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1 Introduction

In many cases the statistical analysis of geophysical data collected over time hinges
on the estimate of a trend. One area where trend analysis is used extensively is
for climate series such as global temperature averages. (e.g [3]). Besides the trend
estimate itself, attaching a reliable measure of uncertainty is an important compo-
nent and facilitates drawing objective scientific conclusions. Unfortunately because
such data typically exhibit serial correlation, simple statistical inference using least
squares fitting and the T distribution can be misleading. Part of the confusion is
that although least squares can give good trend estimates the naive standard errors
derived from least squares are underestimated and can be misleading. (e.g [1]). This
problem is well known both in the statistical literature and subject matter literature
such as climate analysis. However, to date a correct treatment using maximum like-
lihood or Bayesian approaches requires specialized statistical software. This work
provides an alternative to more advanced statistical methods by simply adjusting
the least squares standard error using a simple formula for effective sample size. By
itself, adjusting the sample size for correlation is an old idea. New in this work is the
development of a formula that has rigorous justification for small and moderate size

data sets through extensive Monte Carlo simulations. By comparing this approach



to the more sophisticated maximum likelihood estimators we find negligible differ-
ences. Thus a sample size correction approach has the added benefit of matching a

method with good theoretical properties.

2 Statistical Model

Related work on this problem is the comparison of two means based on serially
correlated data ( [4]). In their paper, Zwiers and VonStorch (1995) provide recom-
mendations for use when the effective sample size is small. In one sense this paper
is an extension of those authors’ work to the more general case of linear trends.
Assume that observations Y; are made at equally spaced time intervals t = 1,2, ...,n

and follow the statistical model

Yi=p+pt+ U (1)
where U, is a random error following the model

Ui = pUs_1 + €.

|p| is assumed to less than one and {e;} are mean zero independent random variables
with variance o2. If p = 0 then U; = e; and one would have the usual trend model
with independent errors. In general the random errors will be serially correlated
with the correlation of U; with U;_; being p. This model for serial correlation is
referred to an autoregressive model of order one (AR(1)) because the present value
of Uy only depends on the previous value. Although the AR(1) model used here is a
special case of more general autoregressive models, it very useful for approximating

serial dependence and can be applied to data sets with moderate sample sizes.



3 Trend Estimates and standard errors

If one assumes that the errors in model (1) are uncorrelated (i.e. p = 0) then the

least squares estimate of trend is

Y (Y- Y)(t - 1)
Y=t —1)?

with ¥ the sample mean of the observations and ¢ = (n +1)/2. Also i =Y — j3t

B =

(2)

and finally we define residuals
re =Y, — fi — Bt

Under the assumption that the errors are uncorrelated the standard error asso-

ciated with 3 is

_ [ty
Z?:l (t - {)2

and under the assumption of a Gaussian distribution gives a (1 — a)100 percent

SE(n)

(3)

confidence interval
B + ta/2,anSE(n) (4)

with ¢,/9 , 9 a T value at tail probability a/2 and degrees of freedom n — 2.

The effect of strong positive serial correlation causes this interval (hereafter
referred to as 'NAIVE’) to cover the true trend less often than the nominal frequency
based on «. This is not a minor statistical point that can be safely ignored. For
example from Figure 2 we see that for n = 40 and p = .5, a NAIVE “95 % confidence
interval” will only cover the true slope approximately 70 % of the time.

The strategy in this paper is to retain the simplicity, and we will see also the
accuracy, of the least squares trend but adjust the formula for the confidence interval
so that has at the right level. (By the right level we mean that an (1 — a)100
confidence interval actually contains the true parameter this percent of the time.)

To bring the confidence to the correct level we developed a simple modification based



on the sample size. This method will depend in turn on an estimate of p based on
the sample autocorrelation of the least squares residuals. Let p denote the lag one

autocorrelation in the residuals from the least squares fit.

