

The spectral radius can be related to the rate of convergence by means

of the following results [for a proof see Varga, 1962, p. 67]. We define

R by R = -ln(c(M)). Then we have

lim R (M) = R -ln(c(M)) (6.1-3)
)-VCO

R • R for all v (6.1-4)
V oo

Thus the convergence rate based on the spectral radius gives an optimistic
-vR -vR

estimate of the norm HM'. We have M1 = e 2 e . However, note that

the error for a given vector may be better than indicated by the spectral

radius; we may have

-vR

l|M xS| < e |lxl|

Problem 6.1-6. Provide an example where the inequality above

holds.
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We will not prove equation (6.1-3) but will give some indication why

it is true.

Problem 6.1-7. If the matrix M has n independent eigenvectors, then

show that equation (6.1-3) holds. Hint: In this case the matrix S of

eigenvectors reduces M to diagonal form, S1MS = D, where D = diag([I,...,Xn}

with X. the eigenvalues of M. Then M = SDvS- 1 . Now use IM"\\ • \\Sl\\S l- D•

Problem 6.1-8. Prove relation (6.1-4).

6.1.2 Two iterative methods--Jacobi and Gauss-Seidel. In this section

we will return to our original linear system Ax = b and define some iterative

schemes for the solution of this problem. First wp will consider the

Jacobi iteration. We write A = D - E - F where D is a diagonal matrix

consisting of the diagonal elements a.. of A, E is a lower triangular matrix

of the elements -a.. (i > j) and F an upper triangular matrix of the

elements -a.. (i < j). We assume that the diagonal elements of A are nonzero.

The Jacobi iteration is defined by

Dx+1 = (E+F)x' + b (6.1-5)

We can write this in the form

xV = (L+U)x + Db

where L = D E, U D F. Note that equation (6.1-5) is effectively explicit.

v+l
The formula for a component of x is

x - -a K +b.
i t a dj in j d

If A is strictly diagonally dominant, then the Jacobi method will converge.
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n

Problem 6.1-9. If a.. > Z la.1 for 1 r i • n, then the Jacobi method

i j
will converge.

We can modify the Jacobi method by including more of the matrix A on the

left side. We then obtain the Gauss-Seidel method defined as follows:

(D-E)x = Fx + b

Since a.i. 0 and E is lower triangular, we know that (D-E) is nonsingular.

v+l
This scheme is effectively explicit if we solve for the components of x

v+l1
in ascending order. Suppose we have already computed x. for i < k. Then

v+l
x, is obtained from the relation

K

xv+1  1 a v+l a Vx+= a - a j x - Z akj x. + bk

S kk lj<k J- k k<j k

We can write the Gauss-Seidel iteration in the form

v+l L v+l v b-
x+ =Lx+1 +Ux + D b

where L = D E, U = D1F.

The convergence of the Jacobi iteration is determined by the spectral

radius o(B) where B = L + U since x =Bxb + D b. The convergence of

the Gauss-Seidel iteration is determined by the spectral radius o(M1) of

M = (I-L)-U since x 1 = M1 x + (I-L)Db. The following theorem relates

the convergence of the two methods in the case where B = L + U is non-negative.

This is frequently the case for matrices A arising from elliptic PDE problems.

Note that B is non-negative if the original matrix A satisfies the condition

a. ./a. <• 0 for all i i j . We refer the reader to Varga [1962, p. 70]
iJ ii



6.8

for a proof of the following statement. The proof is based on the Perron-

Frobenius theory of non-negative matrices.

Assume the Jacobi matrix B = L + U is non-negative. Let M be the

matrix which defines the Gauss-Seidel iteration. Then one and only one of

the following relations hold:

a) o(B) = a(M) = 0

b) 0 < a(M1) < a(B) < 1

c) a(M 1) = C(B) = 1

d) 1 < c(B) < a(Ml)

This theorem implies that if one of these methods converges, then the other must

also converge. Also, the asymptotic convergence rate of the Gauss-Seidel

iteration (R (M ) = -In o(M )) is larger than that of the Jacobi iteration.

Problem 6.1-10. Assume A is strictly diagonally dominant, that is

a..
max -- = r < 1. Show that the Gauss-Seidel iteration will converge.

i jilaii

Hint: Use induction to show that each component of the error vector satisfies

(v+1) (V) ~+1 Lx + Ux+ v -1 b " V

e( r max e( . Here x = Lx + Ux + D b, Ax = b, e = x-x
i 1

6.1.3 Acceleration of convergence by means of successive overrelaxation

(SOR). We will first treat the general case where we have an iterative method

defined by a "splitting" of the matrix A. That is, we wish to solve Ax = b

where A can be "split" into A = N-P. We define an iterative scheme by

Nxv+l = Px + b. We assume that N is non-singular. In order that the scheme

v+lbe usable, we must also be able to solve for x without too much trouble.
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The convergence of this iterative method is determined by the spectral radius

of M = N P since we can rewrite the scheme in the form x+1 = Mx + N-lb.

It is sometimes possible to reduce the spectral radius by means of the

^v+lfollowing "overrelaxation" procedure. We define first x by

v+1  v v+1 v+l v ^+1 vNx = Px + b, then x by x = x + W(x - x ). Here w is a real

parameter. If C > 1, then we have overrelaxation; if w < 1, underrelaxation.

