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1.1

1. MATHEMATICAL BACKGROUND

The tools required to undertake the numerical solution of partial
differential equations include a reasonably good knowledge of the calculus
and some facts from the theory of partial differential equations. Also,
the reader shoqld have some knowledge of matrix theory. A good reference for
the analysis is "Advanced Calculus'" by Kaplan, and for matrix theory the
reader might try '"Linear Algebra and Matrix Theory'" by Nering. Of
course, there are many other suitable references. In this first chapter,
we will review some of the concepts we will need for the remaining chapters.
We will assume some familiarity with advanced calculus, including limits,

uniform convergence, continuity, etc.
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1.1 A Few Analytical Tools

1.1.1 Taylor series expansions for functions of one and two variables.

We will first consider a Taylor series expansion with remainder for

the function f(x). We assume the derivatives of f dkf/dxk are continuous

in the interval a-r < x < a+r for 0 < k € n+l (r > 0), Then for each x in
this interval there is at least one point Xy contained in the interval from

a tox (a< Xy <x or x< X1 < a) such that

2 n
£ = £(a) + (-2 £ (a) +-£5;§l— £D @) + ... +-15§%1- £™ (a)

gx-azn+1 (n+1)
DT © (x1)

k .
Here f(k)(x) = Q_é denotes the kth derivative of f(x). For further details
dx
see any advanced calculus text, in particular page 357 in the book by Kaplan.

A similar formula exists for functions of several variables. For example,

£(x,y) = £(a,B) + (-a)E, + (yD)E, + o5 [(x-a)zfxx + 2(x-2) 0D

+ (y—b)zfyy] + o [;x-a)3f13 + 3(x-a)2(y-b)f:2y

2 % 3 %
+ 3(x-a) (y=b) £ 5t (y=b)7f 3]

Xy y
s =2 b _3%E iy £ o 208 ¢
where x—ax (a’ )’ xy_axay (a3 )’ 3— 3“\x ’Y): etc,
X ox
% *
x = a+ T(x-a), y = b + 17(y-b) with 0 <71 < 1.
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1.1.2 Polynomial interpolation. To construct finite difference

approximations to derivatives, we will usually use polynomial interpolation.
This is generally a trivial matter and does not require even as much theory
as we will describe in this section. Usually we can obtain these
difference approximations from a Taylor series expansion. We will first

illustrate interpolation problems by a few simple examples.

Suppose we have a function f(x) and we happen to know the values of

0 1 2

could approximate this function by the second degree polynomial

this function f(xj) for the points xj, 0<j=<2, x <x_ <zx_ . Then we

Pz(x) = azx2 + alx + aO which agrees with f£(x) at these points; that is,
PZ(Xj) = f(xj) 0 <3< 2., A simple way to write this polynomial in
terms of the points x, and the values fj = f(xj) is the following

Lagrangian form of the interpolation polynomial:

(x-x,) (x-x,) (x-x) (x-x,) (x-x.) (x-%.)
L 2 + 0 Z_ ¢ 4 0 s .-
(xo-xl)(xo-x2 0 (x1~x0)(xl-x2) 1 (xz-xo)(xz-xl) 2

PZ(X) =

The reader should inspect this formula and note that the expression is
a second degree polynomial and furthermore PZ(Xj) = fj = f(xj), for

0<j= 2.

Problem 1.1-1. Suppose x = 0, x, = h. Evaluate the

O=

a. in terms of the values £ £ f

2? al’ 0 0’ 1, 2. Given

coefficients a

4 points xO < X1 < X, < Xq5 write out the Lagrangian formula for the

interpolation polynomial. Now generalize this to a polynomial

Pn(x) = anxn + a1 xn-1 T age You may wish to use the product

notation
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.
iEo (x~xi) = (x-xo)(x—xl)(x-xz)
and
2
iEo (x-xi) = (x-xl)(x-xz)
i#0

We could obtdin the coefficients @y ays 3y in the above example
directly from the conditions PZ(xj) = fj for 0 £ j £ 2. From these

conditions we obtain three equations for the three unknowns ayy a1, ag-

o
+
o
»
-+
o
el
il
th

©
+
o
]
+
o
»
L]
Hh

o
+
o
»
+
o
»
1]
t+h

Problem 1.1-2., Show that these three equations will have a
unique solution provided X, < X < X, (You might show that the

determinant of the matrix is non-zero.) Solve these equations for

Next we will consider a related interpolation problem. Suppose we
wish to find an approximation to the second derivative of f(x) at x = xq
using the values f(xj) at three points Xyo Xps X, We could do this by

differentiating the interpolating polynomial Pz(x) which we have written

down in equation (1.1-1).
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Problem 1.1-3. Differentiate equation (l.1-1) to obtain an
approximation for f<2)(x1). If Xy = ~h, X = 0, X, = h, show this yields

f(z)(xl) ~ (£, - 26, + fz)/hz.

This formula can be obtained with less effort by use of the Taylor
series for f(x). This approach will also yield an estimate for the error.
We assume x_ = -h, x, = 0, x_ = h., From the Taylor series we have

0 1 )

2
(x47%4)
01 f(2)(xl)

f(xo) = f(xl) + (xo-xl)f(l)(xl) + >

(Xo"‘l)3 (3) (xq-%; i (%)
tar  E ) A By

where X, < §0 < x A similar expansion holds for f(xz). We thus obtain

1

. (1) () 1’ RONEAD

£, = £, - hE) + B f = 24 go
) () 2) 3) @)

£, =f +hit 4L 2 f1 + 2 6 f1 + = 24 f§2

If we add these equations we can obtain an expression for the second

derivative.

@ g 25+ ) 42 NORAC
£,9 = - £ 41
h ' 0 2

This expression is exact, but it contains the error term -h fé4)/12

Normally, we will not know the value of the fourth derivative, but the

knowledge that the error term contains the factor h2 is of great value,



We can also use

integral of f(x).

Problem 1.1-4.

x. =0, x, = h, then

1

approximation

2

Ih f(x)dx == L
‘h 3h

1.6

this interpolating polynomial to approximate the

Derive Simpson's quadrature formula. Let Xy = -h,

integrate Pz(x) from equatiom (1.1-1) to obtain the

[fo +4E, + fz]
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1.1.3 The method of undetermined coefficients for construction of

the interpolating polynomial. We can look at this method of polynomial

approximation in a less direct way. This will frequently lead to an easier

derivation of the formula for an approximate derivative or integral. If
xn-l '
n-1 0

cee X then the coefficients

: . , n
we construct an interpolation polynomial Pn(x) =ax + a + ... a

for a function f£(x) based on the points Xy
a, = ak(fo, ces fn, Xys oo xn) are functions of the points xj and the
values fj' These functions produce an exact fit in case the function

f(x) is a polynomial of degree m where m < n. That is, the polynomial Pn(x)
is identically equal to the polynomial f(x). We will not bother to prove
this statement, although the proof is not difficult, The proof is based

on the fact that if a polynomial of degree m is zero at n+l points where

m = n, then the polynomial must be identically zero; that is, all of its
coefficients are zero. We can use this fact to derive formulas based on
interpolation. For example, suppose we wish to approximate the second
derivative using a second degree interpolation formula (Problem 1.1-3).
From the form of the interpolating polynomial (equation (1.1-1) we know

our approximation will be linear in the values fo, fl’ fz. That is, it

~has the form

(2) _ -
£,77 = b f) + b £, +b,E, (1.1-2)

0 bl’ b2. We assume the

= 0, X, = h. Note that we would get the same

We must determine the unknown coefficients b

0= TR X

formula for any set of equally spaced points Xy = xl-h, X, = xl+h. We

know our formula (1.1-2) should be exact if f(x) is a polynomial of degree

points x, are x
J

less than three. 1In particular, it is exact for £(x) = 1, £(x) = x,
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and £(x) = x2. Therefore we have the following three equations obtained
by substitution into equation (1l.1-2) which is now exact for these

functions f(x)

bO + b1 + b2 =0
-bOh + b2h =0
2 2
bOh + b2h =2
. . . 2 2
If we solve this set of equations, we obtain bo = b2 = 1/h", b1 = -2/h

which yields the same formula as before.

We can use the same method to obtain Simpson's quadrature formula.

We let f0 = f(-h), £ = £(0), and £, = £(h). We assume the following form

2

for our quadrature formula

h
j_‘h £(x)dx = byfy + b, £, + b,f,

If we require this formula to be exact for the three functions f£(x) = 1,

f(x) = x, and £(x) = x2, we then obtain the following three equations:

by + by +b, =2
~hb, +hb, =0

3

h%b + 0% =2



1.9

The solution of this system of equations is b_ = h/3, b, = 4h/3, b, = h/3

0 1 2

which yields Simpson's rule.

Problem 1.1-5. Find a three-point interpolation formula for the first
derivative (a one-sided difference approximation}). That is, determine the

bj in the approximation
£ (xy = b £(x.) + b, £(x 4h) + b, £(x.+2h)
0 0" 0 170 270

Problem 1.1-6. Find a five-point interpolation formula for the
second derivative f(z)(x); that is, determine the constants bj in the

approximation
(2) ~ - -
f (xo) _.bOf(xO 2h) + blf(XO h) + bzf(XO) + b3f(x0+h) + baf(x0+2h)

Problem 1.1-7, Find a four-point quadrature formula; that is, find

the bj in the approximation

h
J‘O f(x)dx = b f(-h) + b £(0) + b, £(h) + b £(2h)

We can derive error estimates for these formulas based on a Taylor

series expansion. First we will consider Simpson's quadrature formula.

h
[ £x)dx z-}% [f(-h) + 4E(0) + f(h)}
“h -

The Taylor series expansion out to fourth order is (we assume f(4)(x) is

continuous)
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f(x) = £¢0) + x£ P (0) + f(z)(o) + X f(3)(0) + X f(4)(g)

where \gl < le. We let‘Qz(x) denote the polynomial
Qz(x) f + fél) + xzféz)/Z where fo = £(0). We know our quadrature
formula is exact for polynomials of degree no greater than two. We

derived it in such a way that it is exact for the polynomials f(x) = 1,

f(x) = x, and £(x) = x2. Therefore, it is exact for any linear

combination of these polynomials, hence for any second degree polynomial,

For each x, we can choose € = £(x) such that

N
£x) = Q) +—— = + 5 1@ Ew) (1.1-3)

Since f(a)(g(x)) = 24[f(x) - Qz(x) - x3f53)/6]/x4, it is clear that

f(4)(§(x)) is a continuous function of x for x > 0. We will now assume

that this fourth derivative is bounded; that is, If(Q)(g)l <Mif |g| <n

By integration of equation (l.1-3) we obtain

b3
(note that I x"dx = 0)
-h
h h h (%)
I f(x)dx = J Qz(x) + Ih e(x)dx where e(x) = EZ £ (E(x))
“h “h .

Since our quadrature formula is exact for second degree polynomials we

have

h
[ oG -1 [ch-m +40,(0) + Qz(h)]

(1.1-4)
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Also f(x) = Qz(x) + x3fé3)/6 + e(x). Therefore, if we use this relation

to evaluate f£(h), £(0), £(-h), and use the above relation for

h
] Q,(xdx
-h

h
BLECR) +4£0) + £EM)] = [ ,(9dx + 2 [e(-h) + 4e(0) + e(h)]
“h

Now by substitution into equations (l.1-4) we obtain

h h
[ f(x)ax =% [£(-h) + 4£(0) + £(h)] - % [e(-h) + 4e(0) + e(m)] + [ e(x)dx
“h “h

h
The error E = J e(x)dx -'% [e(~h) + 4e(0) + e(h)] can now be bounded. We

have \e(x)l < |x‘4M/24 and therefore

h h h 5
M 4 2M 4 Mh

e(x)dx| < |e(x)|dx < = Ix Idx = x dx = ==
Ih Ih 24 ‘h 24 jg 60

If we note that e(0) = 0 and |x| < h, we obtain

4
(h/3)|e(-h) + 4e(0) + e(h)| s% (]e(-h)] + \e(h)D < % (2‘2—4“>= B M/36

Mh5 Mh5 5
Therefore our final bound is E < 0 +-§€— = 4Mh”/90. 1If ome is willing

to work harder, a better bound can be obtained, namely E < hSM/90. See

the book by Isaacson and Keller for a derivation of this error bound.
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Problem 1.1-8. Show that the five-point interpolation formula for

the first derivative is
f(l)(x ) esJL f(x';Zh) - 8f(x_-h) + 8f(x_+h) - £(x +2h)
0 12 0 0 0 0

Obtain an error estimate for this formula by the method used above.
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1.1.4 Fourier series. Next we will consider some properties of

Fourier series. We will consider functions f(x) for -1 < x < 1. If we
have a function defined on the interval A £ x < B, then we can use the
transformation y = -1 + 2(x-A)/(B-A) to reduce the problem to the interval
-1l < y< 1, We will assume that f(x) is a complex valued function of the
real variable x, f(x) = fr(x) + ifi(x), where fr(x) and fi(x) are real

(of course we may have f£(x) real; that is, fi(x) = 0). We will look for

a Fourier series representation of £(x); that is

£(x) = T akelknx

==c0

The above statement can be written

KR gk
£(x) = lim = ae = -l<x< 1. (1.1-5)
Ko k==K
We need to compute the coefficient a, in terms of f(x) so that this expression
holds for reasonable functions f(x). Note that the following formula holds
for all integers m and k.

-immx  ikmx
e e =

1 . { 2 ifm=k
-1

0 if m#£k

Suppose the above series can be integrated termwise, then

1 ; 1 = . @1 .
L j f(x>e-1mnx dx =} j 5 a el(k-m)TTx =% x I a el(k—m)ﬁx = a_
-1 -] - -0 =1

1 .
or a =% f £(x) g HITX (1.1-6)
m -1
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If the series is uniformly convergent, then the termwise integration

1 o« © 1
(that is, I =z I ) is permissible. Thus we have an expression for
.-1 -0 s -1 ’ ..

the coefficients a . The coefficients a are called Fourier coefficients.
Suppose we are given a function f(x) such that the above Fourier coefficients
exist; that is, the integrals 1.1-6 exist. Under what conditions does the
Fourier series converge to £(x); when does equation (1,1-5) hold? The
Fourier series will converge if the derivative f£’(x) is piecewise

continuous. Weaker conditions are also sufficient, but we will not need
them. We say £(x) is piecewise continuous on [-1,1] if there are a finite
set of points §j, l1<j<mnm, ;1 < gl < §2 < .. < gh < 1, such that f(x)

is continuous except at the points gj and the following limits exist:

]

lim £(§  +h)
h-0 3
h>0

f*(gj) £ g, <1

lim £(€,-h)
h-0 J
h>0

f'(gj) if 55 > -1

If f’(x) is piecewise continuous, then the Fourier series converges to

f(x) except at the points gj where the series converges to (f+(§j) + f-(gj))/Z.

There are several properties of Fourier series which we will note,
although we may not use all of them. If f£(x) is a real valued function,

then the Fourier coefficients satisfy the condition

where Zk denotes the complex conjugate of ak.
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If f£(x) is continuous and periodic and £/(x) is piecewise continuous,

then

1
a =o<—>
k k2

By periodic we mean f£(1) = £(-1), We say a, 1s of order 1/k2, written

k
a, = 0(1/k2), if there is a constant M such that iak‘ < M/k2 for all non-zero
integers k. This can be generalized. If f(x), f(l)(x), cee s f(S-l)(x)

are continuous and periodic, and f(S)(x) plecewise continuous, then

a = 0 <;é:i . This statement helps to decide how fast a Fourier series
converges; that is, the rate at which the coefficients a approach zero.
Thué if £(x) = x for -1 < x £ 1, the Fourier coefficients satisfy

a, = 0(1/k). If £(x) = |x|, then a_= 0(1/K%).

Problem 1.1-9. Prove the statements in the above paragraph.

The Parseval relation

1o 22
L f dx = X
; [1 (mdx = T |a,]

relates the L2 norm of £ to the Fourier coefficlents. We will refer the

reader to a text on Fourier series for the proof,

In certain cases the complex form of the Fourier expansion can be

simplified. For example, if £(x) is real valued, then

@

+ Z Ak cos krmx + B, sin kix

f(x) =% A
k=1 k

0
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where
1 1
Ak = j f(x) cos kmxdx, Bk = f f(x) sin kmxdx
-1 -1
If f(x) is a real valued odd function, f(-x) = -f£(x), then
©
f(x) = 2 Ck sin krx
k=1
1
Ck =2 fo f(x) sin kmxdx

If £(x) is a real valued even function, f(-x) = f(x), then

w

=L
f(x) = % C0 + kzl Ck cos Kkmx

1

Ck = 2 jo f(x) cos kmxdx

We might remind the reader of the following fact which we will
[oe)

sometimes use. If f(x) is defined by a convergent series f(x) = Z ak(x),
' k=1

the derivatives aé(x) are continuous, and the derived series

«©

. [2]
T a’(x) is uniformly convergent, then £f'(x) = I aé(x)“ Also, a

k=1 F 1

uniformly convergent series whose terms are continuous can be integrated
)

termwise. If f(x) =2 ak(x) uniformly, then
1

f f(x)dx = I

=™

ak(x) dx = ? X ak(x)dx
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1.2 Vectors and Matrices

We will review some aspects of matrix theory. We will give the
definitions for the general n-dimensional case, but most of the

explanation will be for n=3.

1.2.1 Some fundamental definitions. The vector space En

(Euclidean n-space) is the set of all ordered n-tuples (xl,xz,...,xn)

of real numbers, The space Cn is the same except we use complex numbers.
By a scaler we mean a real number if we are working with En and a complex
number if we are in Cn' We uée ordered n~-tuples to imsure that the vector
(1,2,3) is not the same as (2,1,3). In the case of n=3 we may regard

the three numbers (xl,gz,x3) as the Cartesian coordinates of a point
(x,y,z) in space., We may also think of a vector as a directed line
segement from the origin to the pqint (x,y,2). Much of the intuition

and nomenclature for vector spaces derives from the familiar 3-dimensional
case. We define the sum of two vectors and the product of a vector by

a scaler by the following relations:
X+Y = (X1+y1, x2+Y2’ oe ey xn+yn)
ax = (axl, axz; cees axn)

We simply perform the operations on the components. . In three dimensions,
addition is the familiar parallelogram rule as shown below. Multiplication
by a scaler may change the length of the vector and possibly reverse its

direction.
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x9

X

We define the scaler product of two vectors in the real case by

le -

™M=
»
«

X'y =

[ =
X
<l

where §j is the complex conjugate of yj. Note that x-y # y-x in the

complex case. The Euclidean norm (or length) of a vector is defined by

x| = fxx

Note that x*x =z 0 for all x, and thus |x| is real and is taken non-negative.
We summarize some important properties of these operations below. The
reader may wish to prove these relations. Here x and y are vectors (in En

or Cn) and o and B are scalers (real or complex).
n x| >0 unless x = 0 (x = 0 if x = (0,0,..:,0))

2 ox| = |af x|
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We say two vectors are orthogonal if x*y = 0. The reader can verify

that this definition agrees with the usual one for E2 or E3.

We will frequently use the unit vectors defined by

K {0 if j#k
e, =
J 1 if j=k .
1 2 3
In E, we have e” =(1,0,0), e = (0,1,0), e~ = (0,0,1).

3

J

If a vector w is given by w = « x1 + azxz + oo + amxm where the x

1

are vectors and the oy scalers, then we say w is a linear combination

3 J

of the vectors x~. We say a set of vectors x°, 1 £ j < m is linearly

independent if there is no nontrivial linear relation among the vectors.

1 2 m
X 4+ g% +...+ozmx = 0, thena1=a2=...=a = 0,

In other words, if @, 2 m

J

Problem 1.2-1. If the set of nonzero vectors x° are orthogonal,

then show they are linearly indépendent. By orthogonal we mean

ik { 0 j#k
X X =

#0 j=k

If a set {xJ} of vectors is linearly independent, then it is possible to

form an orthogonal set {yJ] by using linear combinations of the x3. This

process is called the Gram-Schmidt orthogonalization. We let y1 = x1
2 2 gxz-glkzl 1.2 2 1
and y© = x~ - T 1 . Clearly y .y =0. Ify =0, then x" and
y ¥ ‘

x2 are not linearly independent. Therefore y2 # 0. We now define y3 by
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3 3 G yhyt . &yhy?
2
(vh ey v° 5%

Clearly yl-y3 = y2=y3 = 0 since yloy2 = 0. 1If y3 = 0, then xl, x2, and

x3 would be dependent since the equation

3 (x3ry1)x1 ] Lx3:zz) 2 :xz' 1:x1 o
1 1 2, 2 1 1
(y -y (y 'y (v -y)

is a nontrivial relation among xl, x2, and x3, Therefore y3 # 0 and we

can continue this process to produce an orthogonal set yJ.

]

Problem 1.2-2, Show that if the vectors y~ in the Gram-Schmidt process

do not vanish, then the original vectors xd are linearly independent.

Problem 1.2-3., Are the vectors xl = (1,2,3,0) and x2 = (2,1,0,1)

linearly indepencent? What about the set xl,xz,x3 where x3 = (1,0,3,5)7

]

Use the Gram-Schmidt process and show that the y~ do not vanish,

]

Problem 1.2-4. Show that the unit vectors e- are linearly independent.

We say a set of vectors {Vl,vz,...,vm} spans the space E_if any

vector x in En can be written as a linear combination of the vJ; that is,

x = alvl + a2v2 + ... + amvm. A linearly independent set of vectors v3

1 1< j<n

which spans En is called a basis for En. Clearly the set e
is a basis for En since any x can be represented by

X =X el + x e2 + + X en
l 2 v 90 n .

Problem 1.2-5. Show that if {vl,...,vm} and {wl,...,wp} are bases

. 1 n, . .
for En’ then m=p. Since {e ,...,e } is a basis, we must have m=p=n.
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Hint: Suppose p > m. The set {v;,...,vm} spans the space, therefore

1

1 m
so does the set {wl,v ,eeesv'}. We have w Vit ..o to v, At

19

least one of the scalers ai,is not zero. We will assume without loss of

generality that it is ¢,. Then show {wl,vz,...,vm} span the space. Now

2

1

; 1 2 m
consider {w ,w ,v",...,v } and continue the argument to show that

1 2 m R R .
fww ,eee,w span the space, But this contradicts p > m, since wm+l

. . . . mn
is then a linear combination of the set {wl,...,w }.

Problem 1.2-6. Show that if {vl,...,vn} is an orthogonal basis, then

for any x we have x = alvl + ... + anvn where Q= (X°vk)/(vk-vk). If

Vk-vk = 1, then show x:x = afil

orthogonal basis for which (vJ-vj)

= I @ Q. An orthonormal basis is an

1. For an orthonormal basis the

above formula is simplified

X = (x-vl)v1 + oo + (x-vn)vn .

Problem 1.2-7., Show that any independent set of vectors {vl,...,vm}

1 m 1

k k
can be augmented by {w ,...,w } so that {vl,.., V ,W ;... W } is a basis

for En' Show that no linearly independent set of vectors in En can
contain more than n vectors. Also show that if we have n independent

1 n . .
vectors {v ,...,v }, then any vector can be written as a linear

. n .
I x =% @,v for all x.

i=1

combination of v
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1.2.2 Linear transformations and matrices. Now we are ready to
review the concept of a linear transformation. Iet T be a transformation
of En into itself; that is, for each vector x in En’ T defines another
vector T(x) in En' We say the transformation T is linear if
T(ax + By) = oT(x) + BT(y) for all vectors x and y and all scalers g

and B.

Problem 1.2-8. Consider transformations T defined on E3. Which of

them are linear?

D () = (x3, 10x2, O).

2) T() = (xp, x4, |x5])
2

3) T(x) = (XZ’ xla x]_.)

4y T(X) = (x3, x3+x1, x3+x2)

5) T(x) = (sinx,, 0, 0)

1’

Problem 1.2-9. Define a linear transformation T on E3 such that

{T(el), T(ez), T(e3)} do not span E_, but do span a 2-dimensional

3’
subspace (we omit the definition of a subspace).

We define a matrix to be a rectangular array of scalers; (aij),
l1<i<n, 1<j<m That is, an nXm matrix. An nxn matrix is said to
be of order n. We usually write out the matrix so that the first index,

i, denotes the rows.
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A matrix A = (aij) of order n defines a linear transformation by the

following rule., Given any vector x in En’ then define y by

n

v, = = aijxj’ 1l <i<n. We use the notation y = Ax. Conversely,
i=1 |

given any linear transformation T on En’ there is a matrix A of order n

such that T(x) = Ax for all x in En.

Problem 1.2-10. If T is a linear transformation on En’ denote the
j 3y - S s .
vector T(e”) by T(e”) (alj’aZj""’anj)’ 1 <=1isn, Let the matrix A

be defined by these elements, A = (aij)' Show T(x) = Ax for all x.

Thus we see that a linear transformation and a matrix are essentially
the same thing. We have used the basis {el,...,en} to define the
relationship between a linear transformation and a matrix. We could have
used another basis which would have produced a different relationship.

We leave this point to the texts om linear algebra.
Now we will state some definitioms.

The sum of two (mXm) matrices A and B is an (nXm) matrix C defined

by C=A#, C,., =a,.+b,., forl<i<n, 1<3j=<m
1] 1] 1] .

The product of a scaler and a matrix is B = gA, bij = aaij.
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The transpose of an (nXm) matrix A is the (mxn) matrix B denoted

by AT’ where bi' = aji' The conjugate transpose for an (nXm) complex

% .
matrix A is an (mXn) matrix B denoted by A where bij = aji'

The identity matrix of order n is denoted by I and defined by

{o | i#j}
ol as)

The product of an (nxs) matrix A and an (sXm) matrix B is an (nXm)

| an]
L]

matrix C defined by

S
c,, = 2

a.. b, .
ij k=1 ik "kj

We can regard a vector x as a column vector (an (nX1l) matrix) or as a

row vector (& (1Xn) matrix). That is

X = or X = (xl,xz,...,xn)

If we regard x as a column vector, then the linear transformation defined

by the matrix A is obtained from the matrix product Ax.

Problem 1.2-11. Let A and B be two matrices of order n. Let T
be the composite linear transformation defined by T(x) = TA(TB(X))
where TA(x) = Ax and TB(x) = Bx, Show that the matrix C corresponding

to T is the product matrix C = AB.
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Problem 1.2-12. Give an example to show that the matrix product is

not commutative., Find two matrices of order 2 such that AB # BA.

Problem 1.2-13. Given vectors x and y, show that |x-y| = |x||y].
Hint: First assume x and y are real. Then (x+Ay) -+ (xHy) = |x+>\y|2 =
1x]% + 2axey + )\2|y|2 > 0 for all real N. Show this quadratic in \
SR

can have at most one real root. Then show lx-y'z . The

complex case can be reduced to real case since | Z X y l lxi]|y.|.

Problem 1.2-14. TLet A be a matrix of order n. Let ¢ be the maximum

of the lengths of the rows of A; that is,

If yv = Ax, then show |yl < /halx‘. Hint: ©Note that the components of y
are given by the inmer product of the rows of A with x. Then use

problem 1.2-13.

We say a matrix of order n is singular if there is a nonzero vector x

such that Ax = 0, otherwise A is said to be nonsingular.

Problem 1.2-15. Show that if a matrix A of order n is nonsingular,

then for any y € En’ there is a unique vector x such that y = Ax. Hint:

if the vectors AeJ, 1 £ j £ n are not independent, then Z oy Ae = 0 for

i=]
some ¢, . Now use the linearity of A and the result of problem 1.2-7.

For a nonsingular matrix A there is for each y a unique x such

that y = Ax., We can define a transformation T by T(y) = x. We can show
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this transformation is linear. If y1 = Ax1 and yz = sz, then

1 2 1 2 1 2 1 2
o,y + o,y = A(alx + X ); therefore T(aly + o,y ) = X + QX =
alT(yl) + azT(yz). We denote the matrix of this transformation T by

-1

A_l. It is called the inverse of A since Aale = AA " = x for all x.

To summarize: for any nonsingular matrix A we define the inverse matrix
-1 . - - , ,

A to be the’matrlx such that A 1A = AA 1 = 1, where I is the identity

matrix. We have just shown that such a matrix exists. It is easy to

show that there is only one such matrix for the given matrix A. Note

that if a matrix has an inverse it must be nonsingular.

We define an orthogonal matrix to be a real matrix whose inverse is

equal to its transpose; that is, ATA = AAT = I, We define a unitary
matrix to be a complex matrix whose conjugate transpose is equal to its

* *
inverse; that is, A A = AA = T,

Problem 1.2-16, Show that an orthogonal transformation preserves

length. In other words, if A is an orthogonal matrix and y = Ax, then

Iy‘ = lx‘. Hint: Show that IYI = JYTY = J;TATAX. Show that the product

of orthogonal matrices is orthogonal.

Problem 1.2-17. Suppose we are given rows r and s of any matrix A.

Show that any element a 1 s k < n, can be zeroed out by premultiplication

sk’
by an orthogonal matrix U of the following form. The elements w, = 1 if
i = = gi = =gi = =0
i#rors, u__ cos@, u sing, u__ sing, u cosf, Uy

otherwise. Use this to show there is an orthogonal matrix U such that

UA = T is upper triangular (tij =04if 1 > j).



1.27

1.2.3 The definition of the determinant. We will now define the

determinant of a matrix of order n, First we need to define the set of
permutations. We let N be the first n positive integers, N = {1,2,3,...,n}.
A permuation 1m of N is a one-to-one mapping of N onto itself; that is, a
reordering of N. For example, if n = 4, then (2,1,4,3) defines the
permutation m(l) = 2, m(2) = 1, M(3) = 4, m(4) = 3. We let k(m) denote

the number of pairs (i,j) of elements of N for which i < j and m(i) > m(j).
Then T is said to be even or odd if k(7)) is even or odd. The permutation
defined by (2,1,4,3) is even; that defined by (2,4,1,3) is odd. Note that
there are n! permutations of N,

We define sgn(m) = (_l)k(ﬂ)

to be +1 if m is even and -1 if 1 is odd.
We define the determinant of A, denoted by |A| or det(A), as the scaler
evaluated by the formula below.

lAl =3 sgn(m) alﬂ(l) azﬂ(z) ces

o arrrr(n)

Note that this is a sum of n! terms. In the case of a 2X2 matrix, there

are only two permutations (1,2) and (2,1), thus

|al = a)) ay, - ap, 8y

Problem 1.2-18. Using the above formula, write out the determinant

for a matrix of order 3,

We will refer the reader to the book by Nering for proofs of the
following statements. They follow rather easily from the definitions

of a determinant.
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A matrix A and its transpose have the same determinant, that is

4] = |a].

If B is a matrix obtained from A by multiplication of a single row

(or column) of A by a scaler «, then lB! = alqu

If B is obtained from A by the interchange of two rows (or columms),.

then lBI = -lA].
If two rows (or columns) of A are identical, then |A] = 0.

If B is obtained from A by adding a multiple of one row (or column)

of A to a different row (or célumn), then \B‘ = iA\e

The determinant of the product is the product of the determinants.
In other words, if A and B are matrices of order n, then ‘ABI = lAlIB].

This statement is somewhat more difficult to prove than the previous omes.

To wind up our discussion of the determinant we will give an
alternative method to compute it, again without proof. Given a matrix A
of order n, we form a submatrix of order n-1 by deletion of the ith row
and the jth colum. We denote by Aij the determinant of this submatrix

times (—1)1+J. The scaler Ai' is called the cofactor of aij' It is possible

to show that

ai. Ai’
1 J J

[ n =t

al =
]

We can choose any row, that is any value of i, in this expansion. We can

also expand on any column; that is,
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a A

1a] = 284y B

1

i =]
=

As an example consider the expansion on the first row for a (3X3) matrix.

370 %93 %21 %23 1 %22

‘AI = a - a + a
1L jas, ag, 12 fag; 244 13 1aq, a5,

The above methods for evaluation of the determinant are used mainly for
theoretical arguments. If we actually want the value of a determinant of

order greater than 3, we would normally use Gauss elimination to obtain it.
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1.2.4 Gauss elimipation. Next we will describe the Gauss elimination

method for solving a linear system. Suppose we have a (3X3) system of

equations. In addition, suppose the system is upper triangular; that is

L]
o’

3% F A%y T Ay Ty

0
o

dyp¥y FAyg¥y T Dy

ag4%3 = by

Obviously, we can solve this system of equations by a '"backward substitution",

first solving for Xy then xz_and X

X3 = by/agy

= (b

]
|

2 " 3p3%3)/ay,

x) = (by - a;gxy - a12"2”311

Now suppose we consider a general 3X3 system. If we can reduce it to upper
triangular form, then we can complete the solution by backward substitution.

Consider the system

L]
o

a11%) F 3p%, T 319%3 T 0y

ay1%1 F 8y9%y T 355Xy = by

L]
o

ag1X) T 8558, T ag3%5 = Dy

If we multiply the first equation by the appropriate~factor m, and add to

the second, then multiply the first by m,. and add to the third, we will

31
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zero out the subdiagonal elements in the first column. The modified system

(1 _ _
by by myy Py = L

my o= —ail/a11 for 2 <1 £ 3. Note that the modified system has the same

is the following where ag%) =a,, +m., a, .,
ij - i3 - il 1j

solution as the original.

(1) (L 1y, _ .
al1 x1 + a.lv2 x2 + a13 x3 = b1

ORI ¢ NN ¢

22 ¥o T 833 %3 = Py
(1) 1y, _ .
a3y %X, T a33"xy = by

Using the same method we can zero out the subdiagonal element in the

(1)

39 This leaves us with an upper triangular matrix.

second columm, namely a

Before elimination of the subdiagonal elements in a given column, we

normally interchange the rows of the system so that the multipliers mo

will not exceed unity in magnitude. That is, working on the kth column,

(k"1>\ = Max |a§k-l>|.

sk . ik
k<i<n

we choose the integer s, k < s < n, so that |a

. h
Then we interchange the kt and sth rows of the system to form a new

system. The multipliers m.,, = -aét_l)/aét-l) will now have magnitude

ik

bounded by unity. If we attempt to solve the system below, then we must

interchange rows, since a,, is zero and we cannot divide by it,

11

0 1 X 1

1

2 3 X

2

It should be clear that this procedure can be generalized to a matrix of

(k-1)

ik for k £ i £ n vanish, then

arbitrary order n, If all the elements a
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the procedure will fail. However, in this case, the matrix is singular
and we might expect trouble (see problem 1.2-19). If we wish to solve

the system for two right-hand sides, then we simply perform the reductions
on both vectors simultaneously. For example, suppose we wish to solve

the system Ax =Vb for the two vectors b = (1,0)T and b = (0,1)T with the
same matrix

0.1 1.2
A=

1 2

We can write this problem in the form AX = B where X is a (2X2) matrix
and B = I is the identity matrix of order 2. Since AX = I, we see that
the solution matrix X is the inverse of A, which we denote by A-l. The

Gauss elimination procedure for the above matrix is

0.1 1.2 1 0
X =
1 2 0 1
1 2 0 1
X =
0.1 1.2 1 0
1 2 0 1
X =
0 1 1 -0.1
-2 1.2
X =
1 -0.1

Problem 1.2-19, Use Gauss elimination to solve the following (4X4)

system,
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0.001x1 + 2.0002x2 = 2
5x1 + X, + X4 + 2x4 = 1
X1 + l.2x2 + 4.2x3 + .2x4 = 5
X, + 2.2x, + 8.2x%x, + 20.2x, =10

1 2 3 4

Use Gauss elimination to find the inverse of the following matrix:

>
fl
—oe W

1
4
1

i O =

|
Problem 1.2-20. During the Gauss elimination prccess the original

matrix is transformed into upper triangular form. Show that the

determinant of this upper triangular matrix is the same as A except possibly

for a difference in sign. This follows from the properties of the

determinant given previously.

Problem 1.2-21. Show that the Gauss elimination process will fail
due to a zero diagonal element only if \A] = 0, Show that a matrix is

nonsingular if and only if its determinant is nonzero.

Problem 1,2-22, Write a computer program to evaluate the determinant

of a matrix of order n. Use Gauss elimination.

Problem 1.2-23. Show that a matrix A is nonsingular if and only if

its rows (or columng) are linearly independent when regarded as vectors.
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1.2.5 Eigenvalues and eigenvectors of matrices. These concepts

along with the norm of a matrix will be quite important in providing a
better understanding of numerical methods for partial differential
equations. We say that a vector x and a scaler A are an eigenvector

and corresponding eigenvalue of the matrix A if Ax = Ax (x # 0). Note

that if x is an eigenvector, then so is Bx for all nonzero scalers 8.

For any matrix B we know that Bx = 0 has a nontrivial solution x if and
only if IB| = 0. Therefore we see that )\ is an eigenvalue of A if

and only if A is a root of the determinental equation |A - XIl = 0. This
determinant is a polynomial in )\ of degree n called the characteristic
polynomial of A, This should'be clear from the definition of a determinant

since
|4 - M| =2 sen(m <a1n(1) - 7\‘“’1TT(1)> <""2n(2> ) MZTT(Z))

<%nn(n) ) Kénn(n)>

Here aij is the Kronecker delta defined by

{1 i=j}
5, .
Hole i

Since a polynomial of degree n has at most n distinct roots, the matrix A

]

has at most n distinct eigenvalues.

The following two examples should prove illuminating. If A is the

2X2 matrix
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then the characteristic polynomial is

2->\ 1 2
= (2-M)(3-2) - 1 =%" -5, +5
13-\
. 5 £/5 . .
The eigenvalues are thus A = > . The eigenvector corresponding to

A = 52 2 is the solution of
s
5
~%n LZ- 1 X; ) 0
1 k- L3 lxz 0

2
Th ;& d
us (xl,xz) must be orthogonal to the vector (-%- >0 1) and thus
/s . . .
(Xl’XZ) = (1, %+ *==). The reader can verify that this is the solution.
L.
The vector corresponding to A = (5 = /5)/2 can be found in a similar

fashion. The second example is the matrix

The eigenvalues are both equal to 1 since the characteristic polynomial

is (1-)\)2 = 0. Any eigenvector must satisfy the equations

x2 = sz = x2

o]
+
ke
1]

1 2 = Axy T

9 0 and Xy is arbitrary. Therefore all eigenvectors are a

Therefore x
scaler multiple of (1,0). This set of eigenvectors does not form a basis
for the space. We cannot write all vectors as a linear combination of

eigenvectors. The subspace spanned by the eigenvectors is l-dimensional.
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Problem 1.2-24. Find the eigenvalues and eigenvectors of the matrices

2 0 O 1 1 0 O
o 1 2 6o 2 1 O
0 -2 1 6 o0 3 1

0 0 0 4

Problem 1.2-25. Show that the eigenvalues of an orthogonal matrix

of order n must have absolute value unity.

1AP, then we say that the

If P is a nonsingular matrix and B = P
matrix B is similar to A. The transformation PalAP is called a similarity
transformation. If A and B are similar, then the eigenvalues of A and B

~are the same. In fact, if (\,x) is an eigenvalue-eigenvector pair for A,

then (K,P-lx) is a pair for B.

If there are n independent eigenvectors of A, then A is similar to a
diagonal matrix whose diagonal elements are the eigenvalues of A. (A
matrix A is diagonal if aij =0 for i#j.) To prove the above statement,
let P be the matrix whose columns are the eigenvectors of A; P = (p(l),...p

where Ap(l) = xip(l). If D is the diagonal matrix D = diag(xi), then

AP = PD, and thus P 'AP = D.

Conversely, if A is similar to a diagonal matrix, then A has n

independent eigenvectors. In this case, the eigenvectors span the space.

Problem 1.2-26. Find a matrix A which is not similar to a diagonal

matrix.
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Problem 1.2-27., Given an arbitrary set of scalers Ki’ 1l <i<n,
; i . co A o .
and a set of n independent vectors x , define a matrix A with eigenvalues

, i
xi and eigenvectors x .

We will now show that given any matrix A, it is possible to find a

*
unitary matrix U such that U AU is upper triangular. Since U is

* - %
orthogonal U =T 1, and therefore U AU is a similarity transform. (A

matrix A is upper triangular if aij =0 for i > j). Wg will first prove
this for a matrix of order 2, Let xl be an eigenvalue and x1 the
corresponding eigenvector. Assume that x1 is normalized so that

Xl-xl = 1, Choose x2 such that xl-x2 = 0 and x2-x2 = 1. Define the

. R ' 2
matrix U so that its columns are the vectors xl and x . Then U*U = I

and we have our reduction to triangular form since
klxl-xl xl-sz A xl-sz
U*AU = =
)\1x2-x1 X <Ax 0 xz-sz

In the n~dimensional case we choose the eigenvalue xl and normalized

2

. 1 . 1 n .
eigenvector x, then form an orthonormal basis {x ,x",...,x } whose first

. 1 , , j
member is x~, If we define U, so that its columms are the vectors XJ,

1
* % .
then U£Ul = 1. Note that the rows of U1 are just the vectors ). To form
) ' *
U1U1’ we take the product of the rows of Ul with the columns of Ul' Just
as before
(1) (1)
Kl ajy’ ... oagy
o LD e
. 22 2n
UL AU, = NG
1771 *
0 a(}) o e e a(l)
nZ nn




1.38

The first column is thus in the desired form. Now let K(l) denote the

@

matrix of order n-1 formed by the lower right cormer of A"/,

ij

2<isn, 2<j<n. Define the matrix U, of order n-1 in the same way

that U. was defined. Then

1
Kz aég) . . . aéi)
i ;\(l)vﬁ2 _|° a3y
N TN G2
We define a matrix U2 of ordér n by UZij = 6Zij iz2,j>2, and U

2

U21j = 0, U2i1 =0 for 2 <1i, 2 £ j, that is

1 o......90

o T T T
t

* I

U. = | ~
|
2 ' U2

!
!
i

0 .

. Then careful inspection will show the

(2) (2)
A8 %13 ¢
(2)
0 Ay 8537 o
* % _ (2)
Uy U] AU, =] 0 0 ag .
(2)
0 0 an3 R

If we continue this procedure, we will obtain the desired result.

following to be true

Ne

In

RO

°* T2n

L@

LI ) 3n

@

nn

211

L,
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_Problem 1.2-28. A matrix is said to be symmetric if AT = A, and
%
Hermitian if A = A, Show that a symmetric (or Hermitian) matrix must have

real eigenvalues. Hint: Consider an eigenvalue-eigenvector pair A,x.

% %
Note that x Ax = Ax x and now take the conjugate transpose of both sides

of this equation to obtain \ = ).

Problem 1.2-29, Show that any symmetric matrix A can be reduced to

diagonal form by an orthogonal similarity transformation. There is a matrix

U such that UTU =1, UTAU = D where D is diagonal. Stated otherwise, the

normalized eigenvectors of a symmetric matrix form an orthomormal basis in
En' Hint: This can be proved in the same way that we proved an arbitrary
matrix can be reduced to upper triangular form by a unitary similarity

transformation.

This property of symmetric matrices is very important. It makes them

particularly easy to deal with.

Problem 1.2-30., Assume a matrix A of order n has n independent

J

eigenvectors x” and the eigenvalues satisfy the condition |hl| > ij‘

for 2 £ j £ n., Any vector y can be represented in the form

y = alxl + ...+ anxn. Assume o) # 0. Let W = Vs v\)+l = va,

w\)+l - v\)+1/ le+1‘

for 0 < v. Show that lim w® = Bx~, for some scaler B, and
V0

lim (max VY+1/W€> = \A. This is the power method for finding the largest
o N\ g 3

eigenvalue and corresponding eigenvector.

If A has eigenvalues Kj’ 1 = j = n, then we define the spectral radius

of A, denoted by c(A), to be o(A) = Max |K.‘. Suppose we have a sequence
1<j<n
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of matrices Av’ all of order n, 1 £ v < ®», For example, we might have

1 % ¥ % 1/4  1/8 Lo =
A = A, = Ay = a, = |2 2
y o1 5 /8 1/4 . .

I V71

We say lim Av =0 if all the elements of the matrices Av approach zero
Vo

as v —= «,

A fundamental fact about the spectral radius is the following. For any
matrix A, 1lim A" = 0 if amd only if the spectral radius g(A) is less than
one (o(A) <nI;. The book of Isaacson and Keller contains a proof of this
statement, It is easy to show that if the limit is zero, we must have

o(A) < 1. For suppose there is an eigenvalue A and eigenvector x with

|A] 2 1. Then A"k = A"x. But lim A" = 0, therefore lim A"k = 0 = lim A"k,
n—o e n—o

However, if |X| z 1, this is clearly impossible. Therefore we must

have o(A) < 1. We will omit the proof that lim A" = 0 if o(A) < L.

