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A Note on the Global Change Instruction Program 

This series has been designed by college professors to fill an 
urgent need for interdisciplinary materials on the emerging 
science of global change. These materials are aimed at 
undergraduate students not majoring in science. The modular 
materials can be integrated into a number of existing courses 
-in earth sciences, biology, physics, astronomy, chemistry, 
meteorology, and the social sciences. They are written to capture 
the interest of the student who has little grounding in math 
and the technical aspects of science but whose intellectual 
curiosity is piqued by concern for the environment. The material 
presented here should occupy about two weeks of classroom 
time. 

For a complete list of modules available in the Global Change 
Instruction Program, contact University Science Books, Sausalito, 
California, fax (415) 332-5393. Information about the Global 
Change Instruction Program is also available on the World Wide 
Web at http://home.ucar.edu/ucargen/education/gcmod/ 
contents.html. 
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Preface 

Although the word modeling appears conspicuously in the title 
of this module, it is primarily concerned with system behavior. 
The module is based on paradigms of conceptual model 
building, constructing a system diagram to describe how one 
thinks a system behaves, and building a complete quantitative 
model, whether on paper or on a computer, to learn how 
systems work or behave. It introduces fundamental concepts 
such as conservation laws, reservoirs, flows, controls, feedbacks, 
time constants, drivers, steady state, exponential growth, and 
limits, and applies them to basic real-world examples. I believe 
that this module can serve as a primer to the language and 
concepts used throughout Earth system science. It can be used 
alone or with computer and software components. 

For the learning environments in which computers can be 
employed to teach modeling, this module has the added feature 
of providing the introductory training to use the computer 
modeling software STELLA® II. The teaching examples in the_ 
module can be implemented and run by the students; these 
models can be expanded and modified to explore system 
behavior under different scenarios. New and more complex 
Earth system models can be created by the students as 
individual or group assignments. We have used this software 
at Rice University in five courses at a variety of levels; the simple 
models described in this module are appropriate for the general 
undergraduate student with little prior computer experience, 
although tutorial assistance in the computer lab will be 
necessary. The Instructor's Manual for this module contains 
some modeling problems for the advanced science students. 
High Performance Systems, Inc. (45 Lyme Road, Hanover, NH 
03755), developers of STELLA® II software, have permitted us 
to include a demonstration version of STELLA® II, a tutorial 
training exercise, and a set of sample models. Students can use 
them to explore STELLA® II, to run the models in this module, 
to examine other models provided on the disk, and to create 
their own models. For more information on STELLA software, 
please fill out and return the enclosed reader service card. 

The module is designed for students pursuing non-technical 
degrees and is not limited to those who have access to 
computers and STELLA® II software. Those who do not can 
simply skip over the modelers' sections circumscribed with 
,J,~ and ~1' and return to the text for the system behavior 
descriptions. The concepts should be clear from the discussion 
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and the modeling outcomes from the graphs provided in the 
text. The 15 exercises integrated into the text do not require 
a computer and most are appropriate for nonscience majors. 
Students are guided to the solutions of the more difficult 
exercises. The sidebars provide more technical material for 
those who are interested. 

The Global Change Instruction Program at NCAR would 
appreciate learning about your experiences with this and other 
modules in this series. Contact the GCIP, c/ o Barbara McDonald, 
Advanced Study Program, National Center for Atmospheric 
Research, P.O. Box 3000, Boulder, CO 80307. 

The Instructor's Manual with problem solutions, modeling 
projects, and visual aids may be obtained from University 
Sciences Books, fax (415) 332-5393. 

Arthur A. Few 
Rice University 
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INTRODUCTION 
What Is a System? 

System science is not a new idea, but it is 
receiving renewed attention today because 
many of the global problems facing humanity 
are complex ones that transcend the classical 
disciplinary boundaries between and within the 
natural and social sciences. System science pro-
vides a methodology for quantitatively describ-
ing the behavior of complex dynamic systems. 
Because of this, and because of the broad appli-
cability of system science and the increasing 
numbers of global problems requiring inter-
disciplinary skills, system science will continue 
to increase in importance in all disciplines. 
The purpose of this Global Change Instruction 
Program (GCIP) module, System Behavior and 
System Modeling, is to introduce system behav-
ior, system science methodology, and system 
modeling. 

A system may be very simple, such as a 
bathtub full of water, or very complex, such as 
the Earth's climate system or the solar system. 
It may be entirely physical; it may be social, 
such as a political system; or it may include 
both human and physical components. Ulti-
mately, the system under consideration in Earth 
system science is the entire universe; from this 
system we isolate and define a much smaller 
subsystem that we hope to understand. 

The first step in defirring a system is to 
identify its components and interactions, if any, 
with other systems. Some of the components 
may themselves be systems, making them sub-
systems of the larger system. If a system has no 
significant interactions with the outside uni-
verse, we call it an isolated system. The second 
step is to identify the interactions between the 
components within the system. 

The process of defining a system can be 
approached on a qualitative or quantitative 
level. When we provide a quantitative descrip-
tion of a system we call it system modeling. The 
qualitative system description can also be very 
useful in identifying system components and 
interactions that are important to understand-
ing and altering the system's behavior. Con-
sider carbon dioxide in the Earth's atmosphere. 
The system will include atmospheric carbon 
dioxide, en_ergy production from fossil fuels 
(which give off carbon dioxide when burned), 
and complex subsystems of human energy 
consumption, fossil fuel recovery and market-
ing, fossil fuel reserves, human cultural and 
sociopolitical factors, as well as the subsystem 
associated with conservation and development 
and marketing of alternate energy sources. 

There are important interactions among the 
system components. Measurements reveal a 
steady annual increase in atmospheric carbon 
dioxide produced primarily by the burning of 
fossil fuels to produce energy. Total energy use 
depends upon two things: the human popula-
tion and the per capita energy use. (In a quan-
titative system model we could break this down 
by nation or groups of nations with similar 
energy-use patterns.) The per capita energy use 
is influenced by lifestyle, income, fuel avail-
ability, fuel cost, and available alternatives. 
Lifestyle includes factors like personal trans-
portation, house size, heating and cooling 
requirements, urban or rural environment, and 
conservation practices. This system that we 
have just defined is not an isolated system 
because we included only the carbon dioxide in 
the air, not the carbon in the oceans or living 
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things, which absorb carbon dioxide from the 
atmosphere. 

What happens if the population steadily 
increases and the per capita energy use remains 
constant? Atmospheric carbon dioxide contin-
ues its increase. What if the population is sta-
bilized but the per capita income increases? 
Atmospheric carbon dioxide continues its 
increase. If we wish to stop the increase in 
atmospheric carbon dioxide, which of the 
system or subsystem components that we 
have identified can we realistically control? 
Population, fuel cost, available alternatives, 
and conservatioI\ practices are good choices. 

In the long term one of the system compo-
nents listed above will ultimately dominate the 
system behavior: fuel availability, because fossil 
fuel is a finite resource. But before we reach that 
point, the accumulating atmospheric carbon 
dioxide and its associated global warming may 
produce unwanted and harmful effects on the 
larger Earth system. In order to know what 
these effects may be, we need to be more 
detailed and complete in defining our system 
and quantitative in including the interactions 
within and between the systems. This will 
require a system model. 

Exercise 

In the discussion of qualitative modeling we 
briefly described a system relating human use 
of energy to the increase in atmospheric carbon 
dioxide. The purpose of this exercise is to build 
upon this system and examine the interactions 
in greater detail. Step-by-step procedures for 
completing it are below. The exercise does 
not have a unique correct answer, but your 
response should be internally consistent, reflect 
known system relationships, and include all of 
the important items and interactions. 

Use an outline format to define the basic 
structure of this system; the major, first-level, 
outline items will list the important compo-
nents and subsystems of the system, and the 

2 

next level of the outline will list the components 
of the subsystems. You may add components 
and subsystems beyond those discussed in the 
text, and you may even add subsystems to sub-
systems if you think it is necessary. You may 
use the simplified outline provided below or 
build your own system outline on it. 

Now characterize each item in your outline 
as positive, + (increases in the item increase 
atmospheric carbon dioxide), or negative, 
- (increases in the item work to decrease 
atmospheric carbon dioxide). For example, 
"Human Population" is positive while "Fuel 
Taxes" is negative. You may find it helpful to 
add, delete, and redefine the items in your out-
line; if you have an acute shortage of negative 
items, you may need to add new items such as 
"Birth Control Practices" or "Energy Policy" 
at the appropriate place in the outline. In the 
simple system outline below these items are 
italicized tci remind us that they are not fully 
in place and operational. Some major outline 
items will have both positive and negative 
subitems; in this case, indicate 11 + or -" for the 
major outline item, or give it the sign of the 
most influential of its subitems. 

Next show the interactions between the 
items on your outline with arrows. For exam-
ple, you should have arrows from "Fossil 
Fuels" to "Atmospheric Carbon Dioxide" and 
from "Standard of Living" to "Per Capita 
Energy Use." All components of a subsystem 
implicitly interact with the subsystem itself; 
they need not be shown with arrows. Inter-
actions from the hypothesized items should be 
shown with dashed-line arrows to indicate their 
provisional nature. As you complete this part of 
the exercise you may discover that there is a 
better sequence for your outline so that most of 
the arrows point up the outline to form a chain 
of interactions with "Atmospheric Carbon 
Dioxide" at the top. Try to show all of the inter-
actions with a minimum number of arrows; you 
may want to eliminate the arrows without a 
clear purpose. 

Now label each of the arrows with either an 



11S" to indicate a strong interaction or a "W" to 
indicate a weak interaction. The "Fossil Fuels" 
to "Atmospheric Carbon Dioxide" link is strong 
because the energy production directly pro-
duces carbon dioxide, which is directly injected 
into the atmosphere. The "Influence and Per-
suasion" to "Conservation, Nuclear, or Alter-
native Energies,, connection is weak because 
the interaction is voluntary and depends upon 
relative prices of energy and the capital invest-
ment required to convert to different energy 
sources. 

Now trace the sequence of arrows leading 
from each of the negative items in your outline 
to "Atmospheric Carbon Dioxide" and charac-
terize the strength of the complete connection 

SIMPLIFIED SYSTEM OUTLINE FOR HUMAN 
INFLUENCE DN ATMOSPHERIC CARBON DIOXIDE 

1. Atmospheric Carbon Dioxide 
2. Energy Production 

2.1. Fossil Fuels 
2.2. Conservation, Nuclear, or 

Alternative Energies 
3. Human Energy Needs and Uses 

3.1. Human Population 
3.2. Per Capita Energy Use 

4. Fossil Fuel Market = Price 
4.1. Fuel Taxes 
4.2. Owned Reserves 
4.3. Imported Reserves 
4.4. Public Reserves 

5. Cultural, Social, and Political 
Influences 

5.1. Standard of Living 
5.2. Birth Control Practices 
5.3. Energi; Policy 
5.4. Influence and Persuasion 
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INTRODUCTION 

by the weakest link in the chain. Finally, list 
by priority (strength of the interaction chain) 
the items that can work toward reducing the 
increase in atmospheric carbon dioxide. Iden-
tify the high-priority items from the "Cultural, 
Social, and Political Influences" subsystem. 
How many strong interactions are currently 
active? 

Discussion 

We started with some vague ideas of how 
this system worked, and by imposing structure 
on them we have refined our understanding of 
the system. This activity probably confirmed 
some of our prior opinions and focused our 
thoughts on the interactions and the differences 
in the importance of various strategies in inter-
acting systems. As we progressed from our 
initial, almost subjective, opinion of how this 
system wo~ks to a nearly quantitative diagram, 
we have gained confidence in our understand-
ing of the system, and perhaps we have 
changed some of our opinions. 

Imagine the next step in the process that we 
started above. Suppose that we assign a number 
between 1.0 and 0.0 to each of the interacting 
arrows in place of the "S" or "W," where 1.0_is 
the strongest interaction possible and 0.0 is no 
interaction at all. We can compute a number for 
each complete interaction chain by taking the 
product of all of the values in the chain. The 
resulting number represents the strength of the 
item in influencing the ultimate objective, such 
as reducing atmospheric carbon dioxide. This 
semi-quantitative approach assists in establish-
ing priorities and in evaluating which, and how 
much, 11negative" action is required to coun-
teract a specific "positive" action. The final 
improvement in understanding the system is 
to make a dynamic model of it that can change 
with time so that the system can respond to 
changing conditions. 

A few of the items in the outline require 
explanation. The fossil fuel reserves, 4.2-4.4, are 
separated into three types-owned, imported, 
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and public-which correspond respectively to 
those that are owned by the energy producer 
or a private party who sells to the producer; 
imported by the energy producer; and public, 
such as those on nationally owned lands or 
offshore in national territory. We separate the 
three reserves because the energy producer 
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uses a mix of them to keep the price of fossil 
fuel products low and because energy policy 
can interact with the three reserves in different 
ways. It should not be a surprise that if the only 
reserves available to an energy producer were 
the owned reserves, their value would quickly 
escalate. 



I 
What Is Modeling? 

Conceptual Modeling 
The mind forms a visual image of an object, system, 
or process. 

Modeling is really something we do every 
day. We form a conceptual model of some 
object, system, or process by creating a mental 
image of it. The mental image is a model, and 
the activity of creating the mental image is 
modeling. Consider the word "atom." Your 
mind has probably conjured up a picture that 
is your model of an atom. Perhaps you see a 
central body made up of black and white 
spheres representing protons and neutrons 
packed closely together, and around this central 
body fly tiny black dots in orbits, the electrons. 
(Modern physics tells us that this is not the best 
description for an atom, but this simple picture 
is the starting model from which physicists 
build the more complex models of quantum 
physics.) 

Communicating with Models 
System behavior can be communicated with stylized 
drawings. 

Have you noticed the widespread use today 
of icons, visual symbols often used to direct 
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public behavior? A modern icon is a highly 
stylized model of an object or process (behav-
ior). This international use of icons began when 
Volkswagen needed a universal language to 
communicate "headlights" and "windshield 
wipers" to the world's drivers. The use of 
graphics for communication has continued 
to expand as more products are marketed 
internationally. And, as more people travel 
internationally, there is an increasing need 
for highway and pedestrian signs that are 
language-free. In recent years we have seen 
the beginning of a revolution in the computer 
world, as icons replace the command languages 
that have for years dominated the human-
computer interface. By using icons we can 
communicate mind-model to mind-model 
without translating our meaning through two 
languages. 

The use of stylized drawings to depict the 
elements in a system and our understanding of 
how they interact has proven to be as valuable 
to the person modeling a system as the use of 
icons is to the international manufacturer. In 
addition to avoiding language problems, the 
use of system model diagrams is a more precise 
method of describing exactly what you, the 
model builder, have in mind. 

Computer Models 
Computers are used to model systems that are too 
complex to distill into a single statement or 
equation. 

Creating numerical computer models 
of complex systems has become the most 
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important application for large computers in 
science. In fact, it is problems like modeling 
the weather, climate, and location of fossil fuel 
reserves that are driving the computer industry 
to build larger and faster supercomputers. 
Although the supercomputers are necessary 
for complex, global models, smaller computers, 
even personal computers, also have an impor-
tant role in the whole range of computer 
modeling. 

What forces a model to require a large 
computer is usually spatial and temporal reso-
lution. How detailed a picture, in space and 
time, does it provide? A weather forecast model 
that cannot portray the local weather in New 
York, Houston, and Seattle would have very 
limited usefulness; hence, a weather forecast 
model must have high spatial resolution. In an 
hour following sunrise, the surface temperature 
can increase several degrees. A weather forecast 
must have high temporal resolution to follow 
these changes or it cannot correctly portray the 
science that is occurring. For forecasting pur-
poses, the Earth's surface is divided into many 
contiguous areas and the atmosphere above 
these areas is divided into layers; the volume 
elements formed by this process are called cells. 
The objective of weather and climate models is 
to forecast all of the atmospheric variables in all 
of the global cells for each specific time in the 
forecast period-the more times, the higher the 
temporal resolution. 
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Experience with large models has shown that 
the computational power requirements (com-
puter memory size and arithmetic speed) are 
roughly proportional to the cube (power of 
three) of the number of cells in the model. 
Climate modelers would like to have global 
models with ten times better resolution than the 
models currently running on the world's most 
powerful computers; to fill this need, comput-
ing technology needs to be improved by a 
factor of a thousand! 

Fortunately, for our purposes in this module 
we usually don't require high spatial or tem-
poral resolution. In examining factors like 
global mean temperature and atmospheric CO2 
concentration, treating the Earth as a unit is 
adequate. 

Exercises 

1. The word model has many uses: a person 
that exhibits clothing, a miniature replica 
of an aircraft, exemplary behavior (as in a 
"model Boy Scout"), making three-dimen-
sional objects from clay, etc. It has noun, 
adjective, and verb forms. Look up "model" 
in an unabridged dictionary to see the full 
breadth of this word. Why should it have· 
such broad application? The answer is in the 
underlying meaning of the word: the visual 
image that is formed to represent the real 
object. Write two sentences employing 
"model" in each of its forms: noun, verb, 
and adjective (six sentences total). Write 
sentences that show the diverse uses of the 
word "model." 

2. Suppose the size of a cell in a global model is 
to be 100 km by 100 km in the horizontal and 
divides the atmosphere into 15 layers. How 
many cells are required in the global model? 



II 
The Perspectives Provided 
by Modeling 

Forecasting the Future 
Models based upon understanding present system 
behavior are used to forecast the future. 

Modeling is often used to forecast the future. 
This type of modeling occurs at every level of 
human activity from subconscious thinking 
to supercomputer modeling. You are actually 
using a conceptual model when you deal with 
the question, "Do I need to buy more milk?" 
Some of the procedures you use in responding 
to this question are (1) to check the level of the 
milk in the refrigerator; (2) to recall the rate 
at which the milk is being consumed in the 
household; (3) to predict how long the present 
supply will last; (4) to decide if the milk supply 
will last until the next shopping time. You have 
become so adept at modeling at this level that 
you probably have never thought about all of 
the steps that your mind takes to make this 
decision. 

At the supercomputer level good examples 
of future forecast models are at the National 
Center for Atmospheric Research in Boulder, 
Colorado, and at the Goddard Institute for 
Space Studies in New York City. These groups 
use general circulation models (GCMs) to 
obtain moderate-resolution global forecasts of 
future climate conditions at the regional spatial 
level and the seasonal temporal level. GCMs 
provide detailed information including regional 
temperature, pressure, wind velocity, humidity, 
cloudiness, precipitation, and other derived 
parameters. (The GCMs are also called three-
dimensional models because they treat latitude, 
longitude, and altitude as independent spatial 
variables.) 
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Most climate modelers agree that the climate 
models are not very accurate at the regional 
level because the cells used in them are 
typically 500 km on a side, about the area of 
the state of Colorado. This entire area must 
be represented by a single altitude, a single 
temperature, etc. In the real world there are 
large variations in all climate variables inside 
a cell of this size; there is no hope of correctly 
depicting regional conditions with such models. 

The large computer models require a whole 
entourage"of specialists to create and maintain 
the software and hardware, to research global 
conditions required to initiate model runs, and 
to interpret the model forecasts. 

Between the extremely simple subconscious 
models and the very complex GCM climate 
models there is a complete range of modeling 
activities in which humans are continually 
engaged. Our ability to construct complex 
conceptual models for forecasting future situ-
ations may have been an important element in 
achieving evolutionary success. We can only 
hope that this same capability can prevent us 
from destroying the global environment. 

Reconstructing Past Situations 
Models are used to reconstruct past situations 
based upon remnant roidence of the past and an 
understanding of present system behavior. 

We also use our modeling skills when we 
look backward in time. In your favorite 
detective or mystery novel, the main character's 
mission is probably "to reconstruct the crime." 
This is a conceptual modeling activity similar, 
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but not identical, to the problem of forecasting 
the future. Both past and future models are 
dependent upon understanding present system 
behavior (the laws of nature applied to the 
system). We will see, however, that these two 
kinds of models require different methods. 

Models of the future start with the conditions 
or parameters of the present, which we assume 
we know well; modelers refer to these as the 
initial conditions. For example, in our model 
of milk consumption, the amount of milk in 
the refrigerator was an initial condition. It is 
obvious that we must start the model with 
the correct values or we will never correctly 
forecast future values. Starting with the proper 
initial conditions, a future forecast model 
allows time to proceed forward and describes 
the status of all the system variables as a 
function of this progression in time. Some 
models evolve to a steady-state solution, which 
is independent of the initial conditions given to 
the model. The initial conditions determine the 
path taken by the evolving model, but the final 
state of the model can be reached by many 
different paths. 

Why can't we just run a future forecast 
model backwards in time to describe some 
previous situation? The simple and straight-
forward answer to this question is that nature 
doesn't work that way; we cannotforce natural 
systems to run backwards. 

When energy goes from one form to another, 
it always goes from a more concentrated, more 
useful form to a less concentrated, less useful 
one. For example, when a furnace burns oil or 
gas, the energy is dispersed into the atmosphere 
as heat. That energy is still present in the uni-
verse, but it cannot be recovered easily for 
human needs. Scientists use the concept of 
entropy to measure the disorder in a system. 
When concentrated energy is used to make 
dispersed energy, the system (which is the 
energy) is more disorganized; its entropy is 
greater. The second law of thermodynamics 
states that entropy always increases during 
natural processes. 
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It is the second law of thermodynamics 
that forces time to change in only one direction. 
Since entropy is one of the parameters that 
describe the state of a natural system, and since 
it can only increase, then the system itself can 
only change in such a manner that its entropy 
increases. Reversing time would require 
changes in the system that would decrease 
entropy; this is not allowed. 

How, then, do we use a model to reconstruct 
the past? We must hypothesize a set of initial 
conditions for the system for a period of time 
that coincides with or just precedes the time 
that we want to model. The model is then run 
forward from that point in time to produce a set 
of system parameters for the time period being 
reconstructed. Why do you need the model if 
you know the initial conditions? Good question. 
The value gained in the modeling is that the 
model produces a complete set of consistent 
system descriptors, whereas the data from 
which the initial conditions were hypothesized 
were probably incomplete. For example, in 
modeling past Earth climates, geologists can 
tell us the location of the continents, the extent 
of the glaciers on the land, and the sea level 
for some particular time in the past. To this 
oceanographers can add the.temperature of 
the sea surface, the volume of global ice, and 
the extent of sea ice. Climate modelers can use 
this information to hypothesize a set of initial 
conditions for a GCM; the GCM can then 
produce global data on air temperature, winds, 
precipitation, and other parameters that can be 
derived from the climate model variables. The 
model can tell us whether the glaciers were 
growing or shrinking, where specific plant and 
animal species could have been thriving, and 
the location of the major ocean currents. 

How can the model start with a small 
quantity of input data and produce a complete 
global climate description? It has been pro-
grammed with the laws of nature and has been 
tested (trained) to properly simulate the present 
Earth climate system; therefore, altering some 
of the initial conditions usually does not present 



the model with any problems that it cannot 
handle. If, however, the model is presented 
with initial conditions that require science that 
has not been included in the model, then the 
output will be incorrect, albeit probably 
interesting. 

The GCMs are so large and require so much 
computer time to run that the normal operation 
for forecasting the future (starting with today's 
initial conditions and running forward to the 
desired future time) is often very difficult and 
expensive. For these large models the method-
ology for forecasting the future is the same as 
for reconstructing the past. A set of future 
initial conditions is hypothesized and the model 
is run to achieve a steady-state or equilibrium 
climate that is consistent with the hypothesized 
initial conditions. (Upon reaching the steady 
state, the average values of the system variables 
remain constant.) Since there are no records 
with which we can compare the output, there 
is no way to independently check the model's 
results. This technique is best used to evaluate 
deviations from today's climate owing to speci-
fied changes in the input parameters, such as 
the effect of doubling CO2 in the atmosphere. 

Sensitivity Studies 
Models are used to roa/uate a system's response to a 
specified change in one of its parameters or variables. 

A sensitivity study examines how a model 
responds to a series of changes in its initial 
conditions or parameters. Frequently, the 
interaction being investigated involves only 
one component of the whole system. In such 
cases the sensitivity studies can be performed 
on a smaller model prior to involving a large, 
expensive GCM run. 

Sensitivity studies are vital in evaluating the 
importance of various feedback components in 
the natural system. A feedback is a process that 
responds to a system change by enhancing or 
diminishing the change. (For example, if the 
Earth cools, ice sheets are likely to grow; they 
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will reflect more solar radiation, which causes 
further cooling. This process is a positive feed-
back.) The Earth system has many feedback 
processes, some of which we do not yet fully 
understand; sensitivity studies are useful in 
discovering which are more likely to produce 
global responses. 