We will now show how this procedure may reduce the spectral radius. We can

write this procedure in the form

Nxv+1 = [(l-w)N + wP]xv + wb

or

v+ 1 v -1 -1
x = xv + N b , M = N [(1-w)N + wP]

W W

The original iteration which does not use overrelaxation is determined by the

-i
matrix M1 = N P. The matrix for the overrelaxation process is

M = (l-w)I + uM1. If we denote the eigenvalues of the matrix M1 by

'4 ,..., , then the eigenvalues of M are X. = l-c + wC.. We can use this

relation to choose w so that the spectral radius of M is made a minimum;Co

that is, choose Ca so that c(Mw ) co(M ) for all w.
0

Problem 6.1-11. Assume that -1 < sl < < 1. Show that

2
the best choice of u isu , then c(M ) . o(M ). Also show

0 2 + p1 + ~n 0

that a(M ) < C(M ) if HI + , : 0. If i = -1 + 3e, n 1 - e where

0 < C << 1, then what improvement in the asymptotic convergence rate R

would you expect? If CI = 0, =n i - e, then what improvement would you

expect? Assuming the asymptotic convergence rate to be a good indication

of the actual convergence rate, how much computer time would you expect to save

by use of w = WO rather than w = 1?
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Overrelaxation for the Gauss-Seidel iteration is defined somewhat

differently from what we did above. The objective is the same--to reduce

the spectral radius, thus increasing the convergence rate. In component

form, the Gauss-Seidel overrelaxation is

^v+1 v+l va kk = - a x. - E a x. + b (6.1-6)
kk k k kj 3j kj i k (6.1-6)j<k j>k

v+1 v AV+1 v
x = x + mx - x

k k (vk k)

^v+1 %v+1
We relax each component xk immediately after computing xk instead of

^v+1
waiting until the vector x is computed.

Problem 6.1-12. Show that the Gauss-Seidel overrelaxation defined by

equations (6.1-6) can be written in matrix form as

x+ = (I - wL) 1 [wU + (-W)I]xV + wD 1b

where the matrices L, U, and D are defined in equation (6.1-5).

This procedure is frequently called successive overrelaxation or SOR.

Our problem is to choose w so as to minimize the spectral radius of

M = (I - w [U + (l-u)-].M = (I - wL) [uWU + (l-w)I].
W-
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6.2 The theory of successive overrelaxation. In this section we will

analyze the successive overrelaxation iteration. Our main objective is to

obtain an expression for the spectral radius of the matrix M which defines

the SOR iteration. The spectral radius of SOR is related to that of the

Jacobi iteration. This relation is very useful (from a practical as well as

a theoretical point of view) for the determirntion of an optimal w for the

SOR iteration.

6.2.1 The convergence of SOR--the Kahan and Ostrowski-Reich theorems.

We will first give a result due to Kahan [1958]. Let M be the matrix which

defines the Gauss-Seidel iteration for an arbitrary matrix A (arbitrary,

-1
except ai.. 0), namely M = (I - wL) (wU + (l-w)I). Then the spectral

radius of M satisfies a(M ) > 1w-II
W W

Problem 6.2-1. Prove the above theorem by Kahan. Hint: Let

p(X) = det(XI - M ). Show that cp() = det((X-w-l)I - XL - cuU). Note that

n n
det(I - wL) = 1. If X.(w) are the roots of p(X) = 0, then cp(0) = (-1) X.(c).

i i i
n

Show that p(0) = (w-l) . The result follows from this.

Next we will prove a theorem due to Ostrowski [1954]. The conditions

of this theorem are frequently satisfied by the difference schemes used for

elliptic PDE problems.
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We assume A and D are Hermitian, D positive definite, with A = D-E-E ,

where E is lower triangular (e. = 0, if j 2 i). Let the iteration beij

defined by (D - wE)x = (wE + (l-w)D)x + wb so that the iteration matrix

-1 *is M = (D - E) (wE + (l-w)D). Then a(M ) < 1 if and only if A is positive
W W

definite and 0 < K < 2.

Note that if A = D-E-E and A is Hermitian, D diagonal and positive

definite, then a.. > 0 for 1 < i < n. Then D - wE is nonsingular since E

is lower triangular. Thus the Gauss-Seidel iteration satisfies the conditions

of the theorem provided A is Hermitian with positive diagonal elements.

We will only outline the proof, leaving most of it as a problem. Let e

be defined by e = M e for m - 1, with e given. Let 6 = e - e
m+1 m 0 m m m+1

then

(D - wE)6 = wAe (6.2-1)
m m

and

wAe+ = (l-w)D6m + wE 6m (6.2-2)

Also,

(2-w)6 D6 = (e Ae - e Ae +l) (6.2-3)m m m m m+1 m+1

Now assume A is positive definite and 0 < w < 2. Let e 0 be an eigenvector

of M with eigenvalue X. Then

2-u l1 e De = (1- lX e Ae (6.2-4)
Cu0 0/ 0 0
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If X = 1, then e = Me = e 0 and 6= 0 which implies Ae = 0, but A is

positive definite. Therefore X A 1. Since A and D are positive definite,

0 < a < 2, we have 1 - A12 > 0, or XI1 < 1. This completes a proof of the

first half of the theorem.