Problem 1.2-31, If A has n independent eigenvectors and g(4) < 1,

then show lim A" = 0. Hint: Show that 1im A'x = 0 for all x, therefore

n—e

lim A" = 0.



1.41

. 1.2.6 Matrix norms. Next we will introduce the concept of the norm of

a matrix. This norm is useful in the study of the stability of finite
difference schemes. TFirst we will state the requirements which the norm
of a vector must satisfy. A vector norm is a mapping which associates

a non-negative real number with each vector. It is demoted by |jx||. It

must satisfy the conditions
1) HXH 20 and Hx“ =0 if and only if x = 0.

2) For any scaler o, x| = |a| |||

3) For all vectors x ané vy x4yl < =l + |yl -

First we observe that the length of a vector is a vector norm, usually called

the Euclidean or L2 norm. We have denoted the length of a vector x by |x|.

Another frequently used notation is HXHZ’ that is

The subscript 2 is used because we have the so-called L2 norm. The Lp

norm (p, a positive integer) is defined by

n 1/p
bl = (= 1P

The maximum norm, sometimes called the L mnorm, is defined by

HxHoo = Max IXjI
1<j<n
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These norms all provide a way to measure the "size'" of a vector x =--
a different measure for each norm. The most commonly used norms are the

L2 and L norms. To gain .some idea of how these norms measure the size of.

a vector, we might look at those vectors in E, for which (|x|| = 1. We will

2

do this for four norms.

1) Consider HXHZ = xi + xg = 1. The set of points is a circle

of radius 1,

2) For the maximum norm we have ||x||_ = Max{lxll,lx2|] = 1, This

set is a square of side length 2 centered about the origin.

3) For the L, norm Hxnl = |x1| + |x2‘ = 1. This set is also a

square of side length /2 centered about the origin and rotated
45 degrees.

4) We could define a norm by HxH = We will show later

that this definition does satisfy the conditions for a norm.

The set is an ellipse whosé axes have length a and b,

The figures below show the set HXH = 1 for the four cases.
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Problem 1.2-32. Show that ||x||, and ||x|| as defined above satisfy

ll;
the conditions for a norm. Let A be a symmetric matrix all of whose

eigenvalues are greater than zero--then A is said to be positive definite,

Show that the relation HXHA = JXTAX defines a norm.

The reader might well ask if we are simply playing a mathematical
game. Why have so many different norms? As we will see, it sometimes
happens that we can prove a result using one norm but not another, or the
proof may be much easier using a particular norm, It‘is sometimes
desirable to define a special norm of the form Hx“ =J;T;;.in‘order to

prove that a finite difference scheme for a differential equation is stable.

Next we will pass on to the idea of a matrix norm. We will consider
only matrix norms which are induced by vector norms. Suppose HxH is a
given vector norm. Then the corresponding matrix norm (defined for any

square matrix A) is defined by -

= Max Ax
e = v g5l

Problem 1.2-33., Show that the above matrix norm satisfies the

following conditions:

D el - s o

2) llaAlz 0 and |All =0 if and only if A =0

5 el = fal Y
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&) [lass]| = [la]] + |3
5 [las]} = [lall {is]]

Problem 1.2-34, Let HAHZ, HAHI aﬁd HAHoo be matrix norms induced by

the corresponding vector norms. Show that

D HAH2 JG(ATA) where o(ATA) is the spectral radius

v n
Max X
k j=1

2 al], g

n
Max X% |a
i k=l

3 all, d
Note that it is usually rather difficult to determine the spectral radius
of a matrix. This usually requires a computer. However, we can quite
easily evaluate the norms HAHl and HAHco when given the elements of the

matrix A.

Problem 1.2-35. Show that for any matrix norm and any matrix A
g(A) s HAH. The spectral radius can not be greater than the norm. Give an
example of a matrix A where o(A) = 0 but HAH can be arbitrarily large

depending on A.

We will illustrate the use of the matrix norm by a '"perturbation
analysis'. Consider the linear system Ax = b, Suppose the matrix A is
perturbed to form a new matrix A + 8A and the resulting system is

solved (A + 8A)y = B, We wish to estimate the difference between y and x.

The perturbation in A might be caused by errors in some physical measurement
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and we would be interested in the resulting perturbation in the solution.
Suppose we let y = x + §x. We wish to estimate the magnitude of &x.
First we prove a preliminary result. If HBH < 1, then I4B is nonsingulatr
-1 P ,
and ||(I4B) || = 1/(1 - HBH). Since HBH < 1, we know the spectral radius
of B is less than 1. Therefore B cannot have an eigenvalue equal to -1
and thus I+B cannot have an eigenvalue equal to zero. Therefore, I+B
is nonsingular. We have I = I + B - B, therefore (I-EB)-1 =71 - B(I+B)-1.
'

Taking the norm of both sides we have H(I+B)- | =1+ |8 H(I+B)_1H or

fam ™) - By s 1 or [i#8) Y| < 1/ - [B]) which is the desired

result.

Now we are ready to prove the main result. We have by assumption
Ax = b, (A + 8A)(x + 6x) = b. Therefore (A + 8A)6x = - HAx. If we

loax. Let B = A LA

multiply by A—l we obtain (I + A-16A06x =- A
and assume HBH <'l. Then we have (I4B)6x = -Bx and (I-l-B)~1 exists.
Therefore 8x = - (I+B)-1Bx and ||8x|| = H(I+B)_1H IB]| |lx||. Using the

result above we obtain

Joxll = T4 Il

and the relative error ||6x||/||x|| is therefore bounded by |jB||/(1 - [jB]}).
Note that |[B|| measures the size of the perturbation 8A, since

B=a'gA or AB = A and ||| |[B]| = ||54)|. Therefore |[B|| is a bound
for the relative perturbation in A since ||8A||/||A| < |Bll. However, we
could have ||6Al|/||l| quite small but A"t fairly large and hence B might

be fairly large. If A 1 is large we might expect HéxH to be

large compared with HSAH/HAH. Therefore we cannot expect a bound for
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Héx“ in terms of H&AH/HAH,alone. Suppose we assume §x and §A are both
quite small. In the equation (I + A-16A)6x = - A-lsAx we might then
ignore the second order term A-16A6x to obtain §x = -A—léAx. This would

lead to the approximate bound ﬁ%ﬁﬂ < HA—IH ||8All. Note that the correct

bound is quite similar to this, namely

sxll _ HA'1] YAl _

W1 e e
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~1.2.7 Discrete Fourier amalysis. We will briefly describe the finite

Fourier representation of a vector in Cn (Cn is the complex n dimensional
space). We know that if £(x), -1 < x < 1 is reasonable, then it can be

represented by a Fourier series,

w®
f(x) = T akelkTTx
-0
1 -ikmx
where a, = % f f(x)e ", Suppose we consider the values of f on the
-1

discrete set {xj},‘ -J<j=J, xj = j/J. We will assume that f is
periodic so that £(-1) = £(1). Let fj denote f(xj). Then we can prove

that the following finite Fourier representation is valid.

£.= T ae 3 “ J<i<J (1.2-1)

We will omit the proof. Note that the formula for ay is an

approximation to the integral

1 . ’
X f f(x)e-lkn% dx
-1

If we then define vectors @k in CZJ by the formula ¢§ = elkﬁJ/J,
-J < j<J, -J s k<J, then these vectors are orthogonal
kK m 27 . if m=k
QP.QP= ’ “JSk, m<J
0 if m#k
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To simplify the notation we ran the index j which denotes the components
. ‘
of ¢ through the range -J s j < J. It is more common to start the
first component with index j=l, in which case the expression for the
k
vector ¢ becomes

ik _ ikm(J+l)  ik(§-1)

ikm :
@k =e I J =e 7 s 1<j=23

. ky . . .
Since {p } is an orthogonal basis, we know that any vector v in C2J
can be represented in the form

2J.

1
V“alQP + oo +02JCP

where o, = V-mj/@jomj.

This is simply another way of writing the expansion given in equation
(1.2-1). The proof of this expansion thus reduces to a proof that the -

k
vectors ¢ are orthogonal. We leave this proof to a problem in chapter 2.

An orthogonal basis for E_ can be constructed in a similar fashion.

N
Define the vectors mk by

cplj‘=sinkjn/(N+1) 1<j<N, l<ks<N

Problem 1.2-36. Show that the above vectors mk are orthogonal.

First prove the formula

1

2 cos jg =% |-1 +_§lﬂ££i%l§ if & # 2mm
j=1 ’ sin,%
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J , J+1 jo . -j0
J 1-r £ _Fe Now use

Note that ¥ r” = and use cos jOo = .
. l-r 2
j=0

sinA sinB = % [ cos(A-B) + cos(A+B)] to prove orthogonality. What is

the value of @k-mk ?
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1.3 Some General Comments on Partial Differential Equations.

We will attempt to classify.partial differential equations (PDE)
into three t&pes--elliptic, parabolic,‘and hyperbolic. The diversity
of PDE is such that it is not possible to neatly classify these equations
into three groups. However, the basic approach used for the numerical
solution of elliptic equations is quite different from that used for
the other two types. As we will see, elliptic equations are '"pure
boundary value'" problems whereas parabolic and hyperbolic equations are
"initial value" ﬁroblems. Therefore it is important for the numerical
analyst to have some feeling for the nature of these equations, even if
the PDE problems frequently fail to fit nicely into one of these three

categories,

1.3.1 A classification of linear second-order partial differential

equations--elliptic, hyperbolic and parabolic. An explanation of the

classification of PDE can be based on the following equation

au  + 2bu 4+ cu  + 2du + 2eu + fu = h(x,y) (1.3-1)
XX Xy vy X y

Here a,b,...,f are assumed to be real constants,h is a known function,
u = u(x,y), u = du/d3x, and similarly for the other derivatives. We

let xl and xz be the roots of the characteristic equation

akz - 2bA+c =0 .

2 .
If b"-ac > 0, then these roots are real and distinct, If we introduce
the coordinate transformation y-xlx = E+47 and y-xzx = £-T, then

u = u(g,mn) and equation (1.3-1) becomes
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u__ - u_. + 2Du_ + 2Eu_ + Fu = H 1.3-2
1f bz-ac > 0, then we say our original equation (1.3-1) is hyperbolic
and we regard the above equation (1.3-2) as the canonical form for a

hyperbolic equation.

By use of the following transformation of the dependent variable

= ve-DgnE’ﬂ

u we can reduce the hyperbolic equation to

Vee Yy kv = £(£,T) (1.3-3)

Problem 1.3-1. Show that the transformations described above

produce equation (1.3-3).

If b2-ac < 0, then we say the equation is elliptic. In this case
we use the transformation y-xlx = g+, y4xzx = £-iT and our canonical

form is

V§§ + vTm + kv = £(€,T)

1f b2-ac = 0, then we have the parabolic case. The canonical form below
is obtained from the transformation y-A =1, oy + Bx =& where o and B

are suitably chosen. The parabolic equation can be reduced to

Veg TV T £E€,m .

Most problems which arise in practice cannot be reduced to one of these
simple forms. However a study of these simple equations is essential

because it gives us some idea of how to proceed with a numerical solution
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of the more complicated equations. (These three equations are really
not so simple--much deep mathematics has been created in an attempt to

understand these equations.)
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1.3.2 An elliptic equation - Laplaces equation. Solution by

separation of variables. We will first consider Laplacées equation

u + uyy = 0. This is an elliptic equation. The separation of variables
technique will yield a certain family of solutiomns to the problem. - The
basic assumption involved in the separation of variables is the existence

of functions F(x) and G(y) such that u(x,y) = F(x)G(y).' Substitution

into Laplace's equation yields

F'(2)G(y) + G"(YF(x) =0 .
This can be written

Fll (X) - . GI/ (y)
F(x) G(y) °

' The only way a function of x can equal a function of y (x and y are
independent) is to have both functions equal to a constant. If this

constant is positive, then we have

P .2 €. ,2
F(x) G(y)

The general solution of these equations yields

A e)‘x + A e->‘x

F(x) =4 2

G(y) Blsinkx + Bzcoskx

If the constant is negative, then the trigonometric functions appear

in the solution for F -and the exponentials in the solution for G.



1.54

Note that Laplace's equation is symmetric in x and y, so we might expect
such an interchange. Obviously many functions satisfy Laplace's equation
U + uyy = 0. 1In order to get a unique solution we must impose some
boundary conditions. Physical insight is frequently a great help in
setting up proper boundary conditions. We might look at Laplace's equation
from a physical point of view. The steady-state tempefature distribution
T(x,y) on a flat plate satisfies Laplace's equation Txx + Tyy’ at least
approximately. Suppose we have a square plate given by 0 < x < 1,

0 <y=<1. We would expect the temperature distribution in the interior
of the plate to depend on the boundary conditions. If the side at

y = 0 is insulated, we would ﬁave Ty(x,O) =0 for 0 £ x < 1; that is, the
normal temperature gradient would vanish. Perfect insulation implies
zero heat flux which in turn requires zero temperature gradient. If

the side at 'y = 0 is held in a bath of boiling water, then we would have
T(x,0) = 100°C. We must specify a boundary condition on each side of

the square in order to obtain a unique solution for Laplace's equation.
This is a fundamental property of elliptic equations. In order to obtain
a solution, we must specify a boundary condition at all points of the

boundary.

Suppose we attempt to solve the following boundary value problem for

Laplace's equation.

u +4+u_ =0 0<sx<1l, 0<sy<l
XX vy

u(x,0) = £(x)

u(x,1) =0

u(y,0) =

I
=
)

S
—
N
0
o
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We assume that £(x) is smooth enough to have a Fourier expansion
f(x) = T a,sin KTx where T k |ak| < =,
k=1 - k=1 '
Problem 1.3-2. Verify that the series below is a solution of the

above problem.

sinh km(l-vy) .
3 Sioh ko sin mkx

u(x,y) = I
k=1

z -z
where sinh z = %(e” - e 7).
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1.3.3 A hyperbolic equation - the wave equation. Next we will

consider a hyperbolic equation. .Suppose we have a string stretched
between two points on the x-axis. If we pluck the string, it will vibrate,
The displacement u(x,t) of the string from its undisturbed position

along the x-axis will then be a function of position x and time t. This
displacement will satisfy the hyperbolic equation beloﬁ (c is a constant)
which is called the wave equation (a derivation of the vibrating string
equation can be found in many places).

u = Ccu .
tt XX

In order to obtain a unique solution we need the boundary conditions

which state that the string is held fixed at x = 0 and x = 1.
u(0,t) = u(l,t) =0

We also need the initial conditions
u(x,t) = £(x)

ut(x,t) = g(x) 0<sx<1

These are also really boundary conditions. As we will see, the solution
of the wave equation can be obtained by '"marching forward" in time. Hence
we call this an initial value problem, and these conditions are called
initial conditions. How do we know these are proper initial-boundary
conditions for the wave equation? We obtain them‘froﬁ physical insight
based on a derivation of the differential equation. We might then assume
the mathematician'é role and prove that there is a unique solution of

the wave equation which satisfies these conditions. If our initial-
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boundary conditions are not correct, we may find that there is no solution
or there may be more than one solution. For the complicated nonlinear

PDE problems which arise in practice, we may not be successful in our
mathematician's role. We then have to depend solely on physical insight
and analogy withrsimpler problems for which proper boundary conditions

are known,

Instead of the initial-boundary problem given above, we will

consider the pure initial wvalue problem for the wave equation.

u(x,0) = £(x) e < x < ®

u, (x,0) = g(x)

That is, we require the initial conditions to hold for all x. Our interval
has no boundary, and thus we have no boundary conditions. If we use the
following change of variables £ = x4ct, T} = x-ct, then the wave equation

becomes

=0
B3
If we integrate this equation with respect to T} we obtain

ug = Fo(g)

If we integrate with respect to £ we obtain

W(E,T) = F ) +F,(M
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and thus

u(x,t) = Fl(x+ct) + Fz(x-ct)

Now we must relate the functions Fl(g) and Fz(ﬂ) to the initial functions

f(x) and g(x).

Problem 1.3-3. Show that the above solution can be written in the

form

uGx,t) = B[ECetet) + E(xeet)] 455 [ g(nr

Note that we can write this solution in the form

u(x,t) = [ f(x+ct) + £(x-ct)] + 3[G(x+ct) - G(x-ct)]
1 X
where G(x) = < J‘ g(r)dr.
0

This solution shows wave propagation. Suppose we have g(x) = 0

and

1+x ~-l<x<0
f(x) = 1-x 0<sxx<1l
0 otherwise

This is a tent shaped curve as shown in the figure below

u(x,0)




1.59

The term %f(x+ct) represents a wave propagating to the left with velocity -c,
the term Lf(x-ct) propagates to the right with velocity c. After time

1/c the solution would have the form shown in the next figure.

(a3
]

u(x,1/c)

Problem 1.3-4., Choose a reasonable functiom for g(x), set f(x) = 0,

then describe the wave which is the resulting solution of the wave equation.

A fundamental property of hyperbolic equations is the tendency to
-propagate "disturbances' in the initial conditions much as the wave
equation does in the example above. We will have more to say about this

in a later section.

Also note that this is an initial value problem. We need only to
specify the functions u(x,0) and ut(x,Q)at time t = 0. Also we have a
finite "interval of dependence." If we take a point (xo,to), then the
vélue u(xo,to) depends on the values of the functions £(x) and g(x) only
in the interval between x_-ct_ and x +ct_ . The figure below illustrates

0 "0 00

this interval of dependence,

(%95 t4)

x-ct=constant~ - Xtct=constant
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We will show later that the elliptic equation u . + ﬁxx = 0 cannot be
treated as an initial value problem. ' In order to solve an elliptic problem
in the region 0 < t < T we would‘have to specify boundary conditions on

the upper line t = T. To solve an elliptic problem in a region bounded

by a closed curve, it is necessary to specify boundary conditions along

. the entire closed curve. The hyperbolic problem is an initial value
problem., We “march" the solution ahead from t = 0 to t = T, using only

the initial values at t = 0. in general a hyperbolic problem may have
boundary conditions along "sides" such as the lines k =0 and x = 1, as
well as initial conditions at t = 0, but we do not need boundary conditions

at the "topg't = T. We will give an example of such a mixed initial-

boundary value problem for the wave equation in a later section.
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" 1.3.4 A parabolic equation - the heat equation. Next we will consider

an equation of parabolic type. This is the one-dimensional heat equation
u o =ou ,u= u(x,t). If we let u denote the temperature of a rod, then

u would satisfy (approximately) this equation. Then x would denote

distance along the rod and t the time. 1In order to obtain a unique

solﬁtion we would have to specify the initial temperature u(x,0). We

also need some boundary conditions. If the ends of the rod are at x = 0 and
x =1, then we could specify the temperature at each end u(0,t) and u(l,t).
Instead of the temperature we could specify the heat flux at one or both

ends, ux(O,t) and ux(l,t). Suppose we consider the following problem

for the heat equation

ut B cuxx
u(x,0) = £(x)
u(0,t) = u(l,t) =0

We can obtain a solution for this problem by the separatiom of variables

technique.

Problem 1.3-5., We will assume that f(x) can be represented by a

Fourier expansion

-] o«©
£(x) = £ a, sin kmx where X lakl <w®,
k=1 k=1

Now assume u(x,t) = F(x)G(t). Using this assumption show that the
solution of the above problem is
® 2 2

u(x,t) = = ake-ck mt sin kmx
k=1
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Now we will look at some properties of this solution. First of all,
the solution decays with time,

lim u(x,t) = 0

el

2 2 :
The higher frequency modes (that is, ae okt sin kmx for large values

of k) decay mbre rapidly than the lower frequency modes. Since cormers
(that is, discontinuities in fhe derivative) require greater amplitudes

at the higher f;equencies, we might expect the solufion of the heat
eqﬁétion to become smoother with time. This is illustrated in figure 1.3-1

shown below. The initial function f(x) = u(x,0) is given by

1-x 0<sx<x1l
f(x) = { 14x -1<sx<0
0 otherwise

The curves of u(x,t) for fixed t are plotted for the values of t shown on
the figure. This curve was obtained from a numerical solution of the

heat equation using the method of finite differences. The curve was piotted
by the computer on a graphic display device: Note how the curve becomes

smoother and also spreads out with time.

The solution of the heat equation decays with time. Therefore we say
the term U is a dissipative term. We will define the energy E(t) by

the relation

Ly
E(t) = %j u”(x,t)dx
0
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Then from the equation u = gu we have uu = guu or
t XX t XX
2 ( , 2
L (u = gluu ) - (u >
(u) = ofuu . ofu,

Therefore if we integrate with respect to x and use the boundary conditions

u(0,t) = u(l,t) = 0 we obtain

1 1 1
2 _OE _ 2
E f (u )tdx =3t - ol f <uux> dx - ¢ f (ux> dx
0 0 X 0
1
SE _ _ 2
or St = o) fo <ux> dx

If we now integrate with respect to t, we aobtain
t t 1
2
%% de=-¢ [ [ <P ) dxdt
0 00 V¥

t 1 )
or E(t) ~E) =-¢c [ [u_(c,t)]%dxde
0°0

therefore E(t) < E(0) and we know that the energy is a nonincreasing
function. 1In fact E(tz) < E(tl) if t2 > tl’ unless ux(x,t) = 0 for
t1 S ts t2. This integration by parts érgument should make it clear why

the u . term is an energy reducing term. In general the energy relation

for the heat equation is

SE 1 2
SE = c[;(l,t)ug(l,t) - u(O,t)uX(O,ti} - o jo [ux(x,t)] ‘dx
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Figure 1.3-1
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l.64

Therefore we would expect a contribution to the energy unless u or u
vanish at the boundary. Note that we must specify some boundary conditions
in order to obtain a unique solution for the heat equation, If the
boundary conditions are u(0,t) = u(l,t) = 0 then

lim u(x,t) = 0 0<x=<1

tox
If u(0,t) = 0, u(i,t) = 1, then

lim u(x,t) = x
to
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1.3.5 Properly posed problems - Hadamard's example. In order that

a PDE problem be properly posed there should be a unique solution for any
admissible initial-boundary conditions. However, an additional restriction
is usually imposed. We require that the solution depend continuously on
the data which defines the solution. By this we mean that a small
perturbation in the initial-boundary conditions should produce a small
perturbation in the solution. For example, we will consider the heat
equation. Suppose we restrict the discussion to homogeneous boundary
conditions u(0,t) = u(l,t) = 0. Suppose we have two solutions ul(x,t)

and uz(x,t) corresponding to the initial functioms fl(x) and f2(x).

That is
Y1¢ T culxx Yor T Yoxx
ul(x,O) = fl(x) u2(x,0) = fz(x) .

We wish to show that if the functions f1 and f2 are "close," then the

solutions u; and u, are also close. We will say that f1 is close to

f2 if the difference f1 - f2 is "small."” We must now decide on a measure

to define the size of a function f(x). We will use a nomm to define

the size of our functions. A norm for these functions is a rule which
assigns a non-negative real number to each function. Such a norm must
satisfy the same conditions as the vector norms we defined in section 1.2.
However, we will not tarry on the technical aspects of such norms. One such
norm is the maximum norm defined by

Hf“°° = max lf(x)‘
Osx<1
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A more convenient norm at this point is the L, norm defined by

2

Of course we must restrict the class of functions to those for which this

integral exists,

To return to our problem, let w = u; - u,. Then w is a solution
of the heat equation with the initial value w(x,0) = fl(x) - f2(x).
1
If we let Ew(t) =% I wz(x,t)dx, then we know from our previous

0
discussion that

Ew(t) < EW(O) for t = 0.

If we rewrite this inequality we obtain

1 ) ‘ 1 ”
jo [, (x,t) - uz(x,t)] dx < Io [fl(x) - fz(x)] dx

or Hul(t) - u2(t)H < Hfl - fZH where ul(t) denotes the function ul(x,t)

for fixed t. This is the result we wanted. It shows us that the size

of the perturbation in the solution is bounded by the size of the perturbation
in the initial function. In other words, the solution of the heat

equations depends continuously on the initial function f(x).

Suppose we next consider Laplace's equation. We look for a solution
2 2
u(x,y) defined over the unit disk x° + y < 1. We assume the values of
u are given on the circumference of the disk x2 + y2 = 1, Then the

problem is to solve the equation
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u 4+u =0 x2+y2 <1

u(cosh,sing) = £(9)- 0 <0 < 2m
X = cosh, y = sind

It turns out that the solution can be written in terms of the "Poisson

integral formula" (see Garabedian's book, p. 249).

1 JZ” Q- f(dg

u(rcosB, rsing) = —— forr<1.
' 0 1-2rcos(p-9)+r

2T 2

The boundary data for this problem is the initial function f(p). We
could use this formula to show that u depends continuously on the initial
data f(p). Or we could use the maximum principle which states that u
cannot take on its maximum (or minimum) in thé intérior of the disk.

In any case we have

max lu(rcose, rsine)l < max ‘f(e)l
0=sr<1 O<p<2m
O<o<2m

From this relation we see that u depends continuously on f provided we

use the maximum norm.

Now we come to the point of this discussion which is an example
due to Hadamard (Garabedian, p. 108). Consider the pure initial value

problem for Laplace's equation

u + U 0 u = u(x,t)
u(x,0) = £(x)
ut(x,O) = g(x) o< x < ®
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Here we are treating Laplace's equation as if it were the wave equation.
It can be shown that, if the functions £(x) and g(x) are analytic, then
a unique solution u(x,t) exists which is also analytic. However, suppose

we set the following initial conditions

u(x,0) =

!
o

sin (nx)

=N 2

u, (50 = g (x) =

where n is a positive integer. It is easy to verify that the solution

is given by
1 . .
u(x,t) =5 sin(@x)sinh t)
n

where sinh nt = (ent - e-nt)/Z.

It is clear that the initial data can be made as small as desired
(uniformly in x) merely by choice of a large n, However, if we take a
fixed region (0 < t < 1, for example) it is clear that u(x,t) can be made

as large as desired by choice of a large n. That is

limg (x) =0 for = < x < ®
now
lim max u_(x,t) = lim max JZ sin(nx)sinh (nt) = «
N  —o<x<m O noe  =edx<o n
O<t<1 O<t<1

In other words an arbitrarily small initial function can lead to an
arbitrarily large solution. Clearly the solution does not depend

continuously on the initial data. Therefore, the above initial value
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problem for Laplace's equation is not sensible physically. It is not a
properly posed problem., If we attempted to solve such a problem on a
computer, we would expect any small errors in the data to produce an

explosive growth of the solution.

We will give another example of the care required in formulating the
proper boundafy conditions for a partial differential equation. The
numerical solution of this problem is discussed at length in the book
by Greenspan [Greenspan, 1965]. If we write Laplaceis equation in
cylindrical coordinates (r,8,z) and assume that there is no § dependence,

we obtain

2% . 3%u . 13u _
NN + r dr 0
or oz

We suppose that a solution of this equation is desired for the cylinder
0<sz<1l,0<r <1, This solution might be the steady-state temperature
in the cylinder under the assumption that the temperature on the boundary

is specified; that is

u(r,0) = fl(r) 0<rs1l
u(r,l) = f2(r) 0<r<1
u(l,z) = f3(z) 0<z<1l

Note that our region is the (r,z) square 0 < r <1, 0 £ z < 1. The
boundary segment (0,z) does not represent a physical boundary. Instead
we have a coordinate system singularity at r = 0. This is reflected in
the term (l/r)au/ar,in the differential equation. We would not expect to

have to specify the value of u along the segment (0,z) for 0 < z < 1.
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Indeed it is possible to show that the above problem is properly posed
without the specification of u(0,z). However, if we consider the

differential equation

I=

3%, 2%,
2 72

Ju
-—:0
ar 3z or

r
with K < 1, then we must specify_u(O,z) in order to obtain a unique
solution. If K = 1, then we obtain a unique solution without specification
of u(0,z). We refer the reader to Greenspan [1965] for further

information which includes a careful treatment of a numerical approximation
for the solution of this equafion. The point of this example is to show
that the proper boundary conditions for a problem are not always obvious.
Unless we know the proper boundary conditions, we are not likely to get

an accurate numerical approximation.



1.71

1.3.6 The method of characteristics applied to a simple hyperbolic

equation. We have given the wave equation as a simple example of a
hyperbolic equation., To illustrate numerical methods we prefer to use

another less complicated hyperbolic equation, namely

u, + cu = 0 u = u(x,t)

The pure initial value problem is properly posed for this equation., If
the initial condition is u(x,0) = f(x) for -=» < x < =, then the solution
is u(x,t) = f(x-ct) as the reader can easily verify. It is clear that
this solution represents a wave which propagates to the right (if ¢ > 0)
and is unchanged in form as it moves. We can show that "energy' is
conserved in the solution of this equation. This is obvious for this
simple equation since u(x,t) = f(x~-ct). However, we will use a different
method to show energy cohservation since this method can be applied to
more general cases., We will define the energy by

©

E(t) = % f u2(x,t)dx .

—®
We assume the solution is such that this integral exists. For example,
the solution might vanish outside some interval--the interval may depend
on t, We can then use the same method that we used for the heat

equation to obtain

uu = - Ccuu
t X

SRR [ oh,
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2E
ot

[

- £ 1in [o?@®R,t) - w2 (-R,0] =0

R0

We have assumed our solution is smooth enough so that 1lim u(+R,t) = O.
R
* 2
Remember that f u dx exists so this is not an unreasonable additiomnal

-0

restriction. Thus we have

oE _
ot = 0

or E(t) =E(0) =% [ £ (x)dx

We will next return to the equation ut +.cux = (0 and define the
characteristic curves for this equation. These are straight lines
x-ct = K (K is a constant). Along these lines u is a function of t
alone, u(t) = u(K+ct, t). If we take the total derivative of u with
respect to t and use the fact that u is a solution of the hyperbolic

equation we obtain

du dx
- = +==u =u_+cu =
dt Ye dt x t X 0

Therefore u is a constant along these characteristics. This is the reason

we defined the characteristics to be lines with slope %% = c. If we

consider the point (xo,to), then we see that the characteristic through

this point has the equation x-ct = K = Xy - cty. The point (xl,O)

where X; = Xy - ct0 lies on this characteristic, therefore u(xo,to) =

u(xl,O) = f(xl) = f(xO - cto). The method of characteristics has thus

yielded the solution of the initial value problem u(x,t) = f(x-ct).
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This equation is too trivial to illustrate the power of the method of
characteristics. If we consider a more general equation, ut + xuX = 0,
we can still use the method of characteristics even though the solution is

no longer obvious.

Perhaps more important the method will yield the solution of the

following initial-boundary value problem.

u + cu = 0 c>0, x20, t=20
u(x,0) = £(x)
u(0,t) = g(t)

If we take any point (xo,to) with t > 0 and draw the characteristic

x-ct = K = Xy - cty through the point back toward the initial line t = 0,

then this characteristic may strike the line t = 0 or it may first

strike the left boundary lime x = 0, The figure below illustrates the
situation.

x-ct=K

X \/Q (g )

In the case of (xo,to) we have u(xo,to) = u(gohcto, 0) = f(xo—cto)

as before. 1In the other case we have u(xz,tz) = u(O,t3) = g(t3) =

g(tz-xz/c). If the point (O,t3) lies on the characteristic through
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(x?,tz), we have X, - ct2 = -ct3 or . t3 = tz - XZ/C'- Therefore the

solution is

g(t-x/c) x < ct
Problem 1.3-6. Given the problem
u, + cu = 0

u(x,0)

Ii

f(x)

u(0,t) = g(t)

what conditions should be placed on f and g to insure that u, and u

exist and satisfy the equation along the line x-ct = 0.

Now suppose we have to solve the equation u, + cu = 0 in the
region t = 0, x =2 0 with ¢ < 0.. What are the proper boundary conditions.

The characteristics now slope down to the right as the figure below shows.

x=-ct=K

Therefore to obtain a solution we need specify only the initial condition
u(x,0) = £(x). We do not need any boundary condition along the line x = 0,
and in fact we cannot impose a condition u(0,t) = g(t) and expect to get a

solution (why?).
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Problem 1.3-7. Suppose we wish to solve the hyperbolic equation
with ¢ > 0 u, + cu = 0 in the region t 2 0, 0 < x < 1. What are the
proper initial-boundary éonditions? Write out the solution in terms of

these conditions. Do the same for the case ¢ < 0.

Problem 1.3-8. Consider the hyperbolic equation'ut + xu = 0 in
the region -1 < x < 1, t =2 0., The characteristics for this problem are
curves with slope dx/dt = x, These are curves on which u is a constant.
Find the equation of these characteristics. Find the proper initial-
boundary conditions for this problem. Write the solution in terms of
these conditions. Consider the initial-boundary conditions
u(x,0) = 1 - x2, u(-1,t) = u(l,t) = 0 (perhaps the boundary conditions
are not used). What is the nature of the solution u(x,t), regarded as

a function of x for fixed large t, for these initial-boundary conditions.

Answer the same questions for the equation ut - xu = 0.
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1.3.7 Further remarks on the classification of partial differential

equations. Given a system of partial differential equations, how can we
determine whether the system is elliptic, parabolic, or hyperbolic.
Actually a system may not fit into any of these categories. We will next
consider a few examples. Suppose we have a system of equations for the

vector unknown u(x,t) = (ul(x,t), ceey uN(x,t))T

3u, 3u, 3u, d
3t f113x TP23m Toec Ak
ou du du du
N _ —1 -2 X
ot N13x ‘T %h23x Ttttk

It is quite profitable to write this equation in matrix form where we

regard u as a column vector.

du _ , Ou
t_Aax

Suppose A has N distinct real eigenvalues {xl, ooy XN}. Then there is

a nonsingular matrix P of eigenvectors such that PAP-1 is a diagonal

matrix whose diagonal elements are the eigenvalues. We will assume that the
coefficients aij are constants. If we define a vector w by w = Pu, then

the differential equation transforms into diagonal form

Pu PAu

t X

Dw

€
It

PAP "Pu
X

il
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or T—l:)\ -a—w-l-
ot 1 ox
at N ox

These equations are no longer coupled to one another, except possibly
through the boundary conditions, and each is a simple hyperbolic equation
which we can solve by the method of characteristics.v Therefore it is
reasonable to call an equation u, = Aux hyperbolic if the matrix A has
real distinct eigenvalues, or if it has a linearly independent set of
N real eigenvectors. If some of the eigenvalues of A are complex, then
A is not hyperbolic. Note that if we have a solution u(x,t) of the

2

wave equation u =c u and we define b
ve eq tt xx’ A ine v by

X ' t
v(x,t) = < [ u (€,t)dg + ¢ [ u (0,m)dr
0 0

then u = v, and v, = cux. Therefore the wave equation is equivalent to

the system of equations w, o= wa, where w = (u,v)T,

The eigenvalues of A are +c. The elements of A might be functions of
x and t. We would still have a hyperbolic system if the eigenvalues of
A were real and distinct for all x and t and also sufficiently smooth

functions of x and t. We might also have a nonlinear hyperbolic system
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such as u, + uu = 0. This equation has the character of a hyperbolic
equation but the nonlinearity creates many interesting effects. We will

discuss this in a later chapter.

Suppose we look at examples of elliptic systems. Laplace's equation

in three dimensions where u = u(x,y,z) is certainly elliptic.

We could also consider Laplace's equation in n dimensions for

u(xl,...,xn); that is

a_121+ L+ 28 o0
2
dx ox
1 n

We could have an elliptic equation with variable coefficients

Bzu Bzu
a(x,y) = +b(x,y) =5 =0
ox Jy

where a > 0 and b > 0 for all points (x,y) of the region in which the

equation is defined.

The equation below for u = u(xl,...,xn) where the matrix of

coefficients A = (aij) is symmetric and positive definite is elliptic.

a2u =0

a,, Tl =
ij Bxi ij
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Problem 1.3-9. Let Q be the orthogonal matrix whose columns are

the eigenvectors of A; that is, QAQT = diag(xl,...,xn) where the xi

are the eigenvalues of A. Define the transformation (xl,...,xn) - (yl,.

by v = Qx. Show that the equation then assumes the following form

2 2 2

NI P i S W S

1527 %232 ny 2
v Y5 Yo

Note that the Ki are all positive and therefore this is an elliptic
equation. How does this tie in with the statement that the equation

au__ + 2bu 4+ cu_ =0 is elliptic if and only if b2-ac < 07
XX Xy y

The biharmonic equation

84u a4u a4u _
— + 2 >t < 0
3x 0x~ oy dy

is also an elliptic equation. Note that this equation can be written as

2,2
V((vu =0

2
where Vv is the Laplacian operator

2 32 3%
A
ox oy

If we impose the boundary conditions V2u fl(x,y) and u = f2(x,y) on

the boundary of our domain, then the biharmonic equation can be solved in
two steps:

e esY)
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vch=0

© = fl on the boundary
Vzu =@

u=f on the boundary

An elliptic problem is a boundary value problem rather than a "marching
problem." This fact is of fundamental importance for the numerical solution

of these equations.

Lastly we will look at a linearized version of Burger's equation,

namely
u, + cu = ou (1.3-4)
u(x,O) = f(x) e < x < ®

This is a pure initial value problem--no boundary conditions. Since
this problem is defined over the entire real line we will use the Fourier
integral transform to solve it. If f£(x) is a continuous function such

that the following integral exists,

@®

f \f(x)ldx

-0
then
w

£) == [ ™ Fe)ya

-Q0
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where F(o) is the Fourier integral transform defined by
* 3
F@) = [ fxe " ax
-0

The Fourier transform of the derivative (under suitable conditions) is
given by ioF(¢). If we take the Fourier tramnsform of u(x,t) with respect

to x, then we obtain

© —ig
U(x,t) = f- u(x,t)e X ax

-0

If we take the transform of the differential equation (l.3-4), then we

obtain

Ut + ioclU = - ach

U(,0) = | £(x)e 17X dx = F (@)

The solution of this equation is

: . 2
U, t) = F(a)e(-lac-d o)t

Therefore the function u(x,t) is given by

o . 2 .
I F@y)e(—lac'a o) t+iox 4o
=00

[o0}
1 iax 1
u(x,t) = g Im U(a,t)e do = o

The reader should verify that if ¢ = 0, then the above integral yields

u(x,t) = f(x-ct)
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This is the solution that we have already obtained for the equation
u, + cu = 0. If we let g(x,t) denote the solution of the heat equation

obtained by setting ¢ = 0, then

o 2
1 -a@"ot iv
g(x,t) = o I F(@)e e do
-0

By substitution of x-ct for x in the above equation we obtain
u(x,t) = g(x-ct, t)

The function g(x,t) represents a diffusion or dissipation with time of

the function £(x). If ¢ is small, then the diffusion will be slow. The
function g(x,t) is simply.a solution of the heat equation u, = ou .

When we add the term cu to the equation, we céuse this diffused solution

to propagate with velocity dx/dt = ¢. Therefore this equation has a

mixture of hyperbolic and parabolic properties. However, strictly speaking,
it is a parabolic equation as long as ¢ > 0. But the numerical analyst will

have to take the hyperbolic nature of the equation into account particularly

if o is much smaller than c.
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2, AN INTRODUCTION TO DIFFERENCE SCHEMES FOR INTITIAL
VALUE PROBLEMS. THE CONCEPTS OF STABILITY AND CONVERGENCE .

Here. we will be concerned with initial value problems such as
the heat equation,rather than pure boundary value problems such as
Laplace's equation. 1In chapter 1 we tried to point out the fundamental
difference between these two types of problems. An initial value
problem is a "marching problem'. We solve it by marching forth with a
finite difference scheme, starting with the given initial values of the
solution. In chapter 2, we will deal with the very fundamental concept
of convergence - does the finite difference solution converge to the
solution of the differential equation. It will turn out that convergence
is closely related to étability. Roughly speaking, a difference scheme
is stable if a small perturbation in the initial values produces a
correspondingly small perturbation in the solution of the difference
equation. We will illustrate these ideas by looking at difference

schemes for the simple heat equation

du 5 3%u du_ (3%, 2
ot . - 2 9% 3t 2 2
ox ax dy

or the simple hyperbolic equation

du du  _
St + ¢ 3= 0.

Of course, difference schemes are seldom used for such simple equations.
However, these problems provide us the intuition necessary to set up
difference schemes for more complicated problems. For such problems it
is always important to have a good knowledge of the physics from whence
the problems came. However, it is also important to understand the basic

nature of difference schemes and that is our concern here.
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2.1 A Finite Difference Scheme for the Heat Equation - the Concept of

Convergence.

We will describe a method for solving the following problem:

du _ o azu u = u(x,t)
2
ot 3x” 0Osx=<1 05t (2.1-1)
u(x,0) = £(x) u(0,t) = u(l,t) =0
Q© o]
We assume f(x) = L a_ sin rmx where the series 2 la |
r=1 T r= r

converges.

If we are going to solve this problem on a digital computer, we
must reduce it to the consideration of a finite set of numbers. The
strip 0 £ x =1, 0 £ t clearly contains an infinite number of points.
Thus, our initial step is to make the problem discrete in the x-direction.
That is, we will compute the solution only at the finite set of points
=1, x, <x,
]

=0, x . We will take the points

%0

to be equally spaced; that is, xj+1 - xj = Ax where Ax = 1/J.

J

] < 3 <
{xj} where 0 < j < J, 41

We thus need to restate the problem in terms of this discrete set of
x values, For the time being, we will not make the problem discrete in
time. It will remain on a continuum in the t-direction. We will approxi-

mate the second derivative azu/ax2 by the centered three point formula

3% u(xddzat) - 2u(xat) + ulx-Ax,t)
2 2
ox Ax

Problem 2.1-1, Show that

lu, 0. (leHGE) 2660 FuGeint) | 2
axz AX2
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4
where T(x,t) = u 4(ﬂ,t)/12, where u 4 = Q‘% s ‘X'ﬂ\ < bx .
X X dx

Hint: Use the Taylor series expansion'in x of u(x,t), Assume u is

sufficiently differentiable,

We will next use a notation which has become quite standard for
this type of problem. We let uj(t) = u(xj,t). Then we can write our

approximation as follows:

/
N\
du, u, - 2u, +u, \ -
—d_ 5 [ j j-1 l<j=<J-1 (2.1-2)
ot
sz /
uo(t) = uJ(t) =0 0 <t
u,(0) = f(x,) = £, < j -1.
J( ) (XJ) ; 1<j=sJ

We thus have a coupled set of ordinary differential equations

for the unknown functions uj(t) 1< 3= J-1.

Problem 2.1-2, Solve the system of equations 2.1-2. Assume
2]
f(x) = = a. sin rmx.
r=1

Hint: Try uj(t) = Ar(t) sin rrrxj and solve for Ar(t).

™8

r=1
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We must now make the probleﬁ discrete in time in order to solve
these equations on a digital computer, One approach would be the
use of a standard integration scheme, such as "Runge-Kutta'" or the
predictor-corrector ""Adams-Moulton', Thié is usually not done for
reasons we will discuss 1aterf Instead, we use a less sophisticated

method for solving this system of equations.

We illustréte the method of solution of the initial value
problem for the ordinary differential equation y'= f(y,t) y(0) = Yo+
Perhaps the simplest way to solve an ordinary differential equation
is the "Euler-Cauchy' scheme defined as follows. We approximate the

time derivative by

’ _oy(t 4+ At) - y(t)
y (t) - At

where At is the "step size". Then if we substitute into the differential

f(y,t) we have

equation y'

g L@ e e ™ e

y (@ = Yo
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Here we have used the notation

(n)

y = y(tn) where t, = nAt with n a non-negative integer.

The equations clearly define the sequence of values y(n) by a "march-

ing procedure', starting with the given initial value y(o) =Yye

Now we will use the same "Euler-Cauchy" method on the system of
equations (2.1-2). We use the notation which is quite gtandard

(n) Py
u: ‘= u(x. ,t X, = jhx t = nAt
; ( It o j =

_where Ax is the step sizg in the x-difection and At is the increment in
the t-direction. We have now made the problem discrete in both space

and time. We will hereafter write ug instead of u(ﬁ), since it will be
reasonably clear that we do notlmean the nth power of uj. Hereafter,

we will usually use a capitol U? to denote the solution of the difference
equations and a lower case u(x,t) to denote the solution of the

differential equation, The marching scheme is now defined by the follow-

ing equations

o+l _ on oot (gt - 20"+ 0T ) 1< < J-1
3 = UJ + M{'z j+1 j -1
0
Uy = k) = £ 1<j<J-1 (2.1-3)
n .n -
UO = UJ 0

1

Note that the term G(UJ.+1

- ZU? + U?_l)/Ax2 takes the place of f(yn,tn)

in the above Euler-Cauchy formula.
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' . . . n .
We start with the given values U? and march ahead to obtain Uj' We will
thus obtain an approximation to the values of u(x,t) on the discrete

mesh (xj, tn) pictured below

The fundamental question is the accuracy of the approximation. Given
values of the mesh spacing Axland At and knowledge of the initial value
f(x), then what is an upper bound for the error in the finite difference
approximation} Since we will not know the solution u(x,t), we would

like the error bound to depend only on the "data'" for the problem, namely,
f(x), At, and Ax. Usualiy, it is impossible to obtain such an "a priori"
error bound. Instead, it may be possible to show that the error approaches
zero as the mesh spacing goes to zero.

