
NCAR/TN-342+STR

NCAR GRAPHICS
GENERIC PACKAGE
INSTALLER'S GUIDE
VERSION 3.00a

FRED CLARE

SCIENTIFIC COMPUTING DIVISION
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Acknowledgments

The author would like to acknowledge John Humbrecht as the author of the original draft of
the "NCAR Computer Graphics Metafile Translator." I also want to thank Dr. Hiroshi
Akima for allowing us to include the BIVAR software in Version 3.00 of NCAR Graphics.
BIVAR was written as part of Dr. Akima's work for the National Telecommunications and
Information Administration, Institute for Telecommunication Sciences, within the U.S.
Department of Commerce. Thanks to Dr. Alan Cline of the University of Texas at Austin
for allowing us to use selected routines from his package called FITPACK. And thanks to
the many users of the previous documentation who have made valuable criticisms and com-
ments.

Thanks to Nancy Dawson for her editorial and formatting suggestions, to Christine Guzy for
production assistance, and to Jacque Marshall for word processing.

November 9, 1990

Addendum to NCAR Graphics Generic Package Installer's Guide

1. On page 19, description for F'UNCTION ISHIFT(IWORD,N)": After "...then the vacated posi-
tions are undefined." please add the sentence "NCAR Graphics does not care what the vacated posi-
tions in a right shift are."

2. On pages 68 and 69, replace the 'Device Window" section with:

In the default environment CGM interpreters map the entirety of the region specified in the CGM
VDC EXTENT element onto the largest rectangle on the viewing surface such that aspect ratio is
preserved. This section describes keywords for specifying a subregion of the VDC space to be
mapped onto the largest rectangle on the viewing surface such that aspect ratio is preserved. To
define the keywords, imagine a virtual rectangular space having coordinates from 0 to 32767 in both
the X and Y directions being mapped onto the VDC space. If the VDC space is not square, a unit in
the X direction of the virtual space will not equal a unit in the Y direction. The following keywords
are used to specify a subregion of the virtual space so that the associated subregion of the VDC
space is used for mapping onto the display surface. For example, if the VDC space is given by (0,0)
to (100,200) and the subregion of the virtual space is defined by (0,0) to (16384,16384) then the VDC
region (0,0) to (50,100) would be mapped onto the display surface in a manner such that aspect ratio
is preserved.

DEVICEWINDOWJLOWERILEF T-X

Description: The X coordinate of the lower left corner of the virtual space in the range 0 to 32767.

Type: Decimal

Default: 0

Maximum number of entries: 1

DEVICEWINDOWLOWER-LEF T_Y

Description: The Y coordinate of the lower left corner of the virtual space in the range 0 to 32767.

Type: Decimal

Default: 0

Maximum number of entries: 1

DEVICE-WINDOW-UPPER-RIGHTJX-

Description: The X coordinate of the upper right corner of the virtual space in the range 0 to
32767.

Type: Decimal

Default: 32767

Maximum number of entries: 1

-2-

DEVICE _WINDOW-UPPER-RIGHT-Y

Description: The Y coordinate of the upper right corner of the virtual space in the rnage 0 to
32767.

Type: Decimal

Default: 32767

Maximum number of entries: 1

Contents

Section I: Important Information
Before You Begin the Installation .. 3
How This Manual is Organized .. 3
Installation Consulting .. 4
Usage Consulting through NCAR Graphics Site Representatives 4
Licensing and Distribution Information ... 4

Section II: NCAR Graphics Installation Directions
Package Contents ... 7
Implementing the System 7
Partial Implementations ... 8.
Implementation Steps 8
Additional Examples Available .. 15
User Libraries .. 16
Size Considerations .. 16
Appendix A: Machine-dependent Support Routines 18
Appendix B: Dumps of the Metafile from TGKSOA 21

Section II: Release Contents
Bookkeeping ... 31
NCAR GKS OA ... 31
R equired Support Routines 31
Implementation Tools 32
Utilities 33
Utility Support Files 35
CGM Translator .. 37
D atabases .. 38
D atabase Initializers ... 39
Examples 40E xam ples 40