If M is convergent, then 0 < w < 2 from Kahan's theorem. Also for any

initial error e0 , the sequence e converges to zero. Since the matrix M
0 m W

is convergent, it must not have unity as an eigenvalue. Therefore

e - e 60 = (I-M )e 0  0. Therefore

el Ael < e0 Ae0 (6.2-5)

We can also show

em+l Ae < e Ae. (6.2-6)
m+1 m+1 m m

If A is not positive definite, then e0 Ae0 5 0 for some nonzero vector e0 .

But then the two equations above imply

e Ae < e Ae < 0
m m 1 1

for all m. Therefore e does not converge to zero, which contradicts the
m

assumption that M is convergent.

Problem 6.2-2. Show that equations (6.2-1) through (6.2-6) are valid.
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6.2.2 The iteration matrix for SOR in a special case--the Dirichlet

problem on a rectangle. The proofs we will give here apply only to Laplace's

equation on a rectangle with Dirichlet boundary conditions. However, the

results will apply to somewhat more general problems. We refer the reader

to Varga [1962], Wachspress [1966], and Forsythe and Wasow [1960] for the

proofs. The main result concerns the choice of the optimum overrelaxation

parameter w. We have from the Reich-Ostrowski theorem that SOR for the problem

Ax = b will converge if 0 < w < 2 for reasonably general matrices A. Young

[see Forsythe and Wasow, 1960] in 1950 developed a theory which permits the

calculation of an optimum W for a wide class of matrices A. We will give

another development based on a paper by Keller [1958].

First we will review the description of the finite difference scheme

given in section 5.3.2. The matrix A has the form

A=I - (C + C) - (C + CT) (6.2-7)
xx x x y y y

where C and C are the lower triangular matrices of order J*K = N given below.
x y

Note that the mesh points are defined by (xj,yk) where x. = ja/(J+l),
k]

k = kb/(K+1), 0 j < J+1, 0 k K+l.

1 2 3 K

0 0 .. 0

1 00 . .

0 1 0 . . .

001 . . .

1000
1 0 0 0

0' 1 00

0 0 0 . . . 0 0 1 0

C
y

0 0 0 . . .

S0 0 . . .

0 I 0 . . .
J . . I

0
*

0 0 . .. o 0

C
x

I

I
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Note that C is written in (KXK) block form where the blocks are either zero,
y

or the identity matrix I of order J.

In section 6.1.2 we defined the Jacobi iteration. There we wrote the

matrix A as A = D-E-F. With A as given in equation (6.2-7) above we have

T T T
D = I, E = 9 C C , F = 9 C + C E . Therefore the Jacobi iteration

xx yy xx y y

becomes x = (L + L)x + b where L = E. The iteration matrix is B = L + L=

I-A. If we denote the eigenvalues of A by r , then the eigenvalues of B

are X = 1 - 1 , 1 < r N = J*K. The eigenvalues r were found in section
r r r

5.3.2 to be

4= 49 sin2 + 4 sin2 3+4  q(6.2-8)
r x 2(J+l) y 2(K+l)

where r = p + J(q-l), 1 p •p J, 1 q K. Note that 0x+ = y and

therefore 0 < < 2, and -1 < X < 1.

Problem 6.2-3. Show that the nonzero eigenvalues X for the Jacobi
r

iteration occur in pairs ±X ; that is, to each X r 0 there is a single

X / such that X , = -X
r r r

Note that the eigenvalues X of B are the roots of the polynomial *(X)
r

defined by

((X) = det(XI-B) = det(XI - 9 (C+T) - (C + CT)) (6.2-9)
x xx y y

The matrix which defines successive overrelaxation is given in problem

6.1-12, namely

M = (I - uL)- [CwLT + (1-))I]
Cu
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The eigenvalues of M are the roots of the equation cp(Q) where

p(T) = det (l -T C + C ) - (9 CT + C) + (W-))
Sd - xx y y xx y y

or

cp(T) = det (T+w-l)I - m(9 C + 9 C ) - u(9 c + e c (6.2-10)
xx y y xx y y.

6.2.3 The relation between the Jacobi and SOR methods. Our next objective

is to relate the roots of p(T) = 0 to those of (Xh) = 0. That is, we wish to

relate the eigenvalues of the matrix of the Jacobi iteration to those of the

SOR method. To do this we will need the following result which is the basic

tool used by Keller [1958] (see Isaacson and Keller, 1966, p. 465).

Let a and B be nonzero scalers. Let y , Y2' Y3, Y, Y5 be arbitrary

scalers. Then

det I -C + yl - x 2Cx C + P -Y C (6.2-11)

is independent of a and P.

To prove this result we will need to relate the determinant to the

geometry of the mesh. We are dealing with matrices of order N = J*K where

the mesh points are given by (x,yk), xj = ja/(J+l), Yk = kb/(K+l). The

unknowns Uj. are sought for 1 < j • J, 1 < k < K. The matrix whose
J ,k

determinant (equation (6.1-2)) we must evaluate is of order N = J*K. If we

denote this matrix by G, then

det(G) = Zsgn(n) gl( g, ... gN( (6.2-12)

Here n denotes a permutation of the integers 1 through N. Thus the above

sum contains N' terms. A permutation r is a one-to-one mapping of the set
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t1,2,...,N} onto itself, thus n(r) is integer, 1 T(r) - N, and r(r) = n(s)

only if r = s. To each point (x.,yk) in the mesh we assign an integer

r = j + J(k-l). This defines a one-to-one mapping of the mesh onto the

integers [1,2,...,N). With each permutation we can associate a set of

directed curves running from the mesh point corresponding to r to the mesh

point corresponding to Tr(r). The figures below indicate two examples of

the curves associated with a permutation when J = K = 3. The permutation

is defined by the columns of numbers.

r r(r r r)

1 6 1 2
2 3
3 9
4 5
5 2
6 8
7 4
8 1

2 5 *~" --

3 3 7 8 9

4 1
5 8 *•
66 6 \ 5 6

7 4-
8 7 • • *.