To simplify the description which follows, we will denote the vector

u? 0 < j=<Jby un, that is we simply suppress the subscript j. Perhaps
this is not really necessary, since it is usually clear when we are talking

n ' n
about the component'uj and when we mean the vector u

\ , n n n ,
What we wish to compute is the error vector e = u - U . The thing

of paramount interest to the numerical analyst is the accuracy of his

n
approximate solution, which in our case is the solution U of equation

(2.1-3). Usually the error is initially zero -since u? = U? = f(xj)

0 0 0

for 0 < j < J; that"is, e =u - U = 0. To compute Un, we "march! forward

3
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computing Un+l from U". Each step in this marching procedure

little error to the result. What we are interested in is the

n
accumulated error e ,

. . n

It is rather easy to compute the error in U +1 under the
. . n , n n v

that there is no error in U, that is U, = uj = u(xj,tn) for

We call this the truncation error and denote it by ALT?. The

adds a

assumption
0 =3j=J.

factor At

is used to normalize the definition. Its use avoids an awkward final

. n n n ;
expression for the accumulated error e , If U = u, then from equation

(2.1-3)

n+1 n n n n
U. = u, + u, - 2u. + u, 0< i<J
j S j i1 J

~ where u = cAt/sz.

n+1 n+l n+1 n+1

n n n n n
Thus AtT, = e = u, - U, = u, - u, - u, - 2u., 4+ u,
j PRSI it

h| i ] h|
for 0 < j < J.
n

Note that the relation eg eJ

0 follows from the boundary conditions.

Problem 2.1-3, Let u(x,t) be a solution of equations (2.1-1). Assume

the following bounds

2 4
|§—E| <M |§—2's M, .
at2 1 5X4 2

Then obtain the following estimate for the truncation error

2
n At gAX
e e TR E
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Hint: To obtain this result, use a Taylor series expansion with remainder.

An expansion in t for fixed x\yieids

NPT
uj(tn + At) = u (t ) + Atat (tn) + = at (g)

where tn < g < tn + At. We used the notation uj(t)‘= u(xj,t). Similarly

we can obtain an expansion for the space difference.

n n ;
u, - 2u” + u
j+1 J a u (x ) §
(f + (ﬂ
2 . 2 4
AX ox
where xj < ﬂl, ﬂz < xj+1 . If we use the fact that u(x,t) is a solution

of the differential equation, we obtain the result,

Note that we were able to obtain an expression for the truncation
error in problem 2.1-3 rather easily. To evaluate this expression, we
must know the unknown solution u(x,t) which seems to lead to a circular
argument. After all, if we knew u(x,t), we would not be trying to

compute it. However, the bounds M1 and M_ depend only on the solution

2
u(x,t) and not on the mesh. From such an expfession for the truncation
error, we will be able to prove that the finite difference solution

converges to the solution u(x,t) of equation (2.1-1). We will obtain

. ' n . '
an expression for the accumulated error e in terms of M, and M2. We
n . k
can show that e approaches zero as the mesh spacing goes to zero.
However, we cannot evaluate the error for any particular mesh without

knowledge of M1 and M2.

We may write our definition for the truncation error in the more

common form
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n n
u =u, + u, - 2u + u + tT 2,1-4
; w( 41 31 ) A j (2.1-4)

Note that its evaluation depends upon a knowledge of the unknown solution
u(x,t). Also, note that the error AtTn is not the error produced by

. t n n
stepping ahead from the n h to the (n+1)St time level, unless U = u ,

The difference solution must be exact on the nth level.

The semantics of our definitién leads us to the following specious
argument. Since the truncation error is the error in each step, then
the accumulated error is s imply the sum

n-1 |

e = ¥ Atr, 0<j<J.
i om

If we have a bound T for the truncation error (IT?I < 1), then |e?l < IT.

Note that nAtT = thT < TT.

The bound in problem 2.1-3 then yields
| ST<":L—M +——> Mm% 0< j< .
J 12

. n
Thus, we have convergence since the error e -approaches zero as Ax goes

to zero. However, the first step in this argument is not correct (why?).

. . n n n
We proceed to obtain an estimate for the error e =u - U, By

substraction of equation (2.1-3) which defines the finite difference
scheme and equation (2.l1-4) which defines the truncation error, we have

. n
an expression for e
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n+l1 n n n .n
U = U, + y(U, 20, 4+ U, 2.1-3
] LL<J+1 SIS B (2.1-3)
n-+1 n .n n n

u = 1 - -

5 5 +'U<: +1 2uj + ujf;) f AT, (2.1-4)
e?+1 =e, + el . - 2eT + T + AT 0<3j<J.

h| i+l j-

Now we use the maximum principle to bound the error. Taking the absolute

value of both sides of the last equation, we obtain an inequality

+1 ' '
A B AT T P SN PP

n n
Now we let ¢ denote the value of the largest component of the vector e,

that is

We now require that yu < %, We will discuss the significance of this
requirement later. For the present, we simply observe that we cannot. use
the maximum principle without this requirement. Taking the maximum of

both sides of the above equation over the mesh index j, we obtain

Bl o (1-20) ™ + pe™ + pe” + At MaxlT?l

J

Observe that Max|u. + w.] < Max!u.! + Maxlw.l and ]1-2u| = 1-2u since
;3 j g j 3

o

p,<



2.11

Now we assume that we do not integrate past t = T, that is nAt < T.

We let
0<j<J
nAE<T

A bound for 7, in terms of the unknown function u(x,t), is provided by

problem 2,1-3. The above inequélity thus becomes

n+1 n .
€ < e +AtT

By induction we have

n n-1 n-2 0
e =< ¢ + AtT £ ¢ 4+ 2AtT € ... £ ¢ 4+ nAtT.

0 0] 0
But ¢ =0 since U = u , thus

en = Max ur'l - UTIII

0<j<d 3
We have assumed p, = oAt/sz to be less than %. We will also assume that
w is a constant independent of Ax. Then if we fix the number of mesh points J,
At is determined by At = quz/c = u/(GJZ). Thus, we can speak of a limit with
respect to Ax; we need not consider At separately since At is determined
by Ax. Of course, not all values of Ax are allowed since Ax = 1/J. We should

really speak of our mesh as being a function of J rather than Ax.

In problem 2.1-3, we obtained a bound for T, namely

2
ohx M2

12

A

t
T < 21‘114‘
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Using y = cAt/sz we have

L MN 2
T szl -+ —12 AX

Therefore

Max |u]} - U?I < Cox’

0<j<J
nAt<T
e cMé\
where cC=T K?EMI +-I§—/ .

We have no way of evaluating C unless we know the unknown solution u(x,t)
since the constants Ml and M2 are bounds for the derivatives of u(x,t).
However, the wvalue of C 1is independent of the mesh and of the finite
difference approximation., It depends only on the solution of the equation and not
on our scheme for approximating the differential equation (except for the
constant p). This permits us to say that our scheme is convergent, that is
. n
lim U, = u(x,t). (2.1-5)
Ax-0 J
nAt—t
jAx-x
The existence of the above limit means that‘given X, t ande > 0, we can
find a 6> 0 such that if Ax < & |nat-t|< ¢, and |jax-x| < &, then
U? - u?|< €. In this case, § is independent of x and t, § depends only
on ¢. Therefore, we have uniform convergence. However, we do not have,
strictly speaking, an error estimate. Even thoughle?l < CAXZ, 0< j<J,

nAt < T, we are unable to evaluate C without knowledge of the solution

u(x,t). What we have is an asympotic error estimate,
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That is, we have
n 2 .
Uj = u(xj,tn) + 0(AxT) 0< j<J, nAt <T.

Note: we write £(x) = 0(x) if there is a constant C such that If(x)l < Clx|

for sufficiently small x; that is, we say f(x) is of order x at zero.

We have demonstrated the convergence of our difference scheme by
use of a maximum brinciple argument (which works only because the
coefficients in our finite difference scheme are positive). Next, we
will prove convergence by use of the Fourier representation of the
solution of the difference scheme. This will give us considerably more

insight into the behavior of the difference scheme.

In chapter 1, we obtained a solution of the heat equation (2.1-1)
by separation of variables. We might briefly review this., If
u(x,0) = f(x) = ay sin ttkx then we look for a solution in the form
u(x,t) = Ak(t) sin mkx.
By substitution into the heat equation, we obtain an ordinary

differential equation for Ak(t), name ly

dA
K202
Jc C om kA

k

4, (0) = a
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The solution of this equation is

-onzkzt
= a
Ak(t) 1E
and thus
2,2
u(x,t) = a e om k't sin mkx.

k
The heat equation is linear. Thus, if v(x,t) and w(x,t) are solutions,

then u = Av + Bw is also a solution for arbitrary constants A and B.

Therefore, if

m
u(x,0) = f(x) = % a, sin rkx then

u(x,t) = sin mkx is

1
no™Ms
[
D

the desired solution. If we make the above sum infinite, then we must
be a little careful, since we must be able to interchange the summation

and differentiation, that is

n™M 8
i
h 8

S
ot K
This is certainly possible if t > 0. Thus, we have a solution for our

problem in terms of a Fourier expansion.

We will now obtain a solution of the difference equation (2.1-3) by

the same technique. Suppose U? = ak sin mkx. Assume U? = Ak(n) sin mkx,
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then we must solve for the sequence of values Ak(n). Note that

sin wkx,

- 2 sin mkx., + sin rkx, = =4 sin2 ok sin mkx,
i+l ] j- J

1 23

. . . n . ‘ .
Therefore, if we substitute our expression for Uj into the difference

scheme (2.1-3) we obtain

//
_ _ . 2 ki
A (ntl) = Kl 4y sin —2J> A, ()

Ak(O) = ak

I1f we make the definition

M(k) = 1 - 4y sin’ _1_29}

then the solution of the above equation for Ak(n) is

n
— A

A () =M a .
That is, raise the constant M(k) to the nth power to obtain the
solution on the nth time level. Note that Ak(n) = M(k)Ak(n-l) =

L M(k)]2 Ak(n-Z) ves = M(k)nAk(Oy Therefore, the sclution of the

difference scheme is (for U? = f(xj) = ak sin ﬂkxj)

n
n
= a 3
Uj " [M(k)] sin ﬂkxj
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Thus, we may regard M(k) as an amplification factor. It depends on the

frequency k of our Fourier mode. It also depends on the mesh ratio

2
W = oAt/Ax and on the mesh spacing Ax = 1/J.

>4
If f(x) =% a
k=1

K sin mkx then

we can use the linearity of our finite difference scheme to write the

solution as

c
N
I

£ a (MW  sin lox,
I k=l

Since our amplification factors are uniformly bounded

[o<]

lM(k)| < | 1+4| and since we have assumed T |ak| < = ywe know that
k=1
this series will converge, Therefore Uj is a solution., Since a finite
difference operator will always commute with an infinite sum, unlike a

differential operator, we do not have the same concern that we had with

the heat equation itself,

Now we are ready to consider the convergence of our difference scheme.
We first look at the case of a single mode that is f(x) = ak sin mkx.

We need the followihg result.

Problem 2.1-4. Let f£(x) be a complex valued function of the real

argument x such that

lim f(x) = a
x~0
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then

lim (1+-xf(x))n =eat.

x—0
nx-t

s ) , n
We need to consider the behavior of the solution Uj as Ax approaches
, 2 . ,
zero. We assume the ratio p = OAt/AX™ is a constant. Then At is

determined by Ax and At-0 as Ax-0. Note that Ax = 1/J.

Problem 2.1~-5, Show that our scheme converges for a single mode, that is

lim U = u(x,t).
Ax—0
nAt-t
jA%-x

The meaning of this multivariable limit is hopefully clear. 1t was

defined for equation (2.1-5). Note that

Now for an interpretation of this result. The above problem shows
that we have convergence regardless of the value of ;. Note that for

small enough values of kAx we have

1 -4y sin® Hﬁéﬁ;u 1- cnzszt.

Therefore, the amplification factor M(k) is less than one, if Ax is

sufficiently small (note that k is fixed). This statement holds regard-

less of the value of p. Our solution has the form
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n .
n - .
Uj = a, [M(k)l sin Trkxj

and therefore U?ao as n for a fixed k and fixed Ax provided
Ax is sufficiently small, Thus, the solution of the difference
scheme has the right behavior as the discrete time n approaches infinity -

the solution decays to zero. Now suppose u > %. Then for a fixed but

small Ax we can élways find a frequency k such that M(k)l > 1, simply
take k so that sin (mrkAx/2) is close to one. But then [M(k)]n approaches
infinity as n becomes large; the mode for this value of k will grow
rather than decay. If there are only a finite number of modes present
in the solution, then we can always take Ax small enough so that M(k)
will be less than one for all these modes. Then the solution of the
difference equation behaves in a reasonable way; it decays to zero as

n approaches infinity. However, if y > % and an infinite number of modes

are present in the solution (that is f(x) = % ay sin krx and ak# 0 for
infinitely many k) then some of these modes will grow, no matter how
small we take Ax. We can no longer base our argument on the behavior

of a single mode. We cannot expect convergence in this case, since there

will always be some modes which are growing at an exponential rate. Note

that if p < % then IM(k)ls 1 for all values of k.

We have here the notion of stability, which is basic to the use of
finite difference schemes. We say a scheme is stable, if the solution gt

remains bounded independent of the mesh spacing Ax. That is, there is
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a éonstant C such that HUnH < G HUOH for nAt < T independent of U0 and

n . . n
Ax. Here HU f denotes some suLtable measure of the "size" of U,

such as 1its Euclidean 1ength Z iU |

We will have much more to say about this concept of stability later,
Another way to look at this concept is to note that a small perturbation
in the initial values U0 should produce a correspondingly small perturba-
tion in the solution U'. For the present, we simply note that under

suitable restrictions, a stable scheme is always convergent.

We will let the reader prove that our scheme is convergent if < %

and will diverge, at least for some f(x), if pu > %.

Problem 2.1-6, If , = .55, J = 100 and Iak' > 0 for all k, then find the

lowest frequency mode which will amplify under the difference scheme (2.1-3).

Problem 2.1-7. If u <% and
© ' ©
f(x) = ¢ a, sin mkx where T la, | < o
k=1 k

then prove convergence, that is
. n
lim U, = u(x,t).
Ax-0 ]

nAt-t
JAX-X

Hint. We have

8

n r n 2 mixk
Uj = 3 akLM(k)] sin mkx M(k) =1 - 4y sin ‘j;“

k=1

Show that if < %,’then the above series converges uniformly.,



2.20

Then note that

@ ’ n
n r -
, | X
lim U, akLM(k)J sin mkx

b0 1 k=1 Ax-0

L]
[l
—
e
=]

sin mkx = u(x,t).

This problem provides an excellent illustration. of the necessity for care
in the use of the calculus. We really need the uniform convergence, If

we assume that._ye can interchange the limit and the infinite sum

lim % = ¥ 1lim, then our difference scheme is convergent regardless of
Ax-0 k=1 k=1 4x-0 g )

the value of p. This would be an erroneous conclusion.

Problem 2.1-8. 1In problem l.2-37 we have shown that for integers k and m

oo
J ' | ; if k = mt2rJ
r sin mkx, sin mmx, = {'* . .
=0 j 2 where r is an integer

0 otherwise

Remember that xj = 1/J. Now assume

g(x) =% ay sin mkx, Zlakl < ®
1 1
Then show
J -] o]
1 2
= I gi(x)=% % z a, a
J =0 j kel re-w k “k+2rJ

k+2rJ=1
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The solution of the difference scheme is given by

[eo]
0% = 5 oa MP(K) sin mkx,  M(K) = 1 - 4y sin’ Tkix
hj -1 K j 2
k=1
Show that
2
J , N @ o]
1 S n N _ 1 n
72U =g s T MOaa gy
J=0 =1 T==-0
k+2rJ=1

Problem 2.1-9. Assume that p > %. Assume that initial functiom £(x) is

given by

ak sin kmx where ak =-l;
k=1 kP

™M 8

f(x) =

with p an integer p > 2. Then show that the finite difference scheme
does not converge uniformly. Hint: If U? converges uniformly to
u(x,t), then show that % = <??>:2 must be bounded independent of n and
Ax. Then use problem 2.1-8 to show that this sum is not bounded if

u>1/2.

To illustrate this problem of stability, we programmed the scheme
of equations (2.1-3) for the computer. We used the initial function
u(x,0) = 4 x(1-x) and 41 points in the mesh (J=40). We plot the vector
U™ for the values of T = nit shown on the graphs. The graphs were
drawn by the computer (a CDC 6600) using a microfilm recorder (the CDC
dd80). We made two runs, one for y = .45 and one for y = .55. The

instability is quite .obvious. It is also quite mysterious, if one
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doés not go through the type of analysis that we have just completed.
The instability has nothing to do with the physics of the problem

from which the heat equation might have been derived. It is a property
of the finite difference scheme and thus cannot be explained by looking

back to the physical »rigin of the problem. (See Fig. 2.1-1 and 2.1-2.)

The study of this finite difference scheme gives us a good idea of
the relation between stability and convergence. Let us assume that

[o0 o]

f(x) =2 a; sin mkx where 3 |ayl <o,

We will assume that infinitely many modes are present; that i, given any

ko we can find k > kO such that a, # 0, If kAx is small, that is

kix << 1, then a tinite difference approximation to the second derivative

of sin mkx will be a good approximation. Thus, for a given single mode

sin mkx, we might expect the finite difference solution to converge to

the solution of the heat equation. This is exactly what happens,

regardless of the value of _, as we have shown in problem 2.1-5.

However, we have infinitely many modes present. At a given Ax there

are always some modes fo1 which ay # 0 and kax is large. Since kax

is large, we cannot expect the finite difference approximation of the

®

derivatives to be valid for these modes. However, the series X Ia
® =

is convergent, therefore, lim Y laquo. If we take Ax small gniugh the

k- k=K .
lower frequency modes (kAx << 1) will be accurately represented by
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. (o]
the difference scheme., If X |ak| << 1, then the error due to inaccurate
k=K ‘ '
treatment of these higher modes will be small, simply because their
total contribution to the solution is small. However, this is true
only if the finite difference scheme does not permit these higher modes

to grow. If the mode in the finite difference solution is given by

and |M(k)[>1 then this mode can become large even if a, 1is

k k

EM(k)]n a
small. Also, this mode is not éccurately treated by the difference
scheme, if kax is_not small. Therefore, the error coﬁtribution from
this mode can become large. This leads us to the requirement of
stability; namely, HUnH =M HUOH where M is a constant iﬁdependent of
the mesh spacing and independent of the initial vector UO. A stable
scheme permits only a modest growth in any mode. The stable difference

scheme may not accurately represent the given mode, but at least there

is no exponential growth of the mode.

As we have seen, an unstable scheme may converge for some initial
functions f(x) (see problem 2.1-5 and problem 2,2-8)., However, an unstable
scheme is useless in practice, even for these initial functions. An
unstable scheme will amplify roundoff error on a computer. This error
is small initially, but it will grow exponentially and eventually
ruin the solutiom. ‘Note that roundoff error tends to be high frequency

and will therefore usually amplify rapidly with an unstable scheme.
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2.2 Difference Schemes for a Hyperbolic Equation

Here we will consider the following simple hyperbolic differential

equation:
du ou _ _ -
St T S3x ° 0 u = u(x,t) (2.2-1)

u(x,0) = £(x)

u(-1,t) = u(l,t)

We have imposed periodic boundary conditions u(-1,t) = u(l,t). This is
usually unreasonable from a physical point of view, but it does simplify

our analysis of the difference scheme. If the function f(x) is defined

for all x(-» < x < “6, periodic (f(x+2) = £(x) for all x), and differentiable,

then the solution of this problem is u(x,t) = f(x-ct).

Now we will consider two difference schemes for this problem.
The mesh is defined by the points xj where =J < j < J, xj = jhx, Lx = 1/7.
The values of u(x,t) are sought at the points (xj’tn) where tn = nlAt,
The solution of the finite difference scheme is denoted by U? and is an
approximation to u(xj,tn). Just as for the heat equation, we use a capital
U to denote the soiution of the difference equation and a lower case u to

denote the solution of the differential equationm.

Our experience with the heat equation suggests use of the same scheme
for the hyperbolic equation; namely, a forward difference in time and a

centered difference in space.
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n+l n n n

U, - U, U, - U,
SN RN _.]j;];_._..]__l\= - < -
X + c " 0 J =] J (2.2-2)
0 .
U, = f(x.
J ( J)
n n
= = -J < 3 =<
UjiZJ Uj for n 2 0 and J i J

As we will now explain, the last equation is an expression of the periodic
boundary conditions. If we look at the above scheme for j = - J, we see

that the value U?J-l is required for the approximation of the spatial
derivative. This value is an approximation to u(X-J-l’ tn)’ but the

point x = (-J-1)Ax = -1 -Ax lies outside the mesh interval. To

-J-1

resolve this problem we use periodicity; that is, we assume u(x+2,t) = u(x,t).

In the finite difference scheme this becomes U? = U?, for all j. Thus

jx2J
n n , L . _ :
we have U-J—l = UJ-l and X5.1 does lie in the mesh interval. Similarily,
n _.n . _ . .
we let UJ+1 = U_.J+1 and then the difference scheme (2.2-2) is defined for

-J £ j £ J. Note that we need compute U? only for -J <€ j < J since

the periodicity condition gives us U? = U?J.
. 0 0
Problem 2.2-1. Assume that £(x) is periodic, then U_J = UJ

Suppose we compute'U? from equation (2.2-2) for -J =< j = J (then we

do not use the condition U?J = Ug). Next, suppose we compute U? from
equations (2.2-2) for -J £ j < J and use the condition U?J = U? . Do

we get the same result? Or to phrase the question differently, are we

being consistent in our treatment of the boundary condition?
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We will show (problem 2.4-3) that the 'forward-centered" scheme given
by equations (2.242) is not stabie, and therefore it is useless.

We will now describe a stable scheme for this problem.

=0 (2.2-3)

Ussog = U? Jsis=J

The only difference is in the approximation of the time derivative.

. n L (ym n )
Instead of using U_j » we have used Z(Pj+1 + Uj-l .

We may write the first scheme as
I S ) (2.2-4)
j j 2\ i1 |

and the second as

+1_ L/ BN -
54 n) 3 G- h)

where A = cAt/Ax. We will assume that the mesh ratio A is held constant
during an integration, just as p = OAt/(Ax)2 was held constant for the

heat equation. Note that the above equations clearly show that if we

are given the vector { OJ,then we can obtain the vector {U > for any n
simply by marching forward starting from UO. We Qill need the truncation
error for these’ééﬁémes. Remember that thé truncation error T? is obtained
by substitutiéﬁjé} the solution u(x,t) into equations (2.2-4) or (2.2-5)

and equating the remainder to AtT?.
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Problem 2,2-2. Assume that the solution of equation (2.2-1) has

. Lt .
continuous 3"~ order partial derivatives. Suppose

32y 3%u 32y

—| =M, |5 =M, |=5| <M, for |x|<l, t < T.
2 1 2 2 3 3 >

3t ox x

Then show that a bound for the truncation error for equation (2.2-4) is

and for equation (2.2-5)

M | €|
IT?l < El At + %ﬁ%‘MZAX +— Ax?

We can use the maximum principle to prove that the scheme given by

equations (2.2-3) converges. If we rearrange (2.2-3) we have

n+l _ n n _1 A
Uj an_l + (1 a)Uj+1, o > + 5
n+1l n n n
u, = qu, + (l-o)u, + AtT .

J j-1 (1-a) j+1 J

Problem 2,2-3. As-ume that the truncation error T? in the above
equation is bounded, IT?I < 7 for all j and for nAt < T. Using the max-

imum principle, show that the error e(n) = Maxlu? - U?I is bounded by

Note that this result implies convergence, since problem 2.2-2 shows

T = 0(Ax) and thus 1lim T = 0.
Ax=0

Next we will prove convergence for the scheme by use of a Fourier

expansion just as we did for the heat equation.



2.28

Given any sufficiently respectable function f(x) -1 < x < 1 we can

expand it in a Fourier series

where a, denotes the complex conjugate

If f(x) is real valued then.a_k = ay K

of ak.

We will assume that our function f£(x) is smooth enough to insure the
s} ) «©

series X klakl converges (that is X klakl < ) although we may not
o]

k=~wx -

always need this.

0 . . . . .
Next we assume that U is given by a single Fourier mode, that is

W=eae I, -3<js<a3.

The solution for this simple case will provide considerable insight into

the general case.

Problem 2.2-4. Let U. be a solution of equation 2.2-3 (or equation 2.2-2)
0 J imkx n
where Uj = f(xj) is given by Uj =ae J.  show that Uj is given by
n C n iﬂkxj'
Uj = ak(Mk) e

where Mk = cosmkAx=-iksinmkAx for equation (2.2-3)
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and Mk = l-iAsinmmkAx for equation (2.2-2).

Next we will show that the scheme given by équations (2.2-3) converges.

Problem 2.2-5. Let Mk = cosmkAx-iAsinmkAx for the scheme (2.2-3).

Assume |A| < 1 (A = cAt/Ax). Then show IMkI < 1.

Problem 2.2-6. Assume that A is a constant. Then show that

lim (M.k(Ax)>n - e—iﬂkct

Lx-0
nAt—t

Note that Ax = 1/J and since J is an integer Ax camnnot take on arbitrary
real values in the finite difference equation. We could write the above
limit in terms of J and thereby stay closer to the difference scheme.

Note that if we fix Ax, then At is fixed by A = cAt/Ax. Thus the require-
ment nAt-t merely fixes the rate at which n goes to infinity as Ax~0.

We could simply set n equal to the integer part of t/At = te/(MNAX) = Jtc/A.

Problem 2.2-7. 1If ikl < 1, then show that scheme 2.2-3 is cbnvergent,

that is
«w ‘k
lim U0 = ¢ et m(x-ct) u(x,t)
px20 T k=-w
nAt—t
X .7 X
J

Problem 2.2-8. Let the initial function £(x) be given by

XL 1k

f(x) = Z a, K

-0

and let A have any fixed nonzero value. Show that the scheme (2.2-2)

converges for this f£(x).
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2.3 Representation of a Finite Difference Scheme by a Matrix Operator

In this section we will study finite difference operators using
concepts from matrix theory, especially the norm of a matrix. To
simplify our notation, we will frequently replace Ax by h and At by k.

This is a standard practice in the literature on difference schemes.

We will first consider the following difference scheme for the

heat equation which we studied in section 2.1.

n+1 n n n n ’ 2
U. = U, + (U, - 2U. + U, = gk/h 0<3<J
j i ¢ j+1 i _]‘1) Ho / | J

n n 0
U, =U, =0 U. = f(x,

0 j h| ( J)

If we denote the vector {U?f 1< j<J-1by Un, then we may write the

above equations in matrix form
n+l n
U =LhU

where the matrix Lh is given by

Lh = 0 e 1-20 w O (2.3-1)

e e o e o e e e o o O L l‘zu




Note that Lh is a symmetric tridiagonal matrix. We use the subscript
h in the notation Lh for the fiﬁite difference matrix, because the order
of the matrix depends on h (h = 1/J and the order is J-1). For some
difference schemes the terms of the matrix will depend explicitly on h;

here we assume y is a constant independent of h.

Next we might look at the two schemes we have used for the simple

hyperbolic equation Ut + CUX = 0. The first is equation (2.2-2).

n+tl _ . .n A/ mn n _
Uj Uj > <#j+1 Uj-?) A = chAt/hx

-J <3 <3
n n
=0
Ujas = Y
. SRR & n . n .
The matrix equation is U .~ = IhU . The matrix Lh and vector U are given
by
A A n
1 -—= 0 -
2 2 U.g
A A n
= 1 —= 0
2 2 0 Uoge2
. n
el L -
-\ A n
S e e e e e e e 0 > 1 UJ-l

The other scheme for this equation is

n+l n n _A/fm _om
Y5 2<J3'+1 +Uj-9 2 ij-‘i-l Uj-1>
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and the matrix is (o = % + Aq

2
0 0 y &
o U_J
1-« 0 « 0 o
. 0 -J+2

=

I
=

=]
u

Next we will recapitulate the properties of a matrix norm. First

the vector norm. Given a vector (possibly complex) u = 1ujf 1<j=J

7 2

we define the L, norm by Hu“z =/ |u.| , the maximum norm by Max |u, |,
j=1 1<j<J

and the Ll norm by Hu”l = Z |uj|. These norms all provide a measure of

j=0
the "size'" or '"length" of u, Given any vector norm, we can define an

induced matrix norm. If A is the matrix, then the norm of A is defined by

lal = max 483 = max (|

ko Tl

The norm used on the right is the vector norm from which the matrix norm
is induced. The matrix norm is a measure of the maximum expansion caused
by the mapping Au of the vector space into itself. Important inequalities
for the matrix norm are the following (A and B are square matrices, u a
vector)

&+ B[ < [lafj + 3]

sl = lal 3]

llawl] < flall {lu
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There is an obvious relation between the eigenvalues Xj(A) of a matrix

A and the value of its norm HAH, namely, ]Xj(A)I < “Ai. We define the

spectral radius o(A) of a matrix A to be the maximum modules of its

eigenvalue,
o(a) = Max |, (A)]
- N
J .
then a(a) < ||4.

The three matrix norms mentioned above can be characterized by

HAH2 =/JG(ATA) | AT denotes the transpose of A
4]l : la, .|
A = max by a. .

i g=1 *

4,

i
=]

- 8

MG
o

For a symmetric matrix ||A|| = o(4).

Next we will study the matrix which defines our finite difference
scheme for the hesat equation. This is the symmetric, tridiagonal matrix
given in equation (2.3-1). Note that this matrix L has order J-1.

The mesh points are xj =jh, 0 j=<J, h=»4rx=1/TJ,un = OAt/Ax2 = Gk/hz.
Problem 2.3-1. Verify that the eigenvalues of lh (equation 2.3-1) are

Xr = l-4usin2(ﬂrh/2) and the eigenvectors 1U§j = sim’rrxj where 1 < r £ J-1

and 1 < j £ J-1, Show that
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1-4usin2%? p<y
lall, = |
v4usin2 Higéll w>
) ER:
Iall,, =
' 4},1.-1 b > %

Now we are ready to talk about stability. First the definition:
We assume that we have a finite difference scheme répresented by a matrix
operator Ih' We are given the initial vector Ug and succeeding vectors
. n+1 n . .
are defined by Uh = LhUh. Here we use the subscript h to denote the
fact that the vectors and the matrix depend on the mesh spacing. As h

approaches zero, the order of the matrix approaches infinity. We are

not working in a vector-space of fixed dimension. We say the scheme
n+l _ n . . .

Uh = LhUh is stable provided there is a constant M such that

HU;H <M HUgH for all Ug, all h > 0, and all n provided nAt < T. The

0
constant M must be independent of U _, h and n. However, M may depend on

h?
‘ ' s n n .0
. . . > = < . =
the time limit T (we require nAt tn T) Since Uh Lh Uh our

stability requirement is the same as placing a bound on the power of Ih'

We could require a constant M, such that HI;H <M for nAt < T.

Why is this concept of stability so important? One reason is the
Lax-Richtmyer theorem which states that a stable scheme with sufficiently
small truncation error is a convergent scheme. We will consider this

theorem in section 2.5. Stability has another very important comnsequence .
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It insures that a difference scheme is not unduly sensitive to small
perturbations. For example, the effect of roundoff error is that of a
small perturbation on the finite difference calculation. Suppose we

let U™ denote the solution of the unperturbed equation Un+l = LhUn.

We let V' denote the perturbed solution. What do we mean by

a perturbation? @ For one thing, we could have a

. 0 , 0
perturbation E° in the initial data, that is V0 =U. +E . Let ¢

denote the magnitude of the perturbation. Then so = HUO- VOH = HEO

We might also assume that we have a perturbation at each stage of the

solution denoted by pn, thus Vn+l = L.hVn + pn, VO = U0 + EO. For

example, roundoff error creates such a perturbation as we will see
, . n n n
in section 2.6. Suppose we let ¢ = HV - U H denote the error result-
ing from this perturbation. We also suppose that we know an upper
, i n
bound for these perturbatioms; thus |jp || < p for some comstant p.
. s . n .
We would like to obtain an estimate for the error ¢ in terms of
0 . .
¢ - and p. We have the following equations

n n-1

LhU

U

li
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If we combine these equations we obtain

n-1

-2 -
En=LhnEn +thn2+p
If we continue this process by induction we obtain

-1p0 + "3p2 +ouu. + pn'l

R R

Now if we take the norm of both sides and use the fact that HABH < “AH B

and [|A + B|| < [|A]] + ||B]| we obtain

lle® + T H 1000 + L2 YoMl + oon +le™ Y

M < |laf
Now suppose the scheme is stable, then HLEH < M for all n. Also, by
~ assumption Han < . |

Therefore: e < Meo + nMp

0o :
This is our desired estimate of the error in terms of ¢ and p. For
this estimate to be useful, p must be small enough so that np does not
become large; for example, p might depend on At such that p < kAt for

some k, Then if nAt < T, np < KT.

If the scheme is not stable, then I;-lpo may become large. For
example, if HLhH z 1.2, then growth at the rate 1.2(n-1) is possible.
It is worth pointing out that n frequently exceeds ZI.O4 in some initial

200 16 .
value problems and (1.2) ~ 10", 1In section 2.6, we show an example

of the disastrous growth of roundoff error for a unstable scheme.

What we have demonstrated is that a stable scheme -is not unduly sensitive
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to a small perturbation - hence, the name stable, Note our essential
use of the concept of norm, not only for proofs, but for the definition
of stability. This concept is a valuable tool for the understanding

of stability.

We terminate this section with some problems to illustrate
the concept of a matrix norm.

froblem 2.3-2. 1If HIhH < 1 + kAt, then HIEH S_ekT provided
nAt < k. | |

Problem 2.3-3. Find a matrix A whose spectral radius is unity,

c(A) = 1, but such that HAnH 2 n.
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2.4 Analysis of Schemes for Linear Problems with Constant Coefficients and
Periodic Boundary Conditions - the Use of Finite Fourier Analysis.

We will restrict ourselves to initial value problems with a single
unknown function u(x,t) on the interval -1 < x < 1, The initial function
is u(x,0) = f£(x). We assume the problem 1is periodic u(x + 2,t) = u(x,t),

f(x £ 2) = £(x). The mesh is the set of points xj, -J<3j<7J, xj = jh,
? = U?. We assume

h = 1/J. We assume the periodicity condition UJi2J

the finite difference scheme can be written in the form given below.

. _

n

U = T CcU, . - t (2.4-1)
\)=1 Vv _]+_']\) .

In the case of the scheme defined by equations (2.2-4); s = 3, C1 =1,

=0, C, = -N\/2, j2 =1, C3 = \/2, j3 = -1, For the scheme defined by ean(2.2-5);

3y 2

s =2,C =1/2-X2, j; =1, C, = 1/2+}/2, j, = -L.

1 2

7

Some of the values j + jv may lie outside the allowable range -J < j+jv < J.
We invoke the periodicity condition to bring these values back into range.

For example, consider the finite difference scheme defined by equation (2.2-3).

n+1 n n
= 1~ -J = i< 7.
Uj an-l + ( oz)Uj+1 | J ] J
] n n . .
When j = -J the value Uj-l = U_J_1 is outside the range. But
Un =" = U7 . which lies inside the range Thus, the equation
-J-1  T-J-1423  J-1 ® ¢ ) d
above for j = ~-J becomes
o= ot® s e t?
-J J-1 -J+1
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We will need to use a finite Fourier series to represent our
. n . . . ‘ .
mesh functions Uj' Given a smooth function f(x), -1 = x = 1, it can

be represented by an infinite Fourier series

f(x) = Z a e1TTkx
-0
n
We are dealing with discrete functions U? -J £ < J or vectors U .
We will define a set of vectors wm = jw?j -J<3<J, 0<m< 2J such

that given any vector {U,l there is a set of coefficients am(these may be

i)
complex) such that
2J-1

m

U, = I a_ o, (2.4-2)
m "3

m=0

Furthermore, the following orthogonality condition holds

J-1 0 -m 0 n#m (2.4-3)
j=?J 1% 7|27 n=m | '

The coefficientsam are given by

J-1
= =L om o -
a = o3 j;?J U, 9 (2.4-4)

Thus the set l@ﬁ} of vectors forms an orthonormal basis for the 2J

. . . . n .
dimensional complex vector space in which our vectors v lie.
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Problem 2.4-1. Let wm be defined by
m
. = e ‘ x, = j/J.

?; j =

Show that the orthogonality condition of equation (2.4-3) holds. Show
that if the coefficients a are given by equation (2.4-4), then equation

(2.4-2) is true. Also, show that equation (2.4-2) implies equation (2.4-4).

Hint: 2J-1 ., . 2J-1 2J
n MMy z3=%_—§ =0 if z # 1.
i=0 §=0
Problem 2.4-2. Let ||U|| denote the L2 norm of the vector U
J-1
2 _ 1 2
lo)? =% 5 Ju,|
j=-J
2J-1 m
Suppose the Fourier representation for U is U = Z a vl
m=0
9 1 2J-1 2
Then show [|U]|" = 237 T Ja|”.
J
m=0

We can use the finite Fourier representation to study the stability
of the difference scheme given in equation (2.4-1). We first assume

n ., . m
that U is equal to one of our Fourier modes ¢

U = =e J<3i<]

Then Un+1 is equal to this same Fourier mode multiplied by a complex

constant which we call an amplification factor
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n s iﬂmhjv irmx ; ,
m
= o= 2.4"‘5
Uj vil c, e e A, (m) P, ( )
Note that xj+j =ij + jvh' The reader should verify this formula by
v

substitution into the difference scheme of equation (2.4-1).

For example, consider the difference scheme

ntl_ 0 n
Uj = an_l + (1 oz)Uj+1

The amplification factor for this scheme has already been determined in

section 2,2 and is given by

Ah(no = costmh + 1(l-2v)sinmmh.

n 2J-1 m m itmx ,
Now suppose U 1is given by the sum 2 ay ¢ where @, = e I,
: m=0 J
ntl S n s 2J-1 m 2J-1 8 m
Then U, = Z e Ui = = c, a Q. .= a Z c @-+-
J v=l 373 v=1 m=0 Iy m=0 Mov=1 Y I
2J-1

n+1
U, = Z aA (mo

3T 5, ™

Thus, to go from the nth to the n+1th level, we simply multiply the

amplitude a of each mode by the amplification factor for that mode.
_ 2J~-1
Thus, if the initial vector is given by U0 = Z a @
m=0
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then the expansion for Ut is
i n om
v m§ “m LAh(m)J M

Now suppose that the amplification factors satisfy the so-called
"von Neumann' condition, that is, there is a constant k‘independent of

h and m, such that

|4, m]| = 1+ kot

. . 2
We assume that there is a constant mesh ratio such as u = gAt/Ax” or

A

cAt/Ax (h = Ax) so that At is a function of h and lim At = 0. Given
h-0
this von Neumann condition, we know from problem 2.3-2 that

l[Ah(m)jn| < ekT where nAt < T,

Then from problem 2.4~2 we have

2 2J-1

I =55 <3

|a 12|*Ah(m)._i2n| e o3 T la | =e
m=0 L m=0 n

Therfore, the von Neumann condition implies that our difference scheme

is stable,

Suppose there is a real number p such that p > 1 and for any h > 0,
we can find an integer m, 0 < m< 2J, J < %,;and IAh(m)| > p. That is,
we can always find an amplification factor greater than p mno matter how

small we choose h. Then it is clear that the scheme cannot be stable.
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For given any h let m be chosen so that |Ah(n0| > p. Then let

immx,

U? = @? = e I, Let n, be the largest integer, such that n At < 1.

"h _ I ?nh m
= ®

Then U Ah(m)J

and clearly

1 n.hr 1
o 7 = o v
But since n.h--)Oo as h-0, and p'> 1, p "»» as h~0, Therefore, the scheme

can not be stable since stability would imply
o™ < 4 0% for some M.

Problem 2.4-3. Show that the difference scheme given by equation

(2.2-2) is unstable. Use the Fourier analysis, or von Neumann method.

Problem 2.4~-4. Show that the difference scﬁeme given by equation
(2.2-3) is stable provided |A| <1 (A = cAt/Ax) and unstable if |A| > 1.
Note that our proof of convergence for the scheme of (2.2-3) very nearly
provides the solution for this problem. We merely have to switch from

the infinite Fourier series to the finite Fourier expansion.

The von Neumann method for the determination of stability is very
important in the design of finite difference schemes for initial value
problems. We will use it constantly in the remainder of our discussion
of initial value problems. We will next give a few problems which

review the methods for the analysis of stability.

The first problem uses the maximum principle (which is really an
"energy method'" - see chapter 3); the second is almost identical with the
first except we work with the norm of the matrix operator; and the third

uses the von Neumann analysis.
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Problem 2.4-5. Consider the simple hyperbolic equation

%%+C%'=o,osxsl,0_<.t,c>0.

The initial and boundary conditions are u(x,0) = f(x), u(0,t) = g(t),
g(0) = £(0). The solution of this problem is £(x-ct) for x = ct and
g(t - x/c) for x < ct (see section 1.3.6). Consider the following difference

scheme for this problem.

]
n+1 n n n cAt

U. =U, - MU, - U, A ==— 1=x< < 7J
] -] ( j J‘l) Ax J

n 0
U, = U, = £(x,) 0<js<7J.
o = 8(ty) j (x4 j

By use of the maximum principle, prove that this scheme is stable

provided A < 1.

Problem 2.4-6, For the scheme given in problem 2.4-5, write out

the matrix Lh defined by the scheme
n+l . o _ n n :
= = 9 < j =<
U LhU | i) lUjf 1 j J.

Show that if A < 1 then HLhHoo = 1 where this normm is the one induced by
the maximum norm, What are the eigenvalues of Lh' What can you say
about HLhHZ (the norm induced by the L2 vector norm). Can you prove

\

stability using this norm.
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Problem 2.4-7. Suppose we modify the above problem to have periodic

boundary conditions.

n+1 n n n ’

U. = U, - AU, - U, I < i< g = jh.
i j ( j J"].) ] ’ XJ ]
n n
UjiZJ - ‘Uj
0
U, = f(x,

] ( J)

We must then solve for U?, 0 £ j<J. Use the von Neumann method to

analyze the stability of this scheme. Note that we were forced to make

the boundary conditions_periodic in order to prove stability with the

von Neumann method.
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2.5 The Relation Between Stability and Convergence - the Lax-Richtmyer
Theorem, ‘

We will restrict our discussion to linear initial value problems
of the form

- | u = u(x,t) g = g(x,t)
3t - Ww +8
u(x,0) = £(x)

We assume u is defined over some region in space. Space may be more
than one dimensional, for example, a plan€or a cube in which case x is
a vector, x = (Xl’ XZ’ x3). We assume a discrete mesh is imbedded in
our region, Thé pints of this mesh are denoted by xj(h), or just Xj'
The parameter h is used to denote the mesh. We will be a little loose
about exactly how to define h, in some sense h must determine the mesh
and as h approaches zero, the mesh spacing must also approach zero.

We will let u? denote the value of u at the jth mesh point on the n
time level. Then iug} where n is fixed and j ranges over the mesh is

a finite dimensional vector. Our finite difference scheme can be

represented as a family of matrix operators
n+l _ n
U = LhU + Gh

n
where U and Gh are vectors. We have assumed, of course, that our
finite difference scheme is linear. In many cases, perhaps most, the
problems one puts on a computer are non-linear. We will assume that

Lh does not depend on the time level n. This can happen only if the

original differential operator L in the equation

du _
St = Iu + g
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is independent of the time t. Next we will give some examples to

indicate the diversity of problems which can be placed in this framework.