Section IV: NCAR Computer Graphics Metafile
Translator

B ackground .. 43
The Metafile Standard ... 44
The NCAR CGM Translator 45
Installation .. .46
Graphcap Files]...... 49

Supported Graphcaps in Version 3.00 51
How the CGM Translator Works .. 53
Formatting and Encoding Coordinates 54
Workstation Initializations .. 57
Workstation Drawing Space .. 58
Device Vector Counts .. 62
Device Color Capabilities .. 63
D evice W indow .. 68
L ine C ontrol ... 69
Line W idths ... 72

1

Marker Control ... 74
Graphical Text Control .. 75
Bundle Tables 75
Polygon Control 78
Raster Control ... 81

Fontcap Files 86
Character Class 86
Font Class .. 87
Coordinate Class. 88
Character Stroke Class ... 90
Font Tables 92

Required Locally Implemented Routines 99
Routines Required by the Translator 99
Routines Required by Fontcap and Graphcap Processors 103

LaserJet D rivers ... 106
Available Graphcaps for LaserJet Printers .. 107

Status Messages 109Status M essages ... 109
Appendix A: Translator ASCII Codes ... 111

Section V: NCAR Computer Graphics Metafile
Record Formatting and NCAR Datatypes 117
Supported and Unsupported Elements 118

ii

Section I: Important Information

Important Information

Section I: Important Information

Before You Begin the Installation ... 3
How This Manual is Organized ... 3
Installation Consulting ... 4
Usage Consulting through NCAR Graphics Site Representatives 4
Licensing and Distribution Information .. 4

Version 3.00, May 1990 1

Important Information

Important Information

The material in this manual is intended to be used by an experienced programmer during the
initial installation of NCAR Graphics, Version 3.00. Users at your site will need to have
both of the following user's manuals:

The NCAR Graphics Guide to New Utilities, Version 8.00, October 1989. This manual
documents the seven utilities that are new in Version 3.00.

* The NCAR Graphics User's Guide, Version 2.00, August 1987. This manual documents
all the previous utilities that are part of the Version 3.00 release.

Both of these manuals were sent to you with the distribution tape. You will need to refer to
both manuals while you are installing NCAR Graphics. There are several references to these
manuals throughout the Installation Guide you are now reading. If the reference is to both
manuals, they will be referred to collectively as the User's Guides. If the reference is to only
one manual, the full title will be given.

Before You Begin the Installation

Before you actually begin the installation, do the following:

1. Read the Introduction chapter in NCAR Graphics Guide to ATew Utilities, Version 3.00.
Two sections are of particular relevance, since they tell users what to expect to have
available. These sections are 'The Code for the NCAR Graphics Package" and "How to
Begin Using NCAR Graphics."

2. Finish reading this section of the Installer's Guide.

3. If you are installing the UNIX version, follow the instructions in the "Release Notice:
NCAR Graphics - UNIX Version" document that came with your tape.

4. If you are installing the VMS version, follow the instructions in the "NCAR Graphics
VMS Version 3.00 Installation Guide," which came with your tape.

5. If you are installing the generic version, proceed to Section II for installation details.

How This Manual is Organized

The NCAR Graphics Generic Package Installer's Guide, Version 3.00 has five sections:
1. Important Information. This is the section you are currently reading.

2. NCAR Graphics Installation Directions. This section is a roadmap for implementation
of the entire package and it is intended to be used by the initial installer of the package.

3. Release Contents. This section gives brief descriptions of all files on the generic package
distribution tape.

4. NCAR Computer Graphics Metafile Translator. This section gives background
material on metafiles, and describes the NCAR Metafile Translator, complete with
implementation instructions.

Version 3.00, May 1990 3

Important Information

5. NCAR Computer Graphics Metafile (CGM). This section describes the record format-
ting of NCAR's implementation of the CGM as well as which elements of the CGM are
supported and which elements are not supported.