9 7 1 2 3 9 9 1 2 3

Since each mesh point or node (denoted by r) appears exactly once in

each column defining Tr(r), each mesh point has exactly one curve leading

into the point and one curve leaving it. Thus these curves form a set

of disjoint cycles. By a cycle, we mean a sequence rl, r 2 , r 3 , ... , rk, k 2 2,

where rI = rk and T(rj) = rj+ for 1 j ; k-l. Note that the figure on

the left above contains two cycles, and the one on the right four cycles.

The matrix G can have a nonzero element grs only if at least one of

T T
the matrices I, C , Cy C x or C has a nonzero element in this position.x y x y
Thus grs 0 only if s = r , or s = r ± J. Thus the curve segment

corresponding to grs $ 0 is a horizontal or vertical segment of length ± 1.

If the term gl,( 1) g2,( 2 ) "' gN,(N) in the evaluation of the determinant
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is nonzero, then the corresponding cycles in the graph are made up of

vertical and horizontal segments of length ±1. Since the cycle returns to

its starting point, there must be exactly the same number of upward-

directed vertical segments as there are downward-directed segments. Each

T
upward-directed segment is associated with a term in the C matrix and

y
-1

each downward segment with a term in the C matrix. Therefore 3 and B
y

appear in multiplicative pairs in equation (6.2-12). Therefore they cancel

and the determinant is thus independent of -. Similarly, the determinant

is independent of a which proves the desired result.

Now we will use this result to obtain a relation between the polynomials
-5

i(X) and cp() of equations (6.2-9) and (6.2-10). If we use a = B = T

in equation (6.2-11) and note that the determinant is independent of a

and B, we obtain

N

N

C(P) = 2 + w - 1 (6.2-13)

We have assumed OT 0.

6.2.3 The choice of the optimum w. We know from the Reich-Ostrowski

theorem that the optimum w must lie between zero and two. The derivation

of the optimum w will depend only on equation (6.2-13) and the fact that

the nonzero roots of 4(X) = 0 occur in pairs with opposite sign. Equation

(6.2-13) can be obtained in a more general way than we have done it here.
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For example, it may hold for a nonrectangular mesh. We give the derivation

in the form of a problem with several parts.

Problem 6.2-4. (1) Show that the nonzero eigenvalues 1 of M (see

equation (6.2-10) are related to the eigenvalues X. of B (see equation 6.2-9)

by

X.

2i = i = -- - + - (6.2-14)

(2) Show that we need consider only non-negative X. (note that the X. are
1 1

Iireal and -1 < X. < 1). (3) If Ti. is complex, then o > 1 and | = U - 1.

(4) Suppose the ŽX are ordered so that Xi .X. for all i. Let

2-2
(u) = + + 1 - (6.2-15)

dT1  2
Then - 0 if T(w) is real. (5) Let wot 2 Then show the

opt 1 + 1 - X1 +
spectral radius of M is given by

CD

SW) opt
a(M ) = (6.2-16)

opt

Also show that a(M ) Ž a(M ) for 0 < w < 2.
•opt

We have thus found an optimum value for w, that is, one which minimizes

the spectral radius a(M ), namely

2 2 rr 2 rr
IC 2where X = 1 - 4 8 sin -4e sin

p +t I 2 1 x 2(J+l) y 2(K+1)
1

(6.2-17)
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Problem 6.2-5. Show that the asymptotic (i.e., R ) convergence rate for

Gauss-Seidel (w = 1) is

1 1 +0(8)
GS 2 +-+0

2 2w 2 Ax IAV a b
where = 8 Ax = --- 2 Ay = x . Show that the rate of2 2 A J+1 K+l

2[Ax + Ay ]

convergence for SOR with the optimum value of w is

R =2628T2 - 1+- + 20
SOR 2+()

\ a b /

Let a = b = 1, J = K = 49. Estimate the number of iterations required to

-4
reduce the error by a factor of 10 for Gauss-Seidel and optimum SOR.

The effect of w upon the spectral radius of the matrix M for SOR is
w

given in equations (6.2-15) and (6.2-16). A plot of these curves for

h = 0.99 and = 0.9 is given in figure 6.2-1 below. It is clear from

these curves that if we are uncertain about the exact value of the optimum

a (wo of equation (6.2-17)), then we do better with an overestimate
opt

rather than an underestimate.

For each pair of eigenvalues of the Jacobi iteration ±X., we will in

general have two eigenvalues for SOR, namely those given by equation (6.2-14).

However, if w = Wopt' then the square root in equation (6.2-14) is zero.