We have already discussed the heat equation on the interval

0 £ x £ 1, namely

3 32

— i (J —
2

ax

[or
c

t

We assume that the values of u on the boundary are given by u(0,t) = Ao(t),
u(l,t) = Al(t) where AO and A1 are known functions. Here xj = jh,
0<j=<J, h=1/J. The order of the matrix Lh is J-1 and we use the

same finite difference scheme as in section 2.1

n
1-24 K 0 Ul p,AO(tn)
i 1-2y v 0 0
L= o " 1-24 u O Ut = G = 0
) 0
0 0 1-2 vl AL (t)
e e s e e s e e e e w 7 1] wa, (t
L2
where y = oAt/Ax~ . Note that we have picked up an inhomogenous term Gn

because of the boundary conditions. The difference equation centered

. . n+l _ .n n_ ,mn n, _ .n _ n ,
at j = 1 is U1 = U1 + p,(U2 2U1 + UO) pUZ + (1 2u)U1 + uAO(tn) since
n
UO = AO(tn).

The heat equation on a square leads to a similar matrix equation.

The differential equation is



2.48

N
=
i

su 32y 32 = u(x,y,6) ulx,y,0) = £(x,)

——=—+——2

We assume that the boundary conditions require u to vanish on the sides
of the square. The finite difference scheme is basically the same as

in the one dimensional case, We let xj = ji/J, Yy = k/K, 0 < j < 7J,

n
0 < k = = . + .
K, ujk u(xj, yk, tn) Then the difference scheme is
n+1 n - n n n ” . n n n
= \ - ! ! | -
Uik = Ui * ol Vs, s F Ve 0Lk T U T Y k-1

where Mo ='At/Ax2, uy = At/Ayz. Usually we have used a single index j
to label our mesh points. Here we have used two indexes, j and k. We
could use a single index r to label the mesh, that is (x,y)r = (Xj’yk)
‘where r = j + k(J+1) + 1. Thus 1 < r < (J+1) (K+1) since 0 < j < J and
0 £ k £ K. We would use a somewhat different algorithm to obtain a

single index for the unknown wvalues U, , since we know the boundary values

jk
and thus the range is 1 = j = J-1, 1 £ k £ K~1, We would define our
single index r by r = j +(k-1)(J-1). Therefore, 1 < r < (J-1)(K-1).
The ordering of the components of the vector i given below is simply
an ordering by increasing values of this index r. We form the vector
ot by ordering the terms U?k varying first j then k. Consider the case
J = K = 3 for which there are only four unknowns, the other values of
ujk being zero because of the boundary conditions. The mesh and

difference scheme are then
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[__(1,2).__~____.(2,2y__

!__(1,1) .m_____,.(2,1)__;.

n .
Uso 0 U o 1-2ux-2uy

In general L.h is a block tridiagonal matrix of order (J-1) x (K-1) of

the following form

Uy, c D 0
U, D c D
L 0 D c D

vt vy, Ly =
Ui, 0 D c D
U en 0 D c
Vi1, %1
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The matrices C and D are square matrices of order J-1 given below

@ =1-2y - 2uy)

o 0 p,y 0
My @ By 0 0 p.y 0
0 by @ My
C = s D = = p,yI

Problem 2.5-1. Compute the eigenvalues, eigenvectors and the
”LG norm. of Ih’ HLh“Z' Also, compute the maximum norm “Lhﬂm. What
condition on By and py will insure stability of this difference scheme.

Hint: Try eigenvectors of the form wjk = sinnrxjsinﬁsyk, lgr < J-1,

A system of equations can be treated in the same fashion. For

example, consider the wave equation

d u‘_ 2 37y u = u(x,t)
2 ¢ 2
ot ox -l <sxs1 (2.5-1)

The initial conditions are
u(x,0) = fl(x)

2(x,0) = £,
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We assume periodic boundary conditions .

u(x+2,t) = u(x;t)'

=
n
P
A
g

fi(x+2).= fi(x)
This is not in the form

ou _

5c - LW

since we have a second order time derivative. However, the wave equation

is equivalent to the system of equations

-a-i = C é_Vl ‘V(X,O) = fl(x)
ot ox X
w(x,0) = £.(x) == [ £ (T)dr
§—w. - c i‘.’. H 3 c 2( )
ot ox -1
A difference scheme for this system is
Vn+1 - 1(Vn + y" ) + L(Wn - Wt ) k= 113
j RS -1 273+ Ti-1
=J < 3<J
A TCAE S GAUD IR U Gap
J Jri J J J- A =cht/Ax

Let the vector U™ be defined as below, then the matrix Lh for this scheme

is as given below. The order of the matrix is 4J,
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ol ol

vl 0 0 % '% 0 0 o0 0.. .0 0 % -
W 0 0 % % 0O 0 0 o0 0 0 -%
v 22 0 0 2 2 0 0 0 0 o
W L2 2 0 0 22 0 0 0 0 0
Un= .Lh=

Sal |3 E oo P40
n

-1 220 oA 20

Problem 2.5-2. For the above difference scheme determine the eigen-

vectors and eigenvalues of the matrix Lh' Also, compute the maximum norm
of 1, I1.-

We will obtain yet another example of a finite difference scheme by

dealing directly with the wave equation.

We will approximate the second order derivatives directly to obtain the

following difference scheme

n+1 1

g™ Lo 4 P =% L - 2 4 U )
j ] j j
-J <3< J, A =cAt/ix

We will assume periodic boundary conditions as before. We can write this
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scheme in the following matrix form

Un+l = ih vt - Un—1 where ﬁh is a matrix of order 2J (2.5-2)

Note that we have 3 time levels involved here, instead of two. In order
n n n-1

to compute U fl, we must already know U and U . Therefore, in order

to start this scheme we must know the values of U0 and Ul.‘ These values

can be obtained from the initial conditions in equations (2.5-1) as follows.

0 _ _ | ]
Uj fl(xj) since u(x,0) fl(x) (2.5-3)
1 0 . du
and Uj = Uj + Atfz(xj) since SE(X’O) = fz(x)

Equation (2.5-2) is not in the form Un+1

LhUn. Our theory of difference
scheme will apply only to schemes which involve two time levels, n+l

and n. However, we can change variables and write equations (2.5-2)

in the two level form. Let Wn, 1 < n, be a vector of order’'4J defined as

follows
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: n . n n-1
We may write W as the composite of two vectors U and U each oZ

order 2J, that is

n+l- , : n

where Ih is a matrix of order 4J formed by the submatrices ih and I

which dre of order 2J.

o }\.2 O . « o o o -XZ -1 0 O
-Xz o )\2 O o o o e 0 0 -1 0 0
0 'Kz o Kz S ¢ 0 0 -1 0 0
’ 2
Lh = xz 0. . . 0 -\ o 0. . -1
1 0 o e . 0 0. . . 0
0 1 .. e . . . o . 0 0
0 . . 1 0 . 0
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: . ;
Note that W~ is known since U1 and U0 can be determined from the boundary
conditions, as shown in equation‘(2.5-3). Thus, we have a marching

scheme
n+1 7 n
W = LhW 1 <n

which falls within our standard format, except the vector W now approximates

the solution u(x,t) at two time levels.

Problem 2.5-3. Find the eigenvectors and eigenvalues of the matrix
ﬁh given in equation (2.5-2). Show that these eigenvalues A lie in the

range - 2 < A < 2,

Problem 2.5-4. Let Xk 1 < k £ 2J be the eigenvalues of the matrix
ih of equation (2.5-2). Let Ih be the composite matrix defined above,

that is

Show that the eigenvalues of Lh are a and o_, each repeated 2J times

where @, and o_ are the roots of az- Xk + 1 =0,

A=4

or « —3- « Is the scheme Wn+1 = LhWn stable?

i
N g
H

Hint: The eigenvalues Ak of ﬁh are distinct and thus have linearly

(k)

independent eigenvector U . Show that the eigenvectors of Lh are
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W(:) = o, = % +
k
5 (0
The purpose of the above examples is to show that a wide variety
of finite difference schemes fit into the format that we have been
discussing. Now we are ready to move on to a slightly more formal

definition of the concepts of truncation error, stability and convergence.

We assume that we have an initial value problem represented by
a partial differential equafion defined over some spatial domain. We
assume (without loss of generality) that the initial conditions are
given at time t = 0. Usually, we will require our initial value problem

to be of the form (first order in time)

loj

2= L(u) + g

o/
(a4

u(x,0) = £(x)

Here the point x is restricted to lie in some region of space (space may
be multidimensional, thus x = (xl, Xpy Xgs oee xn). The operator L is
formed of partial derivatives with respect to the spatial variables.

We require L to be‘linear, that is L(alu1 + a2u2) = alL(ul) + azyL(uZ).
Many practical problems are not linear and the nonlinearity can cause
considerable difficulty. In addition, there will usually be some
boundary conditions imposed on the solution u. We will not attempt to

give a precise definition of an initial value problem. The reader
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can refer to the book by Richtmyer and Morton for this. We will be a
little vague about specification of boundary conditions and also the

number of continuous derivatives we require of our solution u.

We will assume that a finite mesh is laid down on our domain.
Actually, we havé a family of such meshes, each mesh being labeled by
the value of a parameter h. We compute an approximation U? to our
solution at these mesh points xj; The vectors U are computed by a

marching procedure from the relation
n+l n n
U = LhU + G

: . . n ; .

The operator Ih is a matrix. The vectors G are known functions which
n 0

may depend on h but not on U, The starting value U 1is obtained from

the initial conditions. We will assume the time step At is a function

of the parameter h. We also assume that

lim At = O
h-0

Definition 2.5-1. Truncation Error The truncation error
associated with a solution u of the differential equation is obtained by

. . : n
substitution of u into the difference scheme. We let Th denote the

n

h is a family of vectors,

truncation error. We use the subscript h because 7

n n
are T, , correspond-
h h,j

ing to the mesh points xj. The truncation error is defined by

one vector for each value of h. The components of T

W Lhun + ¢+ AtTE
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where u? = u(xj, tn) is the vector defined by the solution u.

Definition 2.1-2. A Consistent Difference Scheme We say our

scheme is consistent if for all sufficiently smooth solutions u of the
differential equation the truncation error TE approaches zero with h.
By sufficiently smooth we will usually mean the solution must have

all its derivétives continuous up to a certain order. The estimates

of truncation error will usuaily use a Taylor series expansion which
requires certain derivatives to be continuous. Usiﬁg the maximum

norm, we can state our requirement on T’as follows. Given ¢ > 0 and‘
T > 0, there is a § > 0 such that HTE“@ < ¢ for all h < § provided

nAt < T. This means that for each mesh point xj HTE’jH< €. Note that

we are requiring T to approach zero uniformly over the mesh and also

uniformly in time.

Definition 2.5-3. A Stable Scheme We say a scheme is stable if

there is a constant M such that HLEH <M if nAt < T. Note that this

must hold for all h and n provided nAt < T. We have not specified the
norm here. Usually, we will use the ”L2” or Euclidian norm HL;HZ;however,
we may use any norm, For example, we might use the maximum norm HIEH@.

= -

A scheme may be stable in one norm and unstable in another. LStetteri
d

Definition 2.5-4. A Convergent Scheme We say a finite difference

scheme is convergent if for all sufficiently smooth solutions u of
the differential equation the corresponding solution (one with the same
“initial and boundary conditions) of the finite difference scheme converges

to this solution u.
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That is

lim HU? - u(x,t)” =0
b0 J
X,oX

t -t
n
This definition also leaves open the specification of the norm. We

require the limit to be uniform, relative to x and t, that is for any

€ >0 and T > 0, there is a & > 0 such that

HU? - u(x;t)H < g

provided h < 6,lxj-xl < 6,|tn - t|/< 8§, £t =< T, This must hold independent

of x and t providadt = T.

Next, we treat a fundamental result - the Lax-Richtmyer theorem.
This theorem tells us that stability and convergence are really the

same property.

Theorem 2.5-1. If a consistent finite difference scheme is stable,
then it is convergent. The converse is also true (convergence implies
stability) although we will not offer a proof (see the book by Richtmyer

and Mortomn).

The proof goes as follows. Suppose we choose an initial function
f(x) and let u(x,t) be the solution of the differential equation for this
initial function (u(x,0) = £(x)). LetvUE be the finite difference scheme

corresponding to f(x), thus



2.60

nHl _
v = LU 4G
Y

Uh =

This means that for a given mesh (denoted by h) we have a vector

U ., 0= 3j=<73, UO .= f(x.)., We will assume that the solution u of
h:J ' h’J 3

the differential equation is in the class for which the consistency
condition holds. For u in this class the truncation error approaches
zero as the mesh parameter h goes to zero. Convergence only holds

for initial functions £, such that the corresponding function u lies

. . ‘ n .
in this class. If we let T, denote the truncation error then we have

h
n+1 n n

vt = LU+ 6

TR AT A

Now we let ez denote the error on a particular mesh, that is
n n n n
e, .,=u, ~U ,=ulx, t) -0 .,
h,i 3  "h,j i’ w7 Uh, .

Then, by combining the above equations we have

n+l n n
ey = Lh e + AtTh
' 0 n 0 _
Note that uj = f(xj) = Uh j? thus e = 0. Also, note that we have made
b

essential use of the linearity of the matrix operator L.h in deriving the

s n . . .
expression for the error vector e - By using the above equation recursively,

starting with n = 0 we obtain
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_ 0
ey = Lheh + AtTh
2 1 1_.20 0 1
= t =
e Lheh + A Th Lheh + AtLh'rh + AtTh
3 _ 2 2 .30 20 1 2
e = Lheh + AtTh = Lheh + At[?hTh + L.hTh + Th]
It is clear that the general formula is (note that eg = 0)

n _ n-1 0 n-2 1 n-1
ey = At[?h' Tt Lh Tt oees + T }

Now using the properties of the norm [|AB|| < ||} |[Bl|, ||A+4B]] = lall + Us|{,

we obtain

el s aefe T W+ A ek e e

Since our scheme is consistent, we know that we can make HTEH small if we
make h sufficiently small. We first choose a time limit T. Then for any

e >0
Iyl < e

provided h < § and‘kAt < T, Since our scheme is stable
HLEH <M if kat < T,

Therefore our inequality for eE becomes

lepll = stMne -
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Bqt for nAt = T,
el = Mre
We can rewrite .this as
n .
o - uGe e = e

provided h < §, nAt < T.

Then we have
g - w0 s o - uGxg,e) |+ fluteghe) - w6
U - wCx, 0] = MIe + fluteg,e) - ux,o)]

This inequality makes it clear that

hal

lim U . = u(x,t
Lim 1 5 = o060
X ,5X
t -t

n

Therefore we have convergence.



2.63

2;6 The Relation Between Stability and the Growth of Roundoff Error.

Roundoff error is caused by the finite word length on a computer
(60 bits on the Control ﬁata 6600) . Truncation error occurs when
derivatives are replaced by finite differences. It would be better to
call this discretization error, as does Henrici [1962], since it is
caused by a discrete approximation to a continuous problem. For finite
difference solutions to partial differential equations, the roundoff error
is usually much smaller than the truncation error, thus roundoff is
usually no probiem (on a machine with a 48- or 60-bit word length). In
this section we will estimate the roundoff error for the finite difference
approximation to the heat equation which is described in section 2.1. First
we will discuss the roundoff error as it occurs in the basic arithmetic

operations on a computer.

Most computers store numbers as a sequence of bits; that is, a

sequence of zeros or omes. Then a number may be represented in the form

where Xy is either zero or one and S is an integer. On the Control
11 11

Data 6600 t = 48 and -2°° < § < 277, 1Instead of stating our analysis
for a binary machine, we will assume we have a decimal machine where the
numbers are stored in the form

t

10°x % x, 10D
k=1

A
O

where Xy is an integer 0 <x
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The theory is the same for a binary machine, but it is more difficult
to describe the binary case. We will first assume we have a 4-digit
machine with a 2-digit'exponent. Some sample numbers would thus be

(t =4, =99 <5< 99)

1.0 = 0001(+0)

0.1 = 0001(-1)

1.25 = 0125(-2)
0.0001414 = 1414(-7)
123400 = 1234 (+2) .

Now consider the’errof in addition, subtraction, multiplication, and
division. We assume our macﬁine has an "accumulator register" of length
2t (eight digits in our case). The arithmetic operations are to be done
in this register. For example, to add a = 12.12 = 1212(-2) and b = .3456 =
3456(-4) we would first place the larger number a> in the register, left
adjuéted‘so that 4 zeros are added to the right. We then have in the

accumulator

12120000(-6)

We then shift the decimal point in b so that its exponent matches the
accumulator, thus b = 00345600(-6). We then add these representations

of a and b to obtain an 8-digit number.
12465600 (~6)

In order to store this number we must reduce it to 4 digits. We denote
the result of an exact addition by a+b. The result of our computer

addition we denote by f4(a+b) which stands for the floating point sum
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of a and b. We obtain fZ(a+b) by reducing the 8-digit nuﬁber to 4
digits, rounding if necessary. In the case above we thus have

fi(atb) = 1247(~-2). We have not stated exactly how our computer performs
arithmetic operations, nor do we intend to. We merely want to make the
following estimates plausible. We assume that the roundoff error is

such that the following relations hold. These relations will be true

for any computer, although we might have to enlarge the upper bound for
¢ somewhat and change to a binary or hexadecimal representation (then we
might have fA(asb) = (ab) (1 + 92 °) with |p| < %). If our machine had

an accumulator of length t, we would have to change the first relation to
£4(axh) = a(l + g, 10°% + b(L + 9, 1075

where |¢i| < 5,

Qur assumed bounds for the roundoff error are the following:

£4(atb) = (axb) (1 + 10”5
£4(ab) = ab(l + ©l0 0) lo| =5
£4(a/b) = (a/b) (1l + 10 5)

For a more detailed discussion of rounding error, see the books and papers

by Wilkinson [1963].

Now we are ready to consider the roundoff error in our finite difference
solution of the heat equation. We let Un denote the exact solution of
the finite difference equation, starting with U? = f(xj), 1< 3<J-1,

then
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n+l n n n n '
U, =TV, + U, - 2U, + U, > 1<jsJ-1
i g <J+1 37 -1 ]

n n : 2
Uy =U; =0, w = oAt/px" rx =1/7 .

We let V" be éhe solution obtained by using floating point arithmetic
on our computer. There may be some difference between UO and V0
because of errors made in the»evaluation of f(xj). ‘The value of V"
will depend on the order in which the arithmetic operations are done

on the computer. However, our estimate of the error (the difference
between U" and Vn) will be independent of this order. We first look at
the result of an exact compufation of De = V?+l - ZV? and the computer
floating point computation Da = fZ(V?+1 - ZV?) (we really should write
this fL(V?+1 - fz(ZV?)) but the latter is too clumsy). We want to
estimate the difference between the exact result De and the approximate

result Da' Using the estimates for the error in the individual

arithmetic operations, we obtain an estimate for the composite result.

_ f(un _ ,on -t -t
Da—éj-i-l 2Vj-1 <1+cp110>><1+cp210>

We have I@il < 5, and we will assume t = 3 so that |mi 10-t| < .01,

Then
D, = er.‘+1 - 2v3.‘_1 - 2v’j‘_1 o, 107" + ng‘ﬂ - 2v?_1 - szJ.‘_l <p110't> 3,107
If we 1etr\\VnHoo = Max lV?I, then
15j<J-1
D, = Vi~ g VL

where |n| < 25,1 x 107%,

t
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Problem 2.6-1. Find an estimate for the roundoff error in the

1

computation of Vn+ from V. Show that

I n n n n> ‘n » n ‘n n

- = - \
£4\V; +u <Vj+1 25+ vj_1> Vi tu <Vj+1 2v, +Vj_1> + gl
where |§l < 80 x 10-t (assume 0 <y < 1),

Note that in the above problem we compute only the error caused by
. . th st .
the arithmetic used to go from the n to the n+l stage. There is
. n . . ‘ n n

already some error in V ; that is, a difference between V and U . We
must now estimate the growth or accumulation in the error. We do this
from a knowledge of the error committed at each time level. The method
is the same as that used to prove convergence in section 2.1. There we
knew the truncation error at each time level, and we wanted to compute
the accumulated error. We know stability has a profound effect on this

error growth. We have the following equations

n+-1 n n n .n '
U, =U, + U, - 2U, + U,
' M(J'*‘l h J->

+

n41 ; n | n n n n
V. =V, v <§j+l 2Vj + Vj-é) + ej

-t+1

A

§HVnHm where g = 8 x 10

Now suppose we are able to compute a bound for'HVnHm if nAt < T,

HVnHOo < M. Then |én| < ¢, where EM = ¢, We will find such a bound

shortly, but first we will estimate the error E? = V? - U?} We will

again use the maximum principle as we did in section 2.1. If we subtract

the equations above we obtain
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n+1l n n n n n

E. =E, + E. - 2E + E, + e,

i g <J+1 i J'1> i

n+1 n- n n n

or E, = (1l - 2WE, + . + . + ¢,
P ML I T

We now assume y < % and take the absolute value of both sides to obtain

n+1 ' n n n n
‘Ej ‘ < (1 - Zu)lEj\ + ‘J'_‘Ej'f'll + F“‘Ej_ll + ‘eJ‘
If we let en = Max |E?\ we obtain
1<j<J-1
en+1 < en + 8

By induction we thus have
n 0 ~
e < e 4 ne

Note that e = HUn - Vn\\oo is a measure of the error growth in terms of
the initial error eO. For most problems this number eO + n¢ is very
small compared to the truncation error. On the Control Data 6600, we
could take t = 14, thus ¢ = 8 x 10-13 x M. vTherefore n could be quite
large and still ne would be quite small. For this scheme one can obtain
a better result; both the truncation and roundoff error are bounded by

a constant (at a fixed Ax) which does not grow with n. That is, convergence
is uniform in time. We need not add the restriction nAt < T. The reason
this occurs is the fact that the norm of the difference operation LB is
bounded by HLhH <1 - 0(at). Thg difference operator is strongly
dissipative, as is the differential equation. Heﬁce the errors are

dissipated to zero as time advances. Therefore we may run as many time
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steps as we wish without a disastrous accumulation of error. We will not
prove this statement [see Gary, 1966]. We leave the computation of a

bound for HVnHoo as a problem,

Problem 2.6-2. Assume

n+l n n n n n
V. S =V, o4 p (V. -2V, +V, + e 1<3i<J-1
j g e (J'l j J+1>. j ]
. n n n n
with Vg = vj =0, pw<k, |ej| < g|[v7)l_» O =g. Show that

v7, = a0Vl = " 0,
Hint: Use the maximum principle to prove

[l

s () T

N g

Now proceed by induction.. To show (1+§)n s eng, first show 14€ < e

(remember 0 < €).

Examples: 1) Stable run n - « inhomogeneous heat equation

2) p = .55, £f(x) = sin mx

To provide an example of the effect of roundoff error, we solved the
heat equation on the Control Data 6600. We used the difference scheme
given by equations (2.1-3) with the initial function £(x) = sin mx. If
we neglect the effect of roundoff error, we can then solve the difference
scheme to obtain U? = M" sin nxj where M = 1-4psin2(nAx/2). We used

40, therefore Ax = 0.025 and M = 1 - cszt + 0(Ax3). We used

J

I

w = 0.55 so that the difference scheme is not stable, However 0 < M < 1,

and therefore lim U? = 0 if we do not consider roundoff error. The scheme
n—)w .

will converge for f£(x) = sin mx even if y > %. However, we have
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neglected the effect of roundoff error. This in effect iﬁtroduces a

high frequency perturbation into the equation (why is it high frequency?).
This perturbation will grow since y > %. A perturbation in the initial
conditions of the form f(x,) = ¢ sin n(J-1)x, will grow to an amplitude
given by e[} ; 4y, sinz(ﬁ(J-l)/ZJ)]n = Mg-l' In figure 2.6-1 we show

the result of this computation. We plottéd the solution for various
values of T = nAt. The effect of roundoff error is clearly evident for

T = 0.060. To reach T = 0.06 requires about 175 time steps and the

n

corresponding value of MJ_1

is about 0.05. An initial perturbation of the form ¢ sin rr(J-l)xj with

is 4 x 1015. The amplitude of the perturbation

e =1, x ].0-17 would grow to this amplitude after 175 steps. The
Control Data 6600 uses a 48-bit mantissa so we might expect a perturbation
of,2“48 =4 x 10-15. Thus our growth rate is somewhat less than the

predicted maximum. This we might expect due to statistical fluctuation.

The numbers seem to be reasonable.

Problem 2.6-3. If you make an attempt to solve the heat equation
using the scheme of equations (2.1-3) with J = 100, £(x) = sin 2mx,
w = 0.6, how many time steps would you expect to run before the roundoff

error exceeded 10 percent?
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3. THE CONSTRUCTION OF FINITE DIFFERENCE SCHEMES

In this chapter we will consider several of the standard methods
for the construction of finite difference schemes. Most of these schemes

can be explained by their application to the heat equation

du _ azﬁ
at‘ca‘z
X

du . du _
ot te 3x 0

We will consider some schemes which apply to problems defined over multi-

dimensional spaces such as the heat equation

2 2
3_11=G é—g+-a—2 , ' u = u(x,y,t)
ot 2 2

Ox dy

We will defer to chapter 4 the treatment of systems of equations such as

the wave equation

ot ox
., 2u
ot ox

However, the schemes discussed in this section can, in most cases, be
applied to such systems. We will also defer to later chapters complications

due to boundary conditions or nonlinear terms in the differential equations.
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3.1 The Leapfrog Scheme

We will illustrate this scheme as it applies to the equation

ou ou _
5t + c i 0.
We will assume periodic boundary conditions u(x+2,t) = u(x,t), -1 < x < 1,
with initial condition u(x,0) = f(x). We will use a centered difference

in space to approximate du/dx (we use the usual notation ut = Ju/dt and

u = du/dx). Then we have

n n

u - u 3
n _ _jit+l i-1 293 u
(uX). A% + Ax ;;3 (ﬂ,tn), Xj-l <7 < Xj+l

This can be shown by use of a Taylor series with remainder (see problem 2.1-1).
. y 2

We thus have a second order truncation error; that is, T = 0(Ax"). 1In

order to obtain a finite difference '"marching scheme' we might approximate the

time derivative as follows

n+l n

n u, - u, At aZu
(ut)j = e = i +—j;'g:g (xj,g) tn <E < tn%i

If we substitute these expressions for u, and u into the differential

equation we obtain

n+l _ mn A (fm _.n _ _
Uj = Uj > <%j+1 Uj_i> A = clt/bx . (3.1-1)

If we start with U? = f(xj) we can then compute U? for all values of n
and j by "marching" forward. However, in section 2, we showed that this

scheme is not stable; it will not work. We will have the catastrophic
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growth of error at high frequency which is typical of unstaEle schemes.
Even if this scheme were stable, there would still be a disadvantage from
the standpoint of accuracy. An explicit scheme for a hyperbolic equation
will usually diverge unless the mesh ratio \X\ is less than one (see the
discussion of tﬁe Courant-Friedrichs-Lewy condition in section 4). This
means that At = 0(Ax) and therefore the truncation error due to the u,
term is 0(Ax) and due to the ux‘term is O(sz). Of course, this
imbalance is due to the use of a centered difference for the u term and
a forward difference for the u_ term. Suppose we use a centered difference
for the u, term

un+l _ u?-l Atz a3u

n_ _j i

Our finite difference scheme would then become

n+1 n-1 n n o
U. =T, - A(U, - U, 3.1-2
] ; ( 41 J-l) _ ( )

This is still a marching method, except we need to know the values of Uj
on both the n--lSt and nth time levels in order to compute U?+l. If we

knew the vectors U0 = {U?I-J < j < J} and Ul, then we could compute

U3, U4, ... U™ ... in that order. We obtain the n+1St level if we

leapfrog across the nth level from the n-ISt level.

Note that we are only given U? = f(xj) from the initial conditions.

. 1
In order to start this scheme, we must somehow compute the U . We could

simply set U? = U?. Since U§ = U? + AtUg j + O(Atz) this would introduce
” 4

an error which is first order; that is, 0(At). This is sometimes
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satisfactory because our system may be primarily depéndent on an
external driving force rather than the initial conditions. This means

that any error in the initial data will have a small influence on the result,

Problem 3.1-1. Consider the heat equation with a driving function

2
Q- §_2 + sint sinmx
ot 2

3%

u(x,0) = £(x) = Zaksinﬂkx

Find an expression for the time T such that the effect of the initial

conditions is less than ¢ for t = T. The solution will depend on the a, -

We could use our unstable scheme to compute Ul.
1 _ A _ 0
U. - U 2 (U Uj-l)

This will cause some growth in the high frequencies, but we only use this
for one step so this growth will be very limited. This gives us U1 with.
an accuracy O(Atz) which is consistent with the accuracy of our leapfrog
scheme. We know the error in the integration of a differential equation

by a stable difference scheme is proportional to the truncation error T.

That is, if
g 4 per® I =
1 0o_ 0
"t - LhUn, U=y s ()

then Max HUn - unH

nAt<T

< Mt .
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Thus if 7 = O(sz), then the error HUn - unH is O(sz). However, the
error in a single time step is 0(AtT), rather than 0(t). The following

problem should illustrate -this.

Problem 3.1-2. Suppose we have a stable finite difference scheme
with truncation error 7 = O(sz) (that is, there is a constant M which may
depend on the solution u but not on Ax such that HTHH < MAx2 if npat < T).
Suppose we make an error in the initial conditions so that HUO - uOH = O(sz).

Show that the error is O(sz), HUn - unH = O(sz).

Note that if U0 were exact, UO = uO, then the truncation error in U
would be HUl - u1H = O(AtAXZ)Arather than O(sz). That is, we can tolerate
an error O(sz) in a single step, but if this error occurs in all steps,
then it must be O(Atsz) in order that the final error be O(sz). This
is exactly what one would expect since the numbef,of time steps is bounded
by T/At. Usually the error is approximately proportional to the number of

time steps, but not always (see problem 3.7-3).

We will now consider another method to compute Ul in order to start
our leapfrog scheme, If we have a complicated differential equation to
. 1
solve, we may not care to write a separate program to compute U"., We

would like to use the same leapfrog scheme which computes Un+1 from

Un-1 and U". This could be dome as follows. Choose p such that p = At2

~0 ~0 0
for some positive integer s. Define the vector U by Uj Uj = f(xj),

-J £ j < J. Use the leapfrog scheme to compute U” for 1 < v < s,

Start with the time increment equal to p and double this time increment

at each step.

v

Ny 02 ~(v-1) "(\)-1)>

) =U, - =2 (U - U l<vss
hi jo2ax j+l j-1
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A B R . ~ a ) \Y
Then the vector 0¥ is an approximation to u(x,tv) where tv = 2"p. Thus

ns . . . 1
U 1is an approximation to Ul. Once we have U, then we can use the

leapfrog scheme to compute. the vectors Un, n > 1. Note that the error we
make at the first step is 0(p) and therefore if we choose s so that 27% = at
a(v)

. ., 2 . . .
then this error is 0(At”). The truncation error T made in computing U

for v 2 1 is also O(Atz), so our final error in U1 = ﬂs is O(Atz).

Now we are ready to consider the stability of the leapfrog scheme given

by equations (3.1-2). The truncation error we leave as an easy exercise.

Problem 3.1-3., Compute the truncation error for the leapfrog scheme
given by equation (3.1-2). Assume the mesh ratio is bounded by |X| < 1.
Show that the truncation error is O(sz), |T| < Msz, and find an estimate

~for M.

We will study the stability by use of the finite Fourier analysis
(note that we have assumed periodic boundary conditions). We assume UO
and U1 are given and u" is computed from equation (3.1-2) fér nz= 2.
The finite Fourier representation of " is
5

im
=z 2™ e JT<j <3

. ' . n .

(see section 2.4). We must compute the coefficients aé ). If we substitute
. n . . '

the above expression for U into the finite difference scheme and equate

terms with the same exponential factor (that is, the same value of k) we

obtain
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k

5 a(n+1) e1rrkx -5 {81(:1-1) _ )\Gikax _ e-irrkAx> al((n) }einkx
k k

(n4l) _ (1) _ ., (n)
. a 2i) sinmkAx ak

We can solve this two-term recurrence relation in the form

(n) _ n n
ak - Ak[9+(k)] + Bk[B_(k)]
where Bi are the roots of the quadratic

22 + Ziykz-l Yy T Asin kmAx

Thus B _ = iy, £ Jl - Yik (see section 1.6). The values of a£0) and

aél) are known since Uo and U1 are given. Then Ak and Bk are determined

by solving the 2X2 system of equations

- .(0)
Ak + Bk ak

_ D
A8+ BB (1) =a

If \Ykl < 1, then B+ % B_ and the solution is possible. If ‘Bi\ <1,

then

1ai™] < [a ] + |8,] .

We give the remainder of the proof of stability as an exercise.

rd
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Problem 3,1-4. Show that there is a constant M independent of n

(n) (0) (1 _ 0 .2
and Ax such that ‘ak | < M|ak ‘f Assume a ’ o=a + Atbk + 0(AL7),
-J £ k < J, where bk is some complex vector. Why is this a reasonable

assumption?

This completes the proof of stability under our assumption of periodic

boundary conditions since

151 2 )

-

\\U“llz =55 Jél

Note that our proof of stability breaks down if \x| > 1 since we no longer
have ‘Yk| < 1. It is not difficult to show that the scheme is unstable

if |A] > 1.
We could try the leapfrog scheme on the heat equation. The scheme
for the heat equation based on a forward time difference is

n+1 n n n n 2
U, = U, + wiU, - 2U, + U, = oAt/Ax
j j pb<J+1 ] J-1> W /

This scheme is stable and the truncation error is 0(At) + O(sz). Since
At = O(sz) we would gain little if we made the truncation error
O(Atz) + O(sz) since in this case O0(At) + O(sz) = O(Atz) + O(sz) =

O(AXZ). In fact the leapfrog scheme is unstable for the heat equation,

Problem 3.1-5. Show that the following scheme is not stable; take

W= GAt/sz to be constant.
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U'gl+1 - U‘;}-l + 2“<U?+1 - 2U‘J} + U‘j‘_l> 1s<j . J-1
Ug = f(xj)

o=l (0, - af el )

Ug = US‘ =0

‘Sometimes it is useful to have a difference scheme for the heat
equation which is centered in time. The reason will be apparent in
section 3,7 when we discuss dissipative difference schemes. Such a

centered scheme is the DuFort Frankl scheme.

n+1 n-1 n n+1 n-1 n
U, = T, + 2ul\U. - U, - U, + U,
j i ”‘<J+l i i J-1>

Problem 3.1-6. Show that 'the truncation error for the DuFort Frankl

2
scheme is O(Atz) + O(sz) + O[Kﬁi ]. Show that the scheme is stable for

all values of y.
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3.2 Construction of a Difference Scheme by Use of a Taylor Series Expansion

We will illustrate the method by derivation of the Lax-Wendroff scheme
for the simple hyperbolic equation u, + cu_ = 0. If we differentiate this

scheme we obtain

2u_ _ 2%u _ 23
at2 atox 3%

Now consider the Taylor series

: 2
n+l _ _ At 3
uj = u(xj,tn+ﬁt) = u(xj,tn) + Atut(xj,tn) + > utt(xj,tn) + 0(AtET)
From the differential equation we have u_ = -cu , u,_ = c2u . Therefore
, t X tt XX

we can replace the time derivatives on the right by space derivatives

o2 0 - ateu (x t)+£2-Aﬁu (x.,t) + 0(atd)
j j xji*n’ 2 xx 3§’

We know u = (u - uj_l)/ZAx + O(sz) (we assume the solution u(x,t)

j+1
is sufficiently smooth to permit this error estimate). We have a similar

expression for Ut Thus we obtain

2
n+l _ o n_Afn _ n A (n _,n n )
Y3 % 2<1j+1 “j-1> "'TG‘J-H Zuj + uj_1> + 0(AtAx")
+ O(Atzsz) + O(At3) .

Using periodic boundary conditions we then obtain the following difference

scheme.
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) .

n+l n A-on n A n n n ) :
- - - - — - - <

U, g 2<Uj+1 UJ._1> + &5 @jﬂ 205 + Uj_1> J<ji<J

0

Uj = f(xj) : A = cAt/Ax (3.2-1)

n g

Uj:EZJ - Uj

As always, we have the fundamental question of stability before us.
Since we have a linear difference scheme with constant coefficients and
periodic boundary conditions, we can answer this stability question by
consideration of the Fourier modes. We let U be represented by

n n Lrrkex

vy = Mk 1" e J

For notational convenience we denote [M(k)]n by Mn, here we mean the

t .
nth power of M and not the value of a function at the n b level, that is

not M(n). Substituting into equation(3.2-1) and dividing out the
term Mne1Trkx we obtain
M=1- i\sing + kz(cose-l) where 8 = mkAx (3.2-2)

If we can show that this amplification factor M is less than 1 for all 8§,
then we know our difference scheme is stable., We have
|2

|M 1+ 2x2(cose~1) + )\z(cose-l)2 + hz sin2 6

1- )\z(l-cose)2 (1-K2)

If \xl < 1 then lM‘Z < 1, since xz(l-xz) < % and (1-cose)2 < 4. Therefore

the Lax-Wendroff scheme is stable provided lk| < 1.
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Suppose we had based our difference scheme on only the first two

terms of the Taylor series expansion for u(x,t).

n+l n 2
u, =u, + Atu _(x,,t ) + 0(At
J J (OepED) 008
Using the relation u, = -cu we would obtain

ntl _ . _m A (.0 _
Ui 7Y 2<”j+1 Uj-1>

We know this scheme is not stable. Therefore the Taylor series method

may not produce a usable difference scheme.

Suppose we attempt to use a Taylor series to produce a scheme for

the heat equation such that truncation error is fourth order, T = O(Axh).

By differentiating the equation u =ou _, we obtain u, =0 UXQ' If
we substitute into the Taylor series we obtain

n+l n Atz 2 3

Uj =;Uj + Atcuxx(xj,tn) +-—§— o uX4(xj,tn) + 0(at™) .

2
Suppose we assume p = oAt/Ax is to be held constant, then At = O(sz).
In order that the truncation error T be fourth order T = O(Axa), we must

approximate U with error O(Axa) and u , with error sz,
' X

Problem 3.2-1. If u(x) is a sufficiently differentiable function,

show the following difference approximations are valid.

-u, + 16u1_

(2 - 30u, + 16u,

4
Ax
180

1 1~ Y42

u (x) = + 455 v 50y * 0(2x”)

12sz
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u, - b4u, .+ 6uj - 4u,

1-2 1.1 4+ u

2
j+l j+2 Ax 3,
- ) +0
144 ux6(xJ) (ax7™)

u,(x,) =
x4 J Axé

If we use the above difference approximations in the Taylor series we

obtain

o+l _ on ', (_.n n n n _.n
U v? + vl + 1607, - 300T + 16Uy Uj+2>

j i 12 j-2 1
HE n n n n n 4
+. > (Uj-Z - 4Uj_l + 6Uj - 4Uj+1 + Uj+2> + 0(AtAx )

Again, the fundamentai question is stability. Also, we should ask if it
is wise to use a high order difference formula. Our error estimate

(o = 0(Ax4)) is not valid unless u possesses derivatives up through

the sixth order., Our solution might not be this smooth, (Our simple
heat equation has an analytic solution; but if ¢ is no longer a constént,
for example ¢ might be a discontinuous function of x, then du/dx might
not be continuous.) In this case a high order difference scheme might

do more harm than good.

Problem 3.2-2, Determine if the above fourth order difference
scheme for the heat equation is stable. Once you have an expression
for the amplification factor M(k), you might wish to use a computer to

see if ‘M(k)l < 1 for all relevant k (with Ax and p fixed).

Next we will consider the simple, nonlinear hyperbolic equation

u,  du_
5t TV ax - 0

u(x,0) = £(x)
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We assume periodic boundary conditions. Since this equation is nonlinear
the theory of stability and convergence which we have developed does not
apply. However, it still provides a useful example for the construction of

a finite difference scheme. If we are to use the Taylor series we must

compute u . This is
u = -uu_ -~ uu _ = u(u )2 + u(uu )
tt tx Xt X XX
We could also use u,_ = -E(uz) which leads to u = -(uu, ) = (u2u ) I
t X tt t'x X’ x

If we substitute the first expression into the Taylor series and replace the

spatial derivatives by finite differences we obtain (A = At/Ax)

2 2
ntl _ . n A nfn _ n A n/fn  n
Uj Uj 2 uj <Fj+1 uj_£> + 2 uj(%j+l uj_i>
’ (3.2-3)

9 n n\ n n
A on (Y T Y n n SRS AYA: n
+— u. M u. - u. - J—; u‘ - u-
2 7] 2 ‘ j+1 j 2 j j-1

Note the method used to difference (uux)x. We have approximated this

term by

u(gj+%> ux(x - u(xi_%) ux(xi_%)

Ax

i+%)

If we had used

U(XHl) ux(xiﬂ) - u(xj;l() ux(xj-l)
2AX

we would have obtained a difference relation involving values at the five

points x,_ s X.,

j-2° xj_1 3 xj+1, xj+2, instead of three p01nFs, namely



3.15

u, -, u, - u,
u 2 1)y 1 j-2
i+l 2hx j-1 20

2hx%

As a general rule, one uses as few points as possible in a finite difference
scheme, With a larger number of points, the scheme is more likely to be
unstable, especially if the boundary conditions are not of the periodic type.

We will have more to say concerning nonlinear equations in a later chapter.
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3.3 Predictor-Corrector (or two-step) Schemes

These schemes make an initial guess for the values of u on the
n+1St level, and then corfect this initial guess. For complex nonlinear
systems of differential equations, these two-step schemes are easier to
program than the schemes based on a Taylor expansion. We will illustrate

the idea by use of the hyperbolic equation u, + cu = 0 [Burstein, 1965].

. n . . . .
Given the vector U we first predict an approximation for

Denote this prediction by ﬁ?+}
' 143
1

P ¢ . .
we then correct it to obtain Uj+ . The definition of the scheme is given

u(xj + Mx/2,t . Using this prediction

n+1)'

below (assume periodic boundary conditions):

~n+1 L n n n ]
= - - U -J < < J = t
Uiy 2ij+1 + Uj> )‘<Uj+1 j> J A= et/ax
(3.3-1)
n+l n_ Afn n Afantl  antl .
= . -U - -U -SJ<3i<J
UJ‘ UJ' 4 (Jj+1 j-1> 2<Uj+/12 j-%) J

These schemes represent an attempt to center the finite differences at

time t_,, = t_ + At/2. We could write the second equation as
n+s n
n+l n n n an+l  an+tl
u, ~ - U, U, ., - U, U, - U,
i i _ _ eht| i+l =1, itk %
At 2 2/x Ax

The time difference is certainly centered at time tn . The spatial

+s

difference on the right is the average of spatial difference terms at tn

and t therefore the right side is also centered at tn . The error

in the Un+1 terms is O(Atz) so that the error in (ﬁ?:} - ﬁ?+}>//Ax’is
- 3 ]

also O(Atz). Multiplication by cAt/2 will produce an error 0(At3)

, . 2
so that the truncation error is second order, T = 0(ALT).
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We will next prove the stability of this method by the usual Fourier

analysis. We will compute the amplification factor for the Fourier mode
imkx, ‘

elﬂkx. Let U? = e J. - Then

irrkx

antl _ oy s i+s
Uj+% <%ose/2 2i\ 51ne/%> e
where A = cAt/Ax, 8 = mkAx, xj+; = xj+Ax/2. Next we substitute this
2

. . . JU o} .
expression into the equation for U +1 to obtain

n+l A . irkx
U. =11 - 'E ising ~ iksine/ZGose/Z - 2i)\sine/2>j| e J

2 2 imkx,
= |1 - 2\"sin"g/2 - 2i\sing/2 cose/Z] e J

= |1 + 2%(cose-1) - nsine] U? = M(k)urj‘

Therefore the amplification factor for this scheme is the same as that
for the Lax-Wendroff scheme given in equation (3.2-2). Therefore this
predictor-corrector scheme is stable. 1In fact, for this simple

linear hyperbolic equation, the predictor-corrector scheme is the same as

the Lax-Wendroff scheme.

Problem 3.3~1., Show that the difference scheme given by
equatioms (3.3-1) is the same as the Lax-Wendroff scheme given by

equations (3.2-1).