Another use for sensitivity studies is in 
investigating system behavior and interactions: 
how the system works. Unlike with forecast 
models, in which great care is taken to use the 
most accurate initial conditions and system 
parameters so that the model output will 
be believable, we can use sensitivity studies 
to push the system into unlikely situations 
that will expose the model to unanticipated 
responses and interactions. Sometimes this 
will expose errors in the model structure, and 
at other times it will provide new insight into 
the model dynamics. Sensitivity studies are 
tools for testing models, exploring model 
behavior, and learning how the system 
responds. 

Understanding System Behavior 
Modeling a system and running the model helps us 
understand how the system works. 

In a rare case a newly created computer 
model will work on the first attempt. Experi-
enced modelers and programmers can tell 
you many stories of "bugs" in their computer 
models that caused unexpected results and 
in some cases spectacular failures. These are 
almost never the computer's fault. Computers 
do exactly what they are told. Creating a good 
working model, even a simple one, forces the 
modeler to think clearly and succinctly about 
the system being modeled; computer models 
do not tolerate sloppy thinking. 

Having created a working model, the next 
step is to test it. The testing is done by provid-
ing the model with input data for which there 
is a known result. One procedure for testing 
GCMs is to give them initial conditions that 
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correspond to today's Earth (Earth-Sun 
relationships, location and size of continents 
and permanent ice, atmospheric gas ·concen-
trations, etc.) and allow the computer to run 
the GCM until the simulated climate system 
reaches a steady state solution. If the model 
forecasts ice sheets in Oklahoma, we should be 
suspicious. Other tests use extreme conditions. 
For example, if we turn the Sun off in the 
model, the Earth's temperature should evolve 
toward zero; if it doesn't, then we must go back 
to the drawing board. 

When a model has been verified, we are 
ready to explore its performance and limits. 
This can be fun, like taking a new car out for 
a test drive. A range of system parameters and 
initial conditions is used to exercise all of the 
system interactions and to drive the system to 
certain defined limits. In addition to providing 
further testing of the model, this exploratory 
probing of its capabilities will reinforce our 
understanding of the system, and frequently 
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the unexpected answers will give us new 
insights into system behavior. 

Exercises 

1. Treat the question "Can I afford to eat out 
tonight?" as we did the question "Do I need 
to buy more milk?" List all of the procedures 
and decisions that should go into responding 
to the question. 

2. Consider a system composed of a marble 
and a wok and the system behavior when 
the marble is released at the edge of the wok. 
Describe the behavior of this system with 
different initial conditions, such as a simple 
release at the edge or a release with a side-
ways push on the marble. Does this system 
have a steady state solution? Discuss. Is the 
system behavior reversible with respect to 
time? Why? 



III 
The Components of Modeling 

In Section I, we introduced the use of highly 
stylized visual models (icons) for communicat-
ing without language. In this section, we will 
use more formal diagram elements to commu-
nicate-the structure, dynamics, and interactions 
of the systems we intend to model. Some of the 
disciplines using system diagrams are: electrical 
engineering, economics, computer program-
ming, social sciences, business management, 
chemical engineering, civil engineering, and, 
of course, the Earth-related sciences. Within this 
wide range of disciplines that employ system 
diagrams, there is no universal set of symbols, 
but there are some basic similarities. The 
modeling skills that you learn here will be 
useful in many pursuits. Our symbol set for 
constructing system diagrams is rather generic. 
It was developed by Jay Forrester at the 
Massachusetts Institute of Technology and 
modified by High Performance Systems, Inc., 
for use with the STELLA® II software. 

Reservoirs, Flows, and Valves 
These are the fundamental elements in a dynamic 
system diagram. Thei; define the variables of 
importance to the model and cause them to change 
with time. 

Reservoirs are containers. Your mind model 
of a reservoir might be a water storage tank, 
an artificial lake, or a bathtub. The bathtub is 
a good working model for our purposes. The 
second element in this triad of system compo-
nents is flows. In our bathtub model there are 
two obvious flows: in through the tap and out 
through the drain. It is important to note that 
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flows are directional, adding water to the 
reservoir and draining water from it. The third 
element is valves. A valve controls a flow; the 
bathtub fill valve controls the rate at which 
water enters the bathtub, and the drain valve 
controls the rate at which water leaves the 
bathtub. The remaining system diagram 
components, connectors and converters, are 
introduced on pages 15 and 16; they process 
information for use by the system. 

In constructing a system diagram, named 
rectangles ·are commonly used to represent 
reservoirs; heavy or double lines with arrows 
are used for flows, and circles or polygons 
attached to the flow symbol are used for the 
valves. 

D 
Reservoir 

Flow and Valve 

Because all flows have some form of valve, 
control, or restriction, and because a valve is 
useless without a flow to control, the flow-valve 
symbols in the system diagram are coupled as a 
single named symbol. The basic symbols repre-
senting reservoirs, flows, and valves are shown 
in the diagram above. (Names of the system 
diagram elements can be multiple words. When 
multiword names appear in equations, the 
blank spaces are underlined in equation lists to 
indicate that the compound name represents a 
single element of the system.) 
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The system diagram below represents our 
working model of bathtub dynamics. 

=====*=A===iO~A ==~ 
U Bathtub U 

Fill Drain 

Reservoirs, flows, and valves sometimes go 
by other names in the many disciplines that use 
system diagrams. The word stocks is frequently 
used for reservoirs, fluxes for flows, and controls 
or regulators for valves. 

Regardless of the names applied to these 
elements, there is a fundamental.relationship 
between the reservoir (stock) and the flow (flux) 
that must be preserved. 

D ====s=c3=~ 
Stock 

Flux and Control 

All flows entering or leaving a reservoir 
must have the same units, and the units must 
represent the rate of change to the reservoir. If 
our reservoir represents liters of water in the 
bathtub, then the fill and drain flows must be 
given in liters per second. If the reservoir is 
your bank balance, the flows are then your 
monthly income and your monthly expendi-
tures, all in dollars and cents. Or, if we consider 
population as a reservoir, the flows are annual 
births and annual deaths. The methodology of 
modeling can be applied to almost any prob-
lem, as Jong as we obey a small set of rules. 

~ 

=aa.===0 e===a'l'===i> 
Human Population 

Annual Births Annual Deaths 

Another rule is that each reservoir must be 
provided with an initial value, the .beginning 
value for the reservoir. The model then com-
putes changes in the reservoirs during each 
model time step. In the population example, 
Jet us assume that the annual births and annual 
deaths are fixed; a forecast of population in 
the year 2000 is obviously dependent upon 
the population figures for the year that we 
initiate the model. If we err in the initial value, 
the model result will reflect that error. 

We need to mention before leaving this topic 
that valves may be dynamic parameters them-
selves. In the population example, annual births 
and annual deaths are not fixed but are depen-
dent upon population and other factors. In fact, 
it is the dynamic property of these parameters 
that makes them challenging to model. 

Sources and Sinks 
These are special reservoirs that represent the 
ultimate supply and repositon; for the dynamic 
reservoirs in the model. Thei; are usually treated as 
large constant-level reservoirs relative to the system 
being modeled. 

In the bathtub system diagram, we have 
fill water entering the bathtub and drain water 
leaving, but we have not specified the source of 
the fill water nor the sink into which the drain 
flows. To make the model logically complete, 
we need to add reservoirs onto both ends of the 
flow systems, as indicated in the figure below. 

~ 
City Water Supply c3 Bathtub c5 City Sewer System 

Fill Drain 
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Reservoirs representing the primary 
resources from which flows originate in the 
model are sources; the "City Water Supply" is 
the source in this example. Reservoirs 
representing the final destination of flows in the 
model are sinks; in our example, the "City 
Sewer System" is the sink. 

Sources and sinks are defined according to 
the problem being modeled. To the city 
engineer, who is not interested in the dynamics 
of one bathtub, the "City Water Supply" and 
the "City Sewer System" are the dynamic 
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reservoirs in the model. She or he must look 
beyond these reservoirs to find sources and 
sinks for the whole city. The source might 
be wells, rivers, reservoirs, or, in the case of 
Boulder, Colorado, a glacier. The sink (after 
water treatment) is usually a river. 

In many systems the sources and sinks 
are so large relative to the system being 
modeled that it is unnecessary to keep track 
of their levels; we simply represent each as an 
infinite "cloud," 0 . 

Oa==~pz=l====~L...-....11========a;rz-====~O 
U Bathtub U 

Fill 

The best example of an infinite source and 
sink is the Earth's energy system itself. The 
solar radiation received by the Earth does not 
diminish the power put out by the Sun, and the 

0 ~ 

Drain 

infrared radiation emitted from the Earth into 
space does not modify space itself. The system 
diagram for the radiation part of the Earth's 
energy system is simple. 

~o c5 Earth Energy c5 
Solar to Earth 

There are other systems in which the source 
is finite and the system flows permanently 
diminish the reservoir. Examples are the exploi-

~ 
Fossil Fuels c5 Atmospheric CO2 

Energy usage 
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Infrared to Space 

tation of fossil fuels and tropical rain forests. 
And there are sinks that should be treated as 
finite reservoirs, such as garbage landfill sites. 

0 c5 ~ 
Landfill Sites 

Garbage Production 
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There is also a special type of system that 
involves a closed loop between the source 
and sink; the closure may be complete, as in 
the case of the water supply on a long-duration 

space flight, or partial, as in paper recycling. 
The system diagrams for these two models are 
given below. 

System Diagram for a Model of the Water Supply on a Long-Duration Space Flight 

Recycled Water 

Clean Water Used Water Filtered Water Purified Water 

Space Ship H20 Use Filtration Rate Treatment Rate 

System Diagram for Paper Production Using Recycled Paper Pulp 

Paper Pulping Rate 
Recycled Paper 

Recycling Rate 

Forests Wood Paper Pulp 

Pulp Wood Cutting Paper Manufacturing Trashing Rate 

Branches and Decisions 
In real systems, there are frequently multiple flows 
into and out of reservoirs; the modeler must provide 
the logic to apportion the flows among the available 
paths. 

In the system diagram for recycling paper, 
we introduced a new concept. Did it bother you 
that "Wood Paper Pulp" had two input flows 
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Land Fill 

and "Paper Products" had two output flows? 
When a reservoir has multiple input or output 
flows we call them branches. 

Having two input flows into a reservoir is 
a straightforward concept. When I drain my 
bathtub, the water flows through my pipes into 
the sewer system, and when you drain your 
bathtub, the water flows through your pipes 
into the sewer system; these actions are 



independent, and the sewer system accepts 
both input flows. Other branched input flows 
may require decisions from the model. For 
example the apportionment of wood pulp and 
paper pulp inputs into the "Wood Paper Pulp" 
reservoir will depend upon paper chemistry, 
economics, and availability of the two flows. 

Having multiple input or output flows 
frequently requires providing the model with 
some sort of logic or set of rules so that the 
flow can be properly apportioned among the 
branches. The flows may be independent and 
the logic simple, or they may be linked or 
coupled, requiring more complicated logic. 
The logic incorporated into the model to 
apportion branched flows is a decision element 
of the system diagram. The decision element is 
usually incorporated into the valve component 
in the system diagram. 

All bathtubs have overflow drains; they 
are usually hidden behind part of the fixture 
hardware and located approximately three 
quarters of the way up the side of the bathtub. 
The purpose, of course, is to allow water to 
overflow into the drain rather than onto the 
floor in the event that you carelessly fill the 
bathtub with too much water. 

In the system diagram below we have 
included "DL" and "OL" in the valves to 
indicate the "Drain Logic" and the "Overflow 
Logic." We will not go into the logic itself here, 
except to note that the "Overflow" is zero until 
the bathtub reservoir level reaches the height 
of the overflow drain. 

THE COMPONENTS OF MODELING 

Interconnections and Coupling 
Interconnections are used to pass information from 
one component of the system to another. 

When one component of the system needs 
information from another component, we must 
provide an interconnection between them; such 
components are said to be coupled. 

connector 
supplies info 

needs info 

The symbol used in the system diagram to 
indicate the transfer of information between 
system components is a thin line with an arrow 
pointing in the direction of information 
transfer; it is different from the flow, which is a 
double line representing the flow of some 
material or property. In system diagram 
language the interconnection symbols are called 
connectors. Connectors are not named, and 
they must be attached on both ends. 

In the bathtub overflow model discussed 
above we indicated that the overflow valve 
needed to know the level of the water in the 
bathtub in order for the "Overflow Logic" to 
take action. In the system diagram for this 
model we indicate the transfer of this 
information with a connector. 

0 
Fill 

Bathtub G 
Drain 

Overflow 

0 0 
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Inputs, Equations, and Decisions 
A working model needs information on the system 
being modeled, in the forms of constants, param-
eters, variables, equations, and decision logic, in 
order to represent the relationships among all of 
the components in the system. 

Thus far we have introduced reservoirs, flows 
and valves, and connectors; these three system 
diagram elements are the basic units used to 
build a system diagram for a model. We have 
also introduced sources and sinks, branches and 
decisions, and interconnections and coupling, 
which are special applications of the three 
basic elements. All of the basic behavior of 
your model is displayed on the system diagram 
by reservoirs, flows and valves, and connectors, 
but the model will not run until we provide it 
with additional information, such as inputs, 
equations, and decisions. 

0 
Converter 

The fourth and final element used in the 
system diagram is the converter; the converter 
is a "catch all" system diagram element, used 
to represent all of the additional information 
required by the model. The computer program-
mer might refer to this function as a constant 
declaration or a subroutine; it is an important 
function of the model that is appended to the 
fundamental system logic. Like the valve, the 
converter is represented by a named circle, and 
the two elements can play very similar roles 
in the model; the valve, however, is always 
attached to a flow, whereas the converter is 
free-floating and can be placed anywhere in 
the sys tern diagram. 

One simple application for a converter is to 
supply the model with constants that it needs 
to compute other necessary parameters. In the 

Solar to Earth Equation 

example model of the Earth energy system 
(page 13) we used a valve named "Solar to 
Earth." We assumed that somehow the valve 
would know how to compute the solar energy 
received by the Earth. The system diagram 
cannot read our minds or invent the necessary 
physics to compute "Solar to Earth." We must 
provide it with the values that it requires and 
the equation to use those values. 

Solar Constant Earth Diameter 

Earth Albedo 

The solar constant is the solar radiant energy 
per square meter per second at the mean 
distance ofthe Earth from the Sun (1,368 Wm·'). 
The albedo of the Earth is the percentage of 
sunlight (-30%) that it reflects back into space. 
The Earth's diameter (12.742 x 106 m) is needed 
to compute the cross sectional area of the Earth. 
Think of the solar radiation reaching the Earth 
at any given second as a plane, or sheet, in 
which the Earth makes an Earth-size hole. The 
size of that hole-the planet's cross section-is 
the total amount of solar radiation the Earth 
receives in that second. 

These three constants are stored in 
converters and provided to the valve by the 
connectors, as shown above. The valve must 
now be instructed how to use the information 
provided to compute the solar energy received 
by the Earth system; this is done by giving the 
valve the equation in the box below. 

In the equation below and those to follow the 
words and word strings with underlined spaces 
represent named components on the system 
diagram. Other conventions used in the 

Solar_ to _Earth = Solar_ Constant*(1-(Earth _Albedo/ 100) )*Pl*(Earth_Diameter / 2)"2 
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equations are: the asterisk,*, for multiplication; 
the slash, /, for division; the caret, 1', for 
"raising to the power"; and Pl for n = 3.14 .... 

The equation can be written in a more 
familiar algebraic form E = S(l-A) nr2, where 
E represents the solar energy absorbed by the 
Earth, Sis the solar constant, A is the Earth's 
albedo expressed as a fraction, and nr' is the 
cross sectional area of the Earth. The two 
equations are the same mathematically. In the 
algebraic form we use single letters to represent 
the parameters and multiplication is implied 
by the adjacent placement of the letters, but we 
must define what each of the letters represents. 
In the computer version of the equation in the 
box we use descriptive names for the param-
eters in the equation, and all operations (such as 
multiplication: *) must be explicitly displayed. 

The modeler could have put the values for 
the three constants directly into the equation 
rather than introducing them as converters then 
connecting them; this, however, is a bad practice 
because it does not explicitly show on the sys-
tem diagram the identity and use of the param-
eters. Furthermore, if the modeler, in the course 
of testing or modifying the model, decides to 
change some parameter, it would be necessary 
to know every place in the model that the par-
ameter had been used and change it in all of 
those places. When the parameter is shown as 
a converter, only one change is necessary. 

Another frequent use for converters is the 
creation of new variables. Let us return to the 
Earth energy model system diagram (on page 
13); this time we will direct our attention to the 
right side of the diagram. In order to compute 
"Infrared to Space," the Earth's radiation out-
ward into space, we will need to know the tem-
perature of the surface of the Earth. This, of 
course, is also what we want the model to tell 
us. One of the appealing aspects of dynamic 
modeling 1s that we can use a parameter as if 
we knew its value even though at the time we 
use it the value has not been computed. 

In order to compute the temperature of the 
Earth's surface we need to use the concept of 
heat capacity from thermodynamics. When we 
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heat an object, we know that the temperature 
of the object will increase. The same amount 
of heat_will raise different objects to different 
temperatures. The property that determines its 
temperature change for a given amount of heat 
exchanged is the object's heat capacity: the 
thermal energy exchanged divided by the 
temperature change. For a given amount 
of added energy, an object with a large heat 
capacity will experience a small temperature 
increase, while an object with a small heat 
capacity will experience a larger increase. 

Earth Energy 

Earth Temperature 

The temperature computation uses the first 
law of thermodynamics, which is also one form 
of the law of conservation of energy (see page 
18). In our application here we compute the 
temperature of the Earth by dividing the energy 
content of the Earth surface, "Earth Energy," by 
the heat capacity of the Earth surface, "Earth 
Heat Capacity," a value that we musf supply 
with another converter. The computed value for 
the temperature is then supplied to the valve 
"Infrared to Space" with a connector. We must 
also provide the converter "Earth Temperature" 
with the equation shown in the box below so 
that it will know how to compute the tempera-
ture with the information being supplied. 

Now that we have covered the basics, we 
will build a few working models, test them, and 
learn more modeling skills as we work our way 
through the models in the following sections. 

Earth Temperature Equation 

Earth_ Temperature = Earth_Energy / 
Earth_Heat_ Capacity 
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HEAT CAPACITY AND THE FIRST LAW OF THERMODYNAMICS 

We know from common experience that when we add heat to an object, its 
temperature increases. We also know that the temperature of air increases when we 
compress it and decreases when we allow it to expand. This is why the air is cooler in 
the high mountains, where it is expanded, than at lower altitudes, where it is 
compressed. The first law of thermodynamics provides a quantitative statement of 
these observations and restates the law of conservation of energy for systems. The law 
of conservation of energy states that energy can be transferred between systems and 
transformed into different forms of energy within systems, but the total energy must 
remain unchanged. The energy in a system that causes its temperature to increase is 
called thermal energ,J, E, and the energy that leaves a system when the system expands 
is called work-by, W. (If we computed the energy expended in compressing the system 
it would be called work-on.) The heat energ,J added to the system, Q, must increase the 
system's thermal energy, dE, plus supply the energy produced by the system in doing 
work (i.e., energy is conserved). 

Q=dE+W (1) 

We use temperature, T, to measure the thermal energy of a system; thus, the change 
in temperature, dT, can be computed from a simple equation. 

dE= CdT (2) 

In this equation, C is a constant for a particular system, and we see that the thermal 
energy of a simple system is directly related to the system's temperature. In Equation 1 
we see that if Wis zero, all of the heat energy added will go into thermal energy. We 
can force W = 0 by not allowing the system to expand. We keep the volume constant 
because work involves changing a system's dimensions. The constant C for this 
situation is called "the heat capacity at constant volume," Cv, and since W = 0 we find 

dT = dE I CV = Q I CV (3) 

Only in laboratory situations can we keep the volume of a system constant. In 
nature the pressure surrounding the system usually remains constant while the system 
changes volume. The heat capacity for this situation is called "the heat capacity at 
constant pressure," C . p 

C = Q/dT=(dE+W)/dT=C +W/dT (4) p V 

In Equation 4 we see that CP is always greater than Cv because the positive quantity 
W / dT must be added to C, to make them equal. For solids and liquids, however, 

the volume change associated with heating is so small that CP and Cv are nearly equal. 
With gases the volume change is larger, so C differs from C ; for air C = (7 /5) C . p V p V 

The heat capacity of a system must be proportional to the size of the system; twice 
as much water must have twice the heat capacity. We therefore define the "specific 
heat capacity" as simply the heat capacity per unit mass of a given material. A lower 
case c is used for a specific heat capacity. 

18 



Exercises 

l. Sketch the basic system-diagram structures 
for the following systems: 
(a) inventory, sales rate 
(b) power (from any source), energy 
(c) deposits, withdrawals, account balance 
(d) river, lake 
(e) distance an object travels over a fixed 

period of time, speed 

2. Identify the source and sink for a coal-
burning power plant. 

3. The long-duration spaceship presents a chal-
lenge in materials recycling. Using the water 
supply example as a guide, sketch simplified 
system diagrams for the air supply and the 
solid materials (food, refuse, etc.) for the 
spacecraft. Indicate important connecting 
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flows between the systems. Will the system 
as a whole require anything external to·con-
tinue operating? Will the system as a whole 
release anything to space? 

4. Sketch a system diagram for the system 
"Do I need to buy more milk?" showing the 
reservoirs, flows, converters, and connectors 
necessary to make the system run. Explain 
with words or mathematical statements the 
contents of all of the components in your 
system diagram. 

5. Three 1-kg objects of different materials 
(aluminum, carbon, and water) all absorb 
1,368 joules of thermal energy. What is the 
temperature increase of the three objects? 
The specific heats for the materials are, 
respectively, 899 J kg·1 K1, 690 J kg·1 K1, 
4,218 J kg·1 K 1• 



IV 
Building Working Models: 
The Bathtub Model 

We have employed three working examples 
to explore the various aspects of modeling. 
In this section and the two that follow we will 
complete these examples, run them, and look 
at the systems' behaviors under different condi-
tions. The three examples are: the bathtub, the 
Earth energy system, and human population. 
New terminology and techniques will be 
introduced as we use them. 

In some learning environments STELLA® II 
software from High Performance Systems, Inc., 
will be available to the students; in these situ-
ations the working models can be built and run 
following the discussions in the text. STELLA® 
II for the Apple Macintosh™ and Windows 
systems can directly read and interpret the 
model system diagram and equations. If 

Bathtub 

Bather D1 Bather D2 
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STELLA® II is not available, some of the 
material in this section and the ones that follow 
can be skipped. Such materials are bounded by 
icons, ,J,~ and ~1'- Even if you do not have 
access to STELLA® II, please read on; you can 
learn the basics of system behavior from the 
following sections without it. 

The bathtub model on page 15 was nearly 
complete as a system diagram. We now add 
three new converters. "Bather DI" tells the 
model when to tum the fill valve on and when 
to turn it off; "Bather D2" tells the model when 
to close and open the drain. (The 1 and 2 refer 
to decisions, not individuals.) "Bathtub Vol-
ume" is a constant that tells the "Overflow" 
valve the volume of the bathtub below the 
overflow drain. 

Overflow 

Bathtub Volume 
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Bathtub Model Equations 

1. Bathtub(t); Bathtub(! - dt) + (Fill - Drain - Overflow)* dt 
INIT Bathtub; 0.0 {m3) 

2. Fill; Bather_Dl 
3. Drain; IF Bathtub> 0.0 THEN Bather_D2 ELSE 0.0 lm3 /min) 
4. Overflow; IF Bathtub> Bathtub_ Volume THEN 60e-3 ELSE 0.0 lm3 /min) 
5. Bather_Dl; IF TIME< 10.0 THEN 60e-3 ELSE 0.0 {m3 /min) 
6. Bather_D2; IF TIME> 20.0THEN 120e-3 ELSE 0.0 lm3/min) 
7. Bathtub_ Volume; 1 *2*0.5 lm3) 

We must provide the model with the 
diagram on page 20 and tell it how to make 
the necessary decisions and computations with 
the equations in the box above. 

1. This equation was written automatically 
by STELLA® II as a statement of the reservoir 
and flows that we constructed on the system 
diagram. We had to supply only the initial 
condition (!NIT Bathtub) on the second line; 
the bath tub starts out at TIME ; 0.0 s with no 
water (i.e., 0.0 m3 of water). In writing this 
equation, STELLA® II has recognized that there 
are three flows involved in the bathtub 
dynamics. "Fill," which is entering the bathtub, 
is positive, whereas HDrainr, and 11 0verflow," 
which are leaving the bathtub, are negative. 
Equation I states that for each time step "dt" 
we evaluate the flows entering and leaving the 
reservoir and add that quantity to the quantity 
of water in the bathtub. If "Fill - Drain -
Overflow" is a positive quantity, then 
"Bathtub" will increase; if it is negative, then 
"Bathtub" will decrease. 

2. The "Fill" valve takes the value provided 
by "Bather DI." See Equation 5. 

3. If there is water in the bathtub, the 
"Drain" valve will equal "Bather D2"; if there 
is no water in the bathtub the valve will be 0.0. 
See Equation 6. 