A careful check will show that there are two eigenvalues equal to the spectral

radius o(M ). Furthermore, there is an eigenvector deficiency for this
opt

eigenvalue pair (see Wachspress [1966, p. 114]). Therefore we might expect

v-l v
the error to decay like vl rather than T where v is the number of

iterations and Tl the spectral radius (see section 6.1.3).
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The problem of finding the optimum value of w is a difficult one. Equation

(6.2-17) holds under rather general conditions so that this problem reduces

to that of finding the spectral radius for the Jacobi iteration. For the

simple case discussed above (rectangle with Dirichlet boundary conditions)

we can compute the spectral radius XI. In more practical situations we must

estimate X1. This can be done in a variety of ways. In problem 6.2-6 we

reference some of the literature on this question. We may be able to

choose opt so that the asymptotic convergence rate R is optimized; however,opt

we are usually more interested in the average convergence rate taken over

the number of iterations we actually use, namely (see section 6.1.1)

lnHMV112
R = -

V V

Furthermore, we are most interested in a convergence rate based on the actual

error rather than the norm of the iteration matrix, namely:

I n( eV /eOl)

It would be very difficult to base a theory for the selection of w on
opt

this definition of the convergence rate.

Problem 6.2-6. Devise a computational procedure to choose an optimal

value of u for SOR. Base your choice on study of at least one of the

following articles: Caire [1961], Forsythe and Ortega [1960], Garabedian

[1956], Kulsrud [1961], Wachspress [1966], Varga [1962, chapter 9],

Forsythe and Wasow [1960, p. 368], or Hageman and Kellog [1968].
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6.2.4 The Young-Frankel theory for SOR. In this section we will briefly

describe some of the results due to Young [1954] and also Frankel [1950]

concerning the convergence of SOR. In the preceding section we proved the

main result (equation (6.2-10)) for the case of a rectangle with Dirichlet

boundary conditions. Young's results apply to more general problems. Varga

[1962] has further extended these results. We will not give any of the proofs.

The books by Forsythe and Wasow [1960], Varga [1962] or Wachspress [1966] give

a good account. We first need some definitions.

A matrix is said to be m-block tridiagonal (m Ž 2) if it exists in the

form

D F 0 . . .

E2 D2 F 0 . ..

0 .. . .. 0 E D
m m

(6.2-18)

We say that such a matrix is diagonally m-block tridiagonal if each I trix

D. is diagonal.

We say that a square matrix A has property (A) if there exists a

permutation matrix P such that PAPT is diagonally m-block tridiagonal.

In a system of linear equations AU = B we say that the components U.
1

and U. are coupled if a.. 0 or a.ji 0.

Note that if we permute (that is, reorder) the components of U, where

U is a solution of AU = B, then we have the equation AXt = t where A = PAPT
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and P is the permutation of U. Given the m-block tridiagonal form of A,

of equation (6.2-18), we let S. denote those components of U "corresponding"
1

to D.. The successive overrelaxation method requires that we solve for

v+l v+l
the components U of the new iterate U in sane order.

J

We assume that A has property (A). We say that an order of solving

the equations AU = B is consistent with this diagonally m-block tridiagonal

representation of A if each component U of S. is computed before any
k 1i-1

components of S. with which Uk is coupled. An order of solving the
3. k

equations is consistent if there is some diagonally m-block tridiagonal

representation of A with which it is consistent.

These definitions will seem somewhat mysterious until one reads the

proofs. Young's theory assumes that we are solving the system AU = B where

A has property A and we are using a successive overrelaxation which is

consistently ordered.

The first result of the theory is to show that the nonzero eigenvalues

of the Jacobi iteration for A occur in pairs ±X.. The next result is to

show that the roots of the Jacobi method and the SOR method are related by

equation (6.2-14). The selection of opt then proceeds as above.

6.3 The alternating-direction-implicit methods (ADI). In chapter 3 we

discussed the use of the ADI technique for the solution of the parabolic

heat equation. This technique can also be applied to elliptic equations.

In fact, ADI is frequently one of the best methods for the solution of

elliptic equations. We will introduce the ADI method for elliptic equations

by relating it to the ADI for the heat equation which is described in chapter 3.
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We will start with the heat equation in two dimensions, namely

2 2
w w w
t 6x 2 y 2

bx Sy
w = w(x,y,t) (6.3-1)

h = h(x,y)

where (x,y) lies in domain R. The boundary condition is w(x,y,t) = g(x,y)

for (x,y) on bR. The initial condition is w(x,y,0) = f(x,y). Since the

data for this problem (h and g) are independent of the time, the solution

w will approach the solution of the following elliptic problem for large

time (independent of the initial function f); that is, lim w(x,y,t) = u(x,y)
t-oo o

where u satisfies the Poisson equation with Dirichlet boundary conditions.

2 28- + -a = h
2 2

ax ay

u(x,y) = g(x,y)

(6.3-2)if (x,y) E R

if (x,y) E bR

Note that the function v = w - u satisfies the equation

2
+ 2v

6y2

2
8 V = 52ýt 2 v
at ax2

v = 0

on R

on aR

v(x,y,0) = f(x,y) on R, at t = 0

Then it is possible to show that lim v(x,y,t) = 0, and in fact the solution will
t-n

decay to zero at an exponential rate in t, that is Iv| s ceKt for large t.