Yt (re = ) ((rega — 7)

Vi (= )2 Sy (e — 72

In this formula 7 is the sample mean omitting the last residual (r,) and 7* is the

p=

mean omitting the first residual (r;). With the intercept term in the regression
model the full sample mean will be identically zero and so we note that both » and
7* will have small departures from zero. The estimate of the serial correlation is of
value in its own right as a description of the data and its properties will be discussed
in the next section. Here we use it to derive an effective sample size for small values

of n.

~

Ng =N

<1-ﬁ-ﬁ8/¢%> 5)

1+p+.68/vn

To adjust the confidence interval to be approximately correct over a wide range of
serial correlations this effective sample size should replace n in the two places in 4

giving the adjusted interval

B j:ta/2,n’efZSE(niz) (6)

The interpretation is that m serially correlated observations are equivalent to ap-
proximately n. independent ones. Here equivalence means having the same width
confidence interval for the trend parameter. The formula at 5 is a slight modification
of the classical adjustment (henceforth '"CLASSICAL’) for equivalent sample size de-
rived Mitchell (1966). Our addition is the inflation factor of .68/y/n appearing in
the numerator and denominator. Although in the next section we give some statis-
tical justification for this term the main point is that the confidence intervals with
this adjustment have the right frequency coverage for small sample sizes. Another
advantage is quantifying the effective sample size induced by the serial correlation.

Because we just change the sample size in the standard confidence interval formula,



ne 1s a useful measure of how the effective size of the data is reduced with auto-
correlation. Such a reduction can be a sobering index of the limitations of serial
correlated data for trend analysis. For example, from Table 1 if n =40 and p = .5
the ADJUSTED effective sample size is equivalent to only about 10 observations

from uncorrelated errors.

4 Back ground for sample size adjustment

The classical formula for sample size adjustment that is the basis for this work was

derived by Mitchell (1966) under the assumption of n being large and p known and

n (%Z.) (7)

We found that using this expression to determine n, when using p is known gives

can be approximated by

confidence intervals that are conservative. In practice p is not known and the usual
approach is to substitute an estimate for p in equation 7. Figure 1 illustrates how
the distribution of the estimate of p changes as a function of sample size and the
value of p. The estimate is biased, on the average, underestimating the true value.
Also, for large amounts of correlation the variance of the estimate increases. Both
of these properties have an impact on the behavior of the sample size adjustment.
The result is that ne, now a random quantity, tends to give effective sample sizes
that are too large. So the switch from the true value for p to an estimate has
shifted the confidence intervals from being too conservative to too optimistic. This
discussion serves as motivation for the formula at 5. To bring the coverage of the
confidence intervals closer to the correct level the effective sample size is decreased
by a small factor depending on n. Although p + .68//n can be interpreted as
an approximate 50% upper confidence bound on p, we should emphasize that it’s

primary justification is through simulation results described in the Section 6.



5 Maximum likelihood estimates

Before presenting simulation results we review an alternative trend estimate that has
a better theoretical justification. At the outset one might expect that the maximum
likelihood estimate (MLE) would be more accurate and the confidence intervals
shorter. In this case it would be preferable to use it instead of the simpler least
squares trend estimate.

Under the assumption that the errors {e;} are normally distributed the joint

probability density function for the observed data is

VL= 02— (=) (V=B X, Y= B8} —p{ Vi1 == (=)}

L(Y,u, B,0,p) = @ro?)n2’ 2

Fixing the data ( {Y;}) and varying the parameters of this expression gives us a
likelihood function. Informally, for specific values of the parameters one can interpret
the value of L, the likelihood, as proportional to the probability of observing a
particular set of data. Given this perspective, values for the parameters are found
by maximizing the likelihood. Although a closed form expression does not exist
for such estimates the likelihood function can be found numerically by standard
optimization algorithms. One simplification that helps the calculation is that for
fixed p the likelihood can be maximized in closed form over the other parameters.
Thus, the nonlinear optimization is only over the single variable p. Likelihood theory

also provides guidance in constructing a confidence interval for the parameters,

allowing us to make comparisons with the least squares methods. '

6 Simulation results

The Monte Carlo simulations to study the statistical procedures have two factors:
sample size ( n = 40, 60, 120, 240) and correlation parameter (p = 0,.05,.1,...,.90).