4. This is the overflow logic that was 
mentioned in our discussion of branches and 
decisions (page 14). There.is zero flow through 
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the "Overflow" valve as long as the bathtub 
water volume is below the "Bathtub Volume." 
When the bathtub water volume reaches or 
exceeds the "Bathtub Volume," the "Overflow" 
valve is sei to 60 x 10-3 m3 min-1. Here we have 
included the decision logic in the "Overflow" 
valve; compare this to the "Fill" valve, where 
the decision was externalized in the converter 
"Bather Dl ." Options like these are up to the 
individual tastes of the modeler; the best 
guideline is to make the system diagram 
as clear as possible. 

5. "Bather DI" becomes 60 x 10-3 m3 min-1 

from "TIME" ; 0.0 until "TIME" ; IO.O; after 
"TIME"; 10.0, "Bather Dl" is 0.0. The value 
of "Bather Dl" is equal to the flow rate that the 
"Fill" valve will have. This decision could have 
been included internally as a part of "Fill." 

6. "Bather D2" is 0.0 before "TIME" ; 20.0; 
after "TIME" ; 20.0, "Bather D2" becomes 120 x 
10-3 m3 min-1• The value of "Bather D2" is equal 
to the flow rate that the "Drain" will have. 

7. The assumed dimensions of the bathtub 
are: width; 1.0 m, length; 2.0 m, and height 
to the overflow ; 0.5 m. These are used here 
to compute the "Bathtub Volume." 

The curly brackets, I ), appearing in the 
equations contain notes from the modeler 
and are not considered part of the equation 
by STELLA® II. I have used them here to 
document the units of the equations; m3 for 
reservoirs and m3 /minute for the flows. 



IF STATEMENTS 

The "if statement" is the most common form of decision making or branching logic 
used in system modeling. It monitors the continually changing conditions of the 
model as it runs and can change the action taken by the model based upon current 
conditions, an important capability in dynamic models. Actually, the "if statement" 
supplies a value to an equation in the model. Every time the model requests new 
information the "if statement" reevaluates the situation in the running model based 
upon the model's current conditions, computes a new value for the "if statement," and 
gives it to the model. The basic "if statement" has three parts as illustrated below: 

IF "test statement" THEN "true value" ELSE "false value" 

The "test statement" is a question posed to the model; examples of a "test state-
ment" are: 

x > y (Is "x" greater than "y"?), total= 0.0 (Is "total" equal to zero?), level< marker 
(Is "level" less than "marker"?), x > a AND x < b (Is "x" greater than "a" and simul-
taneously less than "b"? Or, does the value of "x" lie between "a" and "b"?). 

The "true value" and "false value" depend upon whether the answer to the ques-
tion posed by the "test statement" is true or false; "true value" and "false value" may 
be constants, variables, statements, or functions. Examples of "true value" and "false 
value" are: 1,368.0, level, x -y, SQRT(x"2 + y"2). As an example, let the variable 
"speed" represent the speed of an automobile in the model; the "if statement" below 
allows the model to adjust the speed of the automobile to approach the legal speed 
limit. 

IF speed < 55.0 THEN + 1.0 ELSE -1.0 

The model could use the value supplied by the "if statement," either+ 1.0 or -1.0, 
to change the speed of the automobile by adding it to "speed," which in this example 
would add or subtract 1.0 from the model automobile's speed. 

Notice that the structure of the "if statement" follows sentence structure; think 
how the following sentence might appear as an "if statement": 

If that animal is a bear we should run; otherwise we can whistle. 

SCIENTIFIC NOTATION AND COMPUTERS 

In scientific notation, numbers are displayed in a compact standard form by utilizing 
powers of ten to conveniently position the decimal. Large numbers like 6,371,000.0 m 
(the Earth's radius) can be written 6.371 xl0 6 m, and small numbers like 0.00000058 m 
(the wavelength of yellow light) can be written 5.8 x1Q·7 m. This notation works well in 
written text. Calculators and computers, however, rarely have superscripting capabil-
ity, so other conventions have emerged. One common convention is to substitute "E" 
or "e" for the "xlO," and then place the "power" immediately following it. 

6,371,000.0 m = 
0.00000058 m 

6.371 xlO 6 m 
5.8 x10·7 m 

= 
= 

6.371E6m 
5.8E-7m 

You will see these various forms appearing in this module. 
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= 
= 

6.371e6 m 
5.8e-7 m 



When we run the bathtub model we get the 
results plotted on the graph below. 

This graph tells the whole story. The hori-
zontal axis is time in minutes. There are four 
variables listed across the top of the graph, 
with a number assigned to each. The vertical 
axis has four scales with the variable numbers. 
For example, "Bathtub" (Variable 1) has a scale 
range from 0.0 to 1.0. The other three variables 
have scale ranges from 0.0 to 0.12. Each of the 
four variables is plotted on the same graph, 
with the variable identifier number printed 
periodically over the relevant line. 

Look first at "Fill" (2). The valve is turned 
on at 0.0 minutes, and the water flows into the 
"Bathtub" (1), slowly filling it. At 10 minutes 
the valve "Fill" (2) is turned off, and the water 
in the "Bathtub" (1) remains at a constant level 
for ten minutes. Now look at "Drain" (3). This 
variable has had the value 0.0 from the 
beginning until 20 minutes, when the "Drain" 

1: Bathtub 2: Fill 
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valve is opened and empties the bathtub. Since 
the "Drain" rate is twice the "Fill" rate, it takes 
only half as long to empty the bathtub as it did 
to fill it. What about the "Overflow" (4)? The 
overflow branch never was activated because 
the water volume did not reach sufficient size 
to overflow; thus, "Overflow" has the value 
zero throughout this run. 

This scenario was rather predictable because 
the conditions were tightly controlled by the 
bather through "Bather 01" and "Bather 02." 
When an independent variable controls a 
model's behavior, it is called a driver or a 
forcing function. The term driver is a good 
one because the driver of a car is in control 
of the steering, accelerator, and brakes, and 
has a route or objective in mind. In this bathtub 
scenario, we might describe the driver as a 
blind driver because the decisions were based 
solely on ~e without any reference to the 
system behavior. 

3: Drain 4: Overflow 
1 : 
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1: Bathtub 2: Fill 3: Drain 4: Overflow 

1 : 1 . 00 ·· • ·· · --------··-···· ···r·---------··· · --------··{"··· ~-----------:3 
2l. 3: 
4· 

0.12 

. . 3 
-----------------------~---------------- -------J --------------- -----

3 
1 : 
2l. 3: 
4· 

0.50 

0.06 2-----.:...1-2----...... --1 .. :2-4 

4 2 

1 : 4 
2l. 3: 
4· 

0.00 

0.00 -1----3-4--i,----3-4 __ .,_ ____ 3 4-....;--
0.00 7.50 

Let's make the bathtub model a little more 
interesting by changing the turn-off time to 
19.5 minutes. (Perhaps the bather received a 
telephone call and forgot to turn off the water.) 
The new Equation 5 is below. This minor 
change in the turn-off time changes the output 
from the model appreciably. 

Revised Equation 5 

5. Bather_Dl = IF TIME< 19.5 THEN 
60e-3 ELSE 0.0 {m3 /mini 

In our previous scenario the "Overflow" 
was inactive and Variable 4 remained at zero 
throughout the run; here we see Variable 4, 
"Overflow," becomes active around 17 minutes 
and maintains the bathtub at a constant level 
until 20 minutes, at which time "Bather D2" 
opens the "Drain" and the bathtub is emptied. 
When a variable becomes active only after a 
system parameter reaches some prescribed 
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value, that value is called a threshold; threshold 
variables are common in Earth systems. When 
the strain along a fault in the Earth's crust 
reaches a critical point, for example, it is 
released in an earthquake. This scenario was 
more interesting than the previous one because 
the model took an action not prescribed by the 
driver. 

At precisely what time does the overflow 
drain become active? We can compute that 
from the system parameters. Any time we 
divide a reservoir by a flow, the quotient is called 
a time constant or time scale for the flow. For 
this example, the "Fill" time constant, Tf, is 
computed from "Bathtub" and ''Fill." Similarly, 
we may compute the time constants for the 
"Drain," T d, and the "Overflow," T 0. In this 
scenario T, = T

0
, so the bathtub level remained 

constant during the period (16.7 min. to 20 
min.) that both flows were active. When time 
constants increase, the processes involved slow 
down; when they decrease, the processes 
proceed faster. 



Time Constant Computations 

Bathtub 1.0 
T, = 16.7 min. 

Fill 60 X 10·3 

Bathtub 1.0 
Td 8.3 min. 

Drain 120 X J0·3 

Bathtub 1.0 
T, 16.7 min. 

Overflow 60 X 1Q·3 

We described our bather previously as a 
"blind driver" because the decisions were 
strictly programmed without information on 
the system's performance. Now let us provide_ 
the bather with information on the progress 
of filling the bathtub. 

In this new system diagram (below) 
we added a connector to transfer "Bathtub" 
information to "Bather 01," and we connected 
"Bathtub Volume" to "Bather 01." When 
information about a model's output variables 
is transferred back to, and utilized by, input 
variables, especially drivers, the connectors are 
called feedback or feedback loops. (The feedback 
connector is labeled in the diagram below.) 

,J,~ The converter "Bathtub Volume" appears in 
two places (far left and below "Overflow"). On 
the left it is drawn as a dotted or grayed circle 
to indicate that it is a replicated converter, not 
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the original converter with the same name. 
We could have drawn a long connector from 
"Bathtub Volume" across the diagram to 
"Bather 01," but this would be inelegant and 
in complex models could create a confusing 
spaghetti-bowl diagram. Instead we replicated 
"Bathtub Volume" near "Bather 01" and used 
a short connector. Replicated diagram elements 
in STELLA® II are called ghosted elements 
because they are drawn as dotted or grayed 
rather than solid figures. Only the original 
diagram elements may be edited; the ghosted 
elements reflect the current value of the original 
element, but may not be edited directly. 

We now need to provide "Bather 01" with a 
new equation or decision to use the new infor-
mation. If we assume that the bather wants to 
fill the bathtub to 75% of its capacity, we use the 
new Equation 5 in the box below. 

Bather Dl with Feedback 

Bather_Dl = IF (Bathtub< 
(Bathtub_ Volume'0.75)) AND 
(TIME<20) THEN 60e-3 
ELSE 0.0 [m3/min) 

Recall that the format of the "if statement" is 

IF "test statement" THEN "true value" 
ELSE "false value." 

Bathtub Overflow 

Drain 
Bathtub Volume 

Bather D2 
Bathtub Volume 
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In the "if statement" used above (Bather 
01 with Feedback) the "test statement'' 
question has two parts and has the general 
form "test statement 1" AND "test statement 
2"; because of the "AND" both "test state-
ments" must be true for the "if statement'' 
to give the "true value." If the "test statement" 
had the general form "test statement 1" OR 
"test statement 2" then only one would need 
to be true to produce the "true value." ~1' 

When we run this model with the feedback 
loop, we obtain the output displayed on the 
graph below. 

The model is behaving as desired. "Bather 
01" turns on the fill valve, monitors the 
"Bathtub," and turns the valve off when 
the bathtub level reaches 75% of capacity. 
In general, when a feedback causes a driver 
to reduce an output variable, the feedback is 
called negative feedback. (Had the feedback been 
positive, "Bather 01" would have increased the 
fill valve flow, leading to an overflow.) 

1: Bathtub 2: Fill 

1 : 
2]. 3: 
4' 

0.12 

1 : 

Exercise 

We have assumed in setting up the bathtub 
model that "Drain" produced a constant 
outflow of water when it was opened. Actually, 
the flow rate should be proportional to the 
water pressure at the drain orifice. 

Drain= (constant)*Water_Pressure 

The water pressure is proportional to the 
volume of water in the bathtub. 

Water_Pressure = (constant)*Bathtub 

1. Make a qualitative sketch of how you expect 
the water volume in the bathtub to behave. 

2. Sketch and modify the last bathtub model 
system diagram to allow for our corrected 
drain flow rate in "Bather 02." Let the drain 
flow rate be (120 x J0·3)(Bathtub/Bathtub 
Volume). 

3. Modify Equation 6 to produce the corrected 
drain flow rate. 

3: Drain 4: Overflow 
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V 
Building Working Models: 
The Earth Energy System 

In Section III, we introduced the Earth energy 
system model and then modified the input side 
and discussed some changes to the output side. 
We now add several more elements to produce 
a working model of the Earth energy system. 
The physical principle invoked in this model is 
the conservation of energy. Radiant energy in 
the form of visible sunlight is absorbed by the 
Earth's surface; this energy warms the surface 
and the temperature increases. The Earth 
radiates energy into space in the infrared region 
of the electromagnetic spectrum; this loss of 
energy tends to cool the surface. The model for 
the Earth energy system conserves the energy 
flowing to and from the Earth and finds the 
temperature at which the energy flows are 
balanced. 

We can identify two drivers in this model, 
"Solar Constant" and "Earth Albedo." 
Although we are treating both as constants 
this time, they could become variables. 

"Solar Constant," the amount of solar 
radiation a square meter receives each year at 
the top of the Earth's atmosphere at the Earth's 
average distance from the Sun (see Glossary), 
could change to reflect changes in the Earth's 
orbit, and "Earth Albedo," the percentage of 
that radiation Earth reflects back into space, 
could chaiige in response to global ice cover 
and global cloudiness. (Both ice and clouds 
reflect radiation.) Other converters have been 
added to the diagram to permit the computa-
tion of the needed parameters and variables. I 
have introduced two small separate subsystems 

Earth Energy 
Solar to Earth Infrared to Space 

Solar Constant 
Earth Cross Section Stefan Boltzmann 

Earth Albedo 

Water Depth 

Density Water Specific Heat Water 

Earth Cross Section 

Earth Surface Area 
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at the bottom of the system diagram. The one 
on the left uses "Earth Diameter" to compute 
the ''Earth Cross Section" and "Earth Surface 
Area." These two parameters are ghosted into 
the main diagram. To the right, the converter 
"Seconds per Year" is used to convert "Solar 
Constant" and "Stefan Boltzmann" to annual 
values. (See equations 10, 11, and 13.) 

.J, ~ All physical models work in time units of 
seconds, but it becomes awkward to express a 
year as 31,557,600 s when working with global 
models. (This number assumes 365.25 days/ 
year to include leap years.) We can use other 
time units in our models, but we must carefully 
convert all physical parameters involving time 
to the new time units. 

When a working part of the model is set 
aside from the main system diagram (the main 
program), we call it a subroutine. The output 
from the subroutine computation can be con-
nected to the main program with a connector, 
but it is best to ghost it in. Similarly, parameters 

Earth Energ,J Model Equations 

needed by the subroutine should be ghosted 
into it. 

Below are listed all of the equations and 
constants used by the model; we will not go 
through all of them in detail as we did with the 
bathtub model. All physical parameters are 
expressed in SI units. (The SI stands for Systeme 
Internationale d'Unites, which is the interna-
tionally endorsed form of the metric system 
similar to the MKS [Meter-Kilogram-Second] 
system.) 

The curly brackets, I J, have been used exten-
sively in these equations to document the units 
involved and other modeler's comments. 

We have chosen to store the ''Earth Energy" 
in a one-meter layer of water covering the 
Earth's surface. This decision is frequently used 
by global modelers, and such models are called 
"swamp models" because to simplify the model 
they treat the Earth's surface as if it had the 
uniform conditions similar to the surface of a 
swamp. Equations 4, 9, 12, and 14 are involved 

1. Earth_Energy(t) = Earth_Energy(t - dt) + (Solar_to_Earth - Infrared_to_Space) * dt 
!NIT Earth_Energy = 0.0 {J, We do not know to put here yet. Let the model compute it 
forus.J 

2. Solar_to_Earth = Solar_Constant {J/m2 yr!* (1-Earth_Albedo) * Earth_Cross_ Section {rn21 
3. Infrared_to_Space = Earth_Surface_Area lrn21 * Stefan_Boltzmann {J/rn2 yr K41 * 

TemperatureA4 {K41 
4. Density_Water = 1000. lkg/m3) 
5. Earth_Albedo = 0.30 {30% as a fraction) 
6. Earth_C::ross_Section = Pl*Earth_DiameterA2/4 {rn2) 
7. Earth_Diameter = 12742e3 {ml 
8. Earth_Surface_Area = PI*Earth_DiameterA2 {rn2) 
9. Heat_Capacity = Water_Depth {ml* Earth_Surface_Area {m2J * Density_Water lkg/m3) * 

Specific_Heat_Water {J/kg Kl 
10. Seconds_per_Year = 3.15576E7 {s/yrl 
11. Solar_Constant = 1368 {J/m2 sJ * Seconds_per_Year is/yr! 
12. Specific_Heat_Water = 4218. {J/kg Kl 
13. Stefan_Boltzmann = 5.67E-8 {J/m2 s K4) * Seconds_per_Year {s/yr) 
14. Temperature= Earth_Energy 1J1 / Heat_Capacity {J/K, 1st Law of Thermodynamics) 
15. Water_Depth = 1.0 {m, temporary assumption! · 
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in the computation of the "Temperature." In 
Equation 9 the mass of the layer of water is 
computed and multiplied by the specific heat 
capacity of water to obtain the "Heat Capacity" 
of our swamp Earth. Equations 2 and 14 were 
discussed in Section III. Note that in Equation 
1 we have set the initial value of the "Earth 
Energy'' at zero; this is arbitrary, but allows 
us to watch the Earth warm up from 
absolute zero. ~1' 

This model produces the output plotted 
on the graph below. 

The format for this graph is the same as the 
bathtub graphs. All of the vertical axis scales 
have been set to place the maximum value of 
each plotted variable at the top of the graph. 
This enables us to read the maximum values 
directly from the upper axis scales. 

"Solar to Earth" (3) in the graph is a constant 
in this scenario; our only reason for plotting 
it was to obtain its value on the vertical axis 
scale. "Temperature" (1) and "Earth Energy" 
(4) are plotted exactly on top of each other. This 
always happens when two variables are linearly 
related and the plotting scales are normalized 

1: Temperature 2: Infrared to Space 

to their maximum values; Equation 14 gives the 
linear relationship between "Temperature" (1) 
and "Earth Energy" (4). "Infrared to Space" (2) 
follows a different curve because "Infrared to 
Space" is proportional to the fourth power of 
"Temperature," T 4 (Equation 3). When Tis 
small relative to its maximum value, then T4 is 
very, very small, as shown on the lower left 
corner of the graph; as the two variables 
approach their maximum values, "Infrared to 
Space" catches up with "Temperature," and 
they both slowly merge to their maximum 
values. This type of system behavior, in which 
output variables ultimately achieve a constant 
value and approach that value slowly, is called 
an "asymptotic approach to a steady-state 
solution." 

Looking again at the output graph, we 
see that the model in the steady-state region 
predicts a temperature for the Earth of 255 K, 
or-18° C. This may seem low, but is actually 
a valid answer, since it represents a global 
average including the polar regions and the 
entire atmosphere, where temperature 
decreases approximately 7° C for every 

3: Solar to Earth 

1 254.91 ------·············--- , -2---4--~1-2---4 

4: Earth Energy 

1-2---4--, 
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kilometer increase in altitude. At the tropopause 
(the top of the lowest layer of the atmosphere, 
at about 12 km altitude) the temperature is 
-60° C! If the Earth's mean temperature were 
measured from space using infrared detectors, 
the value would be close to 255 K. The temper-
ature computed using a planet's radiation 
balance is called the "effective planetary 
temperature"; it closely matches the planet's 
temperature measured from space. The 

effective planetary temperature is an important 
parameter for characterizing a planet's relation-
ship to the Sun and its fundamental thermal 
condition. At this temperature the planet radi-
ates into space exactly the same energy per day 
that it receives from the Sun. This is a very 
delicate balance, and any deviation will cause 
the planet to warm or cool. The effective plane-
tary temperature and the black-body radiation 
law act together like an overall negative 

BLACKBODY RADIATION 

A new physical equation is introduced in Equation 3, on page 28, the Stefan-
Boltzmann or "blackbody" radiation law. It is: 

R,,b= crT' 

The Stefan-Boltzmann constant, cr, is cr= 5.67 xlO·' Wm·' K 4; its value is given in 
Equation 13 (where the units are also changed to the annual value). The Stefan-
Boltzmann law computes the total power radiated per unit area, R,,b, from a perfect 
black material at a uniform temperature, T. 

The name "blackbody radiator" seems a strange name to apply to our Earth, which 
we know from space photographs is predominantly blue, white, and green. The visible 
colors of the Earth, however, are the reflected light from the Sun, not the radiation 
produced by the Earth itself. We would need infrared eyes to see the Earth's own 
radiation, and we would see an entirely different Earth. When we look at an object 
that absorbs all the radiation that strikes it, it appears completely black. Physicists 
have proven that all materials radiate electromagnetic energy at each wavelength 
with exactly the same efficiency that they absorb radiation at the same wavelength 
(Kirchhoff's law). A "blackbody radiator," which is a perfect absorber, is, therefore, 
also a perfect radiator of electromagnetic radiation. It is the most efficient radiator 
possible; it emits the maximum radiation possible at a given temperature, and the 
distribution of that energy among the various wavelengths of the electromagnetic 
spectrum follows a specific law that depends upon the temperature. 

There are many examples of blackbody radiators in our everyday environment; 
solar radiation is blackbody radiation. Because of the high temperature of the apparent 
visible solar surface (approximately 6,000 K), solar radiation occurs primarily in the 
visible light wavelengths. The incandescent light bulb is another example; the tem-
perature of the filament in the light bulb is approximately 2,800 K, and its light is 
yellowish white. (When you use a dimmer on an incandescent light bulb you lower 
the temperature of the filament; the light bulb produces less light, and the light 
becomes yellow to red as it dims.) White lightning has a temperature about 30,000 K, 
and is bluish white. The Earth's effective temperature is around 255 K, and its radia-
tion is in the infrared part of the electromagnetic spectrum, at wavelengths much too 
long to be seen with our eyes. 
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LINEARITY 

The terms linear and linearly related are frequently used in describing a system's 
behavior. Basically they mean that one system variable, when plotted on a graph as a 
function of another system variable, will plot as a straight line. This linear relationship 
has a specific meaning in mathematics. If one variable, y, is a function of another 
variable, x, they are linearly related if the algebraic expression describing their rela-
tionship can be written: y = ax + b, where a and b are constants. The important aspect 
of this equation is that x has the power one (i.e., x1). Again, the word linear is used 
because when y is plotted as a function of x, the result is a straight line. In Section IV, 
"Bathtub" is a linear function of time while the fill valve is on. 

If the algebraic relationship were y = ax'+ bx+ c (c is another constant), we would 
call it a quadratic relationship. 

feedback process for the planet's climate. 
Because of the blackbody radiation law (radi-
ated power cr T 4), a small increase in planetary 
temperature will produce a proportionately 
much larger increase in outward infrared radi-
ation, which will cool the planet. Similarly a 
small decrease in planetary temperature will 
cause a decrease in energy radiated, which will 
warm the planet. 

To obtain a temperature for the Earth's sur-
face that more closely matches the actual sur-
face conditions, we need to modify the model to 
include an atmosphere, so that greenhouse warm-
ing of the surface is incorporated. The figure 
below illustrates the principles involved in the 

greenhouse effect. On the left is the situation 
that we modeled, the Earth without an atmo-
sphere; the incoming solar energy is exactly 
balanced at 255 K by the outgoing infrared 
radiation to space. 

Suppose the atmosphere lets all solar radia-
tion pass through, totally absorbs all infrared 
radiation, and has a constant temperature. 
What is the temperature of such an atmosphere? 
The answer has to be 255 K, because the Earth 
ultimately must reradiate to space all of the 
energy received from the Sun, and our model 
has computed 255 K as the temperature 
required to do the job. In a simple model with 
the atmosphere, it is the atmosphere, not the 

IR to Space 
Solar Solar 

IR to Space 

T = 255 K 
~ 

Earth 
( no atmosphere) 

Atmosphere 

T = 255 K 

IR 
IR 

T = 303 K 
~~ 
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Earth's surface, that radiates into space. There-
fore it is the atmosphere that has the 255 K 
temperature. But the temperature of the surface 
under this atmosphere is no longer 255 K. Why? 
Because it is now receiving both solar and 
atmospheric radiation, and in our simple 
scenario these two radiation sources are equal. 
This is depicted on the right side of the figure 
on page 31. (The atmosphere must radiate as 
much radiation downward as it does upward, 
because the molecules are emitting radiation in 
all directions.) Now the Earth's surface must 
acquire a temperature sufficient to radiate twice 
as much energy as before in order to reach a 
steady state. Our blackbody equation tells us 
that to achieve twice the radiation power the 
temperature must increase by the factor 'fl.* 
Our new value for the surface temperature with 
an atmosphere is 303 K = 30 • C, which is about 
right for June in Houston, but too high for a 
global average surface tempera lure. The reason 
our simple model gave us a temperature too 
high was that we assumed a totally opaque 
atmosphere in the infrared, where it is actually 
partially transparent. However, by adding 
greenhouse gases such as carbon dioxide to 
the atmosphere we decrease the atmospheric 
transparency in the infrared and make it more 
opaque. 