This suggests that we might be able to approximate the solution of the elliptic

equation (6.3-2) by running a marching method for the time-dependent equation

(6.3-1) out to a sufficiently large time.
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We will next write down an ADI method for the time-dependent equation

(6.3-1). We will assume the region R is a rectangle in order to simplify

2 2

2 2
x j+l,k -,k -1,

2 2
Sw= (w - 2 wk + w. )/Ay
y j,k+1 jk j,k1

where j, k, w. , AX, and Ay have the usual meaning (see section 6.2.2).
J,k

Then the ADI scheme for equation (6.3-1) is the following:

n+2 n At 2 n+½ At 2 n At
wj,k = + - 6 w + w - - h
j,k j,k 2 x j,k 2 y j,k 2 j,k

(6.3-3)

n+l n++ . t 2 n+½ At 2 n+l At
w + 6 w + w ----
j,k j,k 2 x j,k 2 y j,k 2 j,k

This is the Peaceman-Rachford version of ADI. It is somewhat different

from the Douglas-Rachford version given in section 3.5. Note that the

2 2 2 2 2
truncation error is 0(At + Ax + Ay2) rather than 0(At + Ax2 Ay ) as

in section 3.5. In that section we were approximating time-dependent

solutions whereas we are now interested in steady-state solutions, so we

are no longer concerned about the 0(At) rather than 0(At2) error term.

What we now want is the fastest possible convergence to the steady-state

solution.

Problem 6.3-1. Suppose we have found a steady-state solution of

equation (6.3-3); that is, wn =wn+ = wn+ = u. Show that u satisfies

equation (5.3-3); that is, Au = b where A = I - 9 (C + CT) - 9 (C + CT)
xx x y y y

is defined by equation (6.2-1). Determine the right side b in terms of
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the boundary function g and the function h. Show that after multiplication

by a suitable scaler, equations (6.3-3) can be written in matrix form as

(rl + H)wn+ = (rl - V)wn + b
(6.3-4)

n+1 wn+l b
(rl + V)wn+ =(rl - H)w b

where A = H + V. Determine H and V in terms of the matrices C and C of
x y

section 6.2.2. Show that H and V are symmetric and positive definite. Find

a permutation of the elements of w so that V is tridiagonal (see section 3.5).

Determine r in terms of Ax, Ay, and At.

Problem 6.3-2. The Douglas-Rachford [1955] method for the heat equation

is (see Richtmyer and Morton, section 8.8)

An+l n 2 n+l 2 nw = w + At 6 w + At 8 w - Ath
x y

n+l n 2 n+l 2 n+l
w = w + At w +At 6 w - Ath

x y

Write this scheme in matrix form in terms of matrices H and V similar to

equation (6.3-4).

We can now see that our derivation based on the ADI scheme for the

heat equation has led to an iterative scheme for the solution of Au = b

where A = H + V, namely equations (6.3-4). This is an ADI method for the

elliptic equation (6.3-2). The solution of equations (6.3-4) for wn 1

requires the inversion of a tridiagonal matrix on each "sweep" through the

mesh; first a sweep involving the horizontal mesh lines and the inversion

of rl + H and then a sweep involving the vertical lines and inversion of

rl + V. Note that these matrices are nonsingular if r > 0 even for Neumann
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boundary conditions (why?). The convergence rate of the ADI method is greatly

improved when we let the iteration parameter r change with n, that is replace

r by r . However, we will first analyze the case when r is a constant.
n

6.3.1. ADI with a single iteration parameter. The iteration scheme

n+l n
of equation (6.3-4) can be written w = M w + c wherer

-1 -1M = (rl + V) (rl - H) (rl + H) (rl - V)r
(6.3-5)

c = (rl + V)-b + (rl + V)-1 (rl - H) (rl + H)-b

To prove that this scheme is convergent, we must show that the spectral

radius a(Mr) satisfies (Mr) < 1.

Problem 6.3-3. If H is symmetric and positive definite, and r > 0,
-l

then show that the eigenvalues X of C = (rl - H)(rl + H)- satisfy

IlX < 1. Show that IICI2 < 1 where IC\12 is the matrix norm induced by the

usual Euclidean vector norm. Show that lMrl\2 < 1 if H and V are symmetric

and positive definite and r > 0. (M is defined in equation (6.3-5)).r

Hint: Use the fact that M1 is similar to the matrix (rI-H)(rI+H) (rI-V)(rI+V) .

Would your proof work if the original differential equation (6.3-2) had

Neumann rather than Dirichlet boundary conditions?

We will next compute the convergence rate for the single iteration

parameter ADI method. This will apply to the case discussed in section 6.2.2,

namely Laplace's equation with Dirich!et boundary conditions on a rectangle,

except we will require an equally spaced mesh on a square; that is, Ax = Ay

and J = K. We do this for simplicity. We will assume that equations (6.3-4)

are written in the form given in problem 6.3-1, namely Au = b where A = H + V
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T T
with H = 9 (- C - C + 21) and V = (- C - C +21) where C and C

x x x y y y x y
are the matrices defined in section 6.2.2.

Problem 6.3-4. Verify that the eigenvectors of H and V are given by

u,k q= sin sin

Show that the eigenvalues are X =
s

Problem 6.3-5. Show that the

M of equation (6.3-5) is

X\2(Mr
a(M) = max +X 1

r lp•JO

for 1 < j,k,p,q • J = K

s 2  ( s ( s )sin (2 TT
2 (J+1) '

1 s J

spectral radius of the iteration matrix

1 = sin 2( J 1)

Hint: If u is an eigenvector of both H and V, then u is also an eigenvector

of HV, H-I, VH, and V-1H.