Installation Consulting

If you have questions related to installing the package, call NCAR Graphics Installation at
(303) 497-1309, or send e-mail to ncargfx@ncar.ucar.edu. Please note that this phone
number and e-mail address are for installation questions only.

Usage Consulting through NCAR Graphics Site Representatives

Each site ordering the NCAR Graphics package must designate an official "NCAR Graphics
site representative" when the package is ordered. The site representative serves as the first
line of consulting aid for all users at the site. If the site representative cannot answer a
user's question, the representative may call the SCD Consulting Office at (303) 497-1278 for
help. Each site may designate two representatives.

Please publicize the name and phone number of your site representative so that users know
how to get assistance. To update site representative information, contact

Graphics Information
NCAR Scientific Computing Division
P.O. Box 3000
Boulder, CO 80307-3000
(303) 497-1201
scdinfo@ncar.ucar.edu

Licensing and Distribution Information

NCAR Graphics is a copyrighted software package developed and distributed by the
Scientific Computing Division (SCD) at the National Center for Atmospheric Research
(NCAR). NCAR Graphics is licensed to nonprofit institutions by NCAR and to profit-
making institutions by the University Corporation for Atmospheric Research (UCAR) Foun-
dation. Through the UCAR Foundation, developers' licenses are available to software ven-
dors and computer manufacturers who wish to make value-added enhancements. Versions of
NCAR Graphics are available for UNIX, VMS, and generic operating systems. Additional
copies of NCAR Graphics manuals are also available for purchase separately. For licensing,
pricing, and distribution information, contact

Graphics Information
NCAR Scientific Computing Division
P.O. Box 3000
Boulder, CO 80307-3000
(303) 497-1201
scdinfo@ncar.ucar.edu

NCAR Graphics Generic Package Installer's Guide4

Section II: NCAR Graphics Installation Directions

Section II: NCAR Graphics Installation Directions

Package C ontents .. 7
Implementing the System .. 7.......................7
Partial Im plem entations .. 8
Implementation Steps 8Im plem entation Steps ..

Step 1 - Implementation of Lower-level Support Routines 8
Step 2 - Implementation of NCAR's GKS OA Package 9
Step 3- Implementation of SPPS 10
Step 4 - Implementation of the NCAR CGM Translator
Step 5 - Implementation of the Higher-level Utilities 11
Where to Find the Demonstration Plots for Each Utility 13

Additional Examples Available ·... 15
U ser L ibraries ... 16
Size C onsiderations ..

Metafile Sizes 17M etafile Sizes .. 17
Appendix A: Machine-dependent Support Routines 18
Appendix B: Dumps of the Metafile from TGKSOA 21

Version 3.00, May 1990 5

NCAR Graphics Installation Directions

This guide is designed to provide step-by-step guidance for the implementation of the generic
NCAR Graphics package. It is anticipated that the user of this guide will be an experienced
programmer who is familiar with the hardware and software of the target computer(s) and
graphics output device(s). This guide does not address the details associated with implemen-
tation on particular computers, but it is intended to provide instruction in the major steps
required in implementing the generic package on any system. If the target computers are
running either the UNIX or VMS operating systems, then the installer should have the ver-
sion of the package specifically tailored for those systems as well as supplemental documenta-
tion for those systems. Ordering information is in the 'Important Information" section of
this manual. The generic package contains only Fortran code (except for some examples of
support routines written in C). The UNIX and VMS versions of the package have certain C
language implementations additional to the code in the generic package.

This guide describes an implementation procedure that begins at the lowest levels of the sys-
tem and proceeds to the highest levels. We assume that you have already read the Introduc-
tion section in the NCAR Graphics Guide to New Utilities, Version 3.00, before proceeding
with the installation.