Let's tum our attention to time constants. We 
can make a reasonable guess at the warming 
time constant for the "one-meter swamp Earth" 
from the graph; approximately three months 
were required for the Earth to reach the steady-
state temperature. But the change is slow 
during the final two months. If we extend the 
straight line portion (roughly the first month) of 
the ''Temperature" curve (1), which is also the 
"Earth_Energy" curve (4), from time= 0.0 until 

it crosses the top line representing the steady-
state solution, we find a time of approximately 
1.5 months. Our guess is that the model Earth 
warming time constant is between 1.5 and 3 
months. 

T", = "Earth Energy"/ "Solar to Earth" 
= 5.48e+23/3.85e+24 = 0.142 years 
= 1.7 months 

We compute the warming time constant, T,,, 
by dividing the reservoir "Earth Energy" (use 
the steady-state value) by flow "Solar to Earth"; 
this computation yields 1.7 months, an answer 
close to that found from extending the straight 
line portion of the graph. Notice that the 
cooling time constant, T, = "Earth Energy"/ 
"Infrared to Space," has exactly the same value 
as the warming time constant; this is necessary 
for the system to remain in the steady state. 

Our "one-meter swamp" Earth model would 
be totally useless for studying daily changes in 
the Earth system because the water averages 
out all thermal changes occurring in periods of 
less than a month. But it could be modified to 
explore seasonal or longer changes in the Earth 
system because the water could respond to 
changes occurring over periods longer than 
1.7 months. 

Why did we use one meter of water? It was 
an arbitrary choice. One of the really satisfying 
things about creating a working model is that 
it can easily be modified to try other ideas. We 
can,. for instance, change the depth of the water 
or change the water to rock and see what 
happens. If we adapt our "swamp Earth" to 
create two new Earth models, one with a half-
meter layer of water and the other with five 
meters of rock, and run all three models, they 
all reach the same final temperature: 255 K. 

*Let R, and ~ be the blackbody radiant powers emitted at temperatures T1 and T 2; then we have R, = a T1 
4 

and~= a T;' when we apply the blackbody radiation law. If we now divide the second equation by the first 
we get R, / R1 = ( er T,' )/( er T1

4 ), which simplifies to give us R, / R, = (T2 / T1 )
4 or T,fT1 = ~ R,/R1 • For the 

simple greenhouse model considered here,~ is 2R,; hence T2 / T1 = V2. 
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1: Temperature 1 m 2: Temperature Half m 3: Rock Temperature 
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3· 
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5 m Rock : : : --------------------J------------------------·------------------------, . . : . 
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128.00 --------- ------~----------J·------------~----------------------- ~-----------------------~ . . . . . 
3 . 

• I I I 

' . ' . - - ---- ----------------------------------------·-----------------------J------------------------J I I I I : . . 

2: 0.00 1 J· 

3· 
"'------.....; ______ ...,. _____ _,; ______ ....,; 
0.00 0.25 

This is not surprising, because it is a steady-
state model and we have not changed the two 
drivers, "Solar Constant" and "Albedo." The 
difference is in how long it takes the models to 
reach this temperature. The time constant for a 
half-meter of water is exactly half that for one 
meter of water; there is half as much water to 
heat up, so it can reach any particular tempera-
ture twice as fast. The time constant for five 
meters of rock is approximately four months. 
If we had used an Earth-sized rock in the 
model, we would still have ended up with a 
temperature of 255 K, but it would have taken 
a long time to reach a steady-state solution 
(which is one reason for using a meter of 
water). Another interesting comparison is to 
find the thicknesses of various substances that 
have the same warming time constant; the 
values in the box that follows will probably 
surprise you. 

Now let's ask the question in a different way. 
Suppose we wanted a model with a surface that 
would respond to the daily heating of the Sun. 
How thick should we make the surface? We 
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a.so 
Years 

0.75 

Thicknesses for Equivalent Wanning 
Time Constants 

1 meter of water= 2 meters of rock= 
4,500 meters of air 

1.00 

know that a meter of water has a time constant 
of 0.142 years; therefore, a centimeter of water 
will have a time constant of 0.00142 years, or 
12.4 hours, still a little too long to closely follow 
daily solar heating. The daily thermal variations 
between night and day do not penetrate more 
than a few centimeters into the surface of this 
planet. And seasonal variations, summer to 
winter, all occur in the upper few meters. 

In the oceans, currents and waves keep 
the upper hundred meters of the water mixed; 
the ocean temperature does not change signifi-
cantly with the seasons. The atmosphere, how-
ever, responds to changes on all of these time 
scales. One centimeter of water has the same 
time constant as 45 meters of air, and seasonal 
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variations are felt through the entire tropo-
sphere, 12 kilometers thick. 

We saw in the swamp Earth model that the 
time constants for heating and cooling were 
equal in the steady-state solution. Now imagine 
that we have a switch to turn the Sun on and 
off. Our model output tells us that when we 
turn the Sun on, the Earth's temperature 
increases with a time constant of 1.7 months. 
When the Sun is turned off, the Earth's temper-
ature must decrease at the same rate. The Earth 
has stored the solar energy, and cannot release 
it faster than is allowed by the time constant. In 
the swamp model there is always a delay of 1.7 
months between a solar input change and the 
readjustment of temperature to the new steady 
state. This delay, or shift in the output variable 
(temperature) relative to the driver (solar input) 
is called a phase shift. We know from experience 

that the hottest month of the year is usually 
August in the northern latitudes but that the 
largest daily input of solar energy occurs at 
solstice on June 22, when the Northern Hemi-
sphere is at its maximum tilt toward the Sun. 
Similarly, the hottest part of a summer day may 
occur several hours after noon. These phase 
shifts occur in many variables in many systems, 
and can usually be traced to some time constant 
related to a reservoir and a flow. 

The time constant of a system plays an 
important role in how the system responds 
to system drivers with different time periods. 
Consider the situation in which the system 
driver is changing much faster than the time 
constant of the system. The system in this case 
responds by reducing or damping its response 
to the driver; the system tends to average the 
effect that the driver tries to produce. A meter 

GLOBAL WARMING CONTROVERSY 

In our model and discussions we have included only the science that relates to 
radiation laws, and we found a direct relationship between the energy received 
by the Earth's surface and the resulting steady-state temperature. For the real Earth, 
processes like ocean currents or volcanic eruptions influence the measured global 
average temperature. Over the longer time scales (longer than decades) radiation 
processes will have the dominant influence. 

At least part of the global warming controversy is semantics. Warming to the 
scientist means increasing the radiant energy to the Earth's surface; warming to 
many others means increasing the temperature. Consider a pot of water on the stove. 
As heat is added the temperature rises, but when the water starts boiling the tempera-
ture remains constant. Would you say that you were no longer warming the pot? The 
scientists would say that the warming is continuing as.before because heat is still 
being added to the pot; others might respond that you are no longer warming the pot 
because the temperature is no longer rising. Scientists look at the Earth and say with 
certainty that increasing greenhouse gases cause global warming because they know 
that additional greenhouse gases increase the infrared radiant energy from the atmo-
sphere to the Earth's surface. In fact, there is as much scientific certainty in this conclu-
sion as there is in the law of gravity. Scientists are less concerned about the year-to-
year changes in global average temperature because these variations are normal and 
expected. The use of global annual average temperatures as proof of global warming is 
fraught with problems because they are difficult to measure and show a lot of natural 
variability and because it takes a long time to demonstrate an unambiguous tempera-
ture increase using rigorous statistical techniques. 
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thickness of water will exhibit a small tempera-
ture change in response to daily cycles in solar 
radiation; yet the water will achieve an average 
temperature corresponding to the average 
solar input over a season. If the system driver 
changes much more slowly than the system 
time constant, the system will follow the 
changes in the driver in a continuously evolv-
ing steady state. The average temperature of a 
one-meter layer of water will gradually change 
with the seasonal changes in solar radiation. 

In systems capable of natural oscillations, 
a special response can occur when the driver 
period matches the system time constant. In 
this case the system's response is greater than it 
would be to the same driver operating at slower 
periods. This response is often called a resonance 
response. We can illustrate all three responses 
with a glass half filled with water. The glass 
of water is the system, your hand the driver. 
To determine the system time constant, push 
the glass quickly to one side. The water sloshes 
back and forth with a certain period, which is 
the system time constant. When we move the 
glass across the table more slowly than the time 
constant, the water follows along with little 
sloshing. If we wiggle the glass rapidly back 
and forth at periods faster than the time con-
stant, we can create lots of small waves in the 
glass, but the average height of the water in the 
glass is unchanged. (You need to move your 
hand fairly fast to make sure that you are faster 
than the sloshing time constant.) Finally, when 
we move the glass back and forth at a period 
close to the system time constant, we observe 
the sloshing amplitude grow and eventually 
the water sloshes out of the glass. 

In a large complex system like the Earth, 
there are many subsystems and components 
with many different time constants. The output 
from such a system has a lot of natural varia-
bility; for a given set of drivers the system will 
approach a steady state, but superposed on it 
will be natural fluctuations. The system compo-
nents with time constants matching driver 
periodicities will exhibit the largest regular 
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responses; the other system components pro-
duce apparently random variations sometimes 
referred to as noise. It is only the average that is 
steady in the steady state of a complex system. 
One needs to look no further than the weather 
to find a perfect example of large fluctuations 
superposed upon a steady state. In fact, the 
weather fluctuations are so large that defining 
their averages becomes very difficult. 

Exercises 

1. The steady-state solution to the Earth energy 
problem corresponds to the condition in 
which the incoming solar radiation is exactly 
balanced by (equal to) the outgoing infrared 
radiation. We can write this steady-state 
solution as an algebraic expression using 
previou~ly defined parameters. 

S {1-A) ,c r 2 = a T 4 4,c r 2 

This equation simplifies to 

S(I-A)=4aT 4 

The temperature in this equation is called 
the effective planetary temperature; for the 
Earth this is TE, where TE= 255 K. We now 
form a difference equation from the steady-
state solution by allowing S and A to be 
variables. (You may think of the difference 
equation as the time derivative of the equa-
tion multiplied by the time difference, dt.) 

dS (1-A)-S dA = 4 cr4T 3 dT 

We divide this equation by the previous 
equation (left-hand side by left-hand side 
and right-hand side by right-hand side), 
and rearrange the resulting equation. 

dT 1 dS 1 A dA -=-------
T 4 S 4 (1-A) A 

This form of the difference equation 
expresses the fractional change in the Earth's 
steady-state temperature as a function of the 
fractional change in the solar constant and 
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the fractional change in the Earth's albedo. 
Equations written in this form are useful for 
sensitivity studies. Note that the solar con-
stant variation term is positive, correspond-
ing to an increase in temperature associated 
with an increase in solar constant. The Earth 
albedo variation term is negative because 
increases in albedo produce decreases in the 
Earth's temperature. 

The sensitivity of the Earth's temperature 
to changes in the solar constant is measured 
by the increase in temperature produced by 
a 1 % increase in the solar constant. 

a. Find the sensitivity of the Earth's 
temperature to solar constant changes. 

b. Find the sensitivity of the Earth's 
temperature to changes in the Earth's 
albedo (again, for a 1 % change in albedo). 
Assume a steady-state albedo, A= 0.3 
(30%). 

c. Find the temperature sensitivities of 
Venus (A= 0.71 [71 %]) and Mars (A= 0.17 
[17%]) to albedo changes. 

2. We can modify the first equation in Exercise 
1 to include greenhouse warming of the 
surface at temperature Ts (=288 K) by an 
atmosphere at temperature TA" See the figure 
for the greenhouse model on page 31. 

S (1-A) 7t r 2 + a a TA4 4 7t r 2 = aTs'4n r 2 

This equation expresses the energy 
balance at the surface, which must occur for 
the steady-state solution. The new second 
term on the left-hand side of the equation 
represents the infrared radiation incident on 
the Earth's surface from the atmosphere. We 
have introduced a new parameter "a," which 
is the effective gray-body absorptivity for the 
atmosphere. (A gray body is similar to a 
blackbody but less efficient by the factor 
"a.") We have also used the property (known 
as Kirchhoff's law) that a material emits 
radiation at a given wavelength with the 
same efficiency with which it absorbs 
radiation at that same wavelength. The factor 
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"a" can take values between 0.0 and 1.0; a = 
1.0 corresponds to a blackbody, and 
a = 0.0 would be an atmosphere totally 
transparent to infrared radiation and also 
incapable of emitting infrared radiation. The 
factor "a" is directly related to the amount of 
greenhouse gases in the atmosphere. 

The first equation in Exercise 1 is the 
equation that defines the effective planetary 
temperature TE (=255 K); so, we may use this 
definition to replace the first term in the 
equation above with a T / 41t r 2• Our 
equation can now be expressed in a rather 
simple form. 

T 4 + aT 4 = T 4 
E A S 

This is still the energy balance equation 
for the surface, but we are using temperature 
variables to simplify the form of the 
equation. We now want to write a similar 
equation for the energy balance that must 
occur in the atmosphere. 

aT 4 =2aT 4 
5 A 

The left-hand side of this equation is the 
radiation energy (per square meter) from the 
surface (at Ts) that is absorbed in the gray-
body atmosphere (with efficiency a). The 
right-hand side is the total radiated energy 
(per square meter) emitted by the atmo-
sphere; the factor 2 appears here because 
the atmosphere radiates equal amounts of 
energy upward into space and downward 
to the surface. You may want to think of the 
atmosphere as having two surfaces of equal 
area, one facing upward and one facing 
downward. Several algebraic steps were left 
out in developing this last equation; you 
should fill in the missing steps. 

We can use this last equation to eliminate 
the atmospheric temperature TA from our 
previous result. Fill in the missing steps. 

T 4 = (1-~)T 4 
E 2 5 

Following the methods that were used 
in Exercise 1, we now form a difference 
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equation allowing T5 and "a" to be variables 
but keeping TE constant. When the resulting 
equation is written in the fractional format 
for sensitivity analysis, we have the 
following result. 

Specifying "a" for our model atmosphere 
is somewhat difficult, because the real 
atmosphere has many layers at many 
different temperatures, rather than the single 
one used here, and the Earth's atmosphere 
has clouds that come and go at several 
different levels. When an overall average 
for the outgoing radiation for the whole 
Earth is determined, we find that 7% of the 
outgoing radiation comes from the surface, 
with the balance of 93% from the atmo-
sphere, including the clouds. To use this 
information we need to write an equation 
for the fraction of the outgoing radiation 
that originates within the atmosphere. 

aT 4 
A = 0.93 
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The numerator, you will recognize, is the 
outward radiation (per square meter) from 
the atmosphere. The denominator is the total 
outward radiation; the second term is the 
surface radiant energy that did not get 
absorbed in the atmosphere. With the help 
of the third equation in this problem, solve 
the above equation for "a." (Hint: Form the 

. ratio T: I T ,4 in both equations.) 
Using the value that you found for "a", 

find the sensitivity of the Earth's surface 
temperature to changes in the effective 
gray-body absorptivity (again use a 1 % 
change in "a"). 

Compare your result for the sensitivity 
of the Earth's surface temperature to changes 
in the effective gray-body absorptivity 
to your results from Exercise 1 for the 
sensitivities to solar constant and albedo 
changes. Considering that "a" is the result 
of atmo~pheric greenhouse gases, comment 
upon the relationship of humankind's 
alteration of the global concentration of 
greenhouse gases to the natural global 
energy balance. 



VI 
Building Working Models: 
Human Population Model 

In the model of human population introduced 
in Section Ill, the annual births and deaths are 
not constants. We have, therefore, added to the 
system diagram two new converters, "Births 
per 1000" and "Deaths per 1000," the birth rate 
and death rate for each thousand people in the 
population. Demographers refer to these as the 
crude birth rate and the crude death rate. These 
are not constants either, over long periods of 
time; however, their changes are small com-
pared to other parameters in our simple popu-
lation model. This working model demonstrates 
many of the important dynamic features of 

· constant growth-rate systems, in which the 
fractional or percentage increase in size is 
constant in every equal time interval. 

We have also connected "Human Popula-
tion" to the birth and death valves because 
we will need this number when computing 
"Annual Births" and "Annual Deaths." 

An almanac is a good source for actual 
numbers to put into this model. But first, let us 
see if we can estimate them. The procedure we 
will employ is fondly called "the educated 
guess" or "guesstimate" by scientists. Guess-
timating is frequently used by model builders 
because the numbers that are needed in the 

model are not always available, and the edu-
cated guess will allow the model to run until 
better numbers can be produced. 

In a group of a thousand people, some will 
be younger than the normal childbearing age 
and some older. If we assume that the three 
groups are roughly equal in number, we will 
have 333 persons of childbearing age. Births 
occur to couples in this childbearing subpopu-
lation-roughly half of 333, or 167 couples. If 
we now assume that each couple has two chil-
dren during the childbearing years, then 333 
births will occur over that period. In round 
figures, we can take the childbearing period to 
be the 20-year period from 20 to 40 years of age. 
Dividing 333 births by 20 years yields 17 births 
per year per 1,000 persons; this is our "educated 
guess" for the crude birth rate. 

In order to "guesstimate" the crude death 
rate, we assume that all deaths occur in the 
older population group of 333 persons and that 
these deaths are spread over the 40-year period 
from 40 to 80 years. This yields a crude death 
rate of 8 deaths per year per 1,000 persons. 
When we run the model, however, it will yield 
results that are inconsistent with the assump-
tions used in our guesstimation; we assumed 

Human Population 

Births per 1000 Deaths per 1000 
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a static population distribution and the model 
produces a dynamic solution. 

,J,~ The final values that we need for the model 
are the initial value for the "Human Popula-
tion" and a starting time for the model. We will 
take these to be 5 x10 9 (5 billion) and 1990. The 
equations for the population model are given in 
the box below. 

Let's run the model for an 800-year period 
starting in 1990. 

Population Model Equations 

1. Human_Population (t) = 
Human_Population (t - dt) + 
(Annual_Births - Annual_Deaths) • dt 
!NIT Human_Population = 5e9 

2. Annual_Births = (Human_Population/ 
1 OOO)*Births _per_ 1000 

3. Annual_Deaths = (Human_Population/ 
1000)*Deaths_per_I000 

4. Births_per_IOOO = 17 
5. Deaths_per_IOOO = 8 ~1' 

1: Human Population 

In approximately 750 years the human 
population will increase to 4 xIO 12-1,000 times 
today's population. Imagine Boulder, Colorado, 
a city of 80,000, becoming a city of 80,000,000; 
Houston, Texas, growing to 2,000,000,000 (that 
is the equivalent of half of today's total Earth 
population moving to Houston). If 4 xIO 12 

persons were spaced evenly over the land 
surface of the Earth, there would be a person 
every 6 meters (20 feet), ocean to ocean, pole to 
pole, on riVers, deserts, mountains, highways-
everywhere on land-without a gap anywhere. 
That's too close for comfort! 

These numbers seem much too large; per-
haps we erred in making our educated guess. 
The actual figures for the world population in 
1990 are: crude birth rate= 27, crude death rate 
= 10, population= 5,321,000,000. We erred, but 
on the low-growth side, not the high side. The 
assumption of two children per couple is typi-
cal of mosi'industrialized nations, but too small 
for the developing countries and the world as a 
whole. And an 80-year life span is too long for 
the world population. The rates we guessed are 
close to the actual figures for the United States 

1: 4.00e+12 -·==~==-""=·---~·m,-"-----·---"-'""''="·m=--,,~r~~""''-·"----~------·I 

1: 2.00e+12 

1: 5.00e+09 
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I ........................................ I ................................. ,.,, ....... · 

! 
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(in 1990 the crude birth rate was 16 and the 
crude death rate was 9); this demonstrates the 
cultural influence on the numbers we selected. 

Let us replace our guesstimates with the 
actual figures and rerun the model. The graph 
below shows the new results plotted as an 
overlay on our previous result. 

Now that's frightening. Using actual 
population growth figures for today, we reach 
the 1,000-to-1 growth factor in 350 years, not the 
750 years our guesstimate yielded. If we allow 
the new model to run for 750 years, we obtain 
a growth factor of 1,000,000-to-1, a million new 
people for every one alive today. If spaced 
evenly over the land surface of the Earth, 
we would stand 20 cm (8 in.) apart. 

Clearly the Earth cannot sustain human 
growth at 1,000 to 1, much less 1,000,000 to 1. 
Resources, food production, pollution, and 
other human-impacted components in the 
Earth system will combine to enforce limits and 
constraints on population growth that we have 
not included in our population model. In the 

Human Population 

4.00e+12 New 
population 

curve, 
actual 

bathtub model, the overflow drain represented 
an explicit constraint on the water level. There 
was also an implicit limit: the top of the 
bathtub. We have implicit constraints for the 
human population model, but they are not as 
clearly defined. 

In our simple population model, we have 
only two parameters that we can alter to 
constrain population growth: crude birth 
rate and crude death rate. If we can act as an 
intelligent global community, we can control 
the crude birth rate. We have done so in some 
industrialized countries. If we do not behave 
as an intelligent global community, then nature 
will act to constrain population growth. Nature 
can play tough when faced with tough prob-
lems; the classic options for population control 
are war, plague, and famine. When nature is 
the dealer in the population game, it's the crude 
death rate that is the suit of choice. (More infor-
mation on population dynamics is included in 
the module Population Growth, in this series.) 
When we examine the graphs on pages 39 and 

Previous 
population 

curve, 
guesstimate 
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Human Population 
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40, we might be misled into believing that there 
is very little change during the first 100 to 200 
years because of the graphic scale. We can get a 
close-up view of the next 80 years by expanding 
that portion of the graph. 

The graph above brings the population 
problem close to home. The population curve 
goes off the top of the graph at 12 billion 
humans, within your expected lifetime. That 
is approximately three persons for every one in 
1980, when the population stood at 4 billion. It 
means tripling the numbers of cities and further 
encroaching on the agriculhrral land, or tripling 
the living density within our present cities. 
Imagine sharing your living space with two 
additional persons, encountering three times as 
many cars on your city streets, and attending 
classes three times as large. 

What is it about population that makes it 
behave so differently from the bathtub and the 
Earth energy system models, which reached a 
maximum size and then stopped growing? The 
modelers will respond, "positive feedback"; the 
demographers will respond, "constant growth 
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2030.00 
Years 

2050.00 2070.00 

rate"; and the mathematically oriented will 
respond, "exponential growth." These terms are 
all correct, and they all address the cause of the 
growth, but with slightly different emphasis. 

When the modeler says feedback, she or 
he is referring to the connector from "Human 
Population" to "Annual Births" in the system 
diagram; the affected components are repro-
duced below. What determines whether the 
feedback is positive or negative is the equation 
computing "Annual Births," Equation 2. 

The term in this equation containing 
"Human Population" has a positive sign; 
therefore, the feedback is positive. An increase 
in population causes an increase in births, 
which causes a further increase in population, 

Human Population 
Annual Births ~ 

o=;?,111------J 
Positive Feedback 
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which ... A positive feedback model increases 
or decreases until the system reaches some 
system limit. Positive feedback models some-
times appear to race between limits. During 
recent geologic time, the Earth's climate has 
exhibited characteristics of a positive feedback 
system in its repeated transitions from ice ages 
to interglacial periods and back. 

The demographer would add that the 
growth rate (annual percent increase in popula-
tion) is constant. For the population model the 
"annual percent increase in population" is 
found by subtracting "Annual Deaths" from 
"Annual Births," dividing the difference by 
"Human Population," and then multiplying 
by 100 to get percent. Equations 2 and 3 yield 

EXPONENTIAL FUNCTIONS 

When the rate of change of x can be expressed 

then x has the solution 

dx 
dt 

= ax, a = constant 

where x0 is the initial value of x (x at t = 0). This function is the exponential function, 
and it is always the solution to the situation in which the change in a variable is 
directly proportional to size of the variable. The "e" that appears in the exponential 
function is a constant, e = 2.718281828459. 

e-folding Time 

The "e-folding time," T,, is the time required for x to increase by the factor "e"; this 
occurs when aT

0 
= 1 because e'= e. Solving for thee-folding time, T,, we get 

T, = 1/a 

Doubling Time 

As you might guess, the doubling time, Td, is the time required for x to double in 
value; the exponential function tells us that for this to occur, 

2 = eaTd 

We solve this expression to obtain the doubling time, Td. 