Problem 6.3-6. If f(r,x) = (r-x)/(r+x), then show that

min max
Osr L0<oaxP

If(r,x)1= 1 + c/

and the minimum is assumed for r = J7. Hint: f(r,x) is a monotone

function for fixed r, hence it assumes its maximum (and minimum) at x = a

and x = B.

Problem 6.3-7. Using equation (6.2-2) show that the spectral radius of

the Jacobi iteration is cos n(/(J+l)) in case J = K and Ax = Ay. Using equations

(6.2-10) and (6.2-11) show that the spectral radius for SOR is

1 -1-- 
( 

2

2 where p = cos n/(J+1)). Show that the eigenvalues Xp of
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2 2
problem 6.3-5 satisfy sin (9/2) < <5 cos (9/2) where 9 = n/(J+l) and

p

therefore if we choose r according to problem 6.3-6, namely

r = sin(8/2)cos(9/2), then the spectral radius a(Mr) is given by

r

1M ) tan(e/2)1 2 
_ + cose - sine 2 - 2

SMr) + tan(0/2)) 1 + cose + sine/ 2
p

where p = cose.

This result shows that optimized single parameter ADI and optimized

successive overrelaxation have the same asymptotic convergence rate.

Therefore to make any improvement over SOR for this problem, we must use

more than one iteration parameter in the ADI method.

6.3.2 Convergence for the multiparameter ADI - the model problem.

We can write the ADI iteration in the form of equations (6.3-5), namely

n+l wn
w = M(r)w + c(r)

The iteration matrix and the vector c are both functions of r. The multi-

parameter ADI uses a sequence of parameters rl,...,rm and repeats the use of

the sequence so that we have a cyclic process with period m. Starting with

k k+l k+m
w we compute w ,...,w as follows:

k+l M(r ) k+ c(rw = M(r )w +- c(r )

w 2 = M(r2w 1 + c(r 2 ) (6.3-6)

k+m k+m- 1w = M(rm)w + c(rm)
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k+m+l k+m
We then repeat the cycle, thus w l = M(r )wm + c(r ). We can write

k+m k
this procedure in the form w = M w + c where

m m

M = M(r ) M(r) ... M(r ). (6.3-7)
m 2 m

The convergence of the multiparameter ADI is thus governed by the spectral

radius of M .
m

Problem 6.3-8. Assume that H and V are symmetric non-negative definite

matrices with at least one of them positive definite. Assume each r.

1 < j < m is positive. Then show the multiparameter iteration is convergent,

that is the spectral radius satisfies a(M ) < 1.
m

In order to obtain an optimal sequence of iteration parameters r. we

must make an additional assumption concerning the matrices H and V. We

assume that H and V have a common set of eigenvectors. As before, we also

assume that H and V are symmetric non-negative definite with at least one

of them positive definite. If the system Au = b (A = H + V) satisfies

these conditions, then it is called a model problem. For a model problem

(k) (k) (k) (k) (k)
we have Hu(k = (k) and Vu(k = ku(k) where u(k) is the common set of

eigenvectors. Note that the set (u(k)] formsan orthogonal basis. Also note

that the problem of section 5.3 (and 6.2.2), namely Laplace's equation with

Dirichlet boundary conditions on a rectangle, is a model problem.

The condition that H and V have a common set of eigenvectors is

equivalent to the requirement that H and V commute; that is, HV = VH. We

will refer the reader to Varga [1962, p. 221] for a proof. We offer the easy

half of this proof as a problem.
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Problem 6.3-9. Assume the matrices A and B (of order N) have a common

set of eigenvectors which form a basis; that is, Ax(i) X(i)

Bx i = i.x , 1 i • N and the x) are independent. Show that AB = BA.

For the model problem we can compute the eigenvalues of the iteration

matrix M of equation (6.3-7). Note that the common set of eigenvectors of
m

H and V is also the set of eigenvectors for M .
m

Problem 6.3-10. If k and pk are the eigenvalues of H and V, then the

eigenvalues of M are given by
m

m (ri - k) (r - Pk)
= n 1 k N (6.3-8)

i=l (ri + + k) (ri + k)N

6.3.3 Determination of a near optimal iteration parameter. In order

to minimize the spectral radius of M we must choose the r. to minimize them 1

above rational function of r.. The book by Wachspress [1966, p. 178] deals

with this question in considerable detail. Usually we will not know the

eigenvalues t k, k), but we may be able to determine an interval in which

they lie. Suppose we have O < a < k b, 0 : c O k : d, a+c > 0. We

do not know enough about k and Pk to minimize the spectral radius a(M )

but we can choose r. to minimize the following function

m l(ri-) (ri-)l
min max = min max IG(r ,...r m,§5) (6.3-9)
[r.} agb i=l (ri+) (r4i) [ri] a•b 1 m

cL•<d cJL!d

It is possible to prove the existence of a unique minimizing set {ri} along

with a method to construct the set r.i}. However, the method is very

complicated [Wachspress, 1966]. In the case m is a power of 2, m = 2t
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there is a simple method to compute the optimum set (ri} [Wachspress 1966,

p. 194] or [Varga, 1962, p. 223]. We will not describe this, but will

instead give a procedure which appeared in the original paper of Peaceman

and Rachford [1955]. This produces a good, but not necessarily optimal

set (r.} for any m.