For each of these cases, 10000 simulated time series were generated and confidence

'The code used to determine MLE estimates and confidence intervals was written by Richard

H. Jones, 1999 and is available at the following web address: http://www.cgd.ucar.edu.



intervals were calculated using four methods: NAIVE, CLASSICAL, ADJUSTED,
and MLE. Of course the first three methods are based on the same least squares
trend and the maximum likelihood estimate using a different form of estimator and
confidence interval. To reduce the size of this study only confidence intervals at the
95 and 99 % level were evaluated. Because of the linear relationship between the
trend estimate and the data it can be shown that the performance of the confidence
intervals is invariant to the actual values of 8, o and u. So for convenience we choose
the normalization 3 =0, 0 =1 and p = 0. ?

Figures 2 and 3 summarize the results of this study for the two smallest sample
sizes, (n = 40, and n = 60). The first plot in each figure gives the actual coverage
of 95 % confidence intervals as a function of p. As expected the methods agreed in
the absence of serial dependence (p = 0) but the NAIVE method has substantially
lower coverage as p increases. The ADJUSTED method holds its level the best with
the CLASSICAL and MLE based intervals being lower especially for higher values
of p. The bottom plots indicate the ADJUSTED method also performs well at the
99 % level. Tables 3 through 7 report the numerical results for this study across all
sample sizes and the two confidence levels.

Although the ADJUSTED method performs substantially better than the other
methods for small and moderate sample sizes, it is important to note that even it
has some limitations. For example, when n = 40 and p = .8, the actual coverage
falls off to be about 92 % at a nominal level of 95 % . However, note that from Table
1 when n =40 and p = .8, p = .63 which gives an ADJUSTED effective sample size

of only 6. The true effective sample size would be even smaller. Detecting a trend

2Since the sampling variability of p can give us unrealistic values for n. we used the following

constraints suggested by Zwiers and VonStorch (1995).

2, ifn. <2
’

n, =< ne, if2<n.<n; (8)

n, otherwise.



with a sample size this small will be difficult in any situation.

To compare the MLE to the least squares trend estimates we considered the
paired differences for these with the least squares trend estimates. Statistics for
these comparisons are summarized in Figure 6 and Table 7. The top plot in Figure
6 compares the distribution of the MLE and least squares trend estimates for several
values of p when n = 40. The bottom plot in Figure 6 illustrates the distribution of
the differences between the MLE and least squares estimates. The differences were
normalized by the standard deviation of the MLE. Although the variance tends
to increase, the differences remain centered around 0. The distributions appear to
be similar and a paired T test indicates no significant difference in the estimates
between the two methods. Table 7 indicates that the standard deviation of the
estimates are similar as well. From these results we can conclude that there are

negligible differences between the two methods.

Recommmendations

The simulation results summarized in Figures 2 through 5 and Tables 3 through 7
lead us to the following suggestions based on the calculated value of n. for a data

set.

e Use the procedure explained in Equations 5 and 6 to bring the coverages to
their nominal levels when the ADJUSTED effective sample size is small to

moderate.

e Notice that when the ADJUSTED effective sample size is large, the coverages
may become somewhat conservative (e.g Figure 5). However, large sample
sizes tend to give more accurate estimates, leading to smaller confidence in-

tervals.

e One should realize that when n, < 6 serial correlation makes it difficult to

make inferences and the confidence intervals may not be reliable.



7 Discussion

Using a simple modification of the sample size based on the sample autocorrelation
we have established a reliable formula for confidence intervals of the trend. The
justification of this method is by extensive simulations that verify the level of the
proposed confidence intervals. In addition they indicate there is little difference
between the least squares trend estimate and that derived from maximum likelihood.
This suggests that there is little advantage using this more complicated procedure.
It will yield the same inference.