We can do the predictor-corrgctor scheme in various ways. Consider

the nonlinear equafion du/dt + u du/dx = 0 which we will use in the



form du/3t + % 3u /ax = 0., The nonlinear equivalent of the scheme given

by equations (3.3-1) is
| 2 2
An+1 = 1 n n _ l\. n - n _ i
UJ'-i-l/z 2<‘Ij+l + Uj> 2 [@j-ﬂ) QJJ) :l A o= At/Ax (3.3-2)
n 2 n 2
ntl _mo_ A (U1+1) - <U1-1l N An+1
4 2 J+/

c
]

j ]

level instead of the t level we

If we lift the predictor to the tn+% ol

obtain

~nts _ o (n _

Uj+1/2 <UJ+1 ) <J+1> ( > A = At/Ax (3.3-3)
2 2

n+l n A/ nHs n+s

U, u, - <o, - v,

j i o2 (J"‘%) <J-%

We are dealing with a very simple differential equation here. For a

]

complex system of differential equations, the latter two-step scheme

can be much simpler than the Lax-Wendroff scheme of equations (3.2-3) which
is based on a Taylor series. For a complex system of PDE the computation
of the second derivatives, such as u__, can involve many terms.

tt

Another two-step version for this nonlinear equation is the following:

2 2
o+l _ o, fom n Al _ (i
Y5 2<Uj+1 + Uj-1> 4 <Uj+1> <Uj-l>
2 2
n+l _ n _ Alfin A n+1
- - 4|05 @)+ E > (5 )

We will discuss some properties of these variatioms in a later chapter.

(]
!
(e



Problem 3.3-2. Devise a
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predictor-corrector scheme for the heat

equation and determine its truncation error and stability.

Problem 3.3-3. Is the following predictor-corrector scheme for the

equation u, + cu = 0 stable?

an+l n A n n
U. =y, -5 \U, - U,
h| i 2 <J+1 h|
n+1 n A n n
U, =U, -=1U, - U,
j io4 [ L

Problem 3.3-4. Suppose we try several predictor-corrector iterations.

We let S be the number of ite

described in problem 3.3-3.

0 = "
i
MAY n_ A0 n
=v° - - U
Uy =05 7% [Uj+l i-1
o
] 3

 Show that this scheme is stab

the scheme is unstable if S is even and stable for odd § provided \x\ < 2

[Gary, 1964].

_£> A = cAt/Ax
antl _ antl
a0 Uj-l]

rations., If S = 2 we have the scheme

The scheme is the following

1<v<S

le if S = 3 provided \Xl < 2. In general,
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3.4 Implicit Difference Schemes for One-Dimensional Problems

These schemes are obtained if we center both space and time differences
. th ' st . . .
midway between the n~ and n+l” level. We do this without using a

predictor; therefore, we obtain for the heat equation ut'= ou

XX
n+l n o, ul.n n n +1 n+l | - n+l
oS | LR 8 L 1§ L P | e 1V i i 3.4-1
j j 2 [ j+1 j j-1 j+l h| J-l] ( )
0 .
vy = f(xj) 1<j<J-1 Ax = 1/3
n _ n _
Ug =U; =0

This difference scheme for the heat equations is known as the Crank-

Nicholson scheme. These equations involve U?+1 on the right side

in the space difference terms. They cannot be solved explicitly for the

n+1 . . . , .
Uj+ terms; that is, we cannot obtain a simple algebraic expression for

the U?+1 term. We must invert a tridiagonal matrix to find the U?+l;

+1

the U? are defined implicitly by the above equation. To see this we

write equation (3.4-1) in matrix form where C is a matrix of order J-1.

i n+l - ® n
49 - (et

. n
"2 1 0 e & e e e o o o O Ul
1l -2 1 0.,.....0 U;
0 1 -2 1 0....0
c=|" i
- n
0 e ¢ e 4 e e+ e & e 1 -2 UJ—]_
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Note that we can write this scheme in the form
n+1 n
U+ =IhU

-1
where Lh is the matrix operator [I - & é] [I 4+ M C]. We must solve a

2 2
system of equations whose matrix is the tridiagonal matrix I - % c
(I is the identity matrix). If we write out the matrix I - % C we
have

I+ -p/2 0 ..o O
-u/2 Iy  -p/2 0o ...
0 -~u/2 lH -p/2 0...
1-2¢c=3= |
N Y 72 )

This matrix is diagonally dominant. The diagonal element in each row
is greater than the sum of the absolute value of the diagonal element in

that row; that is

|b..] > £ b, for1<i<n.
ii .. 1]
i
Therefore the matrix is nomnsingular, and we can solve the system of
equations (3.4=1). 1In fact, the matrix I - g C is symmetric and positive
definite. For further discussion of these matters from matrix theory see

section 1.2 and section 5.2.2. We can write down the eigenvalues and

eigenvectors for the matrix C and-therefore for I - % c.
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Problem 3.4-1. Show that the eigenvectors of C are U§r)‘= sinnrxj
1<j=<J-1, 1 =r < J~1. The eigenvalues of C are —4sin2(nrAx/2),‘
Ax = 1/J. Therefore the eigenvalues of I - % C are 1 + 2usin2(nrAx/2).

This problem is very similar to problem 2,.3-1,

We have to solve the system <% - % €>Un+1 = <% +-% €>Un. Since the
matrix I - % C is symmetric and positive definite we can solve this system
by Gaussianeélimination without interchange of rows. Normal Gaussian
elimination requires the interchange of rows in order to maximize the
"pivot elements.ﬁ We need to solve the system Bu = f where B is a
tridiagonal matrix, u is the unknown vector, and f the known vector.

This is done with a forward sweep followed by a backward sweep. We

start with the equations in the form

By W Uy £
@ By Yy

0 a3 B3 v3 =

0 L] L ] L] [ ] . . . . . * aJ—l BJ-l UJ-l fJ-l

The forward sweep transforms this to a triangular system of équations

th th
by adding a multiple of the j equation to the j+1 equation in order

to eliminate the aj+1 term. The algorithm is

B, =By Y1V £.5

-
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8. ==ty Y=
Bit1 B, Yi+Bin Yi+l T Y41
ST - O S 1< js3-2
i+l By 3 i - <
The system then takes the form
B]_ Yl 0 3 . . . . . ) . . . 0 Ul fl
0 62 Y, 0. ..
0 0 63 Y4 0. .. _
P2 Yi-2
0 . L] L . L) L . L - . . 0 BJ_l UJ-]- fJ-l

This system is then solved by a simple backward substitution

Usop = £5.0/85

1L (s _2
U, ===— (£, -v,.,, U, J-2=zj=1
I B4 < i J+1> ]

With a computer where division is much slower than multiplication we would

probably compute 1/éj, then aj+1*(1/§j), é %j' Thus we would perform

j+1°

1 division, 5 multiplications, and 3 additions for each component Uj

(except Ul and UJ-1)° Thus we do a total of about 9(J-1) floating point

operations. Thus we pay a slight additionmal price for use of the

implicit scheme--we have to solve a system of linear equations. This

-

price is frequently small compared with the total computation required to
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solve the problem. The advantage of the implicit scheme is the lack of
a stability restriction on the size of At. For the explicit scheme of
section 2.1 we must have y = cAt/sz <%, or At < sz/(ZG). The implicit

scheme is stable for all values of At. We will discuss this later.

First we will describe another way to derive the solution of our
tridiagonal system of equations. This is taken from the book by Richtmyer
and Morton and results in essentially the same algorithm as Gaussian
elimination., However, it involves a somewhat different point of view

which is sometimes useful., We have to solve the system of equations

U. +B.U. +v.0U, = f, 1<i<J-1 3.4-2
R B S B IR B > S J ( )

Suppose we consider those sequences Uj which satisfy the equation and the

left boundary condition U, = 0, but not the right boundary condition

0

UJ = 0. This is a one parameter family of solutions since we may specify

U1 arbitrarily but then the remaining values of Uj’ 2<j=7J, are

determined by the equation for fj. Suppose we assume that UJ can be

specified as the parameter rather than Ul; that is, we assume UJ can

be specified arbitrarily, then the remaining Uj determined to satisfy the

equation for fj as well as the left boundary condition U0 = 0. It seems

reasonable to look for such a solution in the form of a linear relation

U, =E

j jUj+1 + F 0 < j<J, 1f we substitute into the equation for

j’
fj we obtain

-

o (E, U +F, ) +B.U, +v.U . =f 1<jsJ-1
J(J‘lJ J"1> P3Ys VR b S ?
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E : ' Y. £, -Q',F,'l " :
————e = -
Therefore Uj + < E 1P Uj+1 2.5 e and we have the
ii-1 ] ‘ i -1 3
following condition
=Y. f, - o.F
B, = =—lm ‘ F, = -1
! .E. + 8. i E. +
boegfia TP boagEig TR
The equation for U0 is U0 = EOU1 + Fo. Since U1 is arbitrary we must
have E0 = FO = 0. Thus we have the forward sweep
E0 =0 F0 =0
£, - a.F._l
E, =-v./(x.E, + B.) F, ='—l——*—l—l—- 1 <j<3J-1
-1 E. o+ B,
h| R ] i o BJ
followed by the backward sweep
u. =0 U, =E. U, .. +F, J-1=zj=1.
J h| j i+ h| ]

A comparison with the Gaussian elimination algorithm shows

-Y, - -a.Y._l
Ej=—g‘1 or s.=a.E._1+s.=—-l—J—+ej
i ] 31 ] Bj-l
Problem 3.4-2, Assume that we have diagonal dominance with positive
diagonals, Bj > |aj| + le|' Prove (use induction) that |Ejl < 1 for all
j and éj > 0 for all j.
Either process for solving the system will fail only if éj vanishes.

The above shows that this cannot occur. Also, the numbers involved in

the process Ej and Fj do not become unreasonably large as long as the
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solution Uj is reasonably bounded. If lUjl < M, then from

U, = E,U, +F,, lE,\ < 1, we have \F.‘ < 2M. Since none of the numbers
3 i+l j N ' ] '

involved become large, we will probably not lose accuracy due to
cancellation in computing the solution to the recurrence relations.

This reasoning is usually valid, although sometimes not as the problem

below will show. However, we can use the error analysis of Wilkinson

to show that the above solution will not produce a disastrous accumulation

of roundoff error.

Problem 3.4-3. Consider the recurrence relation X4l = ax + B.

Suppose B = A - oA, x, = A; then the solution is X, = A. What would yoﬁ

0
expect for the behavior of roundoff error? Try it on a computer. You

might try o = 1//2, A=m, or ¢ =2, A=2, or o =™, A=/2, or

o =m, A=1. Can you explain the results?

Problem 3.4-4. We could solve the system of equations (3.4-2) as

follows. First set U1 = ] anl solve the equations, that is

MW _g g - oD 1 ) L . (1)
U T A <fj-1 Bi-1Y5-1 7 ¥5-175-2

2<j<J

Now solve the corresponding homogeneous equations

(2) _ (2) _ 2 __1_{. (2) (2) .
I T (Bj-luj-l °’j-1Uj-2> 2=3=1

Then it is easy to see that we can obtain the solution of equations

(1) (2)

(3.4-2) by a linear ‘combination of U and U, namely
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gD
v, =D - L (2
il U§2) 3

Show that this method will produce a disastrous accumulation of roundoff

error for the heat equation problem, aj =y, = - B B, =1+ . You

3 2° 73

might try it on a computer, then explain the result. Or you may do it

analytically. Hint: The general solution of the recurrence relation

U. . 4+BU. +yU. . =0
« BUS + Y05,

j+1 1

is given by Uj = Azi + Bzi where z:t are the roots of azz +Bz4+vy =0

(assume 2, # z_). The values of A and B are determined by the starting
values U0 and Ul' Show that ng) will grow very rapidly. What is the

significance of this growth to roundoff error?

Problem 3.4-5., The implicit scheme requires the solution of the
equation Bv" = £ for each time step. Since B = I - % C does not depend
on n, we could compute B"1 once, store it, and then simply compute
V" = B-lfn. Why is this a bad idea? Consider both storage and computing

time. However, we could speed up the process outlined above by storing

the appropriate three vectors. What should be stored?

We have engaged in a long discussion of methods used to solve the
system of equations produced by the implicit difference scheme for the
heat equation. Now we should consider the reason we use this scheme.
This scheme is unconditionally stable. We can base our choice of At

-

solely on accuracy considerations; there is no stability restriction.
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This unconditional stability will frequently result in a much larger
time-step and a corresponding reduction in computing time. The

following problem will illustrate this,

Problem 3.4-6, Consider the heat equation ut =ou + f. The

term f f(x,t) represents a source or sink of heat. Let

u(x,t) = 4x(l-x)sin wt. Then u is a solution provided

f = 4x(l-x)p cos wt + 80 sin wt. We take the boundary conditions to
be u(0,t) = u(l,t) = 0, Code this problem for a computer wusing both
the explicit schéme of section 2.1 and the implicit scheme given above.
Solve. this problem for 0 < t < T using appropriate values of o, w, T,
At, Ax, Compare accuracy and computer time for the two schemes.

To perform the stability analysis we assume periodic boundary

imkx,
conditions and consider the modes U? = [M(k)]ne 3. If we substitute
imkx,

into equation (3.4-1) and divide out the factor Me J we obtain

M=1 +%<2cose-2 +(ZCose—2)M>, 8 = mkAx .

 Solving for M = M(k) we have

1 -u(l-cosg) 1 -
1

A
1 4+ u(l-cos®) 1+ A

M= where A = j(l-cosg)

Since A =2 0 it is easy to see that ‘M(k)\ £ 1. Therefore the amplification
factor is bounded by 1 independent of k, Ax, and y. The implicit
scheme is unconditionally stable. The proof for the boundary condition

u(0,t) = u(l,t) = 0 can be done the same way.
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Next we wiil give a proof of stability for the implicit scheme based
on the energy method. The idea of the energy method is to define a
norm for the vectors U" and then prove something like the following
inequality HUH+1H < (l+kAt)HUnH. The constant k must be independent of
n, Ax, At, and-the solution U". Then HUnH < (1+kAdnHUOH < ekthUOH

and this implies stability. The norm, in some sense, measures the length

of the vector. For example, the Euclidean or L2 norm is most frequently

J
= 2 . | _
used, HUH2 = =z ‘ujl . We might use the L, norm HUHI on lUj\
or the maximum norm ||U|_ = max |Uj|. If A is any symmetric positive

0<j<J

definite matrix, then the following relation defines a norm

HUHA = JUTAU = JZ Y u.,a,.,u, .  As we noted in chapter 1, the following

i 14
properties characterize a morm: 1) ||U|| = 0 and ||U|| = 0 iff U = 0,
2) HaUH = |a|“UH for any scaler o, and 3) HU + WH < HUH + HW\.

We will use the ordinmary L, norm to prove that the scheme given

2
by equations (3.4-1) is stable. First we will need the following identity.

Problem 3.4-7. Given a vector vj’ 0 < j £ J where ¢O = wJ = 0, prove

that

J-1 ‘ | J-1 2
J.El' 4'j@jﬂ T Ayt q’j-l) - jio Q’jﬂ ) ¢j>

Now take equations (3.4-1) and multiply by <??+1 + Uj). We obtain

R Uf}) (uf}ﬂ i uf.*) - u@f}ﬂ . Uff) R R @f}ﬂ . Uf})
h| i i j 2\] i/| i+l j+l j hi

n+1 n
+ Uj-l + Uj-l
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n+l
i
problem to obtain

J-1 n+1>2 J-1 7 N2 " J-1
T (U, - U, = oy V., -2, 4+, =
(J -El <J> 2 VJ@JH ‘pj wJ'1>

If we let wj =T + U?, we can sum these equations and use the above

j=1 . j j
HJ-I 2 |
o2 jzl <¢j+1 ) wj) =0
Therefore
J-1 2 J-1 \2
5 @‘J}“) <z (u‘jl) or \\u“*lnz < |,
j=1 j=1 /

The energy decreases (or at least does not increase) at each time step,

and therefore we certainly have ¢ stable scheme,

Note the similarity between this proof and the derivation for the
following energy inequality for the heat equation which we discussed in
chapter 1. Multiply both sides of this equation by u and integrate

with respect to both x and t to obtain

1 t 1 .t 2 1 2 1 2
f j uutdtdx =% j J (u )tdtdx =% I u (x,t)dx - j u”(x,0)dx
0 0 0 0 0 0
! Pt ¢ ep 2
=g jo Jo quthdx =0 Io [u(l,t)ux(l,t) - u(O,t)uX(O,t)]dx - o (ux) dxdt

Since u(l,t) = u(0,t) 0 we have
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1, 1, t 1 )
5 [ vx,t)dx - 3 [ w'(x,0)ax=-0o [ [ (u)dxdt < 0 (3.4-3)
0 0 00

. 1
This implies that the function E(t) = % X uz(x,t)dx is a non-increasing
0
function of t,.
We proved that the explicit scheme for the heat equation described

in section 2.1 was stable by use of a so-called maximum principle. We

can regard this as a proof by the energy method since we showed that

oL s ot

where HUnnm = max ‘U?l.
0<j<y

Problem 3.4-8, Consider the implicit scheme for the simple

hyperbolic equation u, + cu = 0 with periodic boundary conditions,

U =y° - + U -U A = cAt/Ax

n+l no_ Aot | ogotl n n
i ) 4R j-1 j+1 j-1

Show that this scheme is unconditionally stable by use of the Fourier
analysis method, Prove the same thing by means of the energy method.
Is the matrix equation for Un+1 tridiagonal?' How would you solve the

matrix equation? Suppose the values of Un+1 at the boundary are given;

n+1
U. =
+l? J & (t

is tridiagonal. Show that this tridiagonal matrix is nonsingular.

that is, U?;l = g(t In this case the matrix
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3.5 Implicit Schemes in More Than Qne Dimension: Alternmating-Direction-

Implicit (ADI) Methods

We have seen that there is a great advantage in the use of implicit
schemes, especially for the heat equation because of the restrictive stability
2 . . '
condition At < Ax /(20). What happens if we try an implicit scheme for

a problem in two dimensions? For example, consider the heat equation on

a square
2 2
u_ (2w, 2w 0<x<1, 0<ys<l
ot 2 2
ox dy
u(x,y,0) = £(x,5)
We require u to vanish on the boundary; that is, u(x,y,t) = 0 if x = 0,

n . .
or x =1, or y =0, or y =1, We let ujk = u(xj,yk,un), xj = jAx,

kpy, Ax = 1/J, Ay = 1/K, 0 £ j <£J, 0 <k < K. The following would

then be a two-dimensional implicit scheme,

n+l _ n ' n+1 n+l n n+l n
UL, =U, +u_ (U + U9+l,k 2<§ + Ujé> + U + U

jk ik X i+l ,k i jk j-1,k j-1,k
n+l n n+1 n n+1 n
oy (Y50 Yk :Zéﬁk + Uj;> U -1 Yy k1

where by = cAt/(ZAXZ): LJ’y = GAt/(ZAyz). In matrix form this scheme is

1

(I+C)Un+ = (I-C)Un. The matrix C is given by (here we have

vy =1+ 2ux + 2p,y)



3.33

= e o o o - o s o o o e o o o 0 ¢ o L]
Yo, O by : 0
"'I.Lx ’Y -ux 0 . ¢« o . .
-ux Y -ux . . . .
. - - « o e . - 0 ) .
0 0 Wy Y 0 U‘Y 0
'L:Ly . . . Y Ty 0 . . -p,y . . 0
C - . Ay Y THy O .
. - Y . . -p‘y 0 . . . ] . 0 -.p’x .Y 0 . . _u’y
Iﬁ
t
{
{
|

We have described the matrix operator for a two-dimensional explicit
problem in section 2,5, The order of the matrix C {and the dimension of
the vectors Un) is (J-1) X (K-1). The matrix C can be partitioned into

submatrices each of order J-1; that is,
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where Dx is a tridiagonal matrix and Dy a diagonal matrix.

Y -plx O e o » —u,y
- - 0. .. .
MX Y px
D = . : = . =
x Dy Y 1+2ux+2uy
o. .. 0 "y Y "}.Ly
In order to determine Un+1 we must solve the system (I+C)Un+1 = (I-C)Un.

The matrix B = I+4C is not tridiagonal--it is block tridiagonal. Thus B
is a banded matrix with band width 2J-1, that is bij =0 if li-j‘ > J-1.
To solve such a banded matrix by Gaussian elimination would require far
too much computing. This solution has to be done at each time step,

and there may be hundreds or thousands of time steps.

Problem 3,.5-1. Show that the matrix I+C above is nonsingular.
Estimate the number of floating point operations required to solve

1

(I+C)Un+ ='(I--C)Un if the matrix is treated as a banded matrix,

In 1955 Peaceman and Rachford and also Douglas devised a very
effective scheme for the heat equation. This is the alternating-
direction-implicit method. It is unconditionally stable, has second-
order accuracy, and requires nothing more than the solution of a
tridiagonal matrix system. We will apply the ADI method to the heat
equation problem described above. We use the notation

2n _.mn n n 2 n n

‘ n
80 = Uik T ik P U Oy T en T et Uy ke

straight forward implicit scheme described above is then

The
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ooy 62<E]n+1 N U€> . 62<Ejn+1 N Uﬁ)'
X X vy
The ADI scheme is a two-step scheme, defined as follows:
~l n 2(~l n 2/(,.m
U =U + uxéx@ + U> + uyéy(ZU) (3.5-1)
AR L 52<ﬁl + Ur> + 62@““’1 + U“)
X X / vy

The reader should convince himself that both operators involved here are
L1 , R . ~l
tridiagonal matrix operators. This is true if we order the U~ vector

with the x index first, and Un+l with the y index first; that is

T
Al fal Al 4l N A1 Al
u o= <U11’ Uppo Usge eees Uplg 10 Up g vees UJ-l,K-l)

T
n+l _ [ o+l _n+l n+1 n+l  _n+l n+l
voo= @11 s Upg s wees Up 1o Uy 15 U g vees UJ-1,K-1>

Since the matrices are tridiagonal, the solution of these equations

requires only a modest effort.

If our problem were three-dimensional, 0 < x <1, 0 <y <1,
0 £z £ 1, then we would have a third operator 65 similar to 6§ and

62. The ADI scheme would then be a three-step scheme
y

A1 n 2/(al n 2 n 2 n
U- =U +p’x6x@ +U>+p,y5y<zu>+uzaz<zu> (3.5-2)
52 Un+u52ﬁl+un +p,62fJ2+Un +uaz.20“

X X vy z Z

Un+1 = Un + 52@1 + Ur> + 526}2 + Un> + W 52<In+l + Un>
X X vy z z
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It might seem more reasonable to use the term ux6i<?2 + Uﬁ)rather than
ux6§<?1 + U%) since we would then be using the latest and presumably best
: +1

. . n . P
approximation to U . However, this would not produce an unconditionally

stable scheme.

Problem 3.5-2. Show that the ADI scheme given by equations (3.4-1)

has truncation error O(Atz) + O(sz) + O(Ayz).

We will analyze the stability of this scheme by use of Fourier
analysis. Since our problem is two-dimensional, we will need a two-
dimensional Fourier analysis. If f(x,y) is a suitably émooth function
defined on the square -1 < x's 1, -1 <y <1, then we have the Fourier

series representation

f(x,y) = T 5 rSelﬂ(rx+SY)
== r=-m®
1 1 .
a =% [ £y MO ayqy
s : 'l _1

This representation has a discrete analogue just as in the one-dimensional

case. Given a vector Ujk’ -J £ j<J, -K < k <K, then we have

K-1 J-1 im(rx, + syk)
U.k = X z a_.e J
J& g=-K r=-J
1 K~1 J-1 -:'m(rxj + syk)
= — = 3 = k
s TR = 2 Uue X i3,y = KK

k=-K j=-J
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If we have a 1inear finite difference scheme with constant coefficients
and periodic boundary conditions in two dimensions, we can determine its
stability by the same method used for the one-dimensional problems. We
simply substitute the Fourier modes into the difference schemes and compute

the amplification factor. If we substitute the Fourier mode

im(rx ,+sy.) ' .
Ujk = e J into the ADI scheme defined by equations (3.5-1) we
obtain the following:

S eirr'(rxj+syk) o ein(rxj.[.syk)
jk 1 jk
where
B = 1+p, 2(cos-1) (H+1) + 4y (cosy-1)
M =

1+p 2(cose-1)(ﬂ1+1) + 1y, 2(cosy-1) (1)

0 =mrAx , § = mwsldy

If we let by 2(cos6-1)

1l
0

o - =
. uy 2(cosy-1) gy, then

1]
=
)
'—J
1
N
09

gx(Ml+1) 1

It
-
+

09
+
N

(6]

(1-gX)M1
l-g )M=1+M -1-2g +
( gy) 1 CHE

(1-g) (1M = (l-g )M, - (I-g)g,
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1-g )(l-g )M =1 +g_+2g. - g +
(1-g,) (1-g)) By, + 28, " 8, + 8,8/

i (14g)) (1+gv>
(1-g) (1-gy)

M

Since 8, < 0, gy < 0, we have \Ml < 1 for all values of r, s, n, AX,

Ay, At. Therefore we have an unconditionally stable scheme.

Problem 3.5-3. Consider the following scheme:

ﬁl—Un+p,62@1+Un>+2p,62Un+2u 6 "
PxTx vy z z

52 =™+ 62@1 + Ur>+ " 52@2 +Un> + 4 62@1 + Un>
X X ‘ vy z z

IRAE | L o 62<f12 + Un> + W 62@2 +Un> + | 62@n+1 + Ur>
X X vy z 2

Show that it is not unconditionally stable. Thus we should not use

]

e

the "best available estimate" for Un+1 at each step.

Problem 3.5-4. Show that the three-dimensional ADI scheme described

by equations (3.5-2) is unconditionally stable.

Problem 3.5-5. Suppose you have an ADI problem for a three-dimensional
heat equaticn where the fields U" and Un+1 are too large to fit in the
fast memory of the computer. Suppose you can store these fields on a
drum. Assume you have a 50x50x50 mesh, 32,000 fast memory locations
available for data storage, a drum rotation time of 34 milliseconds, and

a transfer rate of 100,000 words per second. Assume your computer
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averages 2 usec per floating point operation, including logical overhead
such as indexing, tests, etc. Can you devise an ADI algorithm including
the storage allocation and buffered transfer from the drum so that your

computation will not be I/0 bound?

Problem 3.5-6. Devise an ADI scheme for the inhomogeneous heat

equation on a rectangle

2 2
(28,04 | x,p)
ot 2 2

dX oy

which has second order truncation error, T = O(Atz) + O(sz) + O(Ayz).

Problem 3.5-7. Suppose you must solve the inhomogeneous heat

equation as in problem 3.5-6. Suppose there is room for only two

n n+1l n n+s
two-dimensional fields in our computer, U, U, or U, £,
P > T3,k T3,k j.k’ T3,k

for example. Is it possible to devise an ADI algorithm storing

only two fields at once and computing the f?

; array only once per

vxl!;t_l

time step?
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3.6 The Method of Fractional Time Steps.

This is a method somewhat related to the ADI method which has been
developed by Soviet mathematicians. The idea is to represent the
difference operator for a multidimensional problem as the product of
one-dimensional operators. If the norm of each of the one-dimensional
operators is bounded by unity, then the norm of the préduct is bounded
by unity, and we have a stable-scheme. Also, the amplification factor
for the multidimensional scheme is simply the product of the
amplification factors of the one-dimensional scheme. If the one-
dimensional operators are stable, then we might expect the multi-

dimensional scheme to be stable.

We will illustrate the method by applying it to the two-dimensional
heat equation. We first advance the solution from the time tn to

tn + At/2 = ¢ by use only of the terms involving x-derivatives.,

n+%

 Then we advance from t totn using only the y-derivative terms.

s
F

s L g % 5§ <ﬁ“+f + U“> b = sAt/ (28x%)  (3.6-1)
gt oo E 521 5§<Un+1 + Un+%> by = oht/ (28y2)

If we define the oﬁeratgrs Bx and By by Bx = %? 6i, By = %g 65, then
5oFE (I-Bx)'l(I+Bx)Un, o (I-By)-l(li-By)fJn+% )

If the one-dimensional operators satisfy the conditions

lex-B) " H 8| < 1, H(I-By)_li(I-I-By) <1
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then |[U™|| <

-1 -1 n n ‘
\\(I-By) (I48) (I-B) "(I48)) e = o)) o 1If we can
prove the above bounds for the one-dimensional operators, then we have
stability for the two-dimensional operators. In section 3.4 we used the

energy method to show that the above inequalities do hold for the

one-dimensional operators.

Problem 3.6-1. Determine the truncation error for the scheme given

by equations (3.6-1).

Problem 3.6-2. Consider the nomlinear hyperbolic equation defined

on a square with periodic boundary conditions.

du_ 2, 2u
at " ax tu y

Apply the method of fractional time steps to this problem. You might
use the Lax-Wendroff (Taylor series) technique for the one-dimensional
operators. What is the truncation error for your scheme? What is the
result of applying the Taylor series technique directly to the two-

dimensional problem?
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3.7 The Use of Dissipation to Stabilize Finite Difference Schemes.

We will introduce this section with‘a study of the following

differential equation (see section 1.3.7). .

<2
él‘.l- éll- = Q—u . - -
St +c 3 foj 3%’ l<sxx<1l | (3.7-1)

b

u(x,0) = £(x)

We assume periodic boundary conditions u(x+2,t) = u(x,t), f(x+2) = £(x).
The term o azu_/ax2 is a dissipative term-;it tends to reduce the energy
in the solution. We can see this if we multiply equation (3.7-1) by

u and then integrate over x and t. We obtain

. §_u_> .
2 2 9iu 2
d(u) au) _ < ox/ _ _faou
3 At + e 8% ° Tx c(éx)
11, 2 EM 2 2
] I [u (x,t) - u (x,Oi]dx + %c¢ j [u (L,t) -~ u (-1,ti]dt
-1 0

=g j: [F(l’t)ux(l’t) - u(-l,t)ux(-l,ti]dt - g j: Ei <ux>2 dxdt
1
We may consider E(t) = % f uz(x,t)dx as a measure of the energy in the
flow at a given tiﬁe. Lo;ked at in another way E(t) is just the L2
norm of u at a given t. Note that if E(t) = 0, then u(x,t) = 0 for
-1 <x <1, If uis a velocity, then it is quite natural to regard

the integral of its square as an energy. If we use our periodic boundary

condition, then the above equation becomes
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1 1 .
E(t) =E(0) -o [ [ (u)” dxdt
0 -1

The integral term on the right is certainly non-positive, in fact the
term is negative unless u 1is constant. Therefore E(t) < E(0), and
we have an energy inequality for our equation (3.7-1). The diffusion
term ¢ 82u/ax2 takes energy‘out of the solution. If ¢ = 0, then the

energy is constant since E(t) = E(0) for all t =z 0.

We can obtain more information from the solution of equations (3.7-1)

We will look for solutions in the form u(x,t) = Ak(t)elﬂkx. Substitution
into the equation yields

/ . 2.2 imkx _
<}k + 1TrkcAk 4+ mk cAk e =0

If we require Ak(O) = a_, then the solution must be

k,
2.2 . .
-om“k t-imket imkx imkx
u(x,t) = a e e where u(x,0) = a e
From this we can obtain the general solution. If f(x) = T akelﬂkx s
k==

then, sinze our equation is linear and since we know the solution for

each term in the Fourier series, we can write the general solution as

> -cnzkzt irk(x-ct)
u(x,t) = Z a e e

k=~

[ee]

We may wish to impose some requirement on f(x), such as X klak| <

-0
=)

or perhaps X kzlak\ < »., Why might we need such as requirement?
o :
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The form of this solution tells us something about the nature of the

energy dissipation. It is highly sensitive to frequency. 1If the term
2,2

om k't is quite small, then the solution approximates that of the

im(x-ct)

[
hyperbolic equation u, + cu = 0, namely Z a e However, each
[o0]

2.2
term in the series is reduced by the amount e " k t. Obviously, the

reduction is much greater for the higher frequencies.. We know that
instability in a difference scheme is usually due to rapid growth

" of the higher frequencies. This suggests the addition of a diffusion
type term to the difference equation, say the finite difference analog
of o azu/axz. If o is sufficiently small, then this term might kill
“the high frequency growth without affecting the desired solution too

much.

As an example, consider the unstable difference scheme for the hyperbolic

equation u + cu =0,
q t X

ntl _ . .m _Afm _ .n -
U s Uj 2<%j+1 Uj-i) A = cAt/Ax .

The Lax-Wendroff scheme for this same equation is

2
n+tl _.n _Afm _ .n Afm  _ o1 n _
Uj = Uj 2<§j+l Uj-é) +'7T<%j+l 2Uj + Uj~£> (3.7-2)

(see section 3.2). It is stable provided lk\ < 1. We could regard this
scheme as an obvious difference approximation to the equation

u, + cu = eu vwhere ¢ = XZAXZ/(ZAt) = czAt/Z. We simply approximate

n+l n n n .
u, by (Uj - Uj)/At, u_ by (Uj+1 - Uj_l)/2Ax, and u by

n

(Uj+1 - ZUE + U?-l)/sz' Note that ¢ = 0(At), therefore in the limit as the
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mesh spacing approaches zero, our differential equation becomes

u, + cu = 0. Therefore, we might expect the solution of the difference
scheme to converge to the solution of the hyperbolic equation. Also

note that we have taken an unstable scheme for u, + cu added a
diffusion typé term and thereby stabilized the scheme. 1In the case

of the Lax-Wendroff scheme, we even impréved the accuracy from 0(At)

to O(Atz). This imprbved accuracy comes from the Taylor series expansion
which produced the difference scheme, As a fortﬁitpus by-product

we obtain the dissipative nature of the Lax-Wendroff scheme. There is

a theorem due to Kriess which states that a wide class of difference

schemes for hyperbolic equations can be stabilized by the addition'of

a diffusion type term [Kreiss, 1964].

Problem 3.7-1. Consider the difference scheme

ntl _.n _ Afn _.m n _,mn n 2
Uj = Uj 2@j+1 Uj-1> + et @j+1 2Uj + Uj_1>/Ax

For what range of ¢ is this scheme stable. We have already shown it

to be stable for ¢ = Kzsz/(ZAt) = 0(Ax) .

A second example can also be obtained starting with the leapfrog

scheme

n+l n-1 n n
U, = U, - MU, - U, . 3.7-3
j 3 <J+1 J-£> ( )

We consider the DuFort-Frankl approximation to the term azu/axz, namely
<?“ RN L i>//£x2. If we form U?+1’= U?-l -x<?n -t >

ML) i T #1771

+ U? - U?+1 - U?-l + U? , we see that this is equivalent to
i+l i ] i-1
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n+l 1 n n Af,.n n B /
— + - — - || . -

-Note that this is equivalent to adding the term eu_ to the hyperbolic
equation, with ¢ = Ax2/At, and then using a DuFort-Frankl approximation

for u .
XX

Both the leapfrog scheme of equation (3.7-3) and the scheme above
(equation (3.7-4)) are stable. However, the amplification factor for
the leapfrog scheme lies on the unit’circle for all frequencies k.
Therefore no Eourier mode is attenuated although the higher frequencies
will suffer large phase shift (if there were no phase shift, the
leapfrog scheme would be perfectly accurate for all frequencies--nature
is usually not this generous). Since the high frequencies are not
accurately represented, it may be better to dissipate them; that is,
force the magnitude of the amplification factor to be less than one.
Otherwise, in a nonlinear hyperbolic equation such as u + uu = 0,
these high frequencies may interact to produce an explosive error growth
(nonlinear instability, see chapter 8). The addition of the DuFort-
Frankl form of the diffusion term to the leapfrog scheme does just this.
In figure 3.7-1 below we have plotted the magnitude of the amplification
factors for the leapfrog scheme (equation 3.7-3), the Lax-Wendroff
(equation 3.7-2), énd the scheme of equation (3.7-4) (sometimes called
the Friedrichs scheme). For the Lax-Wendroff scheme the amplificatiocn

factor is M(k) = 1 - iAsin® + Xz(cose-l), 8 = 1kAx (see section 3.2).

For the leapfrog scheme there are really two amplification factors

(we will speak more of this in chapter 4) since it is a three-level scheme.
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However, both factors have magnitude one. The amplification factor for
the third scheme is cos® - iAsing. A dissipative scheme will have

|Ml <1if 0< Ie\. As we will see in chapter 8 this question of
dissipation frequently is quite important in the choice of a difference
scheme ., Mostrphysical systems are actually dissipative even if our
idealized model of the physical system ié not dissipative. Therefore,
it may be reasonable to add a proper amount of dissipation to our
model--the problem is to determine what is proper. - Of course, a closed
system muét conserve energy. But frequently we model only part of the
total system; for example, we neglect the heating of a fluid due to
viscosity, but include the Qiscosity damping in the momentum equations
(the Navier-Stokes equations, for example). Thus our model is dissipative.

If we neglect viscosity altogether, our model would be conservative.

Problem 3.7-2. Is the implicit scheme discussed in section 3.4

dissipative when applied to the hyperbolic equation u + cu = 0.

Problem 3.7-3. Consider the problem v, =ou + g(x,t),
u(0,t) = u(l,t) =0, u(x,0) = £(x). Use the implicit difference scheme
on this problem. Show that if we choose Ax small enough, then we can
run this scheme forever at this fixed Ax (n » «©) and still the error
will remain less than é for all n. That is, the convergence of this
scheme is uniform in time. Also, show that roundoff error will cause
no trouble no matter how many time steps we take. Note that part of
this problem is to formulate it precisely. We have merely supplied

the meaning of the problem,
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Amplification v,s. frequency for three
difference schemes at \ = 0.75
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In order to prove a stable scheme is convergent, we limit the time

interval; that is, we require nit < T. Convergence is not uniform in
‘time. Also, the roundoff error may grow like eKT. We cannot expect

to run the difference scheme indefinitely without eventually losing

all accuracy.- However, if our scheme is sufficiently dissipative

(for example HLhH < 1 - KAt where K > 0 is independent of the mesh
spacing), then we do not get an error buildup. Devise a computer program
to check the error in the solution of the above hea; equation. You might

~use the code written for problem 3.4-6.

Problem 3.7-4. Consider the hyperbolic equation u, +ecu = f with
periodié boundary conditions. Consider the implicit scheme for this
problem. Do you think you could run this scheme indefinitely with no
serious buildup of errof? In other words, is convergence likely to be

uniform in time? Why? Write a computer program to verify your conclusion.

Problem 3,7-5. Consider the following unstable scheme for the

hyperbolic equation u, + cu_ = 0 (assume periodic boundary conditions).

n+1 n Af.n n
=U, - = - U = t/A
Uj ; 2@'3.4_1 j-1> A = cAt/Ax
I1f dd the dissipative approximation to gu xz Un - 2Un + Un /2
we acde the disstp PP S ? j+1 ST

we obtsin the Lax-Wendroff scheme. Suppose instead we add the term

S
X2<P?+2 - ZU? + U?_%>//é. This is an approximation to

2 2 at’
AE— cu . =S5 U, so we may also regard the following scheme as being

derived from a Taylor series.
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2
n+1 n  Afm n A (. n n
. = Us - A 3 - ) - . - 2 . + . *
U_] j 2<UJ+1 UJ-]) + 8@J+2 UJ U3-2>
Determine the truncation error and stability for this difference scheme.
Is this added term dissipative, that is,is

J-1

n/..n n n
~ UL(U, .., - 2U, + U, <0.
jE_J J<J+2 A J"2>
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3.8 The Effect of Lower Order Terms on Stability

Suppose we take the heat equation u =ou and add terms to the
right side which contaiﬁ only lower order derivatives, for example,
u, = ou + au_ Or we might modify the hyperbolic equation u, + cu = 0
to yield u + cu_ + au = 0, Suppose we have a stablevdifference scheme
for the equation u + cu_ =‘0 and modify it to include the au term.
What is the effect on stability? In general, there is no effect.

For example, if we have the scheme Un+1

= LhUn for u_+cu =0, and ve
modify it so that UNTT = 1, U" + atat”, then our new operator is

(L, + ahtI). But L, + astIl| = flL || + |alat, and if |[L || s 1 +0(0),
then the same statement is true for the augmented operator. Thus we

would expect no effect on stability. However, we have to be a little

careful with this argument as the following example will show,

Suppose we consider the modified heat equation u = ou + aux,‘

u(x,0) = f(x). We assume periodic boundary conditions. We have already
obtained the solution to this equation in section 3.7. Now consider

the explicit difference scheme

n+1 n n n n aAt [ n n
= T - ’ ve—— - -
Uj Uj + M<Lj 1 2Uj + Uj-1>+ 2Ax@j+l Uj-1> (3.8-1)

Problem 3.8-1. Show that the above scheme is stable if

W= oAt/Ax2 < %, Show that the scheme is strongly stable if At < 26/a2.

By strongly stable we mean that the amplification factor Ah(k)
for the mode elkﬂx satisfies \Ah(k)\ < 1 independent of the mesh

spacing h and the frequency k. By stable we mean \Ah(k)\ < 1 + CAt
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where C is independent of h and k. If Ah(k) satisfies this condition,

and for all h there is at least onme k such that |A (K)| =1 + Cjat (¢; >0
and independent of h), Ehen we say tﬁat the scheme is "weakly unstable."
Note that some modes in the solution of the difference equation willvgrow
like eCtn in this case. However, the solutions of the differential
equation u =ou 4+ au_do not grow; in fact, they will decay. This

weak instability can make a difference scheme useless for some applications,

such as long-running problems in numerical weather prediction,

The first condition in the above problem is our normal stability
condition for the heat equation., If ¢ is very small, we can expect
trouble since for ¢ = 0 the above scheme is an unstable approximation
to the hyperbolic equation u, = au . And indeed we do have trouble
as o approaches zero since the second condition requires At < 20/a2.
For fixed ¢ and a this condition will certainly be satisfied if we
take the mesh spacing Ax to be sufficiently small since w <% implies
At < Ax2/(20). But this may require a very small Ax. Our general
argument shows that the lower order term adu/dx cannot influence
stability if the mesh spacing is small enough. We may not wish to use

such a small Ax. The numerical analyst must be somewhat suspicious of

arguments which are true "for sufficiently small" Ax or At.

If o is much smaller than a, then the above equation is more like
a hyperbolic equation than is a parabolic equation. Therefore we might

try the following difference scheme since it is stable for w =0, A#0.
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n+1 n o, wimotl n+l n+1 n n n
U, =U, + 51U, - 20U, + U, + U, - 20, + U,
[J‘*‘l A j-1 i J']]

(3.8-2)

A+l n+l n n
+ 4[Uj+l Usig + U540 - Uj-l]

2
where y = oAt/Ax™, N = aAt/Ax.

Sometimés it is not desirable to make the first order terms implicit.
This is particularly true if we are dealing with a system of equations
where the first order terms involve several different variables but the
second order term contains only the variable on the left side of the equation.

An example is the following Navier-Stokes equatioms.

i
= |
e
»
»n
e
3
N
1l
& b
<
[\
]

u +uu +ve +p
t X y X

u +vv 4+
vt + vx y py

The second order term in the u equation (vzu) involves only u, and in

the v equation only v, therefore we can use an implicit formula to
difference this term and have only a tridiagonal matrix equation to solve.
1f we made the first order terms implicit, we would have a non-tridiagonal

matrix equation to solve. We might also have to solve a nonlinear equation.

1f we difference the lower order hyperbolic term in the leapfrog style
and make the parabolic term implicit, then we can modify the difference

scheme of equation (3.8-2) to obtain the following:

n+l _  n-1 n+1 n+l n+l n-1 ., mn-1 n-1
it = U +M[Uj+1 i 0T Uy, - 2 +Uj_l}
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Problem 3.8-2. Analyze the stability of the schemes given in

equations (3.8-2) and (3.8-3).

Next we will consider a type of weak instability which can arise in
the solution of the equation ut + cux + au = 0 by use of the leapfrog

scheme,

Problem 3.8-3. Assume the solution of the hyperbolic equation
u, + cux 4+ au = 0 has periodic boundary conditions u(-1,t) = u(l,t) and
initial value u(x;O) = f(x). Obtain the Fourier series representation

for the solution u(x,t).

<)
ik(x-ct)-at
u(x,t) = = x © ( )
k=-x
Hint: Let f£(x) = ay e1kx , u(x,t) = A(t)elkx and solve for A(t).
(o]
Assume % klakl < «, then show that the Fourier series is a solution.
-0

Note. the factor e-at in the solution. Such an exponential decay
in the solution can cause trouble when the leapfrog scheme is used.
This scheme possesses a "weak instability" similar to that shown by
Milne's method for ordinary differential equations [Henrici, 1962, p. 2427.
If the leapfrog scheme is used to solve the primitive equations which govern
the motion of the atmosphere, the terms representing the Coriolis force
can cause such a weak instability [Kasahara, Washington, O'Brien]. These
are undifferentiated terms like au in the above equations. The leapfrog
scheme for the above equation is

n+1l n-1 n n n
U, = U, - MU, - U, - 2Atal, A = cAt/A
j j <J+1 J'1> i At/x
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n m)ib%
Problem 3.8-4. Assume that Uj = X e .~ Show that

(n)

n n
K" = AZ_ +BZ_

where Zi are roots of

22 + ZiYZ-l =0, v =8-io, B =isin kidx, o = ajit

~ l 2
Z:t = -iy = |1 Y
Note that if a = 0, then lzil = 1. Show that if |Y| << L, then

z, == (1 - w2 - v+ ot

Show that for small Y we have |z_| > 1, |Z+| < 1if a # 0.