T ~ In 2 = 0.693 = 0_693 T 
d a a 

The doubling time is just a constant fraction of thee-folding time ( -70%). If we choose 
to represent "a" as a percent rather than a fraction, a%, then our expression for the 
doubling time may be approximated as 

70 
a% 

In our population model a% is the growth rate (1.7%); hence, the population doubling 
time is 41 years. 
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("Births per 1000"-"Deaths per 1000")/10 or, if 
you prefer, (crude birth rate-crude death rate)/ 
10. If we use the actual population figures in 
our model we get a 1.7% growth rate. Amaz-
ingly, a measly 1.7% growth rate will produce 
a tripling of the 1980 global population by the 
year 2040. 

The mathematician points out that this is all 
a consequence of the exponential function. Any 
time the rate of change of some quantity is 
proportional to the quantity itself, the function 
for the quantity is an exponential function. In 
our model, the difference ("Annual Births"-
"Annual Deaths") is the rate of change of 
"Human Population," and we see in Equations 
2 and 3 that the rate of change is proportional to 
"Human Population." "Human Population" is, 
therefore, described by an exponential function. 
The exponential function looks like our popula-
tion graphs; it always seems to be going off the 
top of the graph. 

An important point to make before leaving 
this subject is that a constant growth rate pro-
duces an exponential solution, a relatively 
simple mathematical function. However, if 
the growth rate is not constant but remains 
positive, we will still get a rapidly increasing 
growth in population, but the function will not 
b.e a simple exponential. The only way to get 
the population curve to stop growing is to have 
a zero growth rate, which means the birth and 
death rates must be equal. The only way to 
decrease the population is to achieve a negative 
growth rate, which requires the death rate to 
exceed the birth rate. There are not many 
volunteers for this scenario. 

Since our model is simple, this analysis is 
also oversimplified. Consider the additional 
fact that there is an approximate 20-year phase 

Equation for Population Growth Time Constant 

"Human Population" 
(" Annual Births"-" Annual Deaths") 
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lag between birth and childbearing age, and 
another 20 years are required to repopulate the 
childbearing age group. If we were to achieve 
zero growth rate today and keep it at zero, it 
would require 40 years for the population curve 
to flatten out. In that period the population can 
double in size. The world has not achieved zero 
growth rate, although some progress is being 
made in this direction. 

Having brought up the subject of time, let's 
return to our earlier discussion of model time 
constants. Following the procedures described 
earlier, we can compute the time constants for 
"Annual Births" or "Annual Deaths" by divid-
ing the reservoir "Human Population" by the 
respective flows. It is more important, however, 
to know the time constant for population 
growth, which we can obtain from the differ-
ence between "Annual Births" and "Annual 
Deaths." The equation for the time constant 
for growth, Ts, is given in the box below. 

In our model this works out as 59 years 
[1000/(27-10)]. Demographers, however, prefer 
to use a different measure of "time to change," 
called the doubling time: the time required for 
the population to double. The doubling time 
is illustrated on our last population graph, in 
which we have indicated the region where the 
population doubles from 6 billion to 12 billion. 
We estimate from the graph that this occurs 
over a period of 41 years. (For exponential 
functions the doubling time is approximately 
70% of the time constant for growth.) The 
doubling time is a very useful concept because 
it tells us how much time we have to provide 
for a doubling of the population. Our model 
results say that we have 41 years to double all 
of the world's resources utilized by humans, 
just to maintain the status quo. 

1000 
("Births per 1000"-"Deaths per 1000") 



VII 
Model Characteristics 

In the previous three sections, we built and ran 
three different models, observed their behav-
iors, and modified the model parameters to 
change the behavior. Our three models exhib-
ited radically different behaviors. The bathtub 
model was a linear model and was highly 
predictable because it was a driver-dominated 
model. There was only one internal model 
parameter, "Bathtub Volume," that was a 
constant, and one variable, "Bathtub." All of 
the model variability originated with the driver, 
"Bather," and the one internal logic element, 
"Overflow." The Earth energy system model 
was a steady-state model, and it too had a 
predictable outcome, a simple algebraic 
solution. The important characteristics of this 
model are that it is a reasonable representation 
of a real global physical process and that by 
changing the model parameters we were able 
to observe the response of the system. The 
Earth energy system model served as a tool 
to help us understand how the system works. 
Had we altered other parameters, such as 
"Earth Albedo" and "Solar Constant," we 
could have used this model to perform sensi-
tivity studies of the response of the Earth's 
temperature to these changes. The human 
population model was an exponential model; 
it also had a mathematical solution. Whereas 
the two previous models were driver-
dominated, the human population model 
was completely dominated by internal system 
dynamics. The only driver was crude growth 
rate ("Births per 1000" - ''Deaths per 1000"), 
which we treated as a constant. We found the 
time constants changed as we altered the crude 
growth rate, but the shape of the population 
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curve was always, unavoidably, exponential 
growth. 

Feedback is an important system concept, 
and all three models illustrate the behavior of 
feedback in systems. The human population 
model had positive feedback, with the result 
that the population grew without apparent 
bounds. Although we did not include the 
system constraints on the population, we 
recogni,zed that eventually something in 
the real systein would act to limit the growth. 
This is the characteristic behavior of positive 
feedback systems; they evolve to some limiting 
state, and some systems will oscillate between 
limiting states. Negative feedback, on the other 
hand, produces a stable steady-state result. In 
one of the bathtub model scenarios, negative 
feedback allowed the "Bather" to achieve and 
maintain a bathtub level of precisely 75% of 
bathtub capacity. The Earth energy system 
model did not employ true feedback; however, 
the "Infrared to Space" valve behaved like a 
negative feedback component. When the "Earth 
Energy" increased, the "Infrared to Space" 
valve caused an increase in the rate of release 
of that energy. The Earth energy system model, 
therefore, achieved a steady-state solution sim-
ilar to negative feedback models. 

Many complex models will have several 
feedback loops, some positive and some nega-
tive; in these models the various feedbacks 
compete. As the system slowly evolves through 
a series of states, one or another feedback may 
temporarily become dominant. Some clima-
tologists think that the climate history of the 
Earth is an example of this type of system 
behavior. During the Pleistocene, about 10,000 



to 1.6 million years ago, a positive feedback 
process may have been influencing climatic 
changes, causing the great ice sheets to advance 
and retreat. There was also an active process in 
the system that limited the extent of the ice 
sheets. The Cretaceous, a long warm period in 
Earth history (65 million to 145 million years 
ago), may have been under the influence of the 
positive feedback of the greenhouse gases water 
vapor and carbon dioxide. Over the very long 
period of Earth history the planet has main-
tained a relatively constant temperature; it has 
not frozen over, nor have the oceans evapor-
ated. For this long period, we can say with 
certainty that negative feedback processes have 
dominated because only a system dominated 
by negative feedback can achieve a steady state 
intermediate between possible extremes. One of 
those processes is the infrared radiation emitted 
to space, which has an overall control over the 
effective planetary temperature on both long 
and short time scales (see the discussion of 
effective planetary temperatures in Section V). 
Another long-term process has been the nega-
tive feedback provided by planetary CO

2 
and 

oxygen chemistry. Very early in the Earth's 
history the solar output was -20% lower than 
today. If the Earth's atmosphere had not been 
richer in carbon dioxide than it is now, the 
Earth would surely have frozen over com-
pletely and remained so until today. 

All three models were simple models; they 
each had a single reservoir, and they all had 
analytical mathematical solutions. (An ana-
lytical solution is one that can be expressed 
with an algebraic equation.) Even though the 
analytical solutions were available, we found 
that the modeling approach provided addi-
tional insight into the workings and behaviors 
of these systems. The more important point is 
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that if we change some of the model parameters 
that we had treated as constants, such as "Earth 
Albedo" or "Births per 1000," into the variables 
they are in the real world, the analytical solu-
tions no longer work. The models, however, 
keep on working. One powerful argument for 
computer modeling is that the real-world 
properties need not be overly simplified in 
order to constrain the problem to fit a simple 
mathematical format. 

When we start adding a higher level of 
complexity to our models, such as atmospheric 
layers, carbon dioxide, and clouds to the Earth 
energy system model, or famine, education, 
contraception, and resources to the human 
population model, the analytical approach 
completely fails us. Modeling is the only 
method to quantitatively solve these complex 
real-world problems. 

There are always detractors who will dis-
count the results of models. Their objections 
usually fall into two categories: "But, you 
didn't include such-and-such a process in 
your model," and "Garbage in; garbage out." 
Any thoughtful activity relating to system 
behavior is limited by the same state of our 
knowledge. These objections are actually 
arguments for improving our understanding 
of the system, improving the models, and 
improving the data required by the models. 

Given a concept of how a system works and 
given a set of data on the system, there is no 
better way to describe system behavior than 
with a computer model. All other activities will 
underutilize the available resources. The only 
way to improve the system description is to 
improve the concept of how the system works 
and improve the system data set. Modeling 
is a persistent advocate for both of these 
improvements. 
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Postscript: The Grand Global Experiment 

Venus and Mars are planets whose climates 
have evolved to extreme limits. Even though 
Venus has the highest albedo of all the inner 
planets, reflecting 71 % of the solar energy 
falling on it, the planet has a surface tempera-
ture of 480° C. (Earth averages 15° C.) Venus 
has a thick atmosphere containing mostly 
carbon dioxide, and the greenhouse warming 
of this atmosphere has increased the planet's 
surface temperature 509° C! Mars, on the other 
hand, has an albedo of only 17% but a very 
cold average surface temperature of -60° C, 
because its atmosphere is extremely thin and 
produces no observed greenhouse warming. 
But the Earth's temperature has remained 
remarkably moderate throughout its entire 
history (-15° C ± 7° C). Climatologists estimate 
that the Earth's average temperature changed 
less than 15° C between the warmest period, 
the Cretaceous, and the coldest ice age of the 
Pleistocene. 

Even during the early history of the solar 
system, when the Sun's output was 20% below 
today's value, the Earth did not freeze over 
but maintained a moderate climate. Only a 
planetary negative feedback process could 
maintain such steady conditions when the 
system drivers such as solar energy and ice 
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albedo were attempting to push the climate 
to extremes; most evidence now points to 
atmospheric carbon dioxide as the mechanism 
by which Earth has applied the controlling 
negative feedback. 

The fossil fuels that we are now using to 
provide our energy and are releasing into the 
atmosphere as carbon dioxide were .extracted 
from the atmosphere and buried during the 
Cretaceous by Earth system processes. The 
cooling at the end of the Cretaceous in response 
to the decrease in atmospheric carbon dioxide 
corresponds to the demise of the dinosaurs and 
the emergence of mammals as the predominant 
complex life form on the Earth's surface. A 
warming of 6°-10° C will return the Earth to 
the ice-free conditions of the Cretaceous. 
Climate models forecast a global warming in 
the range {9°-5.2° C in the next century with a 
doubling of atmospheric carbon dioxide from 
fossil fuel use. 

All of the consequences of this warming are 
not known, but based upon the history of this 
planet the swings in climate of this magnitude 
have produced major changes in regional and 
planetary geology, ecology, and biology. Do 
we really want to perform this global environ-
mental experiment to discover the outcome? 
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absolute zero-On the Kelvin temperature 
scale there is a coldest temperature called 
absolute zero, where all motion stops, all 
molecules are stationary, and all electrons 
are in their ground state (lowest energy 
level). This occurs at -273.16° on the Celsius 
temperature scale. 

albedo-The amount of incident radiation 
that a surface reflects and that thus does not 
contribute to its heating. The albedo of the 
whole Earth is approximately 30%. The 
albedo of snow is -90% and water is -10%. 

amplify-A system component or process 
that increases the extent of the fluctuations 
or changes of a system variable is said to 
amplify the variable. An audio amplifier 
takes the small voltage signal produced by 
the tape player and amplifies it to a large 
acoustic signal through the audio system 
speakers. See also damp. 

annual births-The number of live births 
occurring in a specified population in one 
year. 

annual deaths-The total number of deaths 
occurring in a specified population in one 
year. 

asymptotic-A function that gradually 
approaches a constant value and thereafter 
remains essentially equal to the constant is 
said to be asymptotic to the constant. 
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blackbody radiation-A material that absorbs 
all incident radiation at all wavelengths 
appears black and is called a blackbody. 
Such materials also emit electromagnetic 
radiation in a predictable manner. Blackbody 
radiators are the most efficient thermal 
radiators possible. 

branches and decisions-When a model of a 
system is required to choose among alternate 
values, paths, or processes, we must supply 
the system with the required logic and 
information to make the correct decision; 
these points in the system diagram are 
called branches. 

cell-The smallest area or volume that is 
defined in a model is a cell. Only one value 
of each system variable can be assigned to 
each cell. For example, in a climate model 
each cell has one value for temperature for 
each time step in the model. 

climate-The characteristic long-term 
environmental conditions in a region. 
Climate can also refer to the whole Earth, 
as with ice ages and interglacials. 

closed loop-If a system variable (or flow) 
ultimately returns to the reservoir from 
which it came, then the variable is a closed 
loop in the system. 

computer model-A construct of mathematical 
and logical statements designed to describe a 
complex system in quantitative terms with 
the help of a computer. 
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conceptual model-A mental image of an 
object, system, or process. 

connector-See interconnections and 
coupling. 

conservation of energy-Energy may have 
several forms (thermal, electromagnetic, 
chemical, electrical, etc.). Within a closed 
system, energy may be transformed from 
one form to another but the total amount 
of energy cannot change. If the system 
exchanges energy with the outside world, 
the change in the total system energy must 
exactly equal the energy exchanged. 

constant-A quantity that has a fixed mathe-
matical value within a model, such as pi or 
Earth's radius. It may appear explicitly in 
equa lions, logical statements, or as an initial 
value, or it may be a named parameter that 
the model uses. 

constant growth rate-The growth rate (usually 
expressed as a percent) is the increase in the 
value of a variable during a specified time 
period divided by the value of the variable 
at the beginning of the period. If the growth 
rate of a variable is a constant, the variable 
will exhibit exponential growth. 

constraints-Restrictions to the behavior of a 
variable. Constraints are similar to limits, 
but usually act over a broader range cif 
variable values. For example, the global 
fossil fuel supply has a limit, but prior to 
reaching that limit national interests, 
economics, and cost of recovery will 
constrain its use. 

control-See valve. 

converter-A free-floating element on a system 
diagram within which new variables or 
constants may be defined, computations 
performed, or decisions made_. 
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coupling-See interconnections and coupling. 

Cretaceous-The geologic period at the end 
of the age of the dinosaurs, from about 65 to 
145 million years ago. During the Cretaceous 
the Earth was warmer than at present and 
sea level was higher. 

crude bir.th rate-The number of live births for 
each thousand persons in a specified popula-
tion in a given year. 

crude death rate-The number of deaths for 
each thousand persons in a specified popu-
lation in a given year. 

damp-A system component or process that 
acts to decrease the extent of fluctuations or 
changes in a system variable is said to damp 
the variable. By analogy, shock absorbers on 
cars darrip the bouncing that occurs after 
hitting a bump or dip in the road. 

decisions-See branches. 

demography-The study of human popula-
tion, the characteristics and dynamics of the 
whole population and of segments within it. 

doubling time-The time required for a func-
tion or variable to increase its value by a 
factor of two. 

driver or forcing function-A parameter that 
controls the behavior of a system and makes 
its behavior regular and predictable. 

dynamic parameter-A value provided to a 
system that may change with time either in 
a prescribed manner or in response to the 
changing state of the system. 

e-folding-An exponential function changes 
by the factor e or 1/ e when the exponent of 
e changes by± 1.0. The time required for the 
exponent to change, or the distance over 



which it changes, by ±1.0 is called respec-
tively thee-folding time or the e-folding 
distance. See also exponential. 

effective planetary temperature----The tem-
perature that a planet must have in order 
to radiate to space, as a blackbody, all of 
the solar power that it absorbs. 

electromagnetic spectrum-The entire range 
of radiation. The wavelengths (distance 
between adjacent peaks) of the electromag-
netic waves within the electromagnetic 
spectrum range from kilometers, for radio 
waves, to nanometers (billionths of a meter), 
for X rays. Visible light is the group of 
electromagnetic waves with wavelengths 
between 0.4 and 0.7 micrometers (millionths 
of a meter). 

entropy-The scientific measure of the dis-
order in a system; the greater the disorder 
the greater is the entropy. According to the 
second law of thermodynamics, entropy 
is always increasing. 

equation-A mathematical statement in which 
equal values (or the mathematical statements 
producing the values) appear to the right 
and left of an equal sign. In system modeling 
and programming, an equation is an action 
by which the left-hand side is set equal to the 
value produced by the evaluation of the 
right-hand side. The two sides are equal after 
the action is taken but may not have been 
equal prior to the action. 

exponential function-A mathematical func-
tion, y ;; ea.:r (a is a constant and e is a constant 
equal to 2.71828), in which y asymptotically 
approaches 1.0 as ax approaches zero (ax " 
1.0), and y increases without an upper limit 
as ax increases far beyond 1.0 (ax» 1.0). 

feedback-When information on a system's 
behavior is used by the system to modify its 

51 

GLOSSARY 

behavior, the process of transferring the 
information across the model is called feed-
back. With negative feedback, the modi-
fication is in the opposite direction to the 
behavior and acts as a constraint. In positive 
feedback, the modification is in the same 
direction as the behavior and so enhances it. 

first law of thermodynamics-See conserva-
tion of energy. 

flow or flux-The rate at which a variable 
enters or leaves a reservoir. By analogy, 
water in streams flows into or out of 
reservoirs. 

fluctuations-Fluctuations are variations in 
the value of a variable, usually around the 
variable's locally averaged value. Hourly 
temperatures represent fluctuations of 
temperature relative to the seasonal mean 
temperature. 

forcing function-See driver. 

forecast-A skilled estimate of some future 
condition, often based upon computation; 
by contrast, a prediction may be nothing 
more than a wild guess. 

general circulation model, or GCM-A large 
three-dimensional computer model of cli-
mate that requires a supercomputer. GCMs 
are uniquely capable of computing the global 
winds or atmospheric circulation from basic 
physical equations. GCMs also provide 
large-scale regional spatial resolution. 

ghosted-A system element within STELLA®II 
that has been duplicated and placed some-
where else in the system diagram; the dup-
licated component always takes the same 
value as the original and appears gray, rather 
than black, on the diagram. 
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greenhouse gas-An atmospheric gas that 
absorbs (and also radiates) in the infrared 
part of the electromagnetic spectrum. Green-
house gases include carbon dioxide, water 
vapor, and methane. They warm the atmo-
sphere and surface below them, a phenom-
enon frequently referred to as greenhouse 
warming. 

growth rate-See constant growth rate. 

guesstimate-An educated guess. In the ab-
sence of a reliable value for a needed param-
eter, modelers will often guess at a value 
using available information and a hypothesis 
relating what is known to what is needed. 

heat capacity-The amount of heat needed 
to cause a unit temperature rise in a given 
mass. 

icon-A highly stylized model or image of an 
object or process (behavior). 

if statement-A decision-making instruction 
common to many programming languages. 
For example: IF "rain" THEN "dinner" ELSE 
"picnic/' where "rain," "dinner/' and 
"picnic" are variables in the model. 

infrared radiation. The region of the electro-
magnetic spectrum with wavelengths longer 
than visible light (-1 µm) but shorter than 
microwaves (-1 mm). The Earth's radiation 
into space is predominately infrared 
radiation. 

initial conditions-When we run a computer 
model we give it a "start time," which is the 
time or date for the computations to begin; 
the initial conditions are the values assigned 
to all of the model variables at the "start 
time." 

interconnections and coupling-Parts of a 
system are coupled if information from one 
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part is provided to, and influences the 
behavior of, other parts. The information 
being passed is the interconnection. On the 
system diagram the interconnection is called 
a connector. 

isolated system-A system that has no 
significant interactions with other systems 
or with the rest of the universe. 

limits-Most real systems have limits on 
the range of values permitted for system 
variables. For example, a power plant's 
maximum output is limited by its physical 
capacity, and its normal output is 
determined by consumer demand. 

linear-Linear means, literally, in a straight 
line; a linear function will plot as a straight 
line on a graph. If y is a function of x, the 
equation for the linear function y is y ~ ax + 
b, where a and bare constants. See also 
quadratic. 

main program-See program. 

model-An idea of an object, system, or 
process. We may translate this idea into a 
physical object, a drawing, a mathematical 
expression, a computer program, or another 
representation. 

model verification-A test or series of tests 
to compare a model's output with known 
results; it is an important step to prove the 
model's accuracy. 

negative feedback-See feedback. 

noise-Unwanted fluctuations in a variable 
that represent some system process that is 
not being studied. By analogy, acoustic noise 
is an unwanted component of sound. 

normalized function-A function is normal-
ized by multiplying or dividing all of its 



values by the same constant. One purpose is 
to allow different functions to be plotted on 
the same graph for comparison. 

parameter and variable-A parameter is a 
numerical value that supplies a system 
model with quantitative information about 
the system; a variable is a dynamic property 
of the system that describes the system's 
behavior. The radius of the Earth and the 
human population in 1990 are parameters; 
the mean temperature of the Earth and the 
current human population are variables. 

phase shift-When two related events occur 
at the same time or two related variables 
change at the same time, we say that they 
are "in phase." If one event occurs after the 
other or the variable change of one occurs 
after the other we say that a phase shift has 
occurred. 

Pleistocene-The geologic epoch from 10,000 
to 1.6 million years ago, which immediately 
precedes the present epoch (Holocene); the 
Pleistocene epoch was noted for periodic 
ice ages. 

positive feedback-See feedback. 

pressure-Pressure is the force per unit area 
exerted by the collisions of randomly moving 
molecules. 

program-A complete sequence of instructions 
written in a programming language that the 
computer can understand. The program 
must contain all of the information and logic 
that the modeler wants incorporated in the 
model. The computer cannot invent infor-
mation or behavior; all information must be 
provided in the program and all allowed 
behaviors described. The main program is 
the part of a computer program that contains 
the fundamen ta! logic and branches of the 
model; it always contains the starting point 

53 

GLOSSARY 

and the normal ending point. Many of the 
detailed computations and decisions are 
made in separate parts of the computer 
program called subroutines. A program can 
have only one main program but may have 
many subroutines. 

quadratic function-In a quadratic function 
the highest power of the independent 
variable is 2. If y is a quadratic function 
of the independent variable x, the general 
algebraic form for the function is y = ax2 + bx 
+ c, where a, b, and c are constants. See also 
linear. 

regulator-See valve. 

reservoir or stock-A component of a system 
that can store or accumulate a quantity of 
one of the system variables and/ or can act as 
a source" of that variable. By analogy, a water 
reservoir stores the stream water feeding it 
and ·supplies water to users downstream. 

resonance-Some systems oscillate with a 
period equal to or related to the system time 
constant. If a system driver is acting at one 
of these periods the system response will 
be amplified with respect to its response 
at other periods; this condition is called 
resonance. Striking a bell initially excites 
many periods or frequencies of vibration 
in the bell; however, only those periods or 
frequencies that are in resonance with the 
bell's natural time constant or frequency will 
linger to contribute to the bell's continuing 
tone. See also amplify. 

run-A completed computer model or pro-
gram is "run" on a computer. The program 
or "code" is loaded or stored in the compu-
ter's memory, and the computer follows the 
instructions encoded in the program. Once 
started the computer proceeds to perform 
the programmed tasks without external 
intervention. 
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second law of thermodynamics-See entropy. 

sensitivity study-A modeling study to 
evaluate the magnitude of a change in 
model output for a given change in input 
to a specified parameter. 

SI units-The Systeme Internationale d'Unites, 
the internationally endorsed form of the 
metric system. 

sink-A reservoir that receives a variable from 
the system under consideration. Usually 
sinks are large reservoirs that are unaffected 
by the system being modeled. 

solar constant-The amount of solar radiant 
energy received at the top of the Earth's 
atmosphere per second per unit area when 
the Earth is at its average distance from the 
Sun. The solar constant is 1,368 Wm·'. 

solar radiation-The electromagnetic radiation 
emitted by the Sun. The spectral region from 
ultraviolet through infrared is important to 
Earth's climate and weather. See also elec-
tromagnetic spectrum. 

source-A reservoir that supplies a variable 
to a system. Like sinks, sources are usually 
large reservoirs that are unaffected by the 
system being modeled. 

specific heat capacity-The heat capacity 
of a homogeneous substance divided by 
its mass. 

steady-state solution-The final and 
unchanging result obtained after a model 
proceeds through early changes. Models 
that produce steady-state solutions are called 
steady-state models. They usually feature 
some form of negative feedback. 

Stefan-Boltzmann constant-The Stefan-
Boltzmann constant, cr, appears in radiation 
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equations. cr = 5.67 x 10.s Wm·2 K 4 . See black-
body radiation. 