It is important to realize any statistical method is limited to the context under
which it is derived. In this case we have assumed that the trend is linear in shape, the
errors are normally distributed and finally, that the serial dependence follows an AR
(1) model. If the data exhibits other types of serial dependence then this procedure
will not be valid. For example, if the dependence was a long memory process
or a higher order autoregressive model the amount of correlation could be under-
estimated and we conjecture that the resulting confidence intervals would be too
short. Despite these qualifications, adjusting the sample size is an important aspect
of trend analysis and the simplicity and interpretability of the adjusted sample size

method make it a valuable statistical tool.
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Table 1: Effective Sample Sizes using AD-
JUSTED Formula

p | N=40 N=60 N=120 N=240
0.1 26 41 87 180
0.2 21 33 70 146
0.3 17 26 56 117
0.4 13 21 44 92
0.5 10 16 34 71
0.6 7 11 24 52
0.7 4 7 16 35
0.8 2 4 9 20
0.9 0 0 2 7
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Least Squares Estimates of Rho (N=40)
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Figure 1: Distribution of the estimates of p from least squares residuals and from
a maximum likelihood estimate. The top plot contains boxplots illustrating the
distribution of estimates of p based on the sample autocorrelation of the least squares
residuals. In this case the sample size is 40 and the distributions do not depend on
the values of the trend parameter or the error variance ( 02). The 45° line indicates
the bias in the estimator. The bottom plots gives results for the maximum likelihood
estimate of p minus the least squares estimate of p. Although both the LS and MLE

estimates of p are biased, the MLE estimates are slightly improved.
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Figure 2: Coverage probabilities for confidence intervals based on sample size of

n = 40 and as a function of p. The top plot is for intervals constructed at a

nominal level of 95 % and the bottom plot is for level 99 %. The NAIVE line is the

coverage under the assumption of uncorrelated errors. The MLE line represents the

coverage using Maximum Likelihood estimates. The CLASSICAL line represents the

coverage using the effective sample size adjustment given in 7. The ADJUSTED

line represents the coverage using the inflated sample size adjustment given in 5.
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Figure 3: Coverage probabilities for confidence intervals based on sample size of

n = 60 and as a function of p. The top plot is for intervals constructed at a nominal

level of 95 % and the bottom plot is for level 99 %. See Figure 2 for descriptions of

methods included.
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Figure 4: Coverage probabilities for confidence intervals based on sample size of
n = 120 and as a function of p. The top plot is for intervals constructed at a

nominal level of 95 % and the bottom plot is for level 99 %.
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Figure 5: Coverage probabilities for confidence intervals based on sample size of
n = 240 and as a function of p. The top plot is for intervals constructed at a

nominal level of 95 % and the bottom plot is for level 99 %.
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Trend Estimate
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Figure 6: The top plot compares the least squares and maximum likelihood estimates
of trend for selected values of p (N=40). The bottom plot illustrates the distribution
for the differences between the least squares and MLE estimates of trend. These
differences have been standardized by the sample standard deviation of the MLE

for each value of p.
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Table 2: Least Squares and MLE Estimates of Autocorrelation