Therefore the term BZ? will grow and we have a weak instability since
the solution u(x,t) should decay as t increases. Note that Z =-1+ 0(At)
n Kt 2
and thus |Z_| < e for some K, Also B = Q(At") and therefore we have
a weak instability since the growth will not be objectionable if At is
small enough. However, if we have to rum out to large values of t, it may
not be possible to take At small enough to insure that the term BeKt

is small. Therefore we might consider the following scheme.

Problem 3.8-5. Analyze the stability of the following scheme for
u, + cux + au = 0 to show that it does not suffer from the weak

instability described above.

n+l _ _n-1 n n ' n+1 n-1 B
U, = U, x(%j+l Uj_£> aAt<?j + Uy ), A= cit/px

Note that this scheme is effectively explicit,
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3.9. An Experiment Concerning the Accuracy of Finite Difference Approximations.

In these experiments we solve the equation u, tu = 0 for 0 < x £ L,

u(x,0) = f(x). In the first three cases we used the Lax-Wendroff scheme

' 2
n+l _ . .n _Afn _.n A _ ,n n - .
U = U 2<Jj+1 UJ._1> + ZQJJ._H 205 + Uj_1>,4 A= At/px (3.9-1)

In the first case

0 Osxsn
f(x) = {%+)cosx T<x<2n
1

2Zm<x s L

The boundary conditions are u(0,t) = 0, u(L,t) = 1. As long as t < (L-2m),
the solution is u(x,t) = f(x-t), and thus we can compute the error for t in
this range. We computed the solution of equation (3.9-1) and also the

error which is given in the table below.

Error A\ = 0.99

Time Ax = 0.377 Ax = 0,188 Ax = 0.094

0.95 9.0(-4) 4.4(-4) 2.2(-4)
1.90 1.7(-3) 8.5(-4) 3.5(-4)
4,06 3.4(-3) L.4(-3) 5.8(-4)

In the second case we used the same Lax-Wendroff scheme with periodic
boundary conditions u(0,t) = u(2m,t) and initial function f(x) = sinx,

0 < x £ 2n. The error is given in the second table.

Error A = 0.99
Time Ax = 0,251 Ax = 0.126 Ax = 0.063
0.95 3.1(-4) 8.5(-5) 2.0(-5)
3.96 1.3(-3) 3.3(-4) 8.2(-5)
8.01 2.6(-3) 6.6(-4) 1.6(-4)
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The third case is the same as the second except A ='0.8.

Error A = 0.8

Time Ax = 0.251 Ax = 0.126 Ax = 0.063

1.02 6.1(-3) 1.5(-3) 3.7(-4)
3.96 2.3(~2) 6.0(-3) 1.5(-3)
8.06 4.8(-2) 1.2(-2) 3.0(f3)

In the fourth case we used the scheme

n n

U + U
o+l _ _j+l ji-1 _ A _ M =
v ——1-————-]—} > > <Jj+1 Uj_1> A = At/Ax

with periodic boundary conditions u(0,t) = u(2m,t) and u(x,0) = £(x) = sinx.

The error is given below.

Error X = 0.99

Time Ax = 0.251 Ax = 0.126 Ax = 0.063
0.95 3.7(-3) 2.0(-3) 9.8(-4)
3.96 1.5(-2) 8.0(-3) 4.0(~3)
8.08 3.1(-2) 1.6(-2) 8.0(-3)

Problem 3.9-1. Derive the following expression for the truncation

error of the Lax-Wendroff scheme.

3 4
_ At -2 At -2 5
T=S + A Tu ;> +-—§Z <§ 4 A Tu {> + 0(ALT)
t X t X

We denote 63u/at3 by u 3° We have assumed that all the derivatives
t

required for the above derivation are continuous.
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~ Problem 3,9-2., Explain the following facts concerning the above
results: 1) In the first table we seem to have E(Ax) = 0(Ax) and in the
second E (Ax)= O(sz). Here E(Ax) denotes the error. 2) The error is

much smaller in the second table than in the third. 3) In the fourth table

E(Ax) = 0(Ax).
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4. DIFFERENCE SCHEMES FOR SYSTEMS OF EQUATIONS

Thus far we have only cpnsidered problems with a single equation for
a single unknown function u. Usually one has several unknown functions and
must thus deai with a system of equations. For example, the equations for
incompressible two-dimensional viscous fluid flow are the following (u and
v are the Velocity components in the x and y directions, p the pressﬁre and R

the Reynolds number).

H
|
~
-]
+
=}
L

u u u
¢ + uX + v v + Py

vt + uvx + Vvy + py

Note that these are nonlinear equations. Only two of these equations
involve a time derivative., The pressure must be obtained by some means
other than a marching procedure--it is a diagnostic variable rather than a
prognostic variable. We will say more about this in section 4.5. In
order to set up a finite difference scheme, we need more than the above
equations--we must specify the boundary and initial conditions. The
proper treatment of boundary conditions causesvthe numerical analyst
considerable difficuity. Here there is but little theory to guide him.

If our theoretical stability analysis implies that a difference scheme is
stable, then it usually is, except an instability may develop near the
boundary. Sometimes we also have a failure of the theory because of nonlinear
terms. OQur stability analysis is usually valid oﬁly for linear equations

with periodic boundary conditions. However, the extemnsion from a single
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equation to a system usually does not cause a problem in practice, although
it may make a theoretical analysis more difficult. Also, it may greatly
increase the computer time required for a solution. Most schemes that

are stable for a single equation will also be stable for a system of the

same type.

4.1 VonNeumann stability analysis for systems of equations. The

von Neumann condition for a single equation is based on the computation

of the amplification factor»for the scheme. This is a complex number Mh(k)
and we require Mh(k) =1 + 0(At) for stability. 1In the case of a

system of equations this amplification factor is a matrix Mh(k). If the
scheme involves only two time levels (Un+1 = LhUn) and there are N

unknown functions ul(x,t), oo UN(x,t), then the order of this
amplification matrix Mh(k) is equal to the number of unknown functibns,
namely N. To analyze stability we must determine a bound for the power

of the matrix operator Ih’ that is HL;H < M for nAt £ T, By using the
Fourier repfesentation, we reduce the stability problem to that of finding
a bound for the power of the amplification matrix Mh(k). We pay a price
for this reduction, since our stability analysis is now valid only for
periodic boundary conditions. VIn the case of a single unknown (N=1)

this factor Mh(k) is a scaler, which makes the analysis much easier. For
the case N > 1 we must deal with the norm of a matrix; that is, find a
bound HME(k)H4< M. The original matrix operator LIh has order approximately
N*J where J is the number of mesh points. Thus thé Fourier representation
has reduced the order of the matrix considerably, bﬁt we must still deal with

a matrix. If the norm HME(k)H is bounded independent of the mesh spacing h
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and the wave number k, then the eigenvalues xi(h,k) of'Mh(k) must . satisfy

the condition

Ir (k)| = 1+ cat (4.1-1)

where C is independent of h and k. The reader should verify this statement.
The above condition on the eigenvalue is the von Neumann necessary condition
for stability. It is frequently easier to find such a bound for the
eigenvalues than it is to find one for the norm. Considerable effort has
been expended to find conditions on the matrix or difference scheme which
will insure thaﬁ the von Neumann condition is sufficient for stability,

as well as necessary (see Richtmyer and Mdrton, 1967). It is usually

rather difficult to bound the norm of a non-symmetric matrix. . Note that

the von Neumann condition is sufficient if there is only one unknown

function (N=1).

We will now consider the von Neumann method to determine the stability
of schemes for systems of equations. This is based on Fourier analysis
for a vector., This is a trivial extension of the scaler case--we simply
look at each component separately. Suppose we have a vector function
u(#), -1 € x < 1; that is, u(x) = (ul(x), uz(x), cens uN(x)). We may
represent each component in a Fourier series. '

@

uv(x) = ¥ a

-0

eiﬂkx
vk )

Then the function can be represented in the form
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where the ak are vectors of order N. Similarly for a mesh function we

have a finite Fourier analysis

J-1 inkxj
U, = & a, e
S
1 J-1 i‘rrkxj
a, === LT U, e
k 23 j=-J j

- where Uj and ak are vectors.

For an example we will use the wave equation u,-cu = 0. We will

write this as a system of equations

v, -~ cw_ =0 ) v = v(x,t)

-l <sx<1

w,_-cv._ =0 w = w(x,t)

The function v is then a solution of the wave equation. We assume periodic
boundary conditions. The initial conditions are v(x,0) = fl(x),
w(x,0) = f2(x). We can write this system in matrix form as u + Aux =0,

u(x,0) = £, where

2

The mesh is xj = 3j/J, -J < j s J. The notation is the same as for a

single equation

n
v,
n ]
u, = .
J n
w
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The Lax-Wendroff scheme can be derived by the same sort of Taylor series
as before except we are now dealing with vectors and matrices. Namely,

n+l _ n n,,,. 2 n 3 2
uj = uj + Atutj + LAt u j + 0(At”), and U, = A W Therefore the

scheme is

2
ntl _.n Bfm _.n B (fm .m0 n
Uj UJ 2<j+1 j-1> +3 61 41 2U, + U._1>
0 -A
= Aty - =
B AxA , A = cAt/Ax .

Next we use the Fourier representation

n -1 n imkx,
U, = = (] a e J (4.1-2)

1 k=g :

where Mh(k) is the amplification matrix. If we substitute this into the
difference scheme and equate the coefficients of the complex exponentials, we
obtain an equation for the factor Mh(k). This is exactly the same as for

a single equation, except we use vectors and matrices instead of scalers.

n imkx .

We can obtain the same expression for Mh(k) if we let U, = e and
substitute this expression for U? into the difference scheme (that is,

take the Fourier transform or work with one frequency component at a time).

We obtain
U?+1 = Mh(k)U? = (I - isindB + (cose-l)Bz)U?, 6 = mkAX

and thus Mh(k) =1 - isingB + (cose-l)Bz. This is the same as the single

equation case (equation (3.2-2)) if we replace the scaler A by the matrix B.
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A little computation shows us that the matrix Mh(k) is

1+ Kz(cose-l) ilAsing
(4.1-3)

M (k) =

ihsing 1 + 2% (coss-1)

To determine the eigenvalues of this matrix Mh(k)vwe can use the

following result.

Problem 4.1-1. Let the matrix M of order N be represented by a
polynomial in the matrix B; that is, M = COI + ClB + ...+ Can. if
the eigenvalues of B are gi 1 < i 5 N, then the eigenvalues xi of M

_ 2 : n . ” .
are ki c. + Clgi + ngi + 00 + cngi. Hint: For any matrix B there is

0
a unitary matrix U such that U%U = I and U%BU is upper triangular. The

eigenvalues of a triangular matrix are the diagonal elements.

Using the result of this problem we see that the eigenvalues of M
are gi =1 4+ iAsing + kz(cose-l). Note that the eigenvalues of B are #\.
We have already shown in section 3.2 that |§i\ < 1 independent of § = mkax.
Therefore the von Neumann criterion is satisfied for this difference scheme.
The von Neumann criterion is only a necessary condition so we still have no

proof that the scheme is stable.

In order to prove stability we must find a bound for the following
norm H[Mh(k)]nu. We will prove that HMh(k)H < 1 independent of k and h
(h = Ax) provided \k| <1 (N = cAt/pMx). This provides a bound for the
norm of the nth power of the matrix, namely H[Mh(k)]nH < 1. We will use
the Euclidean (sometimes called L2) norm. The elements in our matrix are

complex numbers since we used the complex form of the Fourier series.
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The norm of a vector {ui}, 1 £ 1 <N, containing complex elements is

(here Ei denotes the complex conjugate of ui); The norm of the matrix M
is defined by
\pell, = max |julf,
llull=1
Problem 4.1-2, We define the spectral radius of a matrix A as

c(A) = max lkj(A)‘ where kh(A) are the eigenvalues of A. We denote the
J

* *
transpose conjugate of a matrix A by A, thus the elements of A are

L3 —_ .
(a )ij = aji' Prove the following relation for the L2 norm of a

matrix, HMHZ = JG(M%M). See problem 1.2-34.
Now we will estimate the norm of the matrix M given by equation (4.1-3).

We could use the result of problem 4.1-2, but we will give an independent

proof since our matrix is so easy to deal with. If we denote the elements

of M by m, s 1<i, j<Nand let w=Mu, then |Mul| = I ;iwi =

N /N N N _ N [/N _

= r mou i X omou |= o ou, I Y m,.m, Ju |, A moment's reflection
=1\ =1 3 P \em1 TEE =1 =1 \\gm1 HEY K

* %
will show that we can write the right hand triple sum as u (M?M)u (note

% —_—

that w Aw = T S w, a,, w, for any vector w and matrix A). If we compute
[T
*

the matrix M M for the matrix M of equations (4.1-2) we obtain the scaler

matrix



4.8

2 1+ )\z(cose-l)

e 0 , oIt e o=
0 a2+62 0 1 B = Asing
% * % * %
If Hunz =1, thenuu=1and uM Mu = (a2+52)u Iu = (a2+62)u7u = a2+52.

In section 3.2 we have shown that az + BZ =1 - Kz(l-cose)z(l-xz).

Obviously (a2+62) < 1 independent of § (thus independent of h) provided

|N] < 1. Hence we have stability.

Normally it is not so easy to determine a bound for the norm of the
powers of the amplification matrix HMﬁ(k)H. In practice, instead of
computing the norm, we usually use the von Neumann stability criterionm.

This requires knowledge of the eigenvalues of Mh(k) rather than the norm.
Determination of the eigenvalues can be difficult but usually not so
difficult as the norm. The von Neumann condition is a necessary condition

for stability, but it is not sufficient, A stable scheme must satisfy the

the von Neumann conditiom, but a scheme which satisfies this condition may
not be stable. The von Neumann condition simply requires that the eigenvalues
Ki of Mh(k) satisfy the condition |kil = 1 4+ 0(At); that is, there exists a
constant ¢ independent of h (h=Ax) and the frequency k such that ‘xi‘ £ 1 4+ cAt.
The fact that this condition is only necessary for stability and not
sufficient, is not too serious. After all, this analysis of stability is
dependent on the Fourier representation of the solution. This only works

for linear equations with constant coefficients and periodic boundary
conditions. Usually these requirements are not met in practice, so our

theory is not rigorously applicable. However, the von Neumann criterion

is an invaluable guide to the selection of finite difference schemes.,
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If M is a normal matrix, then the von Neumann condition is sufficient to
bound the norm HMPH of the powers of M. Other sufficient conditions are

given in chapter 4 of the book by Richtmyer and Morton.

Problem 4,1-3. Consider the hyperbolic system u, + Aux = 0 where A
is a real matrix with real, distinct eigenvalues and u is a vector function.
Assume we have an initial value problem with periodic boundary conditions.

Use the Friedrichs finite difference scheme.

n+1 n e A n 1
= L -+ - - - =
Uj 2@j+1 j-1> 2 A<Uj+1 Uj-l)’ A= at/ax

Use the von Neumann criterion to obtain the stability condition for this
scheme (lAtgi/Axl < 1 where gi are the eigenvalues of A)., Show that this

is also a sufficient condition for stability in this case.

Problem 4.1-4, Show that the implicit scheme below for the hyperbolic
system of problem 4.1-3 is unconditionally stable (use the von Neumann
criterion).

n+l _ .0 A nt+l _  ntl n _.m -
U= U 4A@j_‘_l Uip t Uiy Uj_1>, A = At/bx

If -J < j < J and if there are N components in the vectors U?, then at

each time step we must solve a linear equation of order 2JN, Show that

the matrix for this system of equations is block-tridiagonal. Is this matrix
non-singular? What method would you use to solve this matrix equation on

a computer? Can you provide an operational count for this method?
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Problem 4.1-5. Consider the parabolic system of equationg u, = Duxx.
Here u is a vector of order N and D is a symmetric positive definite matrix
of order N, Assume an initial value problem with periodic boundary
conditions on the interval -1 £ x < 1., Define the energy in this system
2 /N |
by |juf|® = f z ui(x,t) dx (u is the vector whose components are ui(x,t)).
-1 \i=1
Show that this energy is non-increasing. Extend the Crank-Nicholson implicit
scheme of section 3.4 to this system. Use the von Neumann criterion to
show that the scheme is unconditionally stable. The implicit scheme

requires the solution of a matrix equation at each time step. Show that

this matrix is nonsingular.

Problem 4.1-6. Find a family of matrices Mh depending on a real
parameter h such that HMhHoo < 2 and o(Mh) < 1 for all h. Here HMhHm
is based on the maximum norm and c(Mh) is the spectral radius of Mh'
The family should have the additional property that HMSH is not bounded

as n - © even if hn < 1. This is most easily done with a matrix of order 2.

Problem 4.1-7. What is the error in the following argument? Let
the family of matrices Mh of order N have spectral radius bounded by
G(Mh) < 1 + cAt (assume At = At(h) is a function of h). Assume there are

N independent eigenvectors of Mh for each h. Denote these eigenvectors

by Vh,i 1 =i £ N, Then for any vector u we have u = igl aivh,i'
n . Non
Therefore if |ju|| = 1, we have HMhuH = Hiil Kh,i oivh,i\' Since
ct Cct

n

‘kh i‘ < 1 + cAt, lh: i| <= e =, and therefore HM;uH <e " provided
H E

lul| < 1.
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4.2 Multilevel Difference Schemes. The leapfrog scheme for the

hyperbolic equation u, + cu = 0 is an example of a multilevel difference

We must know Un"l and U" to predict Un+l. Many schemes use only the
. . n . n+1 L1

single time level U to predict U . Our theory of stability--the

von Neumann criterion, for example--applies only to such single-level

schemes. However, we can reduce a multilevel scheme to a single-level

scheme. Consider the leapfrog scheme given above. Define the column

s U U U, U cees U

n+1l n+l n+1 n n n T
=J+1° "t Tg-1’ -3 T-341° 1/ °

vector W' by Wn = <%

That is wn.=:@n+1’ U€> . The difference scheme for U" can be written as

Un+1 = IUn_1 + BUn where I is the identity matrix of order 2J and B is also

a matrix of order 2J, namely,

O ‘-‘}\. 0 « o o
A 0O - 0 . .-
0 AN 0 -x 0. ..

B =].
-i .. . 0 A O
Since Un+2 = 10° + BUn+l, we can write the scheme in terms of W' as
Wn+1 = Lhwn where Ih = s (4.2-2)
I O : .

Note that Lh is a matrix of order 4J. To determine the stability of the

difference scheme for W' we must investigate HLEH. Our proof that
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stability implies convergence for a consistent scheme no. longer applies

to this multilevel scheme., We have changed the structure of our problem
since the values of W approximate the solution u on two time levels. However
this change creates no real problem. We refer the reader to chapter 7

of the book by Richtmyer and Morton.

We will now use the Fourier series method to perform a stability
analysis for the difference scheme written in terms of W , The vector

{W?} 1 < j < 4J can be represented in the following form (why?)

J-1 () LT
Toal e J 1<js<23, x,=(j-J-1)/3
=-J J
we o=
i
J-1 (n) imkx,
¥y by” e 2J+1 < § < 43, x, = (§-33-1)/J
k=-J ¥ J

Note the coefficients aén) and bén) are the Fourier coefficients for

Un+1 and U" respectively.

Problem 4.2-1, Substitute the above expression for w" into

equation (4.2-2) or equivalently, into (4.2-1). Obtain the following

equation for the coefficients aé“) and bﬁ“).

(n+1) ] ()
a a
| TR |
n-- n
by by

Find an expression for the 2x2 amplification matrix Mh(k). Note that
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R (0
a a
1(‘ | - RO 1:0)
n
bk bk

(0)

where the coefficients a and béo) are determined from the given initial
vector WO (we must have 1° and 0! in order to define Wo). Find the
eigenvalues of the matrix M = Mh(k). Show that the maximﬁm norm HMHOc

is bounded independent of Ax and n. Using this result prove that the
scheme is stable, Show that the L2 norm of M is greater than one. Does

the L, norm satisfy the condition \\Mh(k)\\2 < 1 + 0(At) independent of h

and k. Given any matrix must this condition be satisfied in order that
n c .

HMh(k)H be bounded? Note that the L, morm is given by HMHZ = Jc(M*M)

where ¢g(A) denotes the spectral radius of A.

Problem 4.2-2, Use the von Neumann criterion to show that the
following multilevel scheme for the heat equation u, = cuxx is stable.

n+l _ ol n+l n+1l +1 - 2
-3+ 4U? U 2“<§j+1 20,77 + U?_#), w = obt/Ax

4.3 The Courant-Friedrichs-lewy sgabilitx condition for hyperbolic

equations. We will first look at the wave equation written as a system of

two first-order equations.

oV ow

—~-c——=0

ot ox -lsxsl
dw _ _ dv _ 0<t
3t Sax 0

v(x,0) = vo(x)

w(x,0) = wo(x)
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We assume periodic boundary conditioms v(x+2,t) = v(x,t), w(x£2,t) = w(x;t).
If we change variables by setting u, = v+w and u, = Vv-w, then the above

equations become

ot ox
du du

2 2
5t "% -0

ul(x,O) = vo(x) + wo(x)

u, (x,0) = v (%) = W (x)

The solution of this system is
ul(x,t) = vo(x+ct) + wo(x+ct)

uz(x,t) = vo(x-ct) - wo(x-ct)

The value of u, is constant along the lines x+ct = K and the value of u,

1
is constant along the lines x-ct = K. If we consider any point P = (x,t)
in the x-t plane and draw the two lines downward from this point with slope
ic-l, we obtain a'"domain of influence'" for the point P. The values of uy
and u, (hence v and w)‘a; P are determined by ﬁhe values at the inter-

section of these lines with the initial line t = 0 (see Figure 4.3-1

below).
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P=(x,t)
t
dx _ dx _ _
at = € N e - "¢
of
influence
0

X

Figure 4.3-1

Values outside the domain of influence for the point P can have no effect

on the values at P.

Next we will look at more general hyperbolic systems.

Qu ou = -
3t + A 3% +Bu =g (4.3-1)

where u is a vector of dimension N and A and B are constant matrices of
order N (see section 1.3.7). We assume that there is a nonsingular matrix
P such that P 1AP D is a diagonal matrix. Then the diagonal elements

are the eigenvalues of A and the columns of P are the eigenvectors. If

we change variables to w = P-lu, then we obtain the system

_—@—“1+P APP1L+P]‘BPP Li=ply
(4.3-2)

o ow = 5
3t +D 3% + Cw g

-1 ~ -

where C = P 'BP, g =P "g. Suppose we denote the elements of the diagonal
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matrix D by gi, 1 =i < N. Consider the lines Li(K> given by x - git = K,

Along such a line w(x,t) is a function of t alone and the chain rule for

. . dw dx .
d i i us = = == = . W . If we write out the
erivatives gives it = Ve + ot Vx - V¢ + §l X 0

vector equation (4.3-2) into components we have

awi awi N R
5t T8k T S3VYyte
j=1
or
dwl N
—=- 3 c,,w, + §.
dt =1 ij '] i

Therefore we can solve for w along any line by integration of a system of
ordinary linear differential equations. Now consider any point (x,t) in
the x-t plane, From this point we may draw the N lines with slope

dx/dt = Ei where gi are the eigenvalues of A (see Figure 4.3-2).

Figure 4.3-2

The values of w (and therefore of u = Pw) are found by integrating along

the lines Ll through LN. Therefore only initial values which lie inside
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the triangle determined by these lines can influence the value at the point P.
The lines Li are called characteristics of the differential equation. Only

hyperbolic equations can be properly solved by this "method of characteristics."

Next we will discuss the use of these concepts in the evaluation of finite
difference schemes. Suppose we lay out a mesh to solve equations (4.3-1).
We assume the mesh ratio At/Ax = \ is constant, independent of Ax. Suppose

we have an explicit three-point difference scheme. Then the values of

n+1

Uj can be obtained from a knowledge of U? n

n
-1’ Uj’ and Uj+1'

of influence of the point (xj, tn+l) in the difference scheme is the

The domain

interval [xj on the nth time level and [xj 1 on the (n-l)St

217 ¥j41) -22 Fj42

time level. It is clear that the domain of influence for the difference
scheme is bounded by lines of slope Ax/At = ik-l extending downward from

a mesh point (see Figure 4.3-3).

Figure 4.3-3

If the solution is initially zero on the lower side of the triangle, then
it will be zero within the triangle. This is true even if we halve the
mesh spacing since the triangle is determined by lines of slope ik-l and
X-l is not dependent on the mesh spacing. Now suppose the demain of

influence for the differential equation is not contained within that for

the finite difference scheme (see Figure 4.3-4).
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Figure 4.3-4

If the initial function on the interval A is not zero, then we can assume
the value of the solution at the point P will not vanish--if it did vanish,
we could change the initial function on A, However, if the initial function
does vanish on the interval B, then the solution of the finite difference
scheme must vanish at P regardless of how small we take the mesh spacing Ax.
But this means convergence is impossible--zero values cannot converge to. .

a nonzero value. This leads us to the following condition,

Definition 4.3-1. We say a finite difference scheme for a hyperbolic
system satisfies the Courant-Friedrichs-Lewy (C-F-L) condition if the
domain of influence of the finite difference scheme contains the domain
of influence of the differential equation. The C-F-L condition is a
necessary condition for stability, but it is not sufficient (can you find

an example of a scheme which satisfies the C-F-L condition but is unstable?).

If the eigenvalues of A are gi’ then the C-F-L condition clearly
requires that h-l > |gi| for 1<1i <N, or At‘gi\/Ax < 1. Thus the value
of At is limited. The values“gi = %%‘govern the ‘speed with wﬁich waves
or disturbances are propagated by the differential equation. A moment's

reflection will show that the maximum speed of propagation for disturbances

in the mesh is Ax/At = X-l. The C-F-L condition then states that the mesh
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disturbances must have a velocity mno less than that of the physical

disturbances.

Problem 4.3-1. Consider the hyperbolic system

2 1
%%+A?=o A=
x 1 2

with initial conditions u(x,0) =vf(x) and boundary condition u(0,t) = g(x).

Use the "upstream difference'" scheme

AR L MQJ‘.‘ -yt > A = At/Ax
] ] J J-

Choose A so that the C-F-L condition is satisfied for this scheme. 1Is it

possible to satisfy the C-F-L condition with this scheme if A is given by

Problem 4.3-2. What is the domain of influence for the following

implicit scheme for u_ + cu = 07
t X

n+l _ ™ _ A n+1 n+1 _
U, (J+1 J l> A = cAt/Ax .

What does the C-F-I condition say about the stability of this scheme? Does

this agree with the von Neumann criterion?

4.4 Implicit difference schemes for systems. Implicit schemes offer

the same unconditional stability for systems as for a single equation.



4.20

However, the solution of the implicit equations for a system can require a
prohibitive amount of arithmetic (see problem 4.1-4), At each time step
it is mecessary to solve a block-tridiagonal matrix equation rather than

a scaler tridiagonal matrix equation. If there are N variables in the
system, then these blocks are NXN matrices. The amount of arithmetic

required for each block goes up roughly in the order N3.

Suppose we have a hyperbolic system of equations

Qu Qu _
ot tA ox 0
The Crank-Nicholson type of implicit scheme for this system is given in

problem 4.1-4. It is

ntl _ .om A n+l o n+tl n _.mn
Uy 7Y 4A@j+l U5-1* Y Uj-1>

As noted above, we must solve a block-tridiagonal matrix equation at each

time step to. obtain ", We might try a modification of this implicit

scheme which requires only the solution of N scaler tridiagonal matrix equations
each time step (N is the order of the matrix A; that is, the number of

unknowns in the original equation). The idea is very similar to the Gauss-
Seidel iteration for the'inversion of a matrix, We illustrate this under

the assumption that A is of order three (N=3). We use the notation

n n

n n
U~ . =1, - U, .. Let the components of U, be U,.,, U, , and U, ,.
X,] j+l i-1 P j 1,3 72,3 3,3

The scheme is the following:

n+l _ on A n+1 ny A n o\ _ i n -
Uy =01y al11@1& +U1ﬁ> 4 a12<2U2£> 4 al13<2U3>“c> (4.4-1)
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]

ol n_ A +1 A n+1 n\) _A n
u Uy =% 2 <Un U111§> W 22(2“ +U2§> % %23 2Usg

c
]
c
1
P

n+l. A n+1 _A n+1 n
a3<1‘ +U1>'4a3 <Uz§ +sz1§> 4 33<3“ +U3>“<>

We have dropped the mesh subscript j from U? 32 thus U? does not mean the

3
three-dimensional vector with j = 1, but rather the 2J dimemnsional vector
formed from the first component of U? (a terrible notation). Note that this

scheme involves the inversion of three scaler tridiagonal matrices at each

time step.

Problem 4.4-1., Show that the truncation error of the scheme of
equations (4.4-1) is v = 0(At) + O(sz). How could you improve the accuracy

to T = O(Atz) + 0(/_\x2)?

The above scheme can be shown to be unconditionally stable if the
matrix is symmetric and positive definite. If A is symmetric and not

positive definite, then the scheme is unconditiomally unstable [Gary, 1964].

Mitchell and his collaborators have a series of papers on implicit
difference schemes for hyperbolic systems of equations. Some of these require

nothing worse than the inversion of a scaler tridiagonal matrix [Mitchell, 1966].

4.5 An initial wvalue problem coupled with a boundary value problem.

In some cases we have initial value problems in which some variables are
not differentiated with respect to time., The Navier-Stokes equations for
viscous fluid flow mentioned at the beginning of this chapter are one such
example. We will consider a contrived example of such a system which is

simple enough so that we can analyze it., The system is
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3 32 |
Lu +ow =0 Lu u= u(x’t) (4.5"1)
ot 2 .
ox

2
Q—% +u=0 w =w(x,t)
3x
u(x,0) = £(x) 0sx<1 0<t

The boundary conditions are u(0,t) = u(l,t) = w(0,t) = w(l,t) = 0. Note
that once u(x,t) is known for a given t, then w can be found for the same

t by solving a two-point boundary value problem. For this we need u and

the boundary conditioﬁs on w.  Therefore we do not need an initial condition
on w. If w were known, then we could find u by integrating the

inhomogeneous heat equation

2

du _ _ o u
ax

We must solve for u and w simultaneously, but only for u do we use a
marching method. Before we discuss difference schemes for this problem,

we will study the differential equation.

Problem 4.5-1. Assume f£(x) can be represented as

® @
f(x) = = ay sinmkx where T lak| < ®,
k=1 k=1
2,2
o -( 2k2 + om k,>t |
Show that u= % a, e m sinmkx is the solution. Find

k=1 K

the expression for w. Prove that these series converge and satisfy the

differential equation for t > 0.
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‘Problem 4.5-2, Assume the functions u and w and the appropriate
derivatives are continuous. Show that the following energy equality

holds.

1 t 1 t 1
2 2 2 2
I {[u(x,t)] - [u(x,0)] }dx =- q Io Io (w ) “dxdt - ¢ Io jo(ux) dxdt

N

0

Use this result to show that the solution of equation (4.5-1) is unique,

provided it is sufficiently smooth (assume «,c > 0).

Now we are ready to consider finite difference schemes for this
problem. First we will look at the obvinus analog of the explicit scheme
for the heat equation.

n+1 n n n n n
U. + U, - AtoW, = 4 |U, - 2U, + U, 1< j=<J-1 (4.5-2)
i j j “<J+l j J-1>

L = oAt/Ax’

The values of w? are obtained by solving the following system

n n n _ ,2mn .

Wj+1 - 2wj + Wj-l = Ax Uj l<j=<J-1 (4.5-3)
n_ .n _

Wy = WJ =0

The matrix for this system is tridiagomal. We start the integration by
using the initial condition U? = f(xj), x. = j/J. Then we can solve
equations (4.5-3) for the vectqr WO. Then we can use equation (4.5-2)
to obtain the vector Ul. Now wé can repeat the process.finding first

Wl, then U2.
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J-1
Problem 4.5-3. Using the finite sin series = ¢ Ak sinmkx,
3 el ]

determine a stability condition for the above difference scheme.

Consider the predictor-corrector scheme defined as follows, Assume

n .
U is known.

ﬁj”.- 2ﬁj'+ ﬁj_l = - ‘szug‘ 1<3<J-1
&0 = ﬁJ =0

By = 0 - o, 4 (0, T G 2 )
ﬁo = ﬁJ =0

I AR L -A’ﬁ@ +ﬁ>

j+l j j-1 2 \] j
w3+lf = er“’% =0

Urj1+1 = U’;‘ - Atcvng'% + %6}’; " 2Urjl + U‘j‘_l + UIJ"_E - zug1+1 + U’JITD
U3+1 - U§+1 =0

Problem 4.5-4., Determine the truncation error and stability condition

for this predictor-corrector scheme. Assume ¢ > 0 and ¢ > 0.

Next we will define an iterative difference scheme. We wish to iterate

toward the solution of the following system of equations.
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: 2
'W’.‘+%-2w’.‘+%+wr.‘+%=ﬂ—ur.‘+ur.‘+l> 1<j<Jd-1
j+l ] j-1 2 \'] j :
1/ 1
Wt = W = o

(4.5-4)

n+1 n nHs W (o n .o -y n+1 Un+1>
= [0 - - 2
U. U, A Wj + 2<j+1 2UJ + 5-1 + 541 , Uj + 5-1

1 <j<J-1

Problem 4.5-5. Suppose we are able to. solve the above implicit
equations (4.5-4) at each time step. Prove that this difference scheme

is unconditionally stable (assume w,c > 0).

Problem 4.5-6. Extend the predictor-corrector scheme of problem 4.5-4
to obtain an iterative scheme for solving equations (4.5-4). Under what

conditions will this iterative scheme converge?

1
Problem 4,.5-7, Eliminate Wn+2 from equations (4.5-4) to obtain a

1 in the form AUn+1 = BUn. Here A and B are

matrix equatibn for Un+
matrices of order J-1. Show that A is pentadiagonal; that is, iaij‘ =0

if li-jl > 2. Prove that the matrix A is nonsingular.
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5. CONSTRUCTION OF DIFFERENCE SCHEMES FOR ELLIPTIC EQUATiONS

In this chapter we will be concerned with the construction of finite
difference approximations fof the solution of elliptic partial differential
equations. This involves the selection of a set of mesh points to approximate
the region and its boundary. Using this mesh we must derive a finite
difference approximation to the differential equation. This leads to the
question of convergence and error estimation. That is, how good is our
approximation. These are the questions we will treat in this chapter.

These schemes require the solution of a large system of linear equations.
There is a formidable amount of literature concerning the solution of these
large systems. We will consider these techniques in chapter 6. Much of the
material in this chapter is patterned after chapter 6 in the book by

Varga [1962]. The books by Wachspress [1966], Greenspan [1965], and

. Forsythe and Wasow [1960]‘have also proved useful, as did an article by

Spanier [1967].

5.1 Derivation of the heat equation. We wish to determine an

equation for the temperature u(x,y,t) in a two-dimensional domain. We
assume that the flux of heat energy tﬁrough a line segment ds is
k(du/dn)ds where k is the conductivity of the medium and du/3n is the
derivative of u'in a.direction normai to the line segment. Let p be the
density of our material, ¢ the specific hedt per unit mass,

Au = u(x,y,t+At) - u(x,y,t) the change in temperature during the time

interval At, AA = AxAy measure the area of a rectangular region containing

the point (x,y). Then the increase of emergy in the region is given by

AE = pcdAAu
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and this is equal to the energy which flows into the region due to the

temperature gradient at the boundary. The region is pictured below.

-

ay/2
L(x, 7 +
Ay/2

1

— A%/ 2——4—pX/2—4

The net flow of energy per unit time is

- AN A AN
8o o8]

+ ké-+2’>1&é-+2’a ké 2,>ux( 2,}Ay

/

If we equate these two energy terms and take the limit as Ax, Ay, At

approach zero, we obtain the heat equation

du B( '§§> a<k %§> )
Pe 3t T T ox M @ux/ + <kuy>
X y
A somewhat 'cleaner" way to derive this formula involves the use of
the divergence theorem [Kaplan, 1952, chapter 5]. We will state the

theorem in three dimensions although it applies to the plane as well.

If F is a vector, then
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oF oF oF
Here V-F = axx + ayy + Bz? is the divergence of E = in'+'Fyi + FZE

and n is the outward-drawn normal to the volume V. The surface integral

on the right is taken over the boundary of V, denoted by 3V. The heat
flux through a surface element into V is given byktﬁe derivative of u in
the direction of the outward normal to the surface multiplied by the heat
conductivity, kdu/dn. We have kau/an = kVu.n where Y u is the gradient

of u (Vu = uxi + uyi + uzh) and therefore the rate at which heat energy is

being conducted into the region V through the boundary 3V is given by

a

| kyu-n ds
oV

The rate at which heat energy'is changing within the volume V is given by

]
IO/

f pcudv
v

(0%

t

Therefore we obtain (assume p and ¢ do not depend on time t)

[ pe U oo j‘ yuen ds = j‘ 7. (kyu)dv (5.1-1)
at - ‘
Y ‘ dV v

Therefore at any point in the region V (assume that all the derivatives
are continuous), we must have the heat equation

ou
pe at

n
d
PN
-
19
o
p g

or

.1-2
pe 33 (5 )

I@
c
]
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c
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+
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N
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Cases for which the conductivity is not continuous are of great practical
interest [Wachspress, 1965]. Our region may be composed of twé different
materials which meet along an interface. Along this interface, the
conductivity may not be continuous. Along this interface we will require
the flux of heat energy to be continuous, that is kdu/3dn is continuous.

If k is not continuous, then clearly du/dn cannot be continuous. Therefore
the defivatives used in the heat equation do not exist along thé interface.
We must solve the equation in regions where k is continuous and then piece
the solutions together by means of the requirement that kdu/3n be continuous
along the interface. We will see that the integral formulation of equation

(5.1-1) is better suited for this than the differential equation (5.1-2).

In order to solve the heat equation we must have some boundary conditions.
We could specify the temperature on the bouﬁdary to obtain u(x,y,t) = g(x,y,t)
on 3V where g is a known function defined for points (x,y) on the boundary aVv.
This is called a boundary condition of the first kind or a Dirichlet boundary
condition. We might also specify the heat flux to obtain du/on = g on oV.
This is called a boundary condition of the second kind, or a Neumann boundary
condition. Another common boundary condition is ou + Bou/on = g where
o« and B are functions defined on OV such that @ # 0 and B # 0. This is a
boundary condition of the third kind. We can give a simple physical
interpretation of this boundary condition by consideration of the
temperature in a rod. This temperature is governed by the one-dimensional
heat eduation u =ou where o = k/pc is assumed constant. Suppose the rod
occupies the interval 0 < x < 1. Suppose the end of the rod is in contact
with a heat reservoir at x = 0. Also, suppose there is a thin film on

the end of the rod, perhaps an oxide coating. We assume the film is so thin
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that it has a constant temperature gradient. We suppose the film extends
from x = -8 to x = 0, Then the heat flux through the film is

‘kf<§(-6,t) - u(O,tﬁ//Q-é), and this must equal the flux through the end

of the rod kux(O,F). We assume the temperature at the end of the film

is that of the heat reservoir, thus u(-§,t) = g(t). If we combine these

equations we obtain

ke(g(t) - u(0,£))/(-8) = ku (0,t) or
kb - o(
u(0,t) - kf uX(O,t) = g(t) or
w(0,6) + 8 & = g(t) 8 =2
f

and 3u/3dn denotes the outward normal derivative. All of these boundary

conditions yield a properly posed problem.

We will consider only steady state probiems in this chapter, although
the methods used to derive the steady state equations will apply to the heat
equation. By a steady state solution we mean one which is independent
of time t. 1In one dimension our problem thus becomes a boundary value

problem for an ordinary differential equation. That is, the problem

0
e} 'a—l; = <kux> u(O’t)
X

u(l,t) =

i
[

under the assumption u = u(x) becomes



d du
o k(x) =)= 0 u(0) = u,
u(l) = u,

We will first treat the derivation of difference schemes for one-dimensional

problems. The basic principles are the same in higher dimensions but the

details are considerably more complex.

5.2 The derivation of difference schemes for ordinary second-order

boundary value problems, We will consider the differential equation

g—x- (C?_(x) %—1-}: +-3-;< cl(x)u> + co(x)u = f(x)

A

on the interval A < x £B with boundary conditions

2, u(d) +B,u(A) = g, o + B2 £ 0
a u(B) + B u'(B) =g az + 82 #0
B B B B B

(5.2-1)

(5.2-2)

We will denote the operator on the left side of equation (5.2~1) by L(u)

and define the inmer product (u,v) by

B
(u,v) = I w(x)v(x)dx
A

We say a problem is self-adjoint if (u,Lv) = (Lu,v) for any two functions

u and v which have continuous second derivatives and satisfy the boundary

conditions (5.2-2) with g\ = 8

lead to a symmetric system of finite difference equations provided an

appropriate difference scheme is used.

= 0, We will see that self-adjoint problems



5.7

.Problem 5.2-1, Show that the problem defined by equations (5 2-1)

with cl(x) 0 and boundary condltlons (5.2-2) is self-adjoint.

5.2.1 Difference schemes based on a Taylor series expansion. Suppose

we assume the boundary conditions are u(0) = go and u(l) = g, and write

the differential equation in the form

cz(x)u” + (cé(x) + cl(x))u"+ (ci(x) + co(x))u = f(x)

For simplicity we will assume the coefficients are constant, ci(x) =c.s
0 <1i< 2, We will assume that we have an equally spaced mesh xj = 3i/J,

0 <j<J. We denote u(xj) by uj = u(xj). We can represent the boundary

conditions by Uy = 8gs Uy = 8- Then we must obtain a system of equations
for uj, 1 <3 <J-1. We will make a further assumption that ¢ = 0.
We will look for a difference approximation in the form
o, ,ou, . +a, u, +a, u =c, u’(x.) + coulx, (5.2-3
3,1 -1 3,273 3,3 3l '« i (x3) )

If we let h = 1/J denote the mesh spacing, then we can expand uj-l and uj+l

in a Taylor series in h with the derivatives evaluated at xj. If we

substitute these expansions into equation 5,2-3 and require equality for

the hO, hl, and h2 terms we obtain three equations which can then be solved
o d o . is ( = (@, k=1,2
for aj,l’ 20 an 5,3 That is (let o aJ,k, 52,3)
@, u +a,u + dau. =y uJ
- hu’ + o hu’ =0
Q’lu oz3u
h2 V7 +ah2 " = c 1/
12 Y5 3203 2 7]



The solution is o

1

equation we have ¢

is

% 93
4 Y
A = 0 al

0. .
0

Yy

CYZ C(’

2

=

Y/
u +c.u

3

5.8

= c2/h2 and o

0

O * . .
0 al az
.0 o

2

= C

0

£, -8
£y

= f3
1217738

UJ-l

- 2c2/h2. From the differential

f(x), therefore the finite difference scheme

(5.2-4)

(5.2-5)

Note that we have a tridiagonal matrix equation to solve. We have already

discussed methods to solve such systems in section 3.4. We could have

obtained the same formula by simple substitution of the centered difference

approximation for u” (that is u”(xj) = (u

differential equation.

j+1

- 2ﬁj + uj_l)/hz) into the

However, there is sometimes an advantage in regarding

this as a Taylor series substitution, as demonstrated in. the book by

Greenspan [ 1965].

5.2.2 Irreducible, diagonally dominant matrices, Now we will digress

for a moment to consider some concepts from matrix theory which are

especially relevant to the solution of elliptic equations,

on these concepts, we refer the reader to the book by Varga.

For more details
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Definition 5.2-1. A permutation matrix is a square matrix P such that
each row and each column contains a single nonzero element which is equal

to one.

If we premultiply A by such a matrix, then PA is a matrix in which
the rows of A have been interchanged or permuted. Postmultiplication, AP,

permutes the columns.

Problem 5.2-2. Show that if P is a permutation matrix, then PTP = I.

Definition 5.2-2. A square matrix A is reducible if there is a

permutation matrix P such that

A1 Ao
PAPT =
0 A2’2
where A1 1 and A2 2 are square submatrices. A square matrix is irreducible
b 3

if it is not reducible,.