STELLA®II-a graphics-based programming 
system for the Apple Macintosh™ and 
Windows systems that allows the user to 
create computer models without having to 
write a program in a programming language. 
It is available from High Performance Sys-
tems, Inc., 45 Lyme Road, Hanover, NH 
03755 (telephone 800-332-1202). STELLA® II 
is a registered trademark of High Perform-
ance Systems, Inc. 

stock-See reservoir. 

subroutine-See program. 

supercomputers-Special computers that are 
designed to solve problems requiring very 
large arrays of memory and high-speed 
computational capabilities. Supercomputers 
are very expensive, and their use is usually 
restricted to problems requiring their special 
capabilities. 

swamp model-A climate model in which the 
Earth's surface is treated as a stationary layer 
of water. 

system-A selected set of interacting compo-
nents usually small enough that its behavior 
can be understood or modeled. A simple 
system is the air conditioning system in your 
home; the global climate system is a complex 
system. A system diagram uses graphic 
symbols or icons to represent system com-
ponents in a depiction of how the system 
works. A system model defines all of the 
interactions among the components of a 
system and the significant interactions 
between the system and the outside 
universe. 

thermal energy-The form of energy expressed 
in the random motion of molecules. When 



the thermal energy is increased, the mole-
cules move faster and the temperature 
increases. 

thermodynamics-The science that focuses on 
the flow of energy into and out of systems, 
the conversions of energy forms within 
systems, and the influence of the system's 
energy on its variables. 

threshold-A threshold value for a variable 
represents a value of the variable that 
separates two usually markedly different 
behaviors of the system. The system behaves 
one way below the threshold and a different 
way above the threshold. 

time constant or time scale-The time required 
for a specific process to occur or for a vari-
able to change significantly. The time con-
stant relating a reservoir to a connected flow 
is the reservoir divided by the flow. 

time step-A computer model progresses in 
time steps (a defined period of time such as 
one second or one year) by computing the 
changes that will occur in all of the model 
variables during the period of the time step. 

tropopause-The level in the atmosphere that 
marks the top of the troposphere; it is the 
altitude at which the temperature no longer 
decreases with height. See also troposphere. 

troposphere-The lowest layer of the Earth's 
atmosphere, characterized by the decrease 
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in temperature with altitude. On the average 
the thickness of the troposphere is about 12 
kilometers, but it varies from about 8 kilo-
meters in the polar regions to 15 kilometers 
in the tropics. 

valve or control or regulator-In modeling, 
the mechanism Iha t specifies the flow 
through a specific path in a system. By 
analogy, a valve controls the flow of water 
from a faucet. 

variable-See parameter and variable. 

weather-The condition of the atmosphere at 
a given time and place; weather is described 
by variables such as temperature, wind 
direction and speed, cloudiness, and 
precipitation. 

work-In physics, a force does work on an 
object (system), when the object moves or 
changes its dimension in response to the 
force. The energy increase of the object 
equals the work done by the force. 

work-by and work-on-The by and on tell 
us which direction the work energy is 
flowing. Work by involves energy leaving · 
the system; work on involves energy entering 
the system. If a system changes its dimen-
sions in response to an internal force, the work 
done by the system is positive. If a system 
changes its position or dimensions in 
response to an external force, the work done 
on the system is positive. 
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Laxenburg, Austria). This book is unlike any 
conference proceedings you have ever seen; 
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publication. 

--, Dennis L. Meadows, J0rgen Randers, and 
William W. Behrens, III. The Limits to Growth, 
New York: Signet Books, 1974. The 
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World Futures, and Public Policy: A Critique. 
Washington, D.C.: U.S. Government Printing 
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to utilize long-range forecasts and planning. 
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book on STELLA II. 

Richardson Jacques, Ed. Models of RealihJ: 
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Lomond Publications, 1984. A marvelous 
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international scholars of global systems. 
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United Nations Educational Scientific and 
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Richmond, Barry. Authoring Module: Authoring 
Software for use with STELLA® II and ithin~. 
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versions of STELLA II (3.0.2 and higher) 
have an authoring "shell." This allows an 
author using special software to create a 
model to be run by others, who may alter 
model parameters specified by the author 
but may not otherwise change the model 
itself. 
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Introduction 

The STELLA• II Demo disks that are provided with 
this edition of "System Behavior and System Modeling" 
include new features of STELLA II 3.0 that are not used 
in your "System Behavior and System Modeling" text. 
This la test version of STELLA II has a "High Level 
Map,'' which is an organizational feature that supports 
building complex systems in a modular format. In 
addition, the latest version of STELLA II offers an 
Authoring add-on, which enables the model builder to 
transform a completed model into an interactive, 
simulation-based; gaming environment. Both high level 
mapping and authoring capabilities are incorporated in 
the demo disks. These features are described in this 
appendix, "Getting Started With STELLA® II: A Hands-
On Experience." You will probably want to explore all 
of the capabilities of STELLA II 3.0. However, neither 
high level maps nor authoring capabilities are essential 
to building simple system models. 

The System Diagram that we describe in "System 
Behavior and System Modeling" is the middle level, 
described as the ''Diagram Level" in the appendix. On 
the left-hand bar of the STELLA II display, you will see 
a small box with up and down arrowheads. You use 
these arrow buttons to change levels. The "High Level 
Map" is on the top. The "System Diagram" is on the 
middle level. The "Equations Listing" is on the bottom 
level. The middle level, or System Diagram, is where the 
model building actually takes place. If you wish to 
bypass the High Level Map and go directly to the 
simple model building activity, then use the arrows to 
move to the System Diagram level. If the Globe icon 
appears in the left bar once you are on the System 
Diagram level, you should click on it to change from the 
mapping mode to the modeling mode (indicated by X2). 
You may now proceed with building your own 
dynamic models. 

You should study Sections 2, 3, 4, and 6 in this 
appendix to learn more about creating dynamic models. 
You will find the Quick Help Guide (Section 6) to be 
especially helpful. 
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1. Working With A Learning Environment 

Welcome to the STELLA II Tutorial! The STELLA II software is designed to 
help people build their understanding of dynamic systems and processes. In what 
follows, you will find an example of a Learning Environment based on a simple 
STELLA II model of population dynamics. We encourage you to spend some 
time exercising this Environment so you can get a feeling for STELLA II as a 
tool for facilitating learner-directed learning. In the second section of the tutorial, 
we will take you step by step through the process of building a model. After 
completing construction of the base model, we will give you an opportunity to 
extend the model, or you can try your hand at constructing a model of your own 
choosing. 

This tutorial assumes you are familiar with either the Macintosh® or Windows™ 
environments. If you lack familiarity with the operating system on your machine, 
you will want to review the User's Guides and tutorials provided with your 
Macintosh or with Windows. 

Population dynamics is a key content area in many social and physical science 
curricula. From one-celled organisms to human populations, a generic structure 
can be used as a basis for studying the dynamics of population growth and decline. 
In this tutorial, we will examine a deer population in a forest ecosystem. The deer 
population is regulated by food supply and a predator population. In the year 
1900, in response to pressure from local ranchers and farmers, a $50 bounty was 
placed on predators because of attacks on livestock. In the ensuing forty years, an 
overshoot and collapse pattern emerged in the deer population, as seen below. 

Deer Population 
200CXX).00 

,1-------H-t-----+------+--H---~ 

100000.00 .1-------1----1-------+-------.-Je---+------' 

19IO.OO 
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The deer population grew until it was well in excess of what its food supply would 
support. Starvation on a massive scale then occurred. This pattern is frequently 
observed in the natural world. Your challenge is to intervene in the system in such 
a way as to establish and maintain a balance between the three members of this 
simple ecosystem. In doing so, you should try to understand what factors are 
creating the overshoot and collapse, and determine what points of intervention will 
have the most leverage in re-establishing a balance. 

If you have not yet installed the STELLA II disks, do so now. Then locate the 
folder called "Tutorial" and open the model called "PopDynam." 

What you should see is the High-level Map shown below: 

Deer 

Each process frame in the High-level Map represents a key "actor" in the 
ecosystem: Deer, Vegetation and Predators. Notice that there are some arrows 
linking the frames. These show that relationships exist between them, which 
makes sense since none of these actors exists independently. All three depend 
either directly, or indirectly, upon each other. 

Now, scroll down the page until your screen looks like the picture at the top of the 
next page. 
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Management Policies 

I deer tags= I 0 i~I predator bounty = I so l~J 0 'I!] 20000 0 00 100 

reintroduce deer = I 0 I (1l reintroduce predator = I 0 l~J 0 'I!] 5000 'v 0 cijJ 3000 

I clear land= I 0 i~I 0 <ffi 100 

' 1:011rP1111u11t1m 2: V11111t1Uqn :t Prar11L11rPop,111uan ............ 
Deer Population 

I Predator Populal - I • -·· 
Vegetation I 

;) , ....... .... 
• ""''' 

;) ... • Q.DD190Q.OO 19llil.OO 19:2QOO 19:IIQ.OO l'Jllil.OQ a ·N~ . .,.,, 111119$ 
'v 

These are the input and output devices associated with this Learning Environment. 
Using them, you will be able to "fly" the ecosystem and to test your ability to take 
actions that will keep the system in balance. Along the middle of the left side of 
the screen you will find three numeric display devices. There is one representing 
the magnitude of each population· in the ecosystem. You will be able to see the 
current value of population for each actor throughout the course of the simulation. 
To the right, you will see a graph which is set up to show you the trend traced by 
each of the three populations as the simulation unfolds. Notice the "push pin" in 
the top left corner of the graph. If you click once on the pin, the graph will 
"un-stick" from the control panel and become a separate window. While it is 
unpinned, you can reposition it or resize it (using the re-size box in the bottom 
right hand corner) if you can't read the details at the current size. Be sure to pin it 
back down before clicking elsewhere on the control panel or the window will 
move behind the control panel when you click on it. (If this does happen, 
double-click on the small square icon labeled Graph Output on the control panel, 
and the graph will reappear.) Tables and graphs provide the most frequently used 
ways to view the output of a model. Other alternatives include the numeric 
display, simple diagram animation and QuickTime™ movies. (QuickTime is only 
available in the Macintosh version.) 

Above the graph and numeric displays, you will see five slider input devices. 
These devices are directly linked to a corresponding model variable and will allow 
you to change the values of these variables when you "Run" the model. Click-
and-hold on the "knob" in the deer tags slider and slide it back and forth. As you 
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slide the knob, notice that the value in the box above the slider changes - this 
changes the current deer tag policy (the number issued). Alternately, you can type 
a number into the box which displays the current value of the slider. Click on the 
Restore button to return the slider to its original value. The final device, in the 
lower left corner, is the graphical function input display. This device is set up to 
show the regeneration time required by the vegetation. We will go into more 
detail about it later. 

We're ready to run our first simulation. Let's see what happens! Make sure all 
the sliders, the numeric displays and the graph pad are showing on your screen 
(make sure the graph pad is pinned). Click-and-hold on Restore under the Map & 
1/0 Menu, then choose All Devices in order to ensure that the model is set up with 
a clean slate. Then, click on the Run icon ( ~ ) r;::;::;;:;;;;;;;;;;;;;;;;;;;;:;;;;;;:;;;;;;;;;;;;;:;;;;;;:;;;;;;;;;;;;;:-i 
in the lower left corner of the screen. The Run ::0::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
Controller (to the right) will appear. (To move [II !iiiil !ffll ! Specs ....- 1 
the Run Controller, click-and-hold on the top 
border then move it to the desired location.) 
Click on the Run button ( or you can choose 

.. . • 

Run from the Run Menu). As the model runs, R Paus~top 
you will see the simulation time below the ,...__un ______ R_u_n_c_o_n_1,_0_11e_r_. 
Buttons. The graph will show what the three 
populations do over forty years with the predator bounty in effect. 

I: Deer Population 
q 200000.00 

2: Vegetation 3: Predator Population 

·····r· 2J 
3: 6000.00 j I 

--·---------'--I-I ··-·---··· 1- ·---, 
1] 100000.00 2--""""· I 1 - ·-·········-·· _ _j 
3: 3000.00 ,f--~----+-+-1-a..+.~---+11-----· -+t--t---+--~-

1940.00 

Years 

You can see that removing predators from the system in 1900 sets into motion an 
exponential growth pattern in the deer population. Even with the abundant prey 
provided by such a large deer population, the predators were not able to survive 
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the impact of the bounty. Also notice that the vegetation, once grazed down, 
recovers very slowly at first. The model is set up to reflect the effect of 
overgrazing on the vegetation regeneration time. When plants are eaten back to a 
point where their root systems are damaged, they recover at a very slow rate. 
Once they restore their growth infrastructure, the growth rate returns to normal. 

You can change this variable regeneration time in the graphical function input 
display (lower left corner of the control panel). Double-click anywhere on the 
graphical function input display. A dialog will open up revealing a graph that 
shows the relationship between Vegetation, relative to its initial value at the 
beginning of the simulation, on the X axis, and regeneration time, on the Y axis. 
The model calculates how much Vegetation is present during the current year 
compared to the initial value, and then chooses the corresponding value for 
regeneration time. As long as this calculation stays above .7, regeneration 
continues at the normal rate. You can change the pattern of the curve, and thus the 
regeneration time, by placing the cursor inside the grid (the arrow will turn into a 
cross-hair). Click-and-hold, then move the cursor around. The curve will follow 
the movements of the cursor. Click OK and Run the model again. What effect 
does the change you made in regeneration time have on the model behavior? 
Does a faster or slower growing plant impact the dynamics? When you are done 
with your experiments, click the Restore button to return the original curve to the 
graph. 

Policy Now is your chance to try your hand at managing the system to improve its 
Interventions performance. You will have five options at your disposal: 

I. deer tags allows you to issue or restrict hunting licenses in an 
effort to control the herd size. 

2. reintroduce deer allows you to bring in more deer, should their 
numbers drop below what you consider to be desirable. 

3. predator bounty allows you to increase or decrease the amount 
of the bounty; the higher the bounty, the larger the hunter 
population out there trying to shoot predators. 

4. reintroduce predator allows you to bring in more predators, 
should their numbers drop below what you consider to be 
desirable. 

5. clear land allows you to see the impact of changing land use in 
the ecosystem (land is measured in hectares; there are 1000 
hectares at the beginning of the simulation). 

If you have any questions about what each slider represents, click on the "?" on 
the slider. This will open up a document field that will give you additional 
information. You will find these question marks_ on many of the elements on the 
control panel so make full use of them. 
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Just a reminder: Your challenge is to intervene in the system in such a way as to 
establish and maintain a balance between the various members of the ecosystem. 
In doing so, you should try to understand what relationships are creating the 
problem, and what points of intervention have the most leverage for establishing 
an appropriate balance. Don't just react! See how well you can do at achieving a 
balance. 

Before you try your hand at improving things, let's make a quick change in the 
way the model runs. Go to the Run Menu and choose Time Specs. Change the 
value of Pause Interval from INF (Windows) or oo (Macintosh) to 4. This will 
cause the model to pause every four years, allowing you to make the changes you 
think will bring the system into balance. You also can pause any time you want 
by clicking on the Pause button on the Run Controller, choosing Pause under the 
Run Menu or clicking-and-holding on a slider knob. Click OK. 

Make any changes you'd like to the five policy variables. Then, click the Run 
button to begin the simulation. When the model pauses, make any changes you 
wish to the values of the sliders. When you are done making your changes, click 
on the Run button. Alternately, you can select Resume from the Run menu. 

Now, one last look from the High-level... 

Use the scroll bar on the right side of the page to take you up to the very top, so 
you see the map which appears on page 2. Click once on the downward pointing 
arrow on the top right side of the Deer process frame. 

Surprise! We've "lifted the hood." You are now looking at the engine that has 
created all the dynamic behavior you've observed. Scroll around and explore the 
model. In the next section, we are going to show you how to create some of this 
engine. If you want to go back up to the High-level, click the arrow on the sector 
header (it looks like the one you clicked to get down here except it points upward) 
and you'll be there. Alternately, you can click the upward pointing arrow on the 
left border and you will be moved to the High-level. 

Once you have completed your experiments with this ecosystem, move on to the 
next section. There you will learn how to build a model such as the one used in 
the preceding exercise, for yourself. 
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2. Building a Model 

Studies of diverse populations have shown that there are a few common patterns 
of growth which emerge repeatedly. "Over-shoot and Collapse" (drawn below) is 
one such pattern. We'll now construct a model of a deer population to see if we 
can discover what relationships are responsible for generating this pattern. 

Deer 
Population 

Time 

At the beginning of every modeling effort, it is important to focus your efforts by 
identifying the most important "players" in the system you are interested in 
understanding. The most important players in the system you experimented with 
in the previous section are deer, predators and vegetation. We will begin by 
laying out a High-level Map showing these players. Then, we will navigate to the 
Diagram Layer to build a portion of the related model. We have provided a 
Quick Help Guide, beginning on page 88 of this booklet, which details the 
mechanics of model building. Please refer to this guide if you encounter 
problems in your modeling efforts. 

If you still have STELLA II open to the "PopDynam" model from the previous 
exercise, choose Close Model from the File menu. Save changes if you wish. 
Then, choose New from the File menu. If you are just starting, double-click on 
the STELLA II program icon. A blank page will open up. 

Using the process frame building block, left-most on the palette, begin by creating 
the High-level Map shown at the top of the next page. (Hint: If you hold down the 
alt key (Windows) or the option key (Macintosh), the hand will tum into the last 
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Deer 7 

Objects 

Predators 

Vegetation 
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tool used. So if you hold down the alt or option key after placing your first 
process frame on the screen, you can put down the other two without going up to 
the palette each time.) If you make a mistake, use the dynamite tool (}:') or 
choose Clear from the Edit Menu. 

Now let's get into more detail about two of these actors. Click on the downward-
pointing arrow in the header of the Deer process frame. This is what a sector 
looks like on the Diagram Layer. Inside this frame, we will put all of the parts of 
the model that relate to deer. 

Using the building blocks at the far left side of the palette, begin creating the map 
shown at the top of the next page. If you encounter any difficulties with your 
mapping efforts, refer to the Quick Help Guide which begins on page 88 of 
this booklet. To move the sector frames, click-and-hold on the header of one of 
the sectors, then move it to the new position. To resize it, click once to select it 
(notice the "handles" that appear), then click on one of the handles and drag. The 
sector will resize. Make sure your flow ( 1f' ) is connected to the stock ( D ) -
there should only be one cloud - and that there are two connectors ( '\ ). 

Once you've created the simple Population map, we'll next want to bring the map 
to life through simulation and animation. To do so, we' II need to enter a few 
numbers and a couple of relationships. But first, you should note that the 
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STELLA II software already has given you a big headstart in this process by 
automatically creating the equation framework needed to do the basic 
"accounting" for the system. This framework is generic, and thus the software 
can automatically create it for any system - no matter what the context. To take 
a look at the framework, click once on the downward-pointing arrowhead located 
just above the globe icon on the left border of the diagram frame. Here's what 
you'll see: 

Dee..-
[7] Deer_Population(t) = Deer_Population(t -dt) + (births) *dt 

I NIT Deer _Population = { Place initial value here ... } 
INFLOWS: 
~ births= { Place right hand side of equation here ... } 

~ birth_fraction = { Place right hand side of equation here ... } 

For each accumulation, represented by a rectangle ( or "stock"), and the associated 
set of flows (pipes with arrows), the software creates a generic equation. The 
equation says, in words: "What you have now, is what you had an instant ago 
(i.e., 1 dt in the past), + whatever flowed in over the instant, - whatever flowed out 
over the instant." The software automatically assigns + and - signs based on the 
direction of the flow arrowheads in relation to the stock. 
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Now, in order to simulate, the software needs to know "How much is in ·each 
accumulation at the outset of the simulation?" It also needs to know "What is the 
flow volume for each of the flows?" The answer to the first question is a number. 
The answer to the second may be a number, or it could be generated by a 
relationship. We' II illustrate both as we move from the mapping to the modeling 
phase. Click once on the upward-pointing arrowhead on the left frame of the 
equations window. This will return you to the diagram. Then·, click once on the 
Globe icon ( ~). Doing so will shift you into the modeling mode (the icon will 
change to an X2), and a ? will appear in each icon on the diagram. The ?'s 
indicate the need for information to enable the model to be simulated. 

Let's begin by thinking about the dynamics of a population. It makes sense that 
births depend on Deer Population since an increase in deer will cause an increase 
in deer births. In order to show this dependency in the map, we used the 
Connector('\ ) to link Deer Population to births. 

Double-click on the births flow regulator (the circle on the pipe). Click in the 
equation (Deer Population* birth fraction) by clicking on the respective variables 
in the Required Inputs List - don't type in the variable names (you might make a 
typo, and STELIA II makes it unnecessary to repeat this typing, as you've 
already done it once!). Click in the * sign linking the two variables from the 
Calculator key pad in the dialog box; alternately, you can type in the * sign from 
your keyboard. When you've established the correct equation, click OK to exit 
the dialog. Note that the ? no longer appears on the births flow regulator. 

Next, we need to determine an initial value for our Deer Population at the 
beginning of the simulation. We will say it is 100. Double-click on Deer 
Population and click in (or type) "100." Click OK. Now, to define the birth 
fraction, let's assume that there are two births for every 10 deer in the population 
or a birth fraction of .2. Double-click on the birth fraction convector and click in 
(or type) .2. Click OK to exit the birth fraction dialog. 

Now, let's run a simulation of this simple model. Click on the Run icon ( :J:;, ) to 
open the Run Controller. We will need a way to view the results. So, let's create a 
graph. To do so, select the Graph Pad icon from the Objects palette ( v':' ). Click 
once on the diagram, and you will deposit a graph pad in that spot. Double-click 
on the resulting blank Graph Pad page. Since Deer Population is the variable that 
we want to track, move Deer Population from the Available list to the Selected list 
within the dialog. (If you encounter any difficulties defining your graph, refer 
to the Quick Help Guide which begins on page 88 of this booklet.) Finally, 
click OK. 

Before we simulate, choose Time Specs ... from the Run Menu. Then click the 
radio button next to "Years" which appears in the list under the heading "Unit of 
time:" This will cause "Years" to become the time unit on the graph. Click OK. 
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Run the model and watch the graph of Deer Population unfold over time. (If your 
graph has disappeared behind the diagram, double-click on the Graph I icon to 
bring it forward again.) The scale for Deer Population should run from I 00 to 
I 040.13. This is not a very "pretty" scale to display your results. So, let's specify 
a scale for the graph, rather than letting the software set it for us. 

Double-click on the graph. Click once on Deer Population in the Selected list. 
While Deer Population is selected (it should be highlighted), click once on the 
two-headed arrow ( t; ) to the right of Deer Population. Horizontal lines will 
appear above and below the arrow ( :f ). These lines indicate that you are about 
to set a "local" scale (i.e. a "floor" and "ceiling") for the variable. "Local" means 
that the scale applies to this graph only. (It is also possible to set a global scale 
for a variable that will apply to all graphs in the document.) Notice the scale 
boxes below have now become editable. Type"O" in the Min box and "1500" in 
the Max box. Then click the Set button. Click OK to exit the dialog - you now 
should have a new scale on your graph. 

If you'd like to see actual numbers, you can view them by creating a Table. 
Double-click (Windows) or click (Macintosh) the close box in the upper left 
corner of the Graph Pad page to put the page away. Next, select the Table Pad 
icon from the Objects palette ( lrniJ ). Plop it doy;n next to the Graph Pad icon. 
Double-click the resulting page and enter the births flow and Deer Population 
stock into the Selected list. Then, click OK, and Run the model. The Table 
results should show you how STELLA II is calculating the values for the entities 
you selected. Close the table when you are finished with the run. 

Before we move to the next step in the modeling process, let's take a quick look at 
the animation capability within the software. · There are two types of animation 
available within STELLA II. The first is animation of diagram icons. The 
second is the use of QuickTime movies. (The latter is only available on the 
Macintosh). We will take a peek at diagram animation. 

Choose Diagram Prefs ... the last item under the Diagram Menu. Under the word 
"Animate," you'll see three icons. Click once on each. Before clicking OK, 
peruse the dialog. It's in here that you can add more "pages" to the diagram, 
change diagram font types, etc. Play, if you wish. Then, click OK. Run the 
model and watch the diagram elements. You'll see that the Deer Population 
accumulation will fill over time. Little needles will mark the volume of flow in 
the flow regulator on births and in birth fraction. This is a simple way to view the 
patterns generated by the simulation. 

Remember the "overshoot and collapse" dynamic we are seeking to represent? 
The graph and table results definitely suggest that there is something missing 
from this picture. Deer Population is growing exponentially with nothing to 
check its progress. There is no collapse to the pattern. In order to generate a 
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collapse, we will need to have some check on Deer Population growth. One 
obvious check is deaths. Add a deaths flow and a death fraction to the diagram to 
make it look like the map shown below. To enlarge the sector frame, move the 
hand over the header until it turns into an arrow. Click once. Notice the 
"handles" that appear in the comers. Click-and-hold any one of the handles and 
the sector will resize according to where you drag . 