N=40 N=60 N=120 N=240
True Phi | LS MLE LS MLE LS MLE LS MLE
0.00 -0.049 -0.050 | -0.032 -0.033 | -0.016 0.017 | -0.008 -0.008
0.05 -0.006 -0.006 | 0.014 0.014 | 0.032 0.032 | 0.041 0.041
0.10 0.037 0.038 | 0.067 0.058 | 0.079 0.080 | 0.090 0.090
0.15 0.081 0.084 | 0.104 0.106 | 0.127 0.128 | 0.138 0.139
0.20 0.124 0.128 | 0.150 0.153 | 0.176 0.178 | 0.189  0.190
0.25 0.168 0.173 | 0.195 0.199 | 0.223 0.225 | 0.236 0.238
0.30 0.211 0.218 | 0.240 0.246 | 0.271 0.273 | 0.285  0.286
0.35 0.256  0.265 | 0.288 0.294 | 0.319 0.323 | 0.335 0.336
0.40 0.295 0.305 | 0.330 0.338 | 0.365 0.369 | 0.382 0.384
0.45 0.339 0351 | 0.377 0.387 | 0.414 0.419 | 0431 0.434
0.50 0.384 0400 | 0.423 0.434 | 0.462 0.468 | 0.481 0.484
0.55 0.427 0.445 | 0.469 0.482 | 0.510 0.516 | 0.530 0.533
0.60 0.470 0491 | 0.514 0.529 | 0.558 0.566 | 0.579  0.582
0.65 0.509 0.535 | 0.589 0.577 | 0.604 0.614 | 0.628 0.632
0.70 0.552 0.583 | 0.605 0.626 | 0.653 0.664 | 0.677 0.683
0.75 0.592 0.627 | 0.646 0.671 | 0.700 0.714 | 0.725 0.732
0.80 0.631 0.672 | 0.690 0.721 | 0.748 0.764 | 0.774 0.783
0.85 0.666 0.714 | 0.732 0.768 | 0.794 0.815 | 0.823 0.835
0.90 0.701 0.755 | 0.774 0.816 | 0.842 0.867 | 0.872  0.887
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Table 3: Actual Coverages for the Five Methods at N=40

Level of Sig = .95

Level of Sig = .99

TruePhi | Naive MLE Adj. Infl. PhiKn | Naive MLE Adj. Infl. PhiKn
0.00 951 930 930 956  .951 991 982 981 991 991
0.05 934 928 926 956  .954 987 981 980 .990  .992
0.10 922924 923 952  .950 979 978 978 988  .990
0.15 911 922 925 950  .955 974977 97T 989 992
0.20 889 918 923 952 955 965 975 97T 988  .992
0.25 876 917 923 952 .958 957 972 975 987 .993
0.30 850 912 921 951  .960 945 972 975 987 .995
0.35 824 911 921 951  .965 935 970 974 986 .995
0.40 806 901 917  .949  .965 913 967 973 987  .995
0.45 79 898 917 950 .968 895 963 972 986 .996
0.50 739 880 910 943 971 860 955 969 .984  .998
0.55 702 882 912 945 975 837 953 969 984  .998
0.60 668  .866 905 .943  .978 801 942 963 981  .998
0.65 615 .841 890 .935  .983 53927 956 977 1.00
0.70 066 820  .881 .933  .989 701 914 950 974  1.00
0.75 512 788 868 .962  .996 644 891 945 972 1.00
0.80 438 735 846 918  1.00 b62 854 932 966  1.00
0.85 346 642 802 .892  1.00 444 774 896 950  1.00
0.90 252 537 749 871  1.00 335 669 .859 937  1.00
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Table 4: Actual Coverages for the Five Methods at N=60

Level of Sig = .95

Level of Sig = .99

True Phi | Naive MLE Adj. Infl. PhiKn | Naive MLE Adj. Infl. PhiKn
0.00 950 938 934 954  .950 990 986 982 991  .990
0.05 941 937 936 958  .954 987 984 983 991 991
0.10 924 932 934 957  .933 978 981 981 .989  .990
0.15 913 932 934 955  .954 974 980  .980 .988  .991
0.20 893 933 935 956  .954 967 0 983 982 990  .993
0.25 877 931 935 956 .955 956 980  .981 .989  .993
0.30 851 921 .928 950  .954 941 976 979 988  .992
0.35 833 923 933 957  .956 933 978 981 .989  .993
0.40 803 919  .930 .954  .960 908 975 978 989  .994
0.45 780 919 934 958 .964 895 972 979 989  .994
0.50 744 909 926 954 .965 868 969 97T 988  .995
0.55 706 890 .924 951  .965 838 963 974 986  .995
0.60 675 895 924 954 971 809 962 97T 986 .997
0.65 629 877 915 .948  .970 760950 969 985 997
0.70 581 867 914 .950  .977 767 943 970 985 .998
0.75 505 826 .894 .941 981 641 919 959 979  .999
0.80 445 787 879 935 .989 569 895 949 975 1.00
0.85 S77 7360 855 927 997 484 848 935 .967  1.00
0.90 264 602  .805 .909  1.00 346 742 900 .959  1.00
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Table 5: Actual Coverages for the Five Methods at N=120