Problem 5.2-3, Show that the following matrices are reducible.

W N W
N
= O O
W = N =
o o &~ o

N W o= W,
= N SR R

Definition 5.2-3. We will define a graph associated with the nXn

matrix (aij)' We choose n distinct points in the plane P ..,Pn which

1’

we call nodes. A directed path of length 1 is curve joining Pi to Pj'

A set of directed paths is called a directed graph. We may also define



5.10

a directed graph on n nodes in nongeometric terms as a set of order pairs

(ik,jk) l<ksmwhere 1l i <n, 1< jk < n, Associated with a matrix

k
of order n is a directed graph defined by all pairs (i,j) such that
aij # 0. The directed graph associated with the first matrix in

problem 5.2-3 is

Definition 5.2-4. A directed path of length r joining nodes i and j

is a set of pairs in the graph
(10’11)’_(11’12)3 (12313)’ A (11‘-1’11')

where iO = 1 and ir = j. A directed graph is strongly connected if there

is a directed path between every pair of nodes i and j.

Problem 5.2-4. Show that a matrix is irreducible if and only if it is
strongly connected. Hint: Suppose there is no path from node il'to node iz.

Let M be the set of nodes which can be connected to il' Permute the matrix

so. that these M nodes correspond to the last M rows of the matrix. This

permutation shows that the matrix is reducible.

Problem 5.2-5. Show that if @ # 0, @, # 0, then the matrix A in

equations 5.2-5 is irreducible.
Definition 5.2-5. A matrix is diagonally dominant if

.‘ for all i

with inequality for at least ome i.
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- Problem 5.2-6. Show that a diagonally dominant irreducible matrix is

nonsingular. Hint: Suppose Ax = 0 and let lxk\ = max lle. Then
|x.| , .
'lakk‘ < jik ‘akj‘ T;JT . In case \xj\ < \xk\ and 2y 5 # 0, this leads to

a contradiction. Now consider the remaining cases.

If the coefficients in equation 5.3-4 satisfy <, > 0 and ¢y = 0, then
the matrix A in equation 5.3 is irreducibly diagonally dominant and thus

nonsingular. Irreducible diagonal dominance frequently holds for matrices

derived from elliptic problems.

5.2.3 Derivation of the difference scheme using integrationby parts.

Suppose we wish to approximate the self-adjoint problem

a [ du
—_— —— = = 0~
dx:G:?_(x) d%> + cO(x)u f u(0) & (5 6)
u(l) =g
on the mesh 0 = X, < X1 < ... < xJ = 1. If we integrate this equation from
X, = (x + x.)/2 to x. we obtain
i-% *5o1 J) N
X, X, X.
, J J J
e, (x)u’ (%) + | ¢y (D) u(x)dx = [ £ (x)dx (5.2-7)
X, 1 X, 1 . : X. 1
3=z J-% J-%z

1f cz(x) is piecewise continuous with possible discontinuities at the
interior mesh points Xj’ then the above differential equation does not hold
at the mesh points. However, the integration which produced equation 5.2-7
is still valid since we did not integrate across a mesh point. To derive
the difference scheme we use the condition that cz(x)u’(x) must be

continuous (we make this assumption because it is true for the heat equation).
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'If we form a second equation similar to 5.2-7 by integration from Xj to

xj+1 and add the two equations using the continuity of cz(x)u’(k) we obtain
]
, 34y
7 . dx = F - F
Cp(Riqpdu (k) = e (3 Puilxy 4 + fx Corulnde = Flx; ) - Flxy,)
i-%

X
where F(x) = j f(t)dt. 1If we approximate the integral on the left side

« , ‘

0

X
of the equation by [C(x,,,) =~ C(x, ;)|u(x,) where C(x) = f c.(T)dT and
itz i-% A e 0
0
use an obvious difference approximation for u'(xj+1) we obtain
]
v, .-0) U,-u, )
02( J+¥> (x +1-x ) ) XJ-}) X.~X - + (CJ+9-Cj-;)Uj - s Fj-l
2 j+1 j 2 J j_l 2 2 2 2
(5.2-8)

This equation holds for 1 < j < J-1. If we use u, = 8 and u; = gg, we can

solve this system of equations.

Problem 5.2-7. If CZ(X) >0 for 0 £ x <1 and cO(x) <0 for 0 < x = 1,

then show that the system of equations (5.2-8) for (U .,UJ_l) has a

1ot
unique solution, that is the matrix is nonsingular. Show that this matrix is

symmetric.,

Problem 5.2-8. Suppose instead of Dirichlet boundary conditions in
equation 5.2-6 we have Neumann boundary conditions u’(0) = 8g> u’(l) = 8-

Modify the above integral method to obtain a finite difference scheme for

this problem,
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5.2.4 A difference scheme based on a variational formulation. We will

modify our notation slightly and ask for a solution of the equation
/ .
-<%2(x)u'(xi> + cO(x)u(x) = f(x) 0=sx<1 (5.2-9)

where u(0) = 8g? u(l) = g We suppose f(x), cz(x) and co(x) are continuous,

1
with CZ(X) > 0 and co(x) = 0. The variational problem is to find a minimum

of the functional

1
F(w) = [ [cz(x) ' (x))% + ¢y (%) w2 - 2w(x)f(x).J dx (5.2-10)
0 .

We ask for the minimum over the set of all functions w € 02[0;1] which satisfy
the boundary conditions w(0) = 8g> w(l) = 8- (w € 02[0,1] if w(x) has a
continuous second derivative on the interval 0 < x < 1.) We call such functions
w(x) admissible. We will now show that if such a minimum exists and is

given by F(u), than u must satisfy the differential equation (5.2-9). ILet

u(x) be the minimizing function. If w(x) = u(x) + ev(x) is an admissible
function, then F(u) < F(w) by assumption. Note that w(x) will be admissible

for any real ¢, if u is admissible, v € Cz[O,l], and v(0) = v(l) = 0.

Problem 5.2-9., Show that the admissible minimizing function u(x)

satisfies the differential equation. Hint: Show that

F(utev) = F(u) + 2¢G(u,v) + ezF(v) where
1 /

G(u,v) = I [—(cz(x)u'(x)) + co(x)u(x) - f(xi]v(x)dx (5.2-11)
0
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Show that if F(u) < F(utev), then G(u,v) = 0 for all v which satisfy the
conditions above. Now use the continuity of u(x) to show that the
bracketed term in equatioﬁ (5.2-11) must vanish--that is, u must satisfy

the differential equation.

Problem 5.2-10, Show that if u(x) is admissible and satisfies the
differential equation (5.2-9), then u minimizes the quadratic form in

equation (5.2-10).

Now we are ready to construct the finite difference scheme. Suppose

we use the mesh 0 = X < X1 < ... < X; = 1. We use the integral

approximations shown below.

*i+1 (w - W )2 X + x
. ’ 2 . i+l i : = j+l |
J cz(x)(w (x))7dx = c2(xj+%) 3 =) Xj+% >

xj j+l i

X4 ) WtV 2

jx e () W) Tdx = e (x, ) (=) (=, - x)

]
*i+ Wix, |) + w(x,)
_ i+l i -

jx w(x) f(x)dx = > > f(xj +%) (xj+l xj)

i :

If we now substitute these approximations into the expression for F(w), we
obtain an expression which is quadratic in the components of the vector
W = (wl’wz""’wJ-l)T (note that Wj approximates w(xj)). We can write

the approximation for F(w) in matrix form as

T

F(w) = WoAW - 2W'b + d

where b = (bl""’b ) is a vector and d a scaler.

J-1
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- Problem 5.2-11, Assume an equally spaced mesh xj = j/J,
Write out an expression for A, b and d in terms of Cos Cgs and £, Note

that A is a symmetric tridiagonal matrix.

Now in order to find the vector W which will minimize the above
approximation for F(w) we differentiate the expression with respect to

the components Wj and set these derivatives to zero. We then obtain

AW

]
lon

This is our finite difference scheme.

. . .. . N7
5.2.5 The effect of a discontinuous coefficient c(x) in (cu’) = £,

First we will consider an improper method for the solution of this problem.

Suppose we write the equation as
cx)u’(x) + ¢’ (X)u’(x) = £(x) , (5.2-12)

Suppose we have boundary conditions u(0) = 0, u(l) = 1. If we simply
ignore the discontinuity in c(x), we might construct a difference scheme

as follows:

xj=jh, 0<ji=<J, h =1/J
UO =0, UJ =1

(U, - 20, + 0, ) U, - U,

T i+1 ] -1 / +1 ']-: -
c(xj) hz + c (Xj) 0 f(xj) (5.2-13)
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Now if e¢(x) is as given below and J is odd, then the discontinuity in c(x)
will never fall on a mesh point, Therefore we might naively expect the

above scheme to give a reasonable approximation. It does not. If

1 0 <x <k
c(x) = s f(x) = 0, (5.2-14)
L2 Y <x<1l :

then a solution of equation (5.2-12) based on the continuity of cu’ is

%? 0<x<}
u(x) =

1,2

3 +-7$ 5 =x<1

Problem 5.2-12. Show that the solution of the system of equations

(5.2-13) 1is uj = Xj’ independent of the mesh spacing h.

Obviously the difference scheme does not converge. A difference scheme

based on the integral method of section 5.2.2 is

U0=O: UJ=1

U'+1-U- U‘Ul

1) - I L S L
c(Xj+%) h C(Xj-%) o = hf(xj) for 1 < j = J-1

(5.2-15)

Here we want the discontinuity in c to occur at a mesh point. If the

discontinuity is at x = % we should take J to be even since h = 1/J.

Problem 5.2-13. With c(x) given by equations (5.2-14) show that the
solution of differential equation (5.2-12) is also a solution of the
difference equations (5.2-15). Thus the difference scheme gives us an

exact result in this case.
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- Next we will give the results of a numerical experiment with the scheme

of equation (5.2-15). We defined u(x) and c(x) by

o (x-) 0

sx <%
u(x) = {
e2 15£x$l
1 0<sx<X%
Cc(x) =
2 Yy <x<1

Then the right side f(x) is

=1
et e 0<x=<X
tx) =
(%) x
12 1
e F<x <1
-% L
The boundary conditions are U, = e “, U_ = e?, Using the above definitions

0 J

of £(x) and c(x) we can compute Uj from equation (5.2-15). Then we

determine the maximum relative error E = max |Uj - u(xj)\/ﬁax \u(xj)\.

J J
This error is listed in the table below.
J Error J Error
10 3.3(-3) 11 8.2(-2)
20 1.6(-3) 21 8.0(-2)
40 8.1(-4) 41 3.1(-3)
80 4.1(-4) 81 7.9(-2)

In the case where J is even the discontinuity in c(x) occurs at a mesh
point, as it must if the derivation of the difference scheme is to be wvalid.

In this case the error seems to be proportional to Ax. Apparently we
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have a first-order scheme. If we take J to be odd we apparently do not
have a convergent scheme. We must always be careful with 1imi£ed
experimentation such as this, Although we can sometimes gain considerable
insight through such experiments, they do not prove anything. This is

particularly true if we only run one case such as the above,.

Problem 5.2-14. Determine the truncation error for the above example.
Suppose the scheme of equationb(5.2—8) was used instead of equation (5.2-15).
Would there be any difference in the truncation error? Program scheme (5.2-8)
and run the above example to compare the scheme of equation (5.2-8) with

that of (5.2-15).

5.2.5 An example to illustrate the treatment of Neumann boundary

-conditions. In this section we will show that the difference approximation
used for the Neumann boundary conditions must have the same accuracy as
that used in the interior. The overall order of accuracy is the minimum

of that for the boundary and the interior. Perhaps this is no surprise

but we think it is worth an example. We will consider the equation
! .
(cu’) = f (5.2-16)
with Neumann boundary conditions u’(0) = 8y» u'(1) = 8-
The first scheme is derived from an integral method. We use the
mesh X, = (j-¥h, 1< j<J,h=1/J. The difference equation for j = 1

is then

e r3p)u (Ry)p) = elxyp)ullxy ) = hiCx)
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The difference approximation is

Yy - 4y
c(x3/2) ) - c(xl/z)go = hf(xl)

Note that x3/2 = h, xl/2 =0, xl = h/2. 1In the interior, the difference
approximation is
Uy - U BVA RER
e(x, )| LE—) - cx, )| =L—=)=hnf(x)) (5.2-17)
s h i-% h ]
At the upper boundary
Uu. -0
J J-1\ _
c(xﬂ%)g1 - c(xj_%) T = hf(xJ)

The reader should note that if we divide these equations by h, then
substitute for Uj’ the solution of the differential equation u(xj),

the error will be O(hz). We have a scheme of second-order accuracy.

In the second case we use a slightly different mesh, xj = jh where
h = 1/J. For the unknowns Uj’ 1 < j < J-1, we have the equation (5.2-17)
except xj = j/J in this case and xj = (j-%)/J in the first case. For

the unknowns UO and UJ we use the boundary conditions

Note that these boundary equations have only first-order accuracy.

We could obtain a third scheme in case c(x) and c’(x) are continuous.

This scheme will have second-order accuracy. We use the mesh xj = (j~-1L)h,
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0<j=<J,h=1/(J-2). Note that Xq = -h and x; = 1+h. Thus these

points are outside the interval 0 < x < 1 on which the differeﬁtial equation
is defined. Nevertheless we will define mesh variables UO and UJ on

these "fictitious" mesh points. We use the differential equation in the

form
cx)u (x) + ¢/ (x)u’ (x) = £(x)

The difference scheme for interior points is

Note that these equations are of second-order accuracy. Also note that
these difference schemes for the Neumann boundary condition do not have a
unique solution. If the vector {Uj} is a solution, then so is {Uj+K}

where K is an arbitrary constant. This is pfoper since the differential
equation (5.2-16) with Neumann boundary conditions has the same property.
This means that {Uj} is the solutioh of a singular system of linear
equations. Therefore we have to modify the usual Gauss elimination in order
to obtain {Uj}. We assume that all the pivots (the diagonal elements in

the upper triangular reduction of our system) will be nonzero except the
last (or bottom-most). We know the exact solution in these test cases.

Thus we simply set the last component UJ equal to the exact yalue u(xJ).

Then we use the backward substitution to obtain the remaining components.
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‘In the third case we have Dirichlet boundary conditions for
equation (5.2-16). We use the following difference scheme which is based

on the integral method.

g

[
)

[Ny

u,,. -1, . .
<:4EEL———-1 - c(x, ;) 411y - hf(xj) 1< j<J-1
(5.2-18)

where U0 = 8ys U1 =85 h =1/7J.

These experiments were run on a Control Data 6600 computer., In the

/2

three cases below we have c¢(x) = 2, u(x) = e®'“. Then £(x)

]
e
o]

1
In the Dirichlet case the boundary conditions are 8y = 1, g = e?; in the

1
Neumann case =% = ke?, The error is the maximum relative error
0 23 1 3

namely ¢ = max lu(xj) - Uj\ / max lu(xj)‘. The results are listed in the

] J
table below.

Error

I. Second-order II. First-order

J Neumann Neumann III, Dirichlet
10 4.6(-5) 7.7(-3) 5.4(-6)
20 1.2(-6) 3.8(-3) 1.3(-6)
40 3.1(-6) 1.9(-3) 3.2(=7)
80 7.8(-7) 9.5(-4) 8.0(-8)

Note that the error for cases I and III is reduced by a factor of 4 when the
mesh spacing is halved. In cases II the error seems to be proportional to Ax
rather than AXZ. Error estimates for Laplace's equation on a rectangle using
Neumann boundary conditions are discussed in a paper by Giese [1958].
Numerical solutioné of Laplace's equation for Neumann boundary conditions

show this same sensitivity to accuracy at the boundary.
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5.2.7 A convergence proof by the method of Gerschgorin. We wish to

‘prove that the solution of the finite difference scheme for equaticn (5.2-1)
converges. The method of Gerschgorin which we will use is described in
considerable detail in the book by Forsythe and Wasow [ 1960, pp. 283-328].

We will illustrate the method by applying it to the simple equation

]

(c2u/)l =0 u(0) = g, ¢, (x) > 0 (5.2-1%)

u(l)' 8,

The same method can be applied to certain difference schemes for Laplace's

equation., We will first consider the trivial problem

v =0 u(0)

1]

8o

u(l) 81

Problem 5.2-15. Show that the solution of equation (5.2-19) satisfics
the following maximum principle. The maximum (and minimum) of u(x) is taken
on at the Boundary. That 1is, min[go,glj < u(x) < max[go,gl] 0 =x < 1.

Does this maximum principle apply to the equation -(czu')/ tequ = 0
where c2(x) > 0, co(x) = 07

Now we will demonstrate that the same sort of maximum principle applies
to the finite difference approximation for equation (5.2-19). Use the

difference scheme of equation (5.2-18), namely

] - - -
c2(xj+%) (Ij+l Uj) CZ(Xj"%) (Uj U,

5.1 =0 1<j=J-1
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Problem 5.2-16. Show that if g/ # g;, min(gy,g;] < U < max( g8, ]

Next we will introduce some notation, even though it is not needed
in this trivial case. The same notation will be used for the treatment
of Laplace's equation in two dimensions. We denote the interval 0 = x <1
by R; its boundary, x = 0 and x = 1, by dR; the mesh points by
= < 1 < . . =
Ry {xj, 0 < j < J};and the mesh boundary by oRy {xO,XJ}. Let I

be the finite difference operator defined by

Lh(U> = c2(xj+%) (Uj+1 f Uj) - CZ(Xj-%) (Uj - Uj_l) 1 <j<J-1

We will need the following result.

Problem 5.2-17. -Tet V = {Vj} be a mesh fumction such that Lh(V) = 0
for some subset R of (Rh - aRh). Note that Lh is not defined on the
boundary aRh. Then

maxJ_Vj < max Vj
x . ER” x.€R_~R¥
J J Rh

We need to consider the truncation error of this difference scheme before

we prove convergence,

Problem 5.2-18. Suppose u is a solution of equation (5.2-19) with
enough continuous derivatives, and assume c2(x) is also sufficiently

differentiable. Then show that Lh(u) = O(h4), that is ‘Lh(u)\ < h4M.

Gerschgorin's method requires the construction of a comparison mesh

function W such that Ih(w) <-lonR and W= 0 on Rh-R? where Rh-Rx contains
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the boundary aRh. If we let the solution of the difference scheme be U,
and the solution of the differential equation be u, then the efror functionr
is E = u-U; and if T is a bound for the truncation error, we have ILh(E)l < T,
%
Now suppose Rh = Rh - aRh. If we define the mesh functions v, by
= - > -
¢, +E - TW, then Lh(@i) 0 on Rh aRh, and therefore

max ¢i = max
% Ry

Therefore v, = 0 on Rh - aRh. ‘This in turn implies *E < TW or lu-U‘ < lel

+ But u =71 on 3R, and thus ¢ = -TW < 0 on OR, -

£
ey

on Rh - aRh. This is our error estimate. Obviously, this error estimate

depends on the choice of the comparison function.

We will choose a comparison function for the case cz(x) = 1, which leads
to the trivial problem u” = 0, u(0) = 8g> u(l) = 8, with solution

- - : (1-x.) -
8y + x(gl-go). If we let Wj = X7 , then Wj = 0 on BRh. The operator

Lh is given by Lh(W) = Wj+1 - 2Wj + wj-l’ and for the W given above
Lhw = -hz. Therefore we can use
x,(1 - x,)
~w. =—J—l—
] on?

. , . . 4
as the comparison function. A bound for the truncation error is T = h M

‘according to problem 5.2-~16, Therefore our error estimate is

4 .
Mh x,(1l-x.) 2
lu, - U} =W, = —ds sMg
il j oh

Problem 5.2-19. Return to the difference scheme of equation (5.2-18)
where CZ(X) > 0. Assume the mesh is not necessarily equally spaced, but

0 = X < X < ... < X; = 1. This requires a slight modification in the
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difference scheme. Construct a comparison function for this case and obtain

an error estimate. Hint: Try something of the form

X
14k
=G, X, - X, G, = 22 -,
J-%(J ,J-l)’ it e,
I+s

Varga [1962, pp. 165] has a more general proof of convergence for this
problem based on the properties Qf a Stieltjes matrix. A Stieltjes matrix is
a symmetric positive definite matrix with nonpositive off-diagonal elements;
aij <0 if 1 # j. If a Stieltjes matrix A is irreducible,’then A“l > 0.

Note that by B > 0 we mean bij > 0 for all i and j. This property can be
used tb obtain an error estiﬁate for the equation -(czu')l + cou = 0 with

<, > 0, <y 2 0. Since this equation does not satisfy the maximum principle,
- we would not expect Gerschgorin's method to work at least as we have stated

it.

5.3 A finite difference approximation for Laplace's equation on a

rectangle. In this section we will be concerned with the following problem:

Bzu azu
Sttt = u = u(x,y) p=p(x5) (5.3-1)
ox 3y
0 £x < a O0=y<b
w0 = £6) u(0,y) = £,()
u(x,b) = £,(x) u(a,y) = £, (y)

We will assume that the data for this problem; that is, the functions p
and fi; are such that the solution is as smooth as required for our purposes.

First we will construct the difference approximation. We define ‘the
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mesh (xj,yk) as follows (J and K are positive integers):

a/ (J+1)

x, = jbdx, 0 <j =< J+l1, Ax

kihy, 0 = k < K41, Ay = b/(K+1)

<
~
]

The mesh then appears as follows for the case J = K = 3.

Using the usual centered approximation for the second derivatives, we
obtain a set of equations for the values of u(x,y) at the mesh points.

We let uj K denote u(xj,yk). Then we have an equation for each interior
b

point. For an interior point we must have 1 < j <-J and 1 £ k £ K, Note

that the values of u, are known at the boundary points j = 0, j = J+1,

jk

k = 0, and k = K+1. Therefore we have a linear system of J*K equations in

J*K unknowns., The equations are

20 + U -2U, ., + U
ik

U, - 20, i U, f ke
Ax Ay
1< j3j=<17
1 <k<K

The values of U Uj 0’ and U, are given by the boundary
H H

0,k’ UJ+1,k’ j,K+1

conditions. We may write these equations in the form
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2
U - - = - . 3-
U T Uit U T 8y Y k) T Bk (5:3-3)
1< j=sJ
1 <k <K
2 2 2 . 2
where o = ——f——n | g =—3K 2. = A
¥ o2x + Ay Y o2(ax" + ay9) 2(0x° + AyY)

We will define a matrix operator based on a multiplication of these equations

by -1, namely
L@ = ex(Uj-l,k + Uj+1,k) + ey(uj’k_1 + Uj’k+l) - Uj’k (5.3-4)

Note that Lh is an mXn matrix where m = J%K, n = (J+2)*(K+2). We use

the subscript h to denote the fact that Lh depends on the mesh.

Problem 5.3-1. Let J = K = 3. Let the vector U be given by

T

U = U U U

U U U U U U .
(Uy,19 Yg,10 Vs 10 Up o0 U g0 U 0 Uy 30 Uy 30 Ug 5)

difference scheme can then be written in matrix form as AU = f where A is a

The above

matrix of order 9 and f is a vector. Write out the matrix A and the vector f.

Problem 5.3-2, With J = K = 3 write out the (9X25) matrix operator

Lh. Hint: Show that the matrix has the block form

= S'S, .
Lh (Li,j) 1 i 3 i
1=<j<5
where the Li ., are 3X5 matrices. Then describe the structure of these
}
blocks.

5.3.1 The convergence of the finite difference scheme. 1In this

section we will use the method of Gerschgorin to prove convergence. The
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technique is the same as that described in the preceding section for the

ordinary differential equation u’ = 0.

Problem 5.3-3. Let u(x,y) be a sufficiently differentiable solution
of equation (5.3-1). Define the truncation error by Lh(u) - 62p = T where

Lh and 62 are defined by equation (5.3-3). Show that

2
8 |2 u® 2 &
|T] < 12[Ax Mo+ by My }

where Mi4) and M§4) are bounds on the fourth derivatives of u with respect

to x and y.

Let Rh denote the set of mesh points (xj,yk) 0 =jj=J+4l, 0=k = K+1

and let aRh denote the bdundary points j =0, j = J+1, k = 0, and k = K+1.
Problem 5.3-4. Let W = {ij} be a mesh function defined on R -

Suppose Lh(w) 2 0 on a subset R; of Rh‘ " Assume that R; does not contain

any points of aRh, that is R: C Rh - aRh. Then show that

max W.. < max W,
c % jk ¢ * jk
TR X F Ry
a2 a 2
Problem 5.3-5. Show that the function W,, == - [(x, - =] 1is a
( jk 4 j 2
suitable Gerschgorin comparison function. That is W, =2 0 for boundary

jk
points (Xjk S BRh). And also Lh(W) < -1.

Problem 5.3-6. Let T be the bound on the truncation error from
problem 5.3-3. Let u be the solution of the differential equation, U the
solution of the difference equation, and let E = u-U. Then define the
functions P, ==+ E - TW. Continue askin section 5.2 to obtain an estimate

on the error
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5.3.2 Properties of the matrix equation. In this section we will

consider the matrix equation AU = f defined by equations (5.3-3). Here

the vector U consists of the unknown values_{Ujk} for 1 £ j<J, 1 <k <K,
Note that the known boundary values are not included in fhe vector U. When
we operate with the matrix Lh’ then these known boundary values are included
in the vector U. In this case U = {Ujk 0<j<J4l, 0 < k < K+1} and there-
fore the matrix Lh is not a square matrix. To define the matrix A (or Lh)
we must specify the order in‘which we write the components of the vector U.
We will order U by running down the rows first. That is,

T

Uu" = The reader should

(Uyys Upps ooes UJ’1,>U1,2, cees U)o e UJ,K).

verify the following block tridiagonal form for -the matrix A.

1 2 3 4... K
DB O O...
B D 0. .
Ao |0 D B ..
0 B
0.... O B

There are K blocks -each o£ which ié a sduare matfix of .order J. Each of
these blocks represents a row in the mesh, Equation (5.3-3) links each mesh
point to its four nearest neighbors. Thus each row is linked to the row
immediately above and the row immediately below. Hence the block tridiagonal
form of the matrix A. The matrices B are diagonal matfices and D tridiagonal

matrices both of order J.
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- 0 0... 0O 1 -8, 0 0...
y X
0 - 0... O -9. 1 -8, 0...
y X X
b= . b =]0 -8 1 -8 ...
‘ 0 -6 O
. y .
0....0 0 -8 : 0 -9. 1 -8
y X X
0 0 0 -9 1
X

Problem 5.3-7. Consider a different ordering of the vector U, namely

run through the columns first instead of the rows. Thus

T

U = ). Show

U oo ces ceey U cos
Wy P20 o Ve Vo, oo U oo Uapre o Bk
that the matrix A has a block tridiagonal form for this ordering and also

determine the submatrices.

Problem 5.3-8. Order the vector U by running along the diagonals of
the mesh; that is, group the components Uj K for which j+k is constant.

E

Then UT Y. Show

= (U 15 Uy 10 U0 Us 10 Uploo Uz Yy 0 voo0 g

that A has block tridiagonal form and determine the form of the submatrices.
Note that the blocks are not all of the same order, and the off-diagonal

blocks are mnot square.

Later it will be convenient to write the matrix A as

A=I—6<C/+CT>-6 <C +cT>
X\ X X yy y

where CX and Cy are defined by
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1 2 ... J*K 1 2 3. .. : K
0O 0 . . 0 0 0
1 0o . IJ 0 0
0 1 0 . 0 IJ 0 .
X y
0 1 0 O
0 0 1 O 0] 0 IJ

where IJ'is the identity matrix of order J and ex’ ey are defined in

equation (5.3-3). That is

1 r = s+l 1 T = 5]
>S5 0 otherwise r,s 0 otherwise

where 1 < r < J*K, 1 £ s < J*K.

Problem 5.3-9. Show that the matrix A is symmetric, irreducible, and

diagonally dominant.

Note that a;; = 1 for 1 £ 1 £ J*K and aij <0 if 1 # j. We will next

determine the eigenvalues of A. This will show that A is positive definite.

Problem 5.3-10. Verify that the eigenvectors of A are given by

W(p’q) l<ps<J, 1l <q <K, where
(p’q)—51n<>51n<K—_'q_—l l=<j=<J, 1=k<K

Also show that the eigenvalues of A are given by

(P,9) _ .02 _Tp il D9
A\ = 45 sin 2(01D) + 4eysln 2(K+D)
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Note that the eigenvalues of A lie in the interval O <»K(p’q) < 2.

Therefore A is positive definite,

5.4 Difference approximations for Laplace's equation in two dimensions.

In this section we will be concerned with the construction of finite difference
approximations for Laplace's equation in a planar region. In the preceding
section we were concerned with a rectangular region, Now we wish to consider
more general regions. We will first use an integral method which is based

on the Green's theorem relating line and surface integrals. Here we will
generally follow the presentation given in a paper by Spanier [1967]. This

is also described in chapter 6 of the book by Varga [1962].

5.4.1 A scheme based on the integral method. We assume we have the

elliptic equation

-%QJ %}-%—yé 'g—;'l'>+Eu=f | (5.4-1)
E = E(x,y) = 0

D = D(x,y) > 0

£ = £(x,y)

defined on some region R of the plane with boundary conditions
oE +e(Mu=g, @z0, B0, o4 >0 (5.4-2)

given on the boundary OR. The parameter T is used to describe the curve ZzR.
For example, we might let R be the disk x2 + y2 < 1 and the boundary curve

would be x = cosT, y = sinT, for 0 < 7 < 2, We will define a mesh region Rh
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which approximates R, We first lay out a rectangular mesh whose mesh
points are (xj,yk). That is, we specify points xj for 1 = j<J and Yie

for 1 £ k < K, such that Xj < x, and Yie <y This gives us a mesh

j+l k+1°

such as the one below.

Note that we do not allow a ”non-product” mesh such as the following:

We next form a boundary curve in this mesh composed of straight line segments
joining mesh points., These segments may be vertical, horizontal, or
diagonal. To approximate a quadrant of the disk we might have used the

following mesh.
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2’

Note that we were forced to use unequal mesh spacing in order that the boundary
mesh points (Pl""’P8) lie on the boundary circle. The mesh boundary

is then composed of the straight lines joining the points PO’Pl""’PS’ PO.

The set Rh is composed of all mesh points on or inside this boundary curve.

Given any mesh point (xj,yk) we form a region r, by forming a rectangle

jsk

of sides xj+%(x,

- ~L(x - L - Ly -
J+1 Xj)’ X, Z(X- xj_l)’ yk+2(yk+1 yk), yk Z(yk yk_l)' The

] ]

region r, is formed by taking the intersection of this rectangle with the

i,k
region Rh (note that we sometimes mé an Rh to be the set of mesh points and

other times the region bounded by the rectilinear mesh boundary aRh).

Examples of the definition of rj | are illustrated below.
H

i Sy 9

. g //v',"/v/ y #

. // s /'/

L / LS . :
P s g // S

oy
Lo
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We allow the coefficient function D(x,y) to have discontinuities along the
vertical, horizontal, or diagonal lines joining the mesh points. Thus

D(x,y) is continuous in the eight regions Rl""’RS shown below.

We integrate the differential equation over each of these regions and then use
Green's theorem to replace surface integrals by line integrals, Green's
theorem states that for any smooth functions T(x,y) and S(x,y)

I I (Sx - T )dxdy = I Tdx + Sdy

R Y 3R

where the boundary integral is taken in the positive, or countere-clockwise
sense. Application of this formula to the differential equation (5.4-1)
yields

j -Du dy + Du_dx + j f Eudxdy - f f fdxdy = 0 (5.4-3)

X y
3R R R

Note that in our case these line integrals are always over straight line
segments. If we describe these segments by a paramete:r T, then
+ Tcos8 where 8 is the angle that the normal to the

~ . ~
X = X, =~ Tsin, y =y

0 0

segment makes with the positive x-axis and (§0,§O) is the initial point

for the segment.
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We have 0 < 7 < L where L is the length of the segment. If du/3n denotes
the derivative of u in a direction normal to the segment, then
du/dn = uxcose + uysine. On fhe segment dx = -sinddT, dy = cosddrT,
therefore equation (5.4-3) becomes
- T D(T)ﬂdr+j‘j Eudxdy = [[ fdxdy - (5.4-4)

* an D

3R R R
At each mesh point (x,,y,) of Rh where u, is unknown, we use the above

377k i,k

integral to derive an equation for this unknown. For example, we will
assume D(x,y) and E(x,y) are constant and derive an equation for the point

below.

Tik T

—————————— ' Ay,

|
:
k !
]
|
|
i

————————————— } Ay1
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. Problem 5.4~1. Derive a difference equation for the unknown uj K
3

at the mesh point shown above (D and E are constant). Hint: Approximate

Cidlk ~ Yk
the normal derivative on the right side of r, by 12, Lo
: ik sz

, and

similarly for the other sides.

Problem 5.4-2, Assume D(x,y) = 1 in the upper diagonal part of rj K

and D(x,y) = 2 in the lower diagonal part of r, (see the figure below).

jsk

Using the fact that DOu/dn must be continuous along an interface, derive a

difference equation at the point (xj,yk).

Hint: Use equation (5.4-4) integrating first over the vertical cross~hatched
region, then over the horizontal cross-hatched region, then add the integrals.
Note that the line integrals almg the diagonal will cancel under the

addition.

Next we will consider application of the boundary condition of equation

(5.4-2)., If o = 0 at a point on the boundary, then the value of Uj K at
. H

that point is determined trivially from the boundary conditions. Note

that if (xj,yk) lies in the interior of Rh’ then tbe region rj,k also
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lies in the interior and we have the situation described in the previous

problems. As an example, consider the figure below.

If o(T) # 0, then we can derive an equation as follows, We will consider

the case illustrated in the figure below.

f g

Problem 5.4-3, Assume D and E are constant, and o(T) # 0 along the
boundary segments shown above. Derive an equation for the unknown boundary

value uj K Hint: On the side labeled Sl’ approximate the line integral by
2
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L

IR LI TC T SO LN C IS D

Here L1 is the length of the segment between (xj,yk) and (xj+1,yk_1) and

(

>V .) is the midpoint of this segment. Note that u = %ﬁ can be
e

from the boundary

34y

evaluated in terms of the boundary values of Uj Kk

’

condition of equation (5.4-2). What would you do if a(xj,yk) # 0,

but a(xj+;,yk_y) = 07

2 2

The derivation of these difference equations can be done by the computer.
Otherwise the scheme would be difficult to use. This is described by
Spanier [1967]. One inputs a description of the mesh geometry along with
the boundary conditions to the computer program, and the latter constructs
the coefficients in the difference scheme in accordance with the method
described above. This method will lead to a matrix equation for the unknown
uj,k’ namely AU = F, where U is the vector of unknowns. Note that the
matrix will depend on the ordering of the components of the vector U.

Problem 5.4-4. Show that the matrix A is symmetric, diagonally
dominant, with positive diagonal entries. It is possible to show that
A'is positive definite. (Assume B # O on the two line segments joining
at least one boundary point.) To prove this you must specify exactly what
is done in case @ = 0 for some boundary points. Note that you must also

specify the method used to approximate the integral
Ij Eudxdy
R

You might need to change the method used to approximate the line integral

“in problem 5.4-3,
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5.4.2 Difference schemes based on interpolation. We will briefly
describe two difference schemes for Laplace's equation with Difichlet boundary
conditions on a general (i.e., nonrectangular) region. For further
information we refer the reader to the book by Forsythe and Wasow [[1960]

and also to Greenspan [1965].

We first describe the mesh. We cover the domain R with a rectangular

mesh (xj,yk), 1lj=<J,1x k < K. We assume xj < We

< .
i+ Tk T Tken

also assume that #f the point (x,y) is in R, then xl‘s X S X5 ¥y Sy Sy

That is, we assume the domain R is contained within the mesh. We let RI

denote the set of mesh points which lie in the interior of R. We will assume

RI is connected in R. By this we mean that any two points of RI can be

joined by a series of @esh segments (that is (xj,yk) - (inl’yk) or
. (xj,yk) - (Xj’ykil)) which 1lie in the interior of R, We wish to exclude

cases such as the one illustrated below. The points of R_ are marked by ".'.

I

i \\;\ P G N

\ // L )

We say that a point of RI is a regular point if the line segments joining
the point to its four neighbors all lie in the closure of R. The closure
of R is the interior of R plus the boundary curve OR of R. If a point

1

of R, has a line segment joining it to a neighboring mesh point and this

line segment is not contained in the interior of R, then the segment must



5.41

intersect the boundary. We choose that boundary point on the segment which
is cloest to the original point and add it to the mesh., The set4of such
.points we denote by aRh. Our mesh Rh is then composed of the union of RI
with BRh. If we have Dirichlet boundary conditions, then we know the value

of the solution af all points in aRh. We need to obtain a difference equation

for each point of RI' The figure below illustrates the situation when R is

the first quadrant inside a circle.

& regular points

points of RI
N . irregular points

D
4

x boundary points in BRh

Now that we have defined the mesh we are ready to construct the finite
difference approximation. Since we are mainly interested in methods to
approximate the boundary conditions on a nonrectangular domain we will only
discuss Laplace's equation u . +u_=0. We will further restrict our

yy
discussion to Dirichlet boundary conditions.

Problem 5.4-5. We will first describe the approximation of U at
the point (xj,yk). Denote uxx(xj,yk) by uXX(P), and use u(E) for
u(xj+1,yk), u(W) for u(xj_l,yk). Let hw = xj - xj—l’ hE = Xj+l - Xj'

Assume that u(x,y) is sufficiently differentiable. Show that the following

difference approximation is valid.
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u(E) - u(P) _ uw(P) - u(W)
Pg By

uxx(P) - hw + hE
2

”
+ RX(P)

B 2 2

hw - h hW - hwh + h
14 -— E - E E

where Rx(P) == ux3(P) 12 ux4(§,YP)

xprhy = & = xpHhy

Note that if we use an equally spaced mesh (hE = hw =kh), then our
error term is 0(h2) instead of 0(h) for hE # hw. However, it may be to
our advantage to use an unequally spaced mesh if the solution changes rapidly
in one part of the region. We may then get by with fewer mesh points. Near

the boundary we may need to add more mesh points.

At a regular interior point P = (Xj’yk) we will use the differential

equation to obtain an equation for the unknown u, K We denote the neighbors
b

Of P by E = (xj“l"l’yk)’ w = (xj_l’yk)’ N = (xj’yk+l)9 S = (Xj’yk_l)’ and

hE’ hw, hN’ hS have the obvious meaning. The difference scheme is

UE) - U(P) _U® - UW) UM - UP)  U(P) - UCS)

h h h h
L (0)(P) = = h + h . + . b+ h > =0
B N NT s
2 2

(5.4-5)
Some of these neighboring points may be boundary points, in which case
the values of U at these points are known. These values would then be
moved over to the right side of the equation to form a matrix equation
(square matrix A) AU = F for the unknown interior values of U. Note that

the above equation reduces to the usual equation (5.3-2) in case hE = hw,
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Next we will describe three methods to obtain an equation for the
irregular interior points of the mesh. The first is a very crude interpolation.
If P is an irregular mesh point, one of its neighbors must lie on the
’boundary of the mesh. Denote the closest such neighboring point by Q and
let u(P) = u(Q) be the equation for u(P). Note that u(Q) is known since
Q lies on the boundary 3R. Instead of u(Q) we might use an average or

integral of u(T) along the boundary dR, for example

N N
u(P) = j u(tydr / [ ar
E ‘E

where the integrals refer to the path shown below.

This is a rather crude approximation.

The next method requires the choice of a neighboring point Q' on the
boundary mesh aRh closest to P. We then let @’ denote the neighboring
point on the opposite side of P from Q’. We use simple interpolation to
form the equation

h"u(Q’) + h’uQ")
hl + h// =

1, (0) (B) = U(E) - 0



5.44

Two examples are illustrated below.

\ o IR
| b i
h”{/‘

—
-

~
Problem 5.4-6. Let R be the triangle with vertices (0,0), (0,1.),
(0.5,0). Let the mesh be determined by xj = (j-1)/6, 1 = j <4,
Y = (k-1)/6, 1 < k < 7. Then Ax = Ay = 1/6. Note that there are four
points in the interior RI of this mesh, Assume we wish to solve Laplace's

equation with Dirichlet boundary conditions on this mesh. Write out the

finite difference scheme obtained from the second of the above methods.

A third difference scheme is one due to Shortley and Weller [1938].

In this case we simply use equation (5.4-5) at all points of RI'

Problem 5.4-7. Write out the finite difference equations for the mesh

in problem 5.4-6 using the method of Shortley and Weller.

Problem 5.4-8. Show that all three of these methods lead to matrix

equations for the unknown values of U, . whose matrices A are irreducible

i,k

and diagonally dominant and also satisfy aij <0 if i # j, a;; > 0. We

have assumed that the mesh is connected in the sense described in the beginning
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of this section. Give an example to show that the matrix may not be

irreducible unless the mesh is connected. Are these matrices symmetric?

We know the matrices obtained from these methcds are nonsingular since
these matrices are irreducible and diagonally dominant. Therefore we can

solve these systems of equations for the unknown vector U.
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6. THE ITERATIVE SOLUTION OF LINEAR EQUATIONS

In the preceding chapter we considered finite difference approximations to
elliptic partial differentialrequations such as Laplace's equation. These
methods all require the solution of a linear system of equations., The order
of this system may be very large--in some cases over 100,000. However, these
linear systems frequently have special properties which permit us to construct
particularly efficient iterative methods for their solution. The purpose
of this chapter is to discuss two iterative methods for the solution of
these systems--the successive overrelaxation (SOR) and alternating-direction-
implicit (ADI) methods. A great deal of work has been done on the
development of these methods. For more information the reader can consult
books by Forsythe and Wasow [ 1960], Varga [1962], or Wachspress [1965].

There are many journal érﬁicles on this subject. 'We will start with some general

comments on iterative methods and then consider the SOR and ADI methods.

6.1 General remarks on the convergence of iterative methods. We will

consider iterative methods for the solution of the matrix equation Ax = b,
where x and b are n-dimensional vectors, and A is a matrix of order n. We
are trying to find the zero of the vector function f(x) = Ax-b. We can
cénvert this to a fixed point problem by defining the function g(x) by

g(x) = x-f(x) = (I-A)x+b. ‘Then we are looking for fixed points; that is,
vectors x such that x = g(x). The easiest iterative method for this problem

(0

is to choose an initial guess x for the vector and then define

LD V)

g(x(v)) for 0 £ v. Under the proper conditions the vectors x
will converge to the solution x. An introductory course in numerical analysis
will usually consider conditions under which this iterative process will

converge for scaler functions g(x) of a single unknown x. We need to consider
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this question for matrix equations in ‘the form
x = Mx + b

Here M is a matrix of order n, x and b vectors of dimension n. The iterative

process 1is

(0)

x(v+1) = Mx(v) + b, X given (6.1-1)

(v) (V)

If we denote the error x-x by e , then by subtraction of the above

equations we obtain
+
LD )

(1) _ .2 (0)

(1) = M (0) e(2) M e , and by

From this equation we have e e s = Me

induction we can prove

e(v) = Mve(o).

th
Thus convergence is dependent on the v powers of M. We need to find
conditions under which M’ will approach zero. If M is in some sense small,

we would expect convergence. The following problem verifies this.

Problem 6.1-1. If the absolute row sums of M are strictly less than‘one,

then the iterative process of equation (6.1-1) will converge. The condition

n
is ¥ |m,.| <1 for 1 <4i <n. Hint: Let ¢ = max |e, | where {egv)}
- 1] v . i
j=1 l<i<n
is the error vector, egv) =x, - xgv). Then show ¢ < e, This implies
i i i v+l v

lime =0,
v
V0
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6.1.1 The convergence rate of the matrix iteration. We say that a

matrix M is convergent if 1lim M’ =0 (the zero onthe right side deﬁotes a
matrix whose elements are :IT zero). There is a close relation between this
property and the spectral radius o(M) of the matrix. (The spectral radius is
defined by o(M) = max \hi‘ where xi are the eigenvalues of M.,) In fact, a
matrix M is converg:nt if and only if o(M) < 1. We refer the reader to the

book by Isaacson and Keller [1966, p. 14] for a proof. A special case of

this result is the following.

Problem 6.1-2. Suppose a matrix M of order n has n linearly independent
eigenvectors. Show that M is.convergent if and only if o(M) < 1. Hint:

e () ()

Given any vector x we have x = + ...+ o v where v are the
eigenvectors. Use this to show that M’x - 0 for all x. Then show
lim M" = 0.
g

Problem 6.1-3. Given an integer m and positive number ¢, define a (2X2)
matrix M and a vector x such that HXHZ < 2, HvaHZ =z 1 for v < m and
1"

o <e, lsi=2, 0 # N, where A, are the eigenvalues of M. Hint:

Find a matrix M whose eigenvectors are (1,0) and (1,¢).