.-1F!lr;=;'I 
~ 1..:::1 

birth fraction 

Deer 

Deer Population 

6. a 

death fraction 

Next we will define the two new entities. Open the deaths flow and click in Deer 
Population from the Required Inputs list. Then click OK. You will encounter a 
message telling you that you have not used one of the Required Inputs: death 
fraction. With STELLA II, "What you see is what you get!" If you have shown 
a relationship in your map, then the relationship must be included in your 
equation. 

Position your cursor in the equation box after Deer Population and click in 
"*death fraction." Then type in "+pollution." Click OK. You should get another 
message telling you that pollution is not an object on the diagram. It is also true 
in STELLA II that: "What you don't see, you don't get." If you haven't shown 
the relationship in the map, you can't use it in the equation. Delete the ''+" and 
"pollution." deaths should now equal (Deer Population * death fraction). Click 
OK. Then, set the death fraction to .02. 

How do you think the addition of a deaths outflow will alter the pattern traced by 
Deer Population? To find out, run the model and observe the new behavior on the 
graph. What you should have seen is that Deer Population continues to grow in 
an exponential pattern. Even though we have slowed the growth, we have yet to 
top it, or to produce the collapse we are seeking. 
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Perhaps the problem is that the value of death fraction that we've chosen simply 
is too small. Suppose we want to test various values for death fraction to see how 
they affect the pattern traced by Deer Population. A STELLA II feature called 
"Sensitivity Analysis" enables you to examine the sensitivity of model 
performance to a variation in model parameter values. 

Choose Sensi Specs ... from the Run Menu. Enter death fraction into the Selected 
list within the dialog. Next, replace the 3 with a 4 in the box labeled "# of Runs" 
(in the middle left side of the dialog). Then, click once to select death fraction in 
the Selected list. Note that the "Incremental" variation option becomes selected 
by default. The incremental option means that, in this case, death fraction will be 
varied incrementally between whatever two values you enter into the Start and 
End boxes in the dialog. Enter the number .02 into the Start box and . I into the 
End box. The software will determine 4 values, evenly spaced between (and 
including) .02 and . I. After entering your Start and End, click the Set button. 
Then click the Graph button on the left in the dialog. Enter Deer Population into 
the Selected list within the resulting Graph dialog. (Note that the "Comparative" 
option is checked for Graph Type in the dialog.) Click OK. Run the model and 
watch the four simulations play out on the graph. 

If you would like to see the parameter values that were used to produce the four 
curves, click the ? on the lower left of the graph pad page. 

Still no collapse. The problem is not death fraction. So how can we get the 
population to collapse? This might be a very good question to put to your 
students! 

The answer is that we need to add some type of relationship that either causes the 
death fraction to rise during the simulation to exceed the birth fraction, or causes 
the birth fraction to fall to a level below the death fraction as the simulation 
unfolds. 

In the previous exercise, as the sensitivity runs clearly indicate, the closer to . I the 
death fraction came, the less rapidly Deer Population grew. Suppose, our 
Population model allowed the death fraction to increase as the Deer Population 
increased? Doing so would proxy the effect a growing deer herd would put on a 
fixed food supply, for example. STELLA II provides a vehicle for including such 
relationships. That vehicle is called a "graphical function." Let's incorporate the 
Deer/death fraction relationship into our model using a graphical function. 

Draw a connector ( \ ) from Deer Population to death fraction. Then· double-
click on death fraction. Click once on Deer Population in the Required Inputs 
list, and then click once on the button labeled "Become Graph." You will see a 
blank grid appear. Change the default ranges on the X and Y axes of the grid to 
reflect the numbers in the graphical function shown on the next page. Place your 
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cursor inside the blank grid until it turns into a cross-hair. Then, click-and-hold 
and then drag the mouse around the grid. A curve will be traced by following 
your movements. You can try your hand at sketching in the curve you see below 
or, alternately, you can type the numbers into the Output column. There is no 
need to reproduce the exact numbers shown in the illustration below. Just capture 
the shape of the relationship. 
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When you have entered your death fraction curve (remember, this relationship is 
an input, not a graph of output), click OK. Then, under the Run Menu, choose 
Sensi Specs... You will get a message telling you the current setup has been 
changed. Click OK and then click cancel in the dialog box. Now double-click on 
Graph 1 to open it and Run the model. 

Deer Population no longer grows forever. However, we have yet to achieve 
"collapse." Instead we've generated a ubiquitous pattern in population dynamics: 
S-shaped growth! To do so, death fraction had to become a variable. You may 
wish to experiment with alternate patterns for the death fraction to see if you can 
cause the system to generate overshoot and collapse. Can you make this model 
generate the overshoot and collapse pattern? If not, why not?! 

The graphical function affords a lot of power without the need for much 
mathematical expertise. Many interesting processes across the curriculum contain 
non-linear relationships. In the past, constructing models which contained such 
relationships was beyond even the mathematically sophisticated undergraduate 
student. With STELLA II, even students with very little mathematics training 
will be able to capture non-linear relationships with ease. 
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As we hope you are discovering, the power and flexibility afforded by the 
STELLA II software is considerable!. There really is no end to the interesting 
experiments that students and/or faculty members might perform with the 
software. Thus far we have discovered the relationships that create both 
exponential and S-Shaped growth patterns in a population. But we've yet to 
produce overshoot and collapse. At this point, can you offer an explanation of 
what we'd need to do to the model in order to generate such a pattern? 

Modeling: What we need to do is cause the death fraction to overshoot the value of the birth 
Round 4 fraction - not just to rise up and equal it. In order for this to happen, the death 

fraction must depend on some variable other than the Deer Population. In reality, 
this would be true. Deer are not dying because of the size of the Deer Population. 
They're dying because of some impact their population is having on deer viability. 
One such impact is on their food supply. Therefore, the next addition to the model 
will be vegetation. 

To incorporate vegetation into our model, we will proceed using the same steps 
we followed in building the Deer Population. Find the sector frame called 
Vegetation. It will be on your diagram because we put a corresponding process 
frame on the High-level Mapping Layer in the first part of the modeling section. 
Move the hand icon over the header until it turns into an arrow. Click-and-hold 
and drag the sector over until it is below the Deer sector. 

Next, put down a stock CD) inside the sector and name it Vegetation. Now we'll 
need to add two flows ( '?f) - an inflow, let's call it regeneration, and an outflow 
which we will call consumption. Then initialize the stock with 3500 units of 
vegetation. 

How does vegetation regenerate? Regeneration is produced by the vegetation it-· 
self. So, we will need a connector ( \ ) drawn from Vegetation to regeneration. 
Each plant produces a certain amount of new growth each time period. This 
means we will need a converter ( Q ) called regeneration per plant. Use the 
connector (\) to show that regeneration per plant is an input to regeneration. 
Open regeneration by double-clicking on it and specifying the relationship, 
Vegetation * regeneration per plant. 

Next, what will generate the consumption outflow? The outflow will be generated 
by the Deer Population, who is munching the food. We also need to indicate the 
amount of food each deer is capable of eating during each time period. Add a 
converter ( Q ) and call it vegetation per deer. At this point, let's just assume 
vegetation per deer is a constant. Let's set it equal to 15. Connect Deer 
Population and vegetation per deer to consumption using the connector. Next, 
make consumption equal to Deer Population * vegetation per deer and the 
regeneration per plant equal to .5. 
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The final issue we must address is the effect that vegetation availability has on 
the Deer's death fraction. Using the dynamite tool ( ;, ), "blow up" the 
connector linking Deer Population and death fraction (place the fuse of the 
dynamite inside the connector's take-off button located on the perimeter of the 
stock). Next, draw a connector from Vegetation to death fraction and 
double-click on death fraction to re-define it. You will need to replace Deer 
Population with Vegetation. Now click the "To Graph" button, set a new scale 
and draw in a curve which represents the relationship between death fraction 
and Vegetation. It should look something like the curve shown below . 
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Your model should look like the one shown below (your flows might come from 
different directions but make sure they are the same relative to the stock). 
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Now we are ready to run the model. Open your graph pad and examine the 
behavior of Deer Population. Voila! Overshoot and Collapse! Can you explain 
why this pattern occurs? You may find it useful to create a graph with the deer 
birth fraction and death fraction, scaled on the same axis (see the Quick Help 
Guide for assistance). Make a run and watch what happens to these two variables 
as the simulation unfolds. 

Let's take one last look up at the High-level Map. Click on the upward-pointing 
arrow on the Deer sector to navigate to the High-level. Notice that the software 
has automatically created the bundled connectors (the arrows between process 
frames) that correspond with the structure we put into the model on the Diagram 
Layer. To rearrange them, click-and-hold on one of the connectors and drag it to a 
new location. Double-click on one of the connectors. Here you will see the list of 
connectors between the two process frames that correspond with the direction of 
the arrow in the bundled connector. 

Now click on the downward-pointing arrow on the Deer process frame to navigate 
back to the Diagram Layer. Click-and-hold on the cloud at the end of the 
consumption outflow and drag it up into the Deer sector. Click on the upward-
pointing arrow again. Now there is a bundled flow on the High-level along with 
the bundled connectors. (You can double-click on this as well to see what flows 
are included in it.) This is actually a more accurate picture of the relationships 
between these two process frames, since the biomass of vegetation is actually 
being consumed by deer. By putting the cloud in the Deer sector, you will show 
this relationship on the Diagram Layer and the High-level map. 

From this point, you can expand the model to incorporate Predators, 
climatological effects, or whatever your needs or interests dictate. With a few 
name changes, this same model could be used to represent immigration into and 
out of a city or the spread of milfoil in a Northeastern lake. The experiments that 
are possible with even a simple model such as the one explored in this tutorial are 
limited only by your imagination and creativity. 

When you have finished your experiments with the Deer and Vegetation model, 
move to the next section where we will show you another interesting feature of 
STELLA II. We are going to be adding a sub-model. Sub-models allow you to 
add detail to your model without adding too much visual complexity at the same 
time. 
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3. Creating Sub-Models 

Building a Sub-models allow you to "drill down" to view additional model structure while 
Sub-model maintaining a simple and neat diagram. We will use this method of managing 

diagram complexity to add detail to the Deer Population we have been studying. 
We are going to provide a more detailed representation of the age distribution of 
the Deer Population. 

If you still have the Deer and Vegetation model from the previous exercise open 
on your machine, close it (save it if you'd like) and choose New from the File 
Menu. 

Click on the downward pointing arrow located on the left border of the High-level 
Mapping Layer. Doing so will transport you to the Diagram Layer. Now build 
the simple Deer Population map shown below: 

Deer Population 

births deaths 

Next, click on the globe icon ( ~ ) to shift into modeling mode. Then, 
double-click on Deer Population. Notice the choices along the top border of the 
dialog box: Reservoir, Conveyor, Queue, Oven. Each of these represent a 
different type of stock. Click once on the button next to the Conveyor. Then, 
click in the check box next to the word "Sub-model." Finally, click OK. What 
you now see is the Sub-model icon with an open sub-model space; this is where 
we will put the drill-down detail associated with the Deer Population. 

Before you add the detail, let's look at a couple of issues related to having a 
sub-model open on your diagram. First, notice how the items on the diagram 
have become greyed out. This has happened because when a sub-model is open, 
you are no longer able to directly interact with items on the diagram. In fact, if 
you move the cursor to a point outside of the sub-model space, it turns into the 
international prohibition symbol ( 0 ) to remind you that you are "out of 
bounds." You can build within the sub-model space using the building blocks in 
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the same way that you did on the diagram. However, if you want to perform 
operations on the Diagram Layer, you must hold down the Ctr! key (Windows) or 
the command key (Macintosh) in order to do so. If you need more room in the 
Sub-Model space, move the Hand until it is over the border of the Sub-model 
space. When it turns into an arrow, click once. Handles will appear in each of the 
corners of the space so you can resize it to whatever size you need. If you need to 
move it, click-and-hold on the border, then drag to move the entire space. 

With the sub-model space open, use the building blocks to create a map that 
looks like the one shown below: 

Deer Population 

0 ~ (ll]J l===I 0~? cio 
births "'() deaths 

Double-click on the Yearling stock and enter 100 for the initial value. Enter 500 
for an initial value for the Mature Deer stock. Since it is possible to have a great 
deal of detail in this sub-model, we need to tell the software which chain of 
activities we want to have totaled and rolled-up into the sub-model icon and 
associated flow. Hold down the Ctr! or command key and double-click on the 
sub-model icon (larrnl ). Here you see a list of all the possible choices for roll-up. 
In our case, there is only one. Click once on the Yearling + Mature Deer line. 
When the software calculates values for Deer Population, it will add these two 
stocks together to yield the number. Click OK. 
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Next we need to tell the software what flows "roll down" from the sub-model 
icon inflow to the Yearlings inflow. Double-click on the the inflow into 
Yearlings. Notice that births is a required input for this inflow. This is because 
births is the only inflow to the sub-model icon. Click once on births. Then click 
OK. A special symbol (-:rt) has been added to the sub-model inflow and its name 
has been changed to births' to show that it is equal to the births inflow which 
appears on the Diagram Layer. 

Next, we need to determine what outflows on the sub-model layer "roll-up" into 
the outflow called deaths on the Diagram Layer. In this case, there are two 
roll-up outflows since both Yearlings and Mature Deer die. Hold down the Ctr! 
or command key and double-click on the deaths outflow on the Diagram Layer. 
Notice that both yearling deaths and mature deaths appear on the Allowable 
Inputs list. (If they don't appear on this list, check to be sure the flows are 
connected to the stocks -- see the Quick Help Guide beginning on page 33 of this 
tutorial.) Click once on each of them - now they are "rolled-up" into the deaths 
outflow from the Deer Population. Click OK. Notice that the names have 
changed. 

Let's define the death fraction as .02 and the time to matur_e as 1 year. Open each 
of the converters and put these values in. 

Now, to define the flow rates. Double-click on the deaths flow out of Mature 
Deer and click in the equation Mature Deer * death fraction. Click OK. Do the 
same for the deaths flow out of Yearlings. Finally, open the maturing flow out of 
Yearlings: This one is a little different since time to mature is the number of years 
a yearling stays in the stock rather than a percentage of yearlings maturing each 
year. The equation to enter into the maturing flow to show this relationship is 
Yearling I time to mature. 

The last flow is the births flow on the Diagram Layer. We need to show a 
connection from Mature Deer to births. Use the connector tool ( \) to do so. 
The software allows you to make the connection from the sub-model to the 
Diagram Layer without holding down the Ctr! or command key (since the 
origination point lies within the sub-model space). Now click the upward-
pointing arrow located right below the Sub-model icon. This will retract the 
sub-model so you can work unrestricted at the Diagram Layer. Put a converter 
( 0) near the births flow and call it birth fraction. Use a connector ( \ ) to show 
it is an input to births. Double-click on births and click in the equation Mature 
Deer * birth fraction. Click OK. Set the birth fraction equal to .2. 
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One last tip: Each entity on the diagram has two locations - one when any 
sub-model is open, and one when all sub-models are closed. We've allowed for a 
second position so that you can move diagram entities around. This way they 
won't lie directly under a sub-model space. Open the sub-model again. See if it 
overlaps your birth fraction converter. With the sub-model open, holding down 
the the Ctr! or command key, click-and-hold on birth fraction and move it to any 
spot that makes the diagram look neat. Now click on the roll-up arrow at the the 
top of the sub-model space. When the sub-model is closed, all the diagram 
entities you moved while it was open should return to where they were before you 
opened the sub-model. 

Now you can run the same type of experiments we did in the first part of the 
tutorial. Or you can try adding a Vegetation Sector. Has the age structure 
changed the fundamental dynamics generated by the system? 

There is another way to view the numbers of the diagram entities as the model 
runs. With the sub-model closed, click once on the numeric display device in the 
objects palette (=). Click again to place the display below the Deer Population 
sub-model icon (click-and-hold to move it ~ound after you deposit it). 
Double-click on the numeric display and a dialog will appear that will have a list 
of all entities in the model. Move Deer Population from the Allowable list to the 
Selected list using the >> button. Click in the box next to Show Name to 
de-select it. This way you will only see the number not the entity name. Click 
OK and create any other numeric displays you are interested in seeing. Run the 
model to see the results. 

Another method of managing diagram complexity is the Space Compression 
Object. If you want to compress a portion of the model without having associated 
flows to other parts of the model, click once on the Space Compressor ( [Q] ) in 
the objects palette, then click on the diagram. The result will be an object that 
looks similar to the sub-model from the previous example. From there it will 
work just like the sub-model space without the "roll-ups" and "roll-downs" to the 
flows. 

The next section of this tutorial will show you two more helpful tools and then a 
summary of the building blocks, tools and objects and where they can be found in 
the STELi.A II Technical Documentation for additional information about how 
they work. 
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4. Other Helpful Features 

The STELLA II software contains many features we have not covered in this 
tutorial. In this section we will describe two features that can be helpful in adding 
to the utility and appearance of your model: the text block and the paint brush. 
Following these descriptions, you will find a summary of all the palette items and 
where you can find more information about them in the STELLA II Technical 
Documentation. 

If you want to section off portions of your model with a frame and text (such as 
the Management Policies frame on our learning environment control panel) or 
annotate directly on the High-level Map or Diagram Layer, you can use the Text 
Block object on the object palette. Click once on the text block object ( A ) and 
click again to place it on the diagram. You will get a block with a simple border. 
If you want to move (or select) it, move the hand until it crosses the text border; it 
will turn into an arrow. Click-and-hold and you will be able to move it to any 
location you choose. To resize the the block, click-and-hold on one of the 
"handles" (while it is still selected) and drag it to the size you want. To type in 
the text block, move the hand to the top left hand corner of the block; the hand 
will turn into an I-beam. Click once and you will be able to start typing. To 
format the text and change the border, move the hand over the border of the block 
until it turns into an arrow. Double-click and a format dialog box will appear. 
Make your choices and click OK. 

If you have a color machine, you can use the paint brush tool to color any objects 
or building blocks on the High-level and Diagram Layer, as well as the 
background page, the graph and table pages .. If you click-and-hold on the paint 
brush tool(') in the tool palette, you will see all the colors available to you (this 
will be determined by what your computer allows as well as the video driver 
your're using under Windows or the setting you've made in the Monitors Control 
Panel on the Macintosh). While you are holding your click, drag down and 
choose the color you want. When you release your click, the paint brush will be 
the color you selected. Click on the item you want to color. Be careful not to 
click the surface or you will color it. You can even "tear off' the color palette 
when you want to color several things all at once. Click-and-hold on the paint 
brush, drag down off the lower edge of the palette, and the palette will follow 
your cursor. Now use the palette repeatedly. When you are done, click in the box 
in the top left hand comer. (Hint: If you want to change the default color for one 
of the building blocks or objects, choose a color. Then while holding down the alt 
key [Windows] or option key [Macintosh], click on the item in the palette you 
want to change.) 
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Below you will find a summary of the Building Blocks, Tools and Objects and 
where you will find them documented in the Technical Documentation. Note that 
the last three objects on the Mapping Layer are available only with the Authoring 
Module and are documented in the Authoring Module Guide. They will be 
greyed out if you own only the Core version of the software. 

Building Blocks 
Chapter 4 

Tools 
Chapter 5 

Objects 
Chapter 6 

Building Blocks 
Chapter 4 

Tools 
Chapter 5 

Objects 
Chapter 6 

Parting Words The STELLA II software makes it easy (and fun) to build an understanding for 
complex, dynamic processes. We think you'll find it to be an invaluable addition 
to your arsenal of learning tools. We have only covered a fraction of the features 
of the software but the documentation that accompanies the software is designed 
to help you with many of the challenges you will face as you engage in the 
modeling of various systems. There are three STELLA II User's Guides. The 
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Introduction to Systems Thinking guide provides further information for building 
your understanding of the Systems Thinking framework and concepts. The 
Applications guide provides illustrations in various substantive contexts ranging 
from the social to the physical sciences. Finally, the Technical Documentation 
guide provides detailed, feature by feature descriptions of the software. We 
encourage you to take full advantage of all that is there. Please feel free to 
contact us for further information or for technical support as you proceed from 
here. 

If you have the Authoring Version of the software, you will want to continue on to 
walk through construction of an interactive learning environment such as the one 
you played with at the outset of this tutorial. 
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5. Creating an Interactive Learning Environment 
(Authoring Version Only) 

As you saw in the first section of this tutorial, the Authoring Version of STELLA 
II allows you to create an interactive learning environment which will provide 
opportunities for others to create and experience the dynamics of the system you 
have modeled. In this section we will show you how to build an interface that 
will provide easy access to your model. 

Open the model called "Author" found in the folder called "Tutorial." The model 
should open to the High-level Mapping and 1/0 Layer You should see three blank 
process frames. This is the model we used to create the first section of this 
tutorial. 

In order for a person to get started with a model, we've found it useful to start 
them off with a high-level, big picture view. To do this, we recommend you have 
them come first to the High-level Map in order to establish a sense for the key 
"actors" in the system you have modeled. There are several options for 
establishing this big picture context for the user. These options are available by 
double-clicking within the process frame. When you do, the following dialog will 
appear: 

Sector Nome: 
Comments: 

Border Style: 

0----o---
0 -== 
®==== 

( HS>il_lO Mou ii,.,, J 

Import Picture J 

® Use Sector Nome 
0 From PICT File 
O From Clipboard 

Oi,li,t,• Moui1• [ Cancel J ([ OK ]J 

At the top of the dialog, you can name the frame (and the underlying sector) and 
include documentation describing the assumptions in your model (this 
documentation will pop up when the end-users click in the "?" button in the 
process frame header). You can also import a picture (or movies if you are on the 
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Macintosh platform and have QuickTime) and change the border style. Feel free 
to edit the name, add some documentation, and change the border style. When 
you click OK you will see the changes on the map. 

You have three choices for changing the face of any process frame or sector in 
your model. You can format the frame name and choose to have it appear in the 
process frame face as well as in the header. You can import a static picture or 
graphic. Finally, you can assign a QuickTime movie to play in the frame's face 
(Macintosh only). 

Let's use the process frame name. Click on the button next to "Use Sector Name" 
and then click on the "Import Picture" button. You will get a dialog box which 
will allow you pick font and style for the lettering. Choose the options you want. 
When you click OK, you will see the changes on the map. 

Repeat these steps for each of your process frames. Then we will develop the 
interactive portion of your interface. 

Scroll down the page until you have a blank screen in front of you. The tools you 
have available for giving the user input access to the· model are the slider and the 
graphical function input and display device. For letting users see model output, 
you can create a graph, a table or a one-celled numeric. display. The final device 
available is the "message poster," which will allow you to send messages to the 
user when certain criteria are met during the simulation. Let's start by putting 
some input devices on the screen. 

Click once on the slider object ( §I ) and slide the cursor into the screen. Click 
to deposit it where you want it. Add four more sliders (remember that you can 
hold down the alt key (Windows) or the option key (Macintosh) to retain the 
slider object). Double-click on the first one and the dialog below will appear: 

Rllowoble I Selected 

I D Deer_Populotion [.l 0 : cleor_lond 
D Predotor_Populotion 'n:!:, 
D TotoLHectares_oLLand 

:::::: 
GJ 

D Uegetation Min: MOH: 
W change_in_hectares .-=·=· l~I ! too I ;::::: 
11 consumption 

i;i:11 11 deaths_from_predation ,,,r [81 Reset to: lo I 11 deer_births ;;;;;: 

"tf deer_staruation i:i:1: @Rfter one time unit 
,:,;,: 0 Rfter one OT 11 predator_births ,:,:,: 

11 predator_deaths 'iii' [ l [ ) Cancel OK 
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This dialog contains a list of all the variables in the model. The slider can be used 
to allow the users to set the initial value of a stock. It can also be used to set the 
constant value of a converter or a flow. You can even have the slider over-ride 
equation logic you have set up in the model. 

Let's associate the first slider with the clear land converter (you will have to 
scroll down the list to find it). Move clear land over to the Selected list by 
double-clicking on the variable name or by selecting it and then clicking the >> 
button (similar to how you defined graphs and tables). You can only select one 
variable per slider. 

You have two other options in this dialog: set the Min and Max, and Reset the 
value. When you set the Min and Max, you set limits for end-users preventing 
someone from picking an absurd value for the variable. Let's set a Min of O and a 
Max of 100 (hectares of land). We can also have the value reset to a 
predetermined value after one time unit, one dt or at the end of the run. In this 
case, we want clear land to be a one-time event that lasts for one year and then 
shuts off until the user selects it again. Click in the box next to "Reset to" and 
and type in 0. Leave the "After one time unit" choice selected. 

Repeat the defining process for each of the other four sliders using these model 
variables: deer tags, predator bounty, reintroducr: deer and reintroduce predator. 
You will want to have reintroduce deer and reintroduce predator reset to O in the 
same way that clear land does but the other two inputs should hold their value 
until the user changes them. 