We will proceed to determine the set {ri}. We assume that 0 < a < min(a,c)

and p 2 max(b,d). We define

r - z m
F.(z) = + F(z) = n  F. (z)

r.+z i=l 1

Then the discussion preceding equation (6.3-9) shows that the spectral radius

c(M ) is bounded by
m

2
a(M ) • max F2(z)m  czs

Problem 6.3-11. Determine a sequence [ E) such that

S = 0 < a . < m = P and a i/. is a constant independent of i.

Show that

max F(z) • max F.(z)

i-l<21 1i 1i-I^iz 1

Use problem 6.3-6 to show that

v-1 iB/2m
max Fi(z) 5 Y-l where y =( /2m

.zg 1  ~ y +i 
a

if r. is set equal to i- .i i Note that this value of ri will

minimize the function max F.(z), regarding the latter as a function of r..

Si-lz<i
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Then show that

aC(M ) (

In o(M )
Show that the average convergence rate R = - satisfies

m m

R in( InIK (6.3-10)m In( /ac) x- 1)

Note that y = (/o)2m

Problem 6.3-12. For the problem described in section 5.3 (also 6.2.2)

2 2
we may use a = sin2(TT/2N) and B = cos (TT/2N) where N = J+l = K+l. Show that

for large N the convergence rate of ADI satisfies R ON /m)N

For optimal SOR the convergence rate satisfies R 0)1 . Thus

if m > 1 we can obtain a large improvement through the use of ADI. For

Laplace's equation on a square with Dirichlet boundary conditions, we can

choose m so that the convergence rate satisfies the inequality below for

sufficiently large N [Varga, 1962, p. 227].

S3.107
m 1.386 + 2 In(N/n)

This again shows the convergence rate of ADI to be superior to that for SOR.

6.3.4 Comparison of SOR and ADI. In this section we will describe

some numerical experiments intended to illustrate the previous discussion.

We have taken these results from the paper of Birkhoff, Varga and Young

2
[1962]. The experiments apply to Laplace's equation v u = 0 with Dirichlet
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boundary conditions, u = 0 on the boundary. The solution is therefore U = 0

at all mesh points. Three subsets of the unit square were used; the unit

square itself (I), the unit square with the four corner squares of side length

1/5 removed (II), and the unit square with the lower right corner square of

side length 1/2 removed (III). The figures below show these three regions.

-L
I II III

Figure 6.3-1.

The initial guess for the solution U was taken to be unity at all mesh

points. Then the iterative scheme was used until the value of U at each mesh

-6
point was less than 10 . In this case the value of U is equal to the error

since the solution is U 0. The number of iterations required to achieve

this error level is denoted by N where a denotes the case. When c = T,

the ADI iteration was used with the method of Wachspress used to compute

the iteration parameters rl,...,rm [Wachspress, 1966, p. 194]. This produces

a true minimum in equation (6.3-9) but requires that m = 2 . An approximate

T
value for N can be computed from the bound for the spectral radius given

in equation (6.3-9) at least for case I. This bound was evaluated numerically

to four-digit accuracy. In the tables below we refer to this as the

T
calculated N . When c = A, the approximate method of problem 6.3-11 was

c

used to compute the values (rl,...,rm). Equation (6.3-10) was used to

approximate the number of iterations required to reduce the error to 10-6approximate the number of iterations required to reduce the error to 10.
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This number is denoted by NA. The SOR method was also applied to these
c

problems; the observed number of iterations is denoted by NS. A predicted

number of iterations for SOR in case I was obtained by solving

N-1 -6 S
4N(m-1)N = 10 . It is denoted by N . Here W is the optimum iteration

c

parameter. The factor 4N appears because of the eigenvector deficiency

in the iteration matrix for optimum SOR (see section 6.2.3); the Jordan

canonical form of the iteration matrix is not diagonal. In section 6.3.1

we showed that ADI with m = 1 and SOR have the same asymptotic convergence

rates. The values of NT(m = 1) and NS are different because of this
c c

eigenvector deficiency. The results of Birkhoff, Varga, and Young are

listed below. The parameter h denotes the mesh spacing, Ax = Ay = h. In

comparing ADI and SOR one must remember that a single ADI iteration requires

slightly more than twice the computer arithmetic than a single SOR sweep.

Thus if NS = 2NT, then the computing time should be about equal.

Case I

ADI

Optimal r.

Obs Cal Obs
m=4 m=4 m=l

T T NT
N N N

c

11 9 23

12 12 46

18 15 91

20 19 183

Approximate r.

Obs Cal Obs
m=4 m=4 m=l

NA NA NA
c

9 11 23

11 15 46

15 20 91

21 25 183

SOR

Obs Cal

S S
N N

c

28 32

53 66

117 136

236 292

Mesh
- 1

h

10

20

40

80
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Case II

ADI
Approximate r.

1

Obs Obs
m=4 m=l

NA NA

16 19

20 36

23 75

25 150

SOR

Obs

NSNs

26

51

108

Case III

ADI
Approximate r.

1

Obs Obs
m=4 m=l
A NA

13 17

19 37

22 75

27 162

Additional comparisons of methods by experimental computations can be found

in Wachspress [1966, chapter 8], Birkhoff, Varga and Young [1962], Price

and Varga [1962], Young and Ehrlich [1960].

Mesh
-I

h

10

20

40

80

SOR

Obs

NS
N

20

41

85-00-
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