This problem shows us that even if a matrix M is convergent and has n
independent eigenvectors, the powers M may grow quite large before beginning
to decay to zero. The condition o(M) < 1 on the spectral radius insures
convergence, but it does not tell us how many iterations will be required to

v (0) . .
reduce the error M e to a certain level. 1In the case of a symmetric or
Hermitian matrix the spectral radius does give us an upper bound for the norm

HvaH. This is due to the fact that the eigenvectors of a symmetric matrix

form an orthogonal basis.
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Problem 6.1-4. Llet M be a symmetric matrix. Show that HvaHZ < (c(M))vHx\\2

2

n
for any vector x. Here we use the Euclidean norm Hx“z =z X,

The spectral radius can also fail to provide a good indication of the
initial rate of convergence if there is an "eigenvector deficiency." By this
we mean that there are fewer than n eigenvectors where n is the order of the

matrix. The following problem will illustrate this case.

Problem 6.1-5. Let the matrix M be defined by

p 1
M =
0
Show that
pv vpv-l
MY =
4] pv

Also showlthét given any € > 0 and any R > 0 it is possible to choose p > 0

such that for some v, p° < ¢ and M|l > R.

I,

Even though the spectral radius is not an ideal indicator of the
convergence rate, it is usually the best we can do and generally provides
reasonable results. Most analyses of iterative methods are based on the

spectral radius.
We can define an average convergence rate as follows:

1nHMvH2

RV = Rv(M) = - "
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Then .

vl = B, il < e el (6.1-2)

The larger R the smaller the error. Note that -lnHMHz <R for all v,
thus we have a lower bound for Rv' This may not be too useful, since we can
have HMHZ > 1 even though M is convergent. If R were bounded below by R

Rv =z R, then 1/R would bound the ﬁumber of steps required to reduce the norm

-1 :
by e 7, This follows from inequality (6.1-2). If v = 1/R, then
v -VRv -1
e
The spectral radius can be related to the rate of convergence by means

of the following results [for a proof see Varga,. 1962, p. 67]. We define

R by R = -In(c(M)). Then we have

lim Rv(M) =R_= ~In(c(M)) (6.1-3)
)30
Rv < R for all v (6.1-4)

Thus the convergence rate based on the spectral radius gives an optimistic
-vRV -VR

estimate of the norm HMv . -~ We have HMVH = e > e . However, note that

the error for a given vector may be better than indicated by the spectral

radius; we may have

-vR
I

Problem 6.1-6. Provide an example where the inequality above

holds.
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. We will not prove equation (6.1-3) but will give some indication why

it is true.

Problem 6.1-7. If the matrix M has n independent eigenvectors, then
show that equation (6.1-3) holds. Hint: In this case the matrix S of
eigenvectors reduces M to diagonal form, s'lﬁs = D, where D = diag{Xl,...,xn}

L. Now use [V = |sljjis™Hlip"I].

with A the eigenvalues of M. Then M’ = sp’s”
Problem 6.1-8. Prove relation (6.1-4).

6.1.2 Two iterative methods--Jacobi and Gauss-Seidel. In this section

we will return to our original linear system Ax = b and define some iterative
schemes for the solution of this problem. First wg will consider the

Jacobi iteration. We write A =1D - E - F where D is a diagonal matrix
'éénsisting of the diagona1~e1ements a . of A, E is a lower triangular matrix -
of the elements -aij (i > j) and F an upper triangular matrix of the

elements -a,, (i < j). We assume that the diagonal elements of A are nonzero.

1]
The Jacobi iteration is defined by

px"t! = (m4F)x” + b (6.1-5)

We can write this in the form

- g + 07

where L = D_lE, U= D-1F. Note that equation (6.1-5) is effectively explicit.
v+l |
The formula for a component of x is
xI+l ='El— = -aij x; + bi
it #1

If A is strictly diagoﬁally dominant, then the Jacobl method will converge.
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Problem 6.1-9. 1If a;; > z laij\ for 1 < 1 < n, then the Jacobi method
will converge.

We can modify the Jacobi method by including more of the matrix A on the
left side. We then obtain the Gauss-Seidel method defined as follows:

vl _ Y

(D-E)x Fx " + b

Since a g # 0 and E is lower triangular, we know that (D-E) is nonsingular.
This scheme is effectively explicit if we solve for the components of x\)-l_1

in ascending order. Suppose we have already computed xz+l for i < k. Then

v+l , .
xk is obtained from the relation

;+1 =L (-3% a, xY+1 - % a . x,+b

- X R
A \l=j<k - &3 k<j K

We can write the Gauss-Seidel iteration in the form

I T AR VAR

where L = D_lE, U= D_lF.

The convergence of the Jacobi iteration is determined by the spectral
. Vs vl _ v -1
radius o(B) where B = L 4+ U since x =Bx + D b. The convergence of
the Gauss-Seidel iteration is determined by the spectral radius o(Ml) of
M1 = (I-L)-lU‘since xv+1 = Mlxv + (I-L)-lD-lb. The following theorem relates
the convergence of the two methods in the case where B = L + U is non-negative.
This is frequently the case for matrices A arising from elliptic PDE problems.

Note that B is non-negative if the original matrix A satisfies the condition

aij/aii < 0 for all i # j. We refer the reader to Varga [1962, p. 70]
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for a proof of the following statement. The proof is based on the Perron-

Frobenius theory of non-negative matrices.

Assume the Jacobi matrix B = L + U is non-negative. Let Ml be the
matrix which defines the Gauss-Seidel iteration. Then one and only one of

the following relations hold:

a) o@B) =ocM,) =0

1)

B) 0<o(M) <o)<l

c) oM,) =c(B) =1

1

d) 1 <g(B) < O(Ml)

This theorem implies that if one of these methods converges, then the other must
.also converge. Also, the asymptotic convergence rate of the Gauss-Seidel

iteration (Rm(Ml) = -1n O(Ml)) is larger than that of the Jacobi iteration.

Problem 6.1-10., Assume A is strictly diagonally dominant, that is

a, .- ‘
max X };il = r < 1, Show that the Gauss-Seidel iteration will converge.
i jALVTiL

Hint: Use induction to show that each component of the error vector satisfies

‘e£v+l)‘ < r max |egv)\- Here x¥t1 = va+l + Ux® + D-lb, Ax = b, e = x-x

1
1

6.1.3 Acceleration of convergence by means of successive overrelaxation

(SOR). " We will first treat the general case where we have an iterative method
defined by a "splitting' of the matrix A, That is, we wish to solve Ax = b
where A can be "split" into A = N-P, We define an iterative scheme by

v+1

Nx = Px’ + b. We assume that N is non-singular. In order that the scheme

be usable, we must also be able to solve for x\"+1 without too much trouble.
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The convergence of this iterative method is. determined by the spectral radius

of M = N-lP since we can rewrite the scheme in the form xv+1 = Mxy + N-lb.

It is sometimes possible to reduce the spectral radius by means of the

following "overrelaxation'" procedure. We define first §V+1 by
N§v+1 = Px’ + b, then xv+1 by x\)+1 =x  + w(ﬁv+1 - xv). Here w is a real

parameter. If @ > 1, then we have overrelaxation; if w < 1, underrelaxation.
We will now show how this procedure may reduce the spectral radius. We can

write this procedure in the form

Nx\)+1 = [(1-w)N + wP]x” + wb

or

x\)+1 = wav + wN_lb s %ﬁ = N_l[(l-w)N + wP]

The original iteration which does not use overrelaxation is determined by the

. -1 . . .
matrix Ml = N "P. The matrix for the overrelaxation process is

Mw = (1-w)I + uM If we denote the eigenvalues of the matrix M1 by

1.
{ul,...,pn}, then the eigenvalues of Mw are Ki = l-w + W4 We can use this

relation to choose w so that the spectral radius of M& is made a minimum;

that is, choose g, so that cr(M(“0 ) < c(%u) for all w.

0 0

Problem 6.1-11. Assume that -1 < By < p, < ... < un < 1. Show that

2
2
i i = — < . h
the best choice of w is wg Tt Tu° then O(Mm ) O(M@) Also show
1 n 0
i : o= - € = -
that G(Mw ) < G(Ml) if by + W # 0., If Wy 1 + 3e, W 1 - ¢ where

0

0 < € << 1, then what improvement in the asymptotic convergence rate R

would you expect? If By = 0, b, = 1 - ¢, then what impfovement would you
expect? Assuming the asymptotic convergence rate to be a good indication

of the actual convergence rate, how much computer time would you expect to save

by use of w = wo rather than w = 17
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Overrelaxation for the Gauss-Seidel iteration is defined somewhat .
differently from what we did above. The objective is the same--to reduce
- the spectral radius, thus increasing the convergence rate. In component

form, the Gauss-Seidel overrelaxation is

a §v+l = - Z ay x?+1 - = ak.xY + bk
<k 4 >k I

(6.1-6)

immediately after computing 2 instead of

We relax each component goHt K

k

waiting until the vector AR computed.

Problem 6.1-12. Show that the Gauss-Seidel overrelaxation defined by

equations (6.1-6) can be written in matrix form as

x\’+1 = (L - wL)-l (wU + (1-0)11x" + wD-lb

where the matrices L, U, and D are defined in equation (6.1-5).

This procedure is frequently called successive overrelaxation or SOR.
. Our problem is to choose w so as to minimize the spectral radius of

Mw = (I - u)L)'1 [lwU + (1-@)11.
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6.2 The theory of successive overrelaxation., In this section we will

analyze the successive overrelaxation iteration. Our main objectiﬁe is to
obtain an expression for the spectral radius of the matrix Mw which defines
the SOR iteration. The spectral radius of SOR is related to that of the
Jacobi iteration. This relation is very useful (from a practical as well as
a theoretical point of view) for the determimation of an optimal w for the

SOR iteratiom.

6.2.1 The convergence of SOR--the Kahan and Ostrowski-Reich theorems.

We will first give a result due to Kahan [1958]. Let M be the matrix which
w
defines the Gauss-Seidel iteration for an arbitrary matrix A (arbitrary,
-1
except a4 # 0), namely M@ = (I - wL) WU + (1-w)I). Then the spectral

radius of M satisfies o(M&) z |w-1].

Problem 6.2-1. Prove the above theorem by Kahan., Hint: Let
©o(A) = det(AI - Mw). Show that @(\) = det((Mw-1)I - WAL - wU). Note that
n
det(I - wL) = 1. If A (w) are the roots of ¢(A) = 0, then ¢(0) = TN @)
{1

Show that ©(0) = (w-1)". The result follows from this.

Next we will prove a theorem due to Ostrowski [1954]. The conditions

of this theorem are frequently satisfied by the difference schemes used for

elliptic PDE problems.
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We assume A and D are Hermitian, D positive definite, with A = D-E-E%,
where E is lower triangular (eij =0, if j =2 1i). Let the iteration be

*
v (wE + (l-w)D)xv + wb so that the iteration matrix

defined by (D - wE)x
’ - *
is M@ = (D - wE) 1 (wE + (1-w)D). Then c(Mm) < 1 if and only if A is positive

definite and 0 < < 2,

Note that if A = D-E-E* and A is Hermitian, D diagonal and positive
definite, then a;; >0 for 1 =i s<n., Then D - wE is nonsingular since E
is lower triangular. Thus the Gauss-Seidel iteration satisfies the conditions
of the theorem provided A is Hermitian with positive diagonal elements.

We will only outline the proof, leaving most of it as a problem. Let e

. = > n h . . 6 = -
be defined by e 1 %nem form =z 1, wit e, given Let m - Cn T S’
then
(o - wE).ém = whe_ (6.2-1)
and
Ae . = (1-w)Db_ + WE 6.2-2
whe . = (1-w)D8 +wE & (6.2-2)
Also,

2 5* D = * A” * A 6.2-3
(2-w) m 6m = w(em e, " ¢© e (6.2-3)

m+1 m+1)

Now assume A is positive definite and 0 < w < 2. Let be an eigenvector

€0

of Mw with eigenvalue A, Then

2- 2 % 2\ *
—;‘2 | 1-2| ey Dey = <1 - |x|> ey Ae, - (6.2-4)
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If A\ =1, then e, =Me_ = e_  and 60 = 0 which implies Ae, = 0, but A is

1 0 0 0
positive definite, Therefore -\ # 1, Since A and D are positive definite,

2

0 <w< 2, we have 1 - |X| > 0, or lX\ < 1. This completes a proof of the

first half of the theorem,

If Mm is convergent, then 0 < w < 2 from Kahan's theorem. Also for any

initial error e the sequence e converges to zero. Since the matrix M
W

0’
is convergent, it must not have unity as an eigenvalue. Therefore

e, -~ e, = 60 = (I-Mw)e0 # 0. Therefore
<
e, Ae, < e, Ae (6.2-5)

We can also show

Jao
¥ k.

A

el Aeni < e Aem. (6.2-6)

*
If A is not positive definite, then e, Ae0 £ 0 for some nonzero vector ok

But then the two equations above imply

*he < e Ae. <0
em em e1 e1

for all m, Therefore e does not converge to zero, which contradicts the

assumption that M 1is convergent.
W

Problem 6.2-2, Show that equations (6.2-1) through (6.2-6) are wvalid.
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' 6.2.2 The iteration matrix for SOR in a special case--the Dirichlet

problem on'a rectangle. The proofs we will give here apply only'to Laplace's

- equation on a rectangle with Dirichlet boundary conditions. However, the
results will apply to somewhat more general problems. We refer the reader

to Varga [1962], Wachspress [1966], and Forsythe and Wasow [1960] for the
proofs. The main result concerns the choice of the optiﬁum overrelaxation
parameter w. We have from the Reich-Ostrowski theorem that SOR for the problem
Ax = b will converge if O <.w < 2 for reasonably general matrices A. Young

[ see Forsythe and Wasow, 1960] in 1950 developed a theory which permits the
calculation of an optimum w for a wide class of matrices A. We will give

another development based on a paper by Keller [1958].

First we will review the description of the finite difference scheme

given in section 5.3.2., The matrix A has the form
A=1-0.(C +CY) -8 (c_+cC) (6.2-7)
X X X vy y

where Cx and C_ are the lower triangular matrices of order J*K = N given below.

Note that the mesh points are defined by (Xj’yk) where xj = ja/(J+1),
yk=kb/(K+l), 0<j<J+l, 0 <k < K+1.
1 2 3 K
000 ... 0 0 0 0.. 0
100. ' .
IJ 0 0
010.. . o .
0 IJ 0
oo01. ..
C=‘ cC =
X y
1000
. 0100
000...0010 00. .. IJ 0
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Note that Cy is written in (KXK) block form where the blocks are either zero,

or the identity matrix IJ of order J.

In section 6.1.2 we defined the Jacobi iteration. There we wrote the

matrix A as A = D-E-F. With A as given in equatiom (6.2-7) above we have

D=I,E=06C +8C,F =28 CT + 0 CT = ET. Therefore the Jacobi iteration
XX yvy X X yy

E. The iteration matrix is B = L + LT =

becomes x\)+1 = (L‘+ LT)xV + b where L
I-A. If we denote the eigenvalues of A by gr, then the eigenvalues of B
are xr =1 - §r, 1l <r <N = J%K, The eigenvalues gr were found in section
5.3.2 to be

. 2
§r = 4ex51n

+ 4eysin2 — (6.2-8)

‘ﬂ'E TT
2(J+1) 2(X+1)

where r =p + J(q-1), 1<p=<J, 1<gq =K. Note that §_+ 8, = % and

therefore 0 < §r < 2, and -1 < Xr < 1.

Problem 6.2-3. Show that the nonzero eigenvalues Kr for the Jacobi
iteration occur in pairs ikr; that is, to each Kr # 0 there is a single

A , such that A , = -\ .
T r T

Note that the eigenvalues xr of B are the roots of the polynomial {()\)

defined by
T T
§(\) = det(AI-B) = det(AI - ex(Cx+Cx) - ey(cy + Cy)) (6.2-9)

The matrix which defines successive overrelaxation is given in problem

6.1-12, namely

Mm = (I - mL)-l [wLT + (1-w)I]
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The eigenvalues of @ﬁ are the roots of the equatioﬁ v (M) where

T T
0 (M) det<n1 - Tw(e,C, + eygy) - w(e C, + 8,0,) + (w-l)I)

or

' ’ T T
e() = det {(Ww-l)l - Tw(e C + eycy) - w(® .G+ eycy)} (6.2-10)

6.2.3 The relation between the Jacobi and SOR methods. Our next objective

is to relate the roots of ©(M) = 0 to those of ¥(\) = 0. That is, we wish to
relate the eigenvalues of the matrix of the Jacobi iteration to those of the
SOR method. To do this we will need the following result which is the basic

tool used by Keller [1958] (see Isaacson and Keller, 1966, p. 465).

Let o and P be nonzero scalers. Let Yl’ Y2’ y3, Ya’ YS be arbitrary

scalers. Then

-1 T -1 T
det[\(ll ex@yzcx + Y3Cx> - ey(ﬁsyacy + 87y gC >] (6.2-11)

is independent of o and B.

To prove this result we will need to relate the determinant to the
geometry of the mesh. We are dealing with matrices of order N = J*K where
the mesh points are given by (xj,yk), xj = ja/(J+1), Y = kb/(K+1). The

unknowns U, are sought for 1 < j £J, 1 £ k £ K. The matrix whose

jrk
determinant (equation (6.1-2)) we must evaluate is of order N = J*K. If we

denote this matrix by G, then
det(G) = T sgn(T ay e ‘ 6.2-12
© = Zoen(™ &) 01y B2,me2) 7 BN (6-2-12)

Here T denotes a permutation of the integers 1 through N. Thus the above

‘sum contains N! terms. A permutation T is a one-to-one mapping of the set
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{1,2,...,N} onto itself, thus m(r) is integer, 1 < m(r) < N, and m(r) = 1(s)

only if r = s, To each point (xj,yk) in the mesh we assign an integer

r = j + J(k-1). This defines a one-to-one mapping of the mesh onto the
integers {1,2,...,N}; With each permutation we can associate a set of
directed curves rﬁnning from the mesh point corresponding to r to the mesh
point corresponding to m(r). The figures below indicate two examples of
the curves associated with a permutation when J = K = 3. The permutation

is defined by the columns of numbers.

£ m(x) x m(x)

1 6 1 2

2 3 2 5 S, )
3 9 3 3 7 8 9
4 5 4 1

5 2 5 8 . . 5
6 8 6 6 é+) 5> 6
7 4 7 4

8 1 8 7 S, RS
9 7 9 9 1 2 3

Since each mesh point or node (denoted by r) appears exactly once in
each column defining m(r), each mesh point has exactly one curve leading
into the point and one curve leaving it. Thus these curves form a set
of disjoint cycles. By a cycle, we mean a sequence Tis Tos Tgy eees Tp k

where r. = T for 1 £ j < k-1. ©Note that the figure on

1 - Tk 41

the left above contains two cycles, and the one on the right four cycles.

and ﬂ(rj) =

The matrix G can have a nonzero element 8o only if at least one of
the matrices I, Cx’ Cc ., Cz, or C£ has a nonzero element in this position.

Thus 8, # 0 only if s =r + 1, or s = r £ J. Thus the curve segment

corresponding to 8o # 0 is a horizontal or vertical segment of length + 1.

If the term 81,m(1) B2,m(2) ' BN,m(N)

in the evaluation of the determinant

> 2,
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is ﬁonzero, then the corresponding cycles in the graph are made gp of
vertical and horizontal segments of length +l. Since the cycle returns to
- its starting point, there must be exactly the same number of upward-
directed verticél segments as there are downward-directed segments. Each
upward-directed segment is associated with a term in the Cg matrix and

each downward segment with a térm in the Cy matrix. Thefefore B and B-l
appear in multiplicative pairs in equation (6.2-12). Therefore they cancel
and the determinant is thus independent of B. “Similarly, the determinant

is independent of o which proves the desired result.

Now we will use this result to obtain a relation between the polynomials
-1

$(\) and @(7) of equations (6.2-9) and (6.2-10). If we use o =§ =1 2
in equation (6.2-11) and note that the determinant is independent of «

and B, we obtain

N
_n2 I14+w -1 . - T T
(M) = n det [ n% w(exCx + eycy) w(exCx + eyCy)]
N
o(m =1 2 w(ﬂ—t-i:—'-l> (6.2-13)
’n .

We have assumed T # O.

6.2.3 The choice of the optimum w. We know from the Reich-Ostrowski

theorem that the optimum @ must lie between zero and two. The derivation
of the optimum w will depend only on equation (6.2-13) and the fact that
the nonzero roots of {(\) = 0 occur in pairs with opposite sign. Equation

(6.2-13) can be obtained in a more general way than we have done it here.
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For example, it may hold for a nonrectangular mesh. We give the derivation

in the form of a problem with several parts.

Problem 6.2-4, (1) Show that the nonzero eigenvalues T of M@ (see

equation (6.2-10) are related to the eigenvalues xi of B (see equation 6.2-9)

‘by

+ wkl wxi 2 ‘
h=T | e\ )t | (6.2-14)

(2) Show that we need consider only non-negative xi (note that the Ki are
real and -1 < Xi < 1), (3) 1f ﬂi is complex, then w > 1 and lﬂi‘ =g - L.

(4) Suppose the xi are ordered so that Kl = Ki for all i, Let

2
why <?k1 2
ﬂl(w) = |5 +[\F) t1-w (6.2-15)
dn, 2
Then —= < 0 if T, (w) is real. (5) Let w = === Then show the
dw B opt 1+ Il _ XZ
spectral radius of M@ is given by L
nlou) w < wopt
Q(Mw) = (6.2-16)
w -1 w =z wopt

Also show that G(%ﬂ) = O(M@ ) for 0 <w < 2.
opt

We have thus found an optimum value for w, that is, one which minimizes

the spectral radius G(Mm), namely

2 _ . 2 _m _ ., 2 _m
Wopt = > where Xl =1 4exs1n 20340 46y51n 2(K+D)
L4yl - A3

(6.2-17)



6.20

" Problem 6.2-5. Show that the asymptotic (i.e., Ra) convergence rate for

Gauss-Seidel (w = 1) is

=02 2(1 1 4
R, = 28°m <a2+b2>+0(5)

2 2
where 62 = —Lx_ Ay Ax = =2= s Ay - . Show that the rate of

2[Ax2 + Ay2] J+1 K+1

convergence for SOR with the optimum value of w is

] 2
Roor = 26m 2<‘2 + %) + 0(87)
a b
let a=b =1, J =K =49, Estimate the number of iterations required to

reduce the error by a factor of 10“4 for Gauss-Seidel and optimum SQR.

The effect of g upon the spectral radius of the matrix n” for SOR is
given in equations (6.2-15) and (6.2-16). A plot of these curves for

A, = 0.99 and A, = 0.9 is given in figure 6.2-1 below. It is clear from

1 1
these curves that if we are uncertain about the exact value of the optimum

w (W of equation (6.2-17), then we do better with an overestimate

opt

"rather than an underestimate,

For each pair of eigénvalues of the Jacobi iteration ixi, we will in
general have two eigenvalues for SOR, namely those given by equation (6.2-14).
However, if @ = wopt’ then the square root in equation (6.2-14) is zero.

A careful check will show that there are two eigenvalues equal to the spectral

radius c(M& ). Furthermore, there is an eigenvector deficiency for this
opt

eigenvalue pair (see Wachspress [1966, p. 114]). Therefore we might expect
. the error to decay like vﬂi-l rather than ﬂ: where v is the number of

iterations and ﬂl the spectral radius (see section 6.1,3).
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Figure 6,2-1

Spectral radius G(M”) V.S. W
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' The problem of finding the optimum value of w is a difficult one. Equation
(6.2-17) holds under rather general conditions so that this problem reduces
- to that of finding the spectral radius for the Jacobi iteration. For the
simple case discussed above (rectangle with Dirichlet boundary conditions)

we can compute the spectral radius A\ In more practical situations we must

1°
estimate xl. This can be done in a variety of ways. In problem 6.2-6 we
reference some of the literature on this question. We may be able to

choose Wooe SO that the asymptotic convergence rate R, 1s optimized; however,

pt
we are usually more interested in the average convergence rate taken over

the number of iterations we actually use, namely (see section 6.1.1)

lnHM\)H2

\Y %

Furthermore, we are most interested in a convergence rate based on the actual.

error rather than the norm of the iteration matrix, namely:

_ In(lleVI/1e0D

\%

It would be very difficult to base a theory for the selection of wopt on

this definition of the convergence rate.

Problem 6.2-6, ‘Devise a computational procedure to choose an optimal
value of w for SOR. Base your choice on study of at least one of the
following articles: Cairé [1961], Forsythe and Ortega [1960],vGarabedian
[1956], Kulsrud [1961], Wachspress [19663, Varga [ 1962, chapter 97,

Forsythe and Wasow [ 1960, p. 368], or Hageman and Kellog [1968].
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‘6.2.4 Ihe Young-Frankel theory for SOR. 1In this section we will briefly
describe some of the results due to Young [1954] and also Frankel [1950]
concerning the convergence of SOR. 1In the preceding section we proved the
main result (equation (6.2-10)) for the case of a rectangle with Dirichlet
boundary conditions. Young's results apply to more general problems. Varga
[1962] has further extended these results. We will not give any of the proofs.

The books by Forsythe and Wasow [1960], Varga [1962] or Wachspress [1966] give

a good account, We first need some definitions.

A matrix is said to be m-block tridiagonal (m = 2) if it exists in the

form

(6.2-18)

We say that such a matrix is diagonally m-block tridiagonal if each matrix

Di is diagonal.

We say that a squére matrix A has property (A) if there exists a

permutation matrix P such that PAPT is diagonally m-block tridiagonal.

In a system of linear equations AU = B we say that the components Ui

nd U, are coupled if a,, 0O or a,, 0.
ane Ty P 157 a7

Note that if we permute (that is, reorder) the components of U, where

U is a solution of AU = B, then we have the equation A0 = £ where A = PAPT
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and P is the permutation of U. Given the m-block tridiagonal form of A,
of equation (6.2-18), we let Si denote those components of U "corresponding"
to Di' The successive overrelaxation method requires that we solve for

v+1 \ v+1
the components Uj of the new iterate U + in some order,

We assume that A has property (A). We say that an order of solving
the equations AU = B is consistent with this diagonally m-block tridiagonal
representation of A if each component Uk of Si-l is computed before any

components of Si with which U, is coupled. An order of solving the

k
equations is consistent if there is some diagonally m-block tridiagonal

representation of A with which it is consistent.

These definitions will seem somewhat mysterious until one reads the
proofs. Young's theory assumes that we are solving the system AU = B where
A has property A and we are using a successive overrelaxation which is

consistently ordered.

The first result of the theory is to show that the nonzero eigenvalues
of the Jacobi iteration for A occur in pairs ixi. The next result is to
show that the roots of the Jacobi method and the SOR method are related by

equation (6.2-14). The selection of wopt then proceeds as above,

6.3 The alternating-direction-implicit methods (ADI). In chapter 3 we
discussed the use of the ADI technique for the solution of the parabolic
heat equation. This technique can also be applied to elliptic equations.

In fact, ADI is frequently one of the best methods for the solution of
elliptic equations. We will introduce the ADI method for elliptic equations

by relating it to the ADI for the heat equation which is described in chapter 3.
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We will start with the heat equation in two dimensions, namely

2 2
N 2%, 28y, W

w(x,y,t) (6.3-1)
ot 3x 3y

=
I

= h(x,y)

where (x,y) lies in domain R. .The boundary condition is w(x,y,t) = g(x,y)
for (x,y) on BR.' The initial condition is w(x,y,0) = f(x,y). Since the
data for this problem (h and g) ére independent of the time, the solution

w will approach the solution of the following elliptic.problem for large
time (independent of the initial function f); that is, lim w(x,y,t) = u(x,y)

t—0
where u satisfies the Poisson equation with Dirichlet boundary conditions.

2 32

L8488 -n if (x,y) €R (6.3-2)
ox oy '

u(x,y) = g(x,y) if (x,y) € 3R

Note that the function v = w - u satisfies the equation

2 2
%% = é—% +-§—% on R
Top d oy
v=20 _on oR

v(x,y,0) = £(x,y) on R, at t =0

Then it is possible to show that lim v(x,y,t) = 0, and in fact the solution will
t—o

decay to zero at an exponential rate in t, that is Jvl < ce_Kt for large t.
This suggests that we might be able to approximate the solution of the elliptic
equation (6.3-2) by running a marching method for the time-dependent equation

(6.3-1) out to a sufficiently large time.
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~ We will next write down an ADI method for the time-dependent equation

(6.3-1). We will assume the region R is a rectangle in order to sihplify

the description. We define the operators 62 and 6; as follows:

= (kT Pk

- (Wj,k+1 BEATR"

2
+Wy1¢””‘

+ w

2
j»’k_l)/Ay

where j, k, wj K’ Ax, and Ay have the usual meaning (see section 6.2.2).
2

Then the ADI scheme for equation (6.3-1) is the following:

n-+s n At 2 n+s At 2 m At
w, 2=w,  +=—= 8w, °+ 5w, ., - =h,
ik jok 2 "x T3,k 2 Ty i,k 2 Lk
(6.3-3)
n+l n+s At 2 oty At 2 o+l At
X =w, + 8§ w, + 5 w, - =< h,
ik Uik T2 Px Uik T 2 %y ik T2 Uik

This is the Peaceman-Rachford version of ADI. It is somewhat different

from the Douglas-Rachford version given in section 3.5,

truncation error is 0(At + sz

in section 3.5.

Note that the

+ Ayz) rather than O(At2 + sz + Ayz) as

In that section we were approximating time-dependent

solutions whereas we are now interested in steady-state solutions, so we

are no longer concerned about the 0(At) rather than O(Atz) error term.

What we now want is the fastest

solution.

Problem 6.3-1. Suppose we

equation (6.3-3); that is, W

equation (5.3-3); that is, Au

is defined by equation (6.2-1).

possible convergence to the steady-state

have found a steady-state solution of

wn+% = wn+1 = u, Show that u satisfies
T T
b where A=I =~6 (C_ +C) -6 _(C_+C)
X X X y y y

Determine the right side b in terms of
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the boundary function g and the function h. Show that after multiplication

by a suitable scaler, equations (6.3-3) can be written in matrix form as

hak

F

(rI + H)w (rI - V)W + b
| (6.3-4)
1 (rI - H)wn

F

(rI + V)wn+ +b

where A = H + V. Determine H and V in terms of the matrices Cx and Cy of
section 6.2.2. Show that H and V are symmetric and positive definite. Find
a permutation of the elements of w so that V is tridiagonal (see section 3.5).

Determine r in terms of Ax, Ay, and At.

Problem 6.3-2. The Douglas-Rachford [1955] method for the heat equation

is (see Richtmyer and Morton, section 8.8)

S WP g ae Gi W4 At 55 w' - Ath
WG 4 e 5i &4 A 55 WL aeh

Write this scheme in matrix form in terms of matrices H and V similar to

equation (6.3-4).

We can now see that our derivation based on the ADI scheme for the
heat equation has led to an iterative scheme for the solution of Au = b
where A = H + V, namely equations (6.3-4). This is an ADI method for the
elliptic equation (6.3-2)., The solution of equations (6.3-4) for wn+1
requires the inversion of a tridiagonal matrix on each '"sweep!" through the
mesh; first a sweep involving the horizontal mesh lines and the inversion

of rI + H and then a sweep involving the vertical lines and inversion of

rl + V. Note that these matrices are nonsingular if r > 0 even for Neumann
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boundary conditions (why?). The convergence rate of the ADI method is greatly
improved when we let the iteration parameter r change with n, that is replace

't by r . However, we will first analyze the case when r is a constant.

6.3.1. ADI with a single iteration parameter. The iteration scheme

n+l

of equation (6.3-4) can be written w = Mrwn + ¢ where

(rI + v)'1 (rI - H) (rI + H)'1 (rI - V)

=
I

(6.3-5)

[¢]
1]

<1 +v) b+ (r1 + v)'1 (rI - H) (rI + H)'lb

To prove that this scheme is convergent, we must show that the spectral

radius c(Mr) satisfies c(Mr) < 1.

- Problem 6,3=3, If H ié symmetric and posiﬁive definite, and r > 0,

then show that the eigenvalues A of C = (r1 - H)(rI + H)-1 satisfy

|K| < 1. Show that HCHZ < 1 where HCHZ is the matrix norm induced by the

usual Euclidean vector norm. Show that HMrHZ < 1 if H and V are symmetric

and positive definite and r > 0. (Mr is defined in equation (6.3-5)).

Hint: Use the fact that Mr is similar to the matrix (rI-H)(rI+H)-1(rI-V)(rI+V)-1.

Would your proof work if the original differential equation (6.3-2) had

Neumann rather than Dirichlet boundary conditions?

We will next compute the convergence rate for the single iteration
parameter ADI method. This will apply to the case discussed in section 6.2.2,
namely Laplace's equation with Dirichlet boundary conditions on a rectangle,
except we will require an equally spaced mésh on a square; that is, Ax = Ay
and J = K. We do this for simplicity. We will assume that equations (6.3~4)

are written in the form given in problem 6.3-1, namely Au = b where A = H + V
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with H=9 (- C - CT + 2I) and V=90 (- C - CT + 2I) where C and C
X X b4 y y y X y

are the matrices defined in section 6.2.2.

Problem 6.3-4, Verify that the eigenvectors of H and V are given by

(P:q) = 3 =
J, sin J+1 sin J+1 for 1 = j,k,p,q < J | K

Show that the eigenvalues are KS = sin2 < L

3?3137 l1ss<J

Problem 6.3-5. Show that the spectral radius of the iteration matrix

Mr of equation (6.3-5) is

-\ \2
) .
O(M ) = max (_E> , = gin <——T-r2-—>
T 1<pe] r+}\P )‘p 2(J+1)

" Hint: If u is an eigenvéctor of both H and V, then u is also an eigenvector

of BV, H Y, VH, and v 'H.

Problem 6.3-6. If £(r,x) = (r-x)/(r+x), then show that

min max If(r,x)l = l—:—iQZE
0sr | O<w<x<B 1+ Jo/B

and the minimum is assumed for r = daB. Hint: f(r,x) is a monotone
function for fixed r, hence it assumes its maximum (and minimum) at x = «

and x = B.

Problem 6.3-7. Using equation (6.2-2) show that the spectral radius of
the Jacobi iteration is cos(n/(J+l)) in case J = K and Ax = Ay. Using equations
(6.2-10) and (6.2-11) show that the spectral radius for SOR is

2
2) -
CL;;J%_:—Ef where p = cos(ﬂ/(J+l)). Show that the eigenvalues XP of




6.29

problem 6.3-5 satisfy sin2(9/2) < kp < cosz(e/Z) where 8 = 1/(J+l) and
therefore if we choose r according to problem 6.3-6, namely

r = sin(8/2)cos(8/2), then the spectral radius O(Mr) is given by

2
. 2
oM ) = <1 - ta“<9/2>> < + cosg - sine>2 ] (- - )
t 1

1 + tan(e/2) + cos® + sind p2

where p = cosf.

This result shows that optimized single parameter ADI and optimized
successive overrelaxation have the same asymptotic convergence rate.
Therefore to make any improvement over SOR for this problem, we must use

more than one iteration parameter in the ADI method.

6.3.2 Convergence for the multiparameter ADI - the model problem.

We can write the ADI iteration in the form of equations (6.3-5), namely

wn+l = M(r)wn + c(r)

The iteration matrix and the vector c are both functions of r. The multi-

parameter ADI uses a sequence of parameters r ceesT and repeats the use of

1’

the sequence so that we have a cyclic process with period m. Starting with
wk we compute wk+1,...,wk‘,|,-m as follows:

wk+l = M(r )wk + c(x)

1 1
w2 o M(rz)wk+1 +c(r,) (6.3-6)
k4m _ k+m-1
w = M(rm)w + c(rm)
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k-+Hm+1 k-Hmn

We then repeat the cycle, thus w = M(rl)w + c(rl). We can write

k+m

this procedure in the form w = mek + < where

M= M(x)) M(x,) ... M(rt;l). (6.3-7)

The convergence of the multiparameter ADI is thus governed by the spectral

radius of M .
m

Problem 6.3-8. Assume that H and V are symmetric non-negative definite
matrices with at least one of them positive definite. Assume each rj
1l <3j<mis positive. Then show the multiparameter iteration is convergent,

that is the spectral radius satisfies c(Mm) < 1.

In order to obtain an optimal sequence of iteration parameters rj we
must make an additionalAassumption concerning the matrices H and V. We
assume that H and V have a common set of eigenvectors. As before, we also
assume that H and V are symmetric>non-negative definite with at least one
of them positive definite. 1If the system Au = b (A = H 4+ V) satisfies
these conditioné, then it is called a model problem. For a model problem

(k) (k) x _ K (k)

we have Hu = gku and Vu =yl where u is the common set of
eigenvectors. Note that the set {u(k)} formsan orthogonal basis. Also note
that the problem of section 5.3 (and 6.2.2), namely Laplace's equation with

Dirichlet boundary conditions on a rectangle, is a model problem,

The condition that H and V have a common set of eigenvectors is
equivalent to the requirement that H and V commute; that is, HV = VH. We
will refer the reader to Varga [1962, p. 221] for a proof. We offer the easy

half of this proof as a problem.
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 Problem 6.3-9. Assume the matrices A and B (of order N) have a common

set of eigenvectors which form a basis; that is, Ax(i) = xix(l),

: Bx(l) = uix(i), 1<is<Nand the x(l) are independent. Show that AB = BA.

For the model problem we can compute the eigenvalues of the iteration
matrix Mh of equation (6.3-7). Note that the common set of eigenvectors of

H and V is also the set of eigenvectors for Mm'

Problem 6.3-10., If gk and Wy are the eigenvalueé of H and V, then the

eigenvalues of Mm are given by

m (rl - gk) (ri. - p’k)

x = iI=11 (ri "y gk) (ri T “'k) 1<ks<N (6.3-8)

A

6.3.3 Determination of a near optimal iteration parameter. In order

to minimize the spectral radius of Mh we must choose the r, to minimize the
above rational function of r . The book by Wachspress [1966, p. 178] deals
with this question in considerable detail., Usually we will not know the
eigenvalues {gk’uk}’ but we may be able to determine an interval in which
they lie. Suppose we have 0 < a < §k <b, 0¢c < My S d, atc > 0. We

do not know enough about gk and w, to minimize the spectral radius O(Mm)

but we can choose r, to minimize the following function

1 Le® o la( )| (6.3-9)
min max . =min max |G(r_ ,...r ,E,u .3-
{r,} ase<pb i=l (ri48) (ry4) {r.} a<€<b 1 m

* csp<d * csusd

It is possible to prove the existence of a unique minimizing set {ri} along
with a method to construct the set {ri}. However, the method is very

complicated [Wachspress, 1966]. In ;he case m is a power of 2, m = Zt,
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there is a simple method to compute the optimum set {ri} [Wachspress'l966,
p. 194] or [Varga, 1962, p. 223]. We will not describe this, but will
instead give a procedure which appeared in the original paper of Peaceman
and Rachford [1955]. This produces a good, but not necessarily optimal

set {ri} for any m.

We will proceed to determine the set {ri}. We assume that 0 < o < min(a,c)

and 8 = max(b,d). We define

ri - 2 m
Fi(z) = ¥—:—z- s F(z) = .H Fi(z) .
i i=]1 v

Then the discussion preceding equation (6.3-9) shows that the spectral radius

c(Mh) is bounded by

oM ) = max Fz(z)
m a<z<B

Problem 6,3-11. Determine a sequence {ai} such that

@ =y <o < ... <a =8 and ai_l/ai is a constant independent of 1i.

0 1
Show that
max F(z) = max F.(z)
oSz <z<or, *

i %4-1 i

Use problem 6,3-6 to show that

1 1/2m
max F.(z) < X_T where vy = <§>
o, ,Sz<0, * Y+ -
i-1 i
if r, is set equal to o, o, . Note that this value of r, will
1 i-1 1 i

minimize the function max Fi(z), regarding the latter as a function of ri.
¥j-152=0y
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Then‘show that

-1 2
G(Mm) = Y+1>
In o(Mm)
Show that the average convergence rate Rm e — satisfies
m In(B/a) y-1 , (6.3-10)
1/2m

Note that v = (8/0) .

Problem 6.3-12. For the problem described in section 5.3 (also 6.2.2)
we may use o = sinz(ﬂ/ZN) and § = cosz(n/ZN) where N = J+1 = K+1, Show that

- for large N the convergence rate of ADI satisfies R = 0(—%75>'
’ N

For optimal SOR the convergence rate satisfies R.m = 0(%) . Thus
if m > 1 we can obtain a large improvement through the use of ADI. For
lLaplace's equation on a square with Dirichlet boundary conditions, we can
choose m so that the convergence rate satisfies the inequality below for
sufficiently large N [Varga, 1962, p. 227].

3,107
R~ T1.386 + 2 In(V/m)

This again shows the convergence rate of ADI to be superior to that for SOR.

6.3.4 Comparison of SOR and ADI. In this section we will describe
some numerical experiments intended to illustrate the previous discussion.
We have taken these results from the paper of Birkhoff, Varga and Young

[1962]. The experiments apply to Laplace's equation vzu = 0 with Dirichlet
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boundary conditions, u = 0 on the boundary. The solution is therefore U = 0
at all mesh points. Three subsets of the unit square were used; the unit
‘square itself (I), the unit square with the four corner squares of side length
1/5 removed (II), and the unit square with the lower right corner square of

side length 1/2 removed (III), The figures below show these three regions.

-

I II IIT

Figure 6.3-1,

The initial guess for the solution U was taken to be unity at all mesh
points. Then the iterative scheme was used until the value of U at each mesh
point was less than 10-6. In this case the value of U is equal to the error
since the solution is U = 0. The number of iterations required to achieve
this error level is denoted by N where o denotes the case., When o =T,

the ADI iteration was used with the method of Wachspress used to compute

the iteration parameters TiseeesTy [Wachspress, 1966, p. 194]. This produces
é true minimum in equation (6.3-9) but requires that m = 2t. An approximate
value for NT can be computéd from the bound for the spectral radius given

in equation (6.3-9) at least for case I. This bound was evaluated numerically
to four-digit accuracy. In the tables below we refer to this as the
calculated NZ. When @ = A, the approximate method of problem 6.3~11 was

used to compute the values {rl,...,rm}. Equation (6.3-10) was used to

approximate the number of iterations required to reduce the error to 10-6.
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This number is denoted by Nﬁ. The SOR method was also applied to these
problems; the observed number of iterations is denoted by NS, A predicted
number of iterations for SOR in case I was obtained by solving:

AN((»-I)N“l = 10—6. It is denoted by Ni. Here w is the optimum iteration
parameter. The factor 4N appears because of the eigenvector deficiency

in the iteration matrix for optimum SOR (see section 6.2.3); the Jordan
canonical form of the iteration matrix is not diagonal. In section 6.3.1
we showed that ADI with m = 1 and SOR have the same asymptotic convergence
rates, The values of Nz(m = 1) and Ni are different because of this
eigenvector deficiency. The results of Birkhoff, Varga, and Young are
listed below. The parameter h denotes the mesh spacing, Ax = Ay = h., In
comparing ADI and SOR one must remember that a single ADI iteration requires

slightly more than twice the computer arithmetic than a single SOR sweep.

Thus if NS = 2NT, then the computing time should be about equal.

Case I
ADI
Optimal r, Approximate r, SOR
Mesh Obs Cal Obs Obs Cal Obs Obs Cal
h-l m;4 m;4 m;l mz4 Zé :l < ]
N NC N N NC N N NC
10 11 9 | 23 9 11 23 28 32
20 12 12 46 11 15 46 53 66
40 18 15 91 15 20 91 117 136
80 20 19 183 21 25 183 236 292
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Case II Case III
ADI ADI

Approximate r, SOR Approximate r, SOR
Mesh Obs Obs Obs Obs Obs Obs

h-l m=4 m=1 S m=4 m=1 g

NA' NA N NA NA N
10 16 19 | 26 13 17 | 20
20 20 36 51 19 37 41
40 23 75 108 22 75 85
80 25 150 -—— 27 162 ---

Additional comparisons of methods by experimental computations can be found
in Wachspress [1966, chapter 8], Birkhoff, Varga and Young [1962], Price

and Varga [1962], Young and Ehrlich [1960].
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