Graphical The other input option available to us is the graphical function input and display 
Function . device (GFID). Click once on the GFID ( l2J) and click again to place it on the 
~pu_t &(g:f}y)Y control panel near the sliders. Double-click to open the associated dialog. It 

evice looks very similar to the slider dialog except the only entities listed are the 
graphical functions in the model. Choose regeneration time. Click OK. You are 
now back to the control panel. In order to change the shape of the curve, you ( or 
your user) can double-click on the graphical function display icon and you will 
access the dialog seen at the top of the next page. 

Documentation 
Caches 

Here the end-users can change the relationship depicted in the graphical function 
without pennanently changing it in the underlying model. If you want to assign 
this device to another graphical function, click on the "Delete Graph" button at 
the lower edge of the dialog box. This will return you to the define dialog to 
choose the new graphical function. 

All sliders and GFID devices have the potential to have a "?" on their face. This 
is so you can provide on-line help to the user if they are uncertain what to do with 
one of the input devices on the screen. Let's put some documentation in the clear 
land slider to aid the user in understanding the purpose of the slider. Click on the 
downward-pointing arrow on the face of the clear land slider. You have 
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0 

Input 
0.000 
0.100 
0.200 
0.:500 
0.400 
0.500 
0.600 
0.700 
0.800 
0.900 
I.ODO 

Output 
50.00 
42.80 
:56.80 
1.250 
1.000 
0.500 
0.500 
0.250 
0.250 
0.250 
0.250 

t----i1P:·¢:.i.'1---------"1¢z+------I Data Points:! 11 
0.000 I 1.000 ~====~ 

llegetation/ IN IT(llegetation) Edit Output: LI ___ ___. 

Delete Graph J [ Cancel ] [ OK 

navigated to the clear land converter in the model (it is highlighted for you). 
Double-click on the clear land converter and click once on the Document button 
along the lower edge of the dialog box. You now see a documentation cache 
which will allow you type any information you want to. include. When you finish 
tyfing your message, click OK. Then, click the upward-pointing arrow above the 
X icon on the left border of the screen. Alternately, you can click the upward 
pointing arrow on one of the sectors. You are now back up on the High-level. 
Notice that a? has appeared on the slider. If you click once on the ?, the text you 
just typed will pop up. 

Now you have provided end-users with the ability to give input to the model, but 
we need to provide them with the ability to see the resulting output as well. There 
are five choices for viewing model output on the High-level: graphs, tables, 
numeric displays, movies (Macintosh only) and GFID animation. The first two 
were introduced in the modeling section (Part 2) of this tutorial. Create a graph 
which displays the three major stocks in our model: Deer Population, Vegetation, 
Predator Population. (If you have any problem doing so, refer to the Quick 
Help Guide that begins on page 88 of this booklet for details.) Resize the 
graph (using the resize box in the lower right corner) and pin it (click once on the 
"stick-pin" in the top left corner) to the control panel. This allows the user to 
view model output and interact with the input devices at the same time (without 
the graph disappearing). 

Another useful output device is the numeric display device. This device provides 
you with the ability to show the user the current value of any variable without 
taking up the "real estate" on the control panel required by the table. Choose the 
numeric display device (=) from the object palette and click it onto the control 
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panel. Double-click on the device and you will get a dialog which allows you to 
choose the variable whose value you want to display. It works just like the slider 
and GFID. You may elect to have the device retain its ending value (a check box 
in the dialog). Otherwise, at the end of a run, the device will go blank. If you do 
choose "Retain Ending Value," the final value can be cleared under the Map & 
I/0 Menu: select Restore, and then Numeric Display. 

One way for you to give feedback to the end-user of your learning environment is 
through message posting. You can post a message when certain criteria is met in 
the model during the simulation run. This allows you to send warnings, give a pat 
on the back or draw their attention to some important dynamic in the model. This 
feature is accessed through any entity on the Diagram Layer of the model. A 
detailed description of Message Posting and how to implement it can be found in 
the Authoring Module in Chapter 6. 

In addition to input and output devices, authored products can be enhanced by 
using the text block object and color. The text can give annotation on the control 
panel of your learning environment or section off parts, like we did on the 
PopDynarn example in the first section of this tutorial. The frame and label for 
the Management Policies were done with a text block. Both of these were 
illustrated in Part 4 of this tutorial. 

You now know enough about the Authoring features to build your own 
interactive learning environment. We encourage you to bring the insights and 
learning experiences you have had with the STELLA II software to the rest of 
the world using this interactive technology. Don't hesitate to contact us for 
technical support or for any additional help you need in developing your learning 
environment. 
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1. System Requirements: 

Macintosh® version' 
4mb RAM, Hard Disk with 5MB available, System 6.0.4 or higher 

Fully System 7 compatible 

Windows™ version= 
4mb RAM, Hard Disk with 5MB available, 486 class macine running in the 

386 enhanced mode, Windows version 3.1 

2. Overview of STELLA II Operating Environment 

High-level Map/ 
Diagram/Equations 
Arrows 

I 
Map/Model 
Toggle 

File Edit Diagram Run 

STELLR® 11 3.0 g]~ 

,---t~~I- + Q 
Zoom 
Boxes 
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3. Drawing an Inflow to a Stock 

a) Select the Flow with one click. Move the cursor to 
desired starting position on diagram. Click and hold. 
Begin drawing toward the Stock. 

Population 

D 
When contact has been made, the Stock will tum gray. 

Population 

==c5~1:::::::::J -+ ~ 

c) Release the click. The cursor returns to the Hand. 
Note: When a variable is highlighted, its name may be 
edited. 

}: 
:;;; 

;;;11 

Population 

I! 

Ill 

-+ ......... J. ... .l ... U.LU.U.U.tU.U.i.U.U.LU.U.U.U.U.U.U.U.U.U.U.U..!!!·!·!·!·!·!·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1·1············· 
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4. Drawing an Outflow from a Stock 

a) Select the Flow with one click. Position the cursor in the center 
of the Stock out of which the Flow will be drawn. 

Population 

.c:,. 
'v b) Click and hold. Drag the Flow out of the Stock. 

Population 

c) Release the click. The cursor returns to the Hand. 

Population 

-==+ ~.=~ 
HSI 

-+ 
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5. Replacing a Cloud with a Stock 

STELLA® 3.0 0§ 

Stock 1 

flow 

a) Using the Hand, click and hold on the Stock. 'IIIJ' 1........... .J 

::;:;:;:;:; D 11' 0 

-+ 

Stock 1 f ! 

c5 1 .. ~:)1b.l 
flow 

b) Drag the Stock toward the cloud. When the 
hand is "on" the cloud, the cloud will tum gray. 

: ... : ..... . 
-+ 

Stock 1 

c5 
flow 

c) Release the click. The cloud is now replaced 
by the Stock. 
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6. 

7. 

STELLR® 3.0 E!l§ 
t.... ;:, 4"? :mm1m A r:::: !iiiil = !Iii! c1 @ 

While drawing a flow, depress the 
shift key to create a bend in the flow 
pipe. (You can create as many bends 
as you'd like.) 

Slock 2 

D 
mm 

Re-positioning Flow Pipes 
§0 

-+ 

.STELLR® 3.0 E!l§ 

Slock 1 

Select the flow by clicking on 
its circle using the Hand. 
Click and drag on "handles" 
to re-position the flow pipe. 

Slock 2 

Ctrl-click (Windows) or command-click 
(Macintosh) on arrowhead to reverse 
direction of flow. 

Slock 2 
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9. Flow Define Dialog; Builtins 
~ consumption 
@ UNIFLOW O BIFLDW 
D uim !:mw(H"illln 

Click to select unijlow or biflow. Unijlows 
flow in one direction only; biflows can flow 
in either direction. 

Required Inputs fIIIIlCDB Builtins 

Variables in Required Inputs .Q 
box reflect connections you 
have drawn on Diagram. 

IIJOOOO~ PRUSE 
G.][[)@0 PCT 

CDOO@JG Pl 
PMT o:JQG PDl5SDN = [ ]@ PULSE 

'ff consumption - ... 
PULSE() Equation Box is for defining relationships in Equations mode. 

Click on Required Inputs, numbers, algebraic operators, and 
Bui/tins to define an equation. 

Farm11t: PUL5El<uolume>, ifir:ll pulse>-, -<interucil>) 

Moving variable names 

Click on a 
Bui/tin from 
this list to 
enter it into 
the equation 
box. 

Click OK 
after loading 
a Bui/tin to 
get on-line 
help for its 
format. 

STELLR® 3.0 t!I~ 

Stock 1 

Click and drag to move a variable name 
around its icon. 

Stock 2 

L. !-
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11. Drawing Connectors 

a) Select the Connector with one click. Move the cursor to the 
entity from which the Connector will be drawn. 

II 
Population 

births 
111111 

b) Click and hold. Drag the cursor toward the target. 

-+ 

Population !:iii: 

Q~ ~ 
c) When the Connector makes contact with the target, the target will 
tum gray. Release the click to forge the connection. The cursor 
reverts to the Hand. 
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births 

Click and drag on the circle end of the 
Connector to bend the Connector. 
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12. Defining Graphs and Tables 

Untitled IJ raph E!l 

••••••••••••••••••••••• , •••••••••••••••••••••••• "( •••••••••••••••••••• ···; •••••••••••••••••••••••• i 

! Select the graph pad or table pad icon, ! 
! then deposit it on the diagram. An empty ! 
! graph or table pad page will appear. ! 

....................... ~ .... ~:C::~~;cg~~~~eJ;f :g~ or table page to ... , 

: :/ I, : ....................... ~.. ..... . .. : 

1f births 
1f deaths 
0 birth_fraction 
0 death_fraction 

Graph Type 

: l 
' ' : : 
' ' . . 
' ' . . 

Selected 

f»l ~: Select the desired variables from 
LIi;' the allowable list. Hit the > > EJ 3. arrow to enter them into the 
~ 4. selected list. Reverse the 
~ 5. procedure td remove variables L-----~ 

I 
from the selected list. 

)'DIUl®idGHDI Title: 

® Time Series O Scatter 
D Comparatiue 

181 Show numbers on plots 
181 Show Grid 

Min Man 
scale: 

From To 
Display: lo 1112 

D [ om11)cl Doh 

Set J 

/',New ~1--, 
Page: I v 

Cancel J ([ OK l) 
Note: Analogous operations for Table Pads. Create as many new graph 

pad pages as you'd like. 

95 



SYSTEM BEHAVIOR AND SYSTEM MODELING 

13. Dynamite operations on Graphs and Tables 

Dynamite 
max or 
min value 
to revert to 
default 
scale for 
variable. 

Dynamite variable name to clear variable from graph. 

1: 1200.00 
2: 50000.00 

1000.00 
40000.oo+------4------....... --~--+------i 

0.00 9.00 18.00 27.00 36.00 

Graph 1 : Page 1 Hours 2 :25 PM 7 /24 /92 12] 

Dynamite here to delete page from graph pad. 
Dynamite here to clear data from graph pad page. 

Note: Analogous operations for Table Pads. 
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absorptivity, 36--37 
albedo, 16--17, 27, 35--37, 46, 48---49 
analytical solutions 46--47 
asymptotic, 29, 49 
atmosphere, 1-3, 6, 31-32, 35-37 

behavior, see system 
births 

annual, 12, 38-43, 49 
control of, 2-4 
crude rate of, 38-43, 46, 50 
per 1000, 38-43, 46 

blackbody, see radiation 
branches, 14--15, 21, 49 

carbon dioxide 
in Earth history, 47 
increase in atmosphere, 2-4, 9, 32 

cell, 6, 49 
childbearing age, 38, 44 
climate, 42, 46--49 
closed loop, 14, 49 
cloud, 13 
cohort, 44--45 
connector, 15, 50, 52 
conservation of energy, see energy 
constraints, 40, 46, 50 
control, see valve 
converter, 16--18, 20, 50 
coupled, see connector 

deaths 
annual, 12, 38-43, 49 
crude rate of, 38---43, 46, 50 
perl000,38---43,46 

decisions, 14--16, 21, 49, 50 
demography, 38, 41-42, 50 
dependents, 44--45 
difference equation, 35--37 
document, 21, 28 
doubling time, 41-43, 50 
driver, 23, 34--35, 46, 50, 51 
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e-folding time, 42, 50 
Earth energy system, 13, 16--17, 27-37, 46--47 
Earth 

cross section, 16--17, 28 
diameter, 16 
surface area, 28 
temperature, 17, 28-29, 34--37, 46--47, 48 

effective temperature, 30-31, 35--37, 47, 51 
electromagnetic radiation, see radiation 
electromagnetic spectrum, 27, 30, 51 
energy 

alternative, 3-4 
and entropy, 8 
balance, 35-37 
conservation of, 17-18, 27, 50, 51 
fossil fuel, 3-4, 48 
per capita use of, 3 
policy, 2-4 
production of, 3 
radiant, 27 
thermal, 18, 54 

entropy, 8, 51 
equation, 16--18,21,28,39,51 
exponential 

function,42,46--47,51 
growth, 41-43 
model,46 

feedback,9,25,26,30.:.31,41-42,46--48,51 
first law of thermodynamics, see thermodynamics 
flow, 11-12, 24, 51, 55 
fluctuations, 35, 51 
flux, see flow 
forcing function, 23, 51 
Forrester, Jay, 11 
fuel taxes, 2-4 

GCIP, see Global Change Instruction Program 
GCM, see model, general circulation 
ghost, 25, 28, 51 
Global Change Instruction Program, ix, x, xi, 1 
global warming, 34, 48 
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graph,23,29,40-41 
gray body, see radiation 
greenhouse gas, 36, 46-48, 52 
greenhouse wanning, 31-32, 35-37, 47-48, 52 
growth rate, 40-43, 46-47, 50, 52 
guesstimate, 38-40, 44, 52 

heat capacity, 17 _19, 28_29, 52 
High Performance Systems, Inc., ix, 11, 20, 54 

icon, 5, 52 
if statements, 21-22, 24-26, 52 
infrared radiation, see radiation 
Instructor's Manuat ix, x 
initial value, 8-10, 12, 21, 52 
interconnection, see connector 

Kirchoff's law, 30, 36 

limits, 40, 42, 46-47, 52 
linear, 29, 31, 46, 52 
logic, 15, 21 

main program, 28, 52, 53 
model 

bathtub, 12-13, 15,20-26,46 
behavior, 46-47 
climate, 7 
components of, 11-19 
computer, 5, 48, 49 
forecasting the future, fr7 
general circulation, 7-8, 10, 51 
human population, 38-47 
meaning of, 52, 54 
reconstructing the past, 7-9 
swamp,28,32-33,54 
testing, 9-10 
verification, 9-10, 52 

modeling 
communicating with, 5 
components of, 11-19 
computer, 47 
conceptual, 5, 49 
testing, 9 

noise, 35, 52 

ocean, mixing layer of, 33 
oscillations, natural, 35 

parameter, 12, lfrl7, 28, 46-47, 53 
phase shift, 34-35, 43, 53 
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population pyramid, 44-45 
popuiation,human,2-4, 12,38-47 

radiation 
a trnospheric, 31-32 
blackbody,29-32,30,49 
gray-body, 35-37 
infrared, 27, 29, 30-31, 35, 52 
visible, 27, 30-31, 35 

regulator, see valve 
reservoirs, 11-14, 24, 53 
resonance, 35, 53 

scientific notation, 22 
second law of thermodynamics, see 

thermodynamics 
seconds per year, 28 
sensitivity studies, 9, 35-37, 46, 54 
SI, 28, 54 
sink, 12-13, 54 
solar constant, lfrl7, 27, 35-37, 46, 48, 54 
solar radiation, see radiation, visible 
source, 12-13, 54 
standard of living, 2-4 
steady state, 8-9, 29, 35, 44-47, 54 
Stefan-Boltzmann, 28, 30, 35-37, 54 
STELLA® II, ix, 11, 20-21, 54 
stock, see reservoir 
subroutine, 28, 54 
supercomputer, 6, 7, 54 
system 

behavior, 9, 46-47 
components of, 2 
diagram, 11-19, 54 
isolated, 1, 52 
qualitative description of, 1 
science, 1 
subsystem of a, 2 
what is a, 1, 54 

thermodynamics 
first law of, 17-18, 51 
science of, 55 
second law of, 8, 54 

threshold, 24, 54 
time constant-or time scale, 24-25, 32-34, 43, 54 

valve, 11-12, 55 
visible radiation, see radiation 

zero growth rate, 43-45 
zero population growth, 44-45 
ZPG, see zero population growth 
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HIGH PERFORMANCE SYSTEMS, INC. LICENSE AGREEMENT 

Before opening this diskette package, please review the follow-
ing terms and conditions of this agreement carefully. This is a 
legal agreement between you and High Performance Systems, 
Inc. The terms of this Agreement govern your use of this soft-
ware. Opening this diskette envelope or use of the enclosed 
materials, will constitute your acceptance of the terms and 
condilions of this agreement 
1. Grant of License. 
In consideration of payment of the license fee, which is part of 
the price you paid for this software package (referred to in this 
Agreement as the usottware"), High Performance Systems, 
Inc., as Licensor, grants to you, as Licensee, a non-exclusive 
right to use and display this copy of the Software on a single 
computer (i.e., a single CPU) only at one location al any time. 

2. Ownership of Software 
As Licensee, You own lhe magnetic or other physical media on 
which lhe Software is originally or subsequently recorded or 
fixed, bul High Performance Systems, Inc. retains tille and 
ownership of the Software, both as originally recorded and all 
subsequenl copies made of the Software regardless of the 
form or media in or on which lhe original or copies may exist 
This license is not a sale of the original Software or any copy. 

3. Copy Restrictions 
The Software and the accompanying written materials are pro-
tected by U.S. Copyright laws. Unauthorized copying of the 
Software, including Software that has been modified, merged, 
or included with other software or of the original written mater-
ial is expressly forbidden. You may be held legally responsible 
for any copyright infringement that is caused or encouraged by 
your failure to abide by the terms of this Agreement Subject to 
these restrictions, you may make one ( 1) copy of the Software 
solely for back-up purposes provided such back-up copy con-
tains the same proprietary notices as appear in this Software. 

4. Use Restrictions 
As the Licensee, you may physically transfer the Software from 
one computer to another provided that the Software is used on 
only one computer at a time. You may not distribute copies of 
the Software or the accompanying written materials to others. 
You may nol modify, adapt, translate, reverse engineer, decom-
pile, disassemble, or create derivative works based on the 
Software. You may not modify, adapl, translate or create deriva-
tive works based on the written materials without the prior wril-
ten consent of High Performance Systems, Inc. 

5. Transfer Restrictions. 
This Software is licensed to only you, the Licensee, and may 
nol be transferred to anyone else without the prior written con-
sent of High Performance Systems, Inc. Any authorized trans-
feree of the Software shall be bound by the terms and 
condilions of this Agreement. In no event may you transfer, as-
sign, rent, lease, sell or otheiwise dispose of the Software on a 
temporary or permanent basis except as expressly provided 
herein. 

6. Termination. 
This license is effective until terminated. This license will termi-
nate automalically without notice from High Performance Sys-
tems, Inc. if you fail to comply with any provision of this license. 
Upon lerminalion you shall destroy the written materials and all 
copies of the Software, including modified copies, if any. 
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7. Disclaimer of Warranty and Limited Warranty. 
THE SOFTWARE AND ACCOMPANYING WRITIEN MATERIALS 
ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED OF ANY KIND, AND HIGH PERFORMANCE 
SYSTEMS, INC. SPECIFICALLY DISCLAIMS THE WARRANTIES OF 
FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY. 

However, High Performance Systems, Inc. warrants to the orig-
inal Licensee that the disk(s) on which the Software is 
recorded is free from defecls in materials and workmanship 
under normal use and service for a period of ninety (90) days 
from the date of delivery as evidenced by a copy of the receipt 
of purchase. Further, High Performance Systems, Inc. hereby 
limits the duration of any implied warranty(ies) on the disk to 
the period stated above. Some jurisdictions may not allow limi-
talions on duration of an implied warranty, so the above limita-
tion may not apply to you. 

THE ABOVE ARE THE ONLY WARRANTIES OF ANY KIND, EITHER 
EXPRESS OR IMPLIED, THAT ARE MADE BY HIGH PERFOR· 
MANCE SYSTEMS, INC. ON THE SOFTWARE. NO ORAL OR WRIT-
TEN INFORMATION OR ADVICE GIVEN BY HIGH PERFORMANCE 
SYSTEMS, INC., ITS DEALERS, DISTRIBUTORS, AGENTS OR EM· 
PLOYEES SHALL CREATE A WARRANTY OR IN ANY WAY IN· 
CREASE THE SCOPE OFTHIS WARRANTY, AND YOU MAY NOT 
RELY UPON SUCH INFORMATION OR ADVICE. THIS WARRANTY 
GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER 
RIGHTS, WHICH VARY ACCORDING TO JURISDICTION. 

8. Limitations of Remedies. 
NEITHER HIGH PERFORMANCE SYSTEMS, INC. NOR ANYONE 
ELSE WHO HAS BEEN INVOLVED IN THE CREATION, PRODUC· 
TION OR DELIVERY OF THE SOFTWARE SHALL BE LIABLE FOR 
ANY DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL 
DAMAGE (INCLUDING DAMAGE FOR LOSS OF BUSINESS 
PROFIT, BUSINESS INTERRUPTION, LOSS OF DATA, AND THE 
LIKE) ARISING OUT OF THE USE OF OR INABILITY TO USE THE 
SOFTWARE EVEN IF HIGH PERFORMANCE SYSTEMS, INC. HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. AS 
SOME JURISDICTION MAY NOT ALLOW THE EXCLUSION OR 
LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL 
DAMAGE. 
High Performance Systems', Inc. entire liability and your exclu-
sive remedy as to the disk(s) shall be replacement of the de-
fective disk. If failure of any disk has resulted from accident. 
abuse or misapplication, High Performance Systems, Inc. shall 
have responsibility to replace the disk. Any replacemenl disk 
will be warranted for the remainder of the original warranty pe· 
riod or thirty (30) days, whichever is longer. 

9. Miscellaneous. 
This Agreement shall be governed by the laws of the State of 
New Hampshire and you agree to submit to personal jurisdic-
tion in the State of New Hampshire. This agreement constitutes 
the complete and exclusive statement of the terms of the agree-
ment between you and High Performance Systems, Inc. II su-
persedes and replaces any previous written or oral agreements 
and communications relating to lhis Software. If for any reason 
a court of competent jurisdiction finds any provision of this 
Agreement, or portion thereof, to be unenforceable, that provi-
sion of the Agreement shall be enforced to the maximum extent 
permissible so as to effect the intenl of the parties, and the re-
mainder of this Agreement shall continue in full force and effect. 
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INSTALLATION INSTRUCTIONS 

MACINTOSH VERSION: 
1. Prepare for installation. 

• Quit all applications. 
• Make sure that you have al least 2.5 MB 

free space on your hard disk. 

2. Launch the STELLA® II installer. 
• Insert disk 1 of your package. 
• Double click the Demo Installer icon. 

The STELLA® II Screen will appear. 

3. Begin installation to your hard disk. 
• Click Continue on the STELLA® II screen. 
• Click on Install. 
• Select the desired disk to install onto. 

A folder named "STELLA II Demo Folder" will be 
automatically created for you on the disk you choose. 

• Click the Install button. 

4. Wrap up the installation. 
• Wait while installation takes place. 
• Switch disks when prompted by the 

installer 
• When installation is complete, click the 

Quit button. 
• Eject the disk. 

WINDOWS VERSION: 
1. Prepare for installation. 

• Exit all applications, except for Windows. 
• Make sure that you have at least 5 MB free 

space on your hard disk. 

2. Launch the STELLA® II installer. 
• Insert disk 1 of your package into the disk 

drive. 
• Choose Run from the File menu in the 

Program Manager (from the Start button 
in Windows '95). 

• Type: a: \install in the command line 
(if your disk drive is not your "a" drive, 
substitute the appropriate letter). 

• Click OK. 
• Wait while the Installer application loads. 

The Insta/Iation Choices screen will appear with 
"Fu/I Insta/Iation" selected. 

3. Begin installation to your hard disk. 
• Make sure that the Full Installation option 

is selected in the Installation Choices 
screen. 

• Click the OK button in the Installation 
Choices screen. 

The Setup screen will appear, showing a pre-defined 
installation directory (STELLA2D). 

• Click the OK button in the Setup screen. 

4. Wrap up the installation. 
• Wait while installation takes place. 
• Switch disks when prompted by the 

installer. 
• When installation is complete, eject the 

disk. 

The STELLA® II application will be found in the 
"HPS" group in the Program Manager (Windows 
3.1). The application /ste/Ia2.exe) and models will 
be located in the stella2d directory in the File 
Manager. 

For technical support or to purchase a full version of the STELLA® II software, call (603) 643-9636. 
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~D-ROMfor 

Windows and Macintosh 
inside! 

Requires Windows 3.1 or greater, 
386 enhanced mode, 4 MB RM1; 

Macintosh System 6.0.4 or greater, 
2 MB RAM. 