Level of Sig = .95

Level of Sig = .99

True Phi | Naive MLE Adj. Infl. PhiKn | Naive MLE Adj. Infl. PhiKn
0.00 950 945 945 957  .950 991 988 987 992 991
0.05 936 945 945 959 951 984 986 986 .991  .990
0.10 922 941 942 956  .950 980 987 987  .992  .990
0.15 908 940 942 956  .949 971 985 985 991 .990
0.20 895 944 947 960  .956 969 986 987  .992  .992
0.25 871 939 943 956  .954 956 984 986 .991  .991
0.30 853 941  .944 958  .955 943 984 986 992  .992
0.35 826 934 940 .958  .955 927 984 986 .992  .993
0.40 800 929 936 954  .953 906 982 986 .990  .991
0.45 769 0 .929 938 956 .956 885 980 984 991  .993
0.50 743924 936 953 .953 864 977 983 989  .992
0.55 119260 939 959 959 839 979 985 992 .994
0.60 671 922 936 958  .959 798 975 982 991 994
0.65 630 912 933 955  .959 759 969 973 990 994
0.70 579 898 930 957  .959 711964 977 988 993
0.75 530 882 .920 .952  .962 652 956 976 .988  .996
0.80 458 864 916 .954  .966 B83 946 972 986 .999
0.85 387 819 .899 950  .975 492 918  .965 987  .999
0.90 291 734 871 946  .989 374 861 951 981  1.00
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Table 6: Actual Coverages for the Five Methods at N=240

Level of Sig = .95

Level of Sig = .99

True Phi | Naive MLE Adj. Infl. PhiKn | Naive MLE Adj. Infl. PhiKn
0.00 951 946 946 957  .951 991 990 989 993  .991
0.05 939 947 947 957 951 988 990 990 992  .991
0.10 926 948 949 959  .953 983 989 989 993  .992
0.15 905 942 943 952 948 972 987 988 991 .990
0.20 894 947 948 959  .955 967 0 989 989 992  .991
0.25 870 943 946 956  .949 953 987 987  .990  .990
0.30 851 944 946 .957  .954 944 986 987 991  .990
0.35 824 943 945 956  .951 927 986 987 992 991
0.40 798 0 .941 945 958 .952 908 987 988 992  .991
0.45 78 .941 948 960  .956 890 987 989 993  .991
0.50 749 938 944 956 .953 865 985 987 991 .992
0.55 7120937 0 .943 955 953 840 982 986 .991  .990
0.60 675 935 944 959  .955 806 983 986 991  .990
0.65 625 928 939 957  .955 763 981 986 992 .992
0.70 597 930 946 963  .960 724 980 985 991  .992
0.75 534 919 938 961  .9538 664 975 983 .992  .993
0.80 481 904 933 960  .958 064 968 .981 991  .994
0.85 400 879 .925 .959  .960 512957 977 990  .994
0.90 S13 0 .825 .908 958  .962 404 928 968 988  .995
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Table 7: Standard Deviations of LS vs MLE Trend Estimates (N=40)

St.Dev. of Trend Estimates(10000 reps)
True Phi | LeastSqrs st. dev MLE st. dev
0.00 01365 01372
0.05 01434 .01440
0.10 .01513 .01517
0.15 .01569 01573
0.20 01621 .01623
0.25 01674 .01678
0.30 01737 .01739
0.35 .01801 .01802
0.40 01851 .01850
0.45 .01900 .01896
0.50 .01989 .01988
0.55 .02032 .02032
0.60 .02091 .02105
0.65 02155 .02251
0.70 .02212 .02329
0.75 .02262 .02329
0.80 02316 02411
0.85 .02469 02577
0.90 .02506 .02601
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