Package Contents

A detailed listing of the contents of the NCAR Graphics package is given in the Release
Contents, which is Section III of this manual. A list of the filenames in the sequence as they
appear on the distribution tape is contained in the first file on the tape, FNAMES, and is
also attached to the cover letter you received with the distribution tape. These names are
the same as thoe that appear throughout all sections of this manual, so it is important that
the correct name be associated with the correct file during the installation.

Implementing the System

The major components involved in a full implementation of NCAR Graphics are listed
below:

* Machine-specific support routines,

* a GKS OA package,

. SPPS - The NCAR System Plot Package Simulator,

* a Computer Graphics Metafile (CGM) translator, and

* higher-level utilities and demonstration drivers.

Each of these components is fully explained in the following instructions.

Version 3.00, May 1990 7

Installation Directions

Partial Implementations

The basic assumption in this manual is that all components of the package will be imple-
mented, including NCAR's GKS level OA package. NCAR's GIKS package contains some of
the capabilities of level 2A, which are needed if GFLASH or STITLE are going to be used at
your site. It is possible to implement certain components of the package independently.

If you are using a commercial GKS package and simply want to run some, or all, of the
higher-level utilities (AUTOGRPH, CONPACK, EZMAP, and so on) on top of the commer-
cial GKS package, then it would be necessary to implement only SPPS, the desired utility (or
utilities) and certain of the low-level support routines mentioned in the "Step 1" section
below. To be certain that you have implemented the appropriate low-level support routines,
you can, of course, implement them all. Another approach would be to load SPPS and the
desired utility and see what unsatisfied externals are listed, and then implement just those
functions that appear in this list.

The implementation of the NCAR Computer Graphics Metafile translator may be carried
out independently from the rest of the package, excepting that certain of the low-level sup-
port routines mentioned in Step 1 below are required. When discussing the metafile transla-
tor in this document, we are referring specifically to the Fortran version of that translator.
A C language implementation is available as part of the NCAR View package, which is
included in the UNIX distribution. If you want to implement only the Metafile Translator,
then consult the section of this manual titled 'The NCAR Computer Graphics Metafile
Translator"; that section has complete installation instructions.

The following discussion provides a more detailed description of the steps involved in imple-
menting each of the major components of the package in a full implementation. Implementa-
tion should proceed in the order described, except for the implementation of the metafile
translator (Step 4 below), which could be implemented immediately after Step 1, if desired.
The suggested order for implementation insures that you will have a couple of metafiles
available for testing the translator by the time it is implemented.

For each step in the implementation, a test is referenced for verifying correctness. If any
test plots are referenced, examples of them may be found by using the table on page 13.

Implementation Steps

Step 1 - Implementation of Lower-level Support Routines

The package is designed to be portable, but there are certain machine-specific details that
are required. All of these machine-dependent requirements have been isolated in several sub-
routines. It will be necessary to provide these subroutines before proceeding. The package
requires the implementation of the following support routines:

GBYTES ISHIFT
G01MIO I1MACH
IAND R1MACH
IOR SBYTES

These routines are referred to as 'low-level support routines" throughout this manual. Com-
plete functional descriptions for these routines appear in Appendix A at the end of this sec-
tion. Except for GO1MIO, examples of implementations of these subroutines are given in file
LOCAL on the distribution tape. A Fortran implementation of the support routine G01n4IO

NCAR Graphics Generic Package Installer's Guide8

Installation Directions

is contained in file BWI. G01MIO is the basic I/O routine for NCAR's GKS package, and it
is not used anywhere else but in that package. The version of G01MIO supplied does a For-
tran open to file GMETA which is where the metafile is written. Users of NCAR's GKS
package may change the name of the output metafile by a call to the GKS entry GESC with
a function ID of-1391 and the desired filename stored in the first array element of the input
data record (the data record should be blank filled to the right of the file name). The sub-
routines in LOCAL and G01MIO are examples only. These examples may help you, and
some may actually run on your machine, but care must be taken to insure that the imple-
mented routines satisfy the functional descriptions as given in Appendix A at the back of this
section. Some of the examples given are coded in C. If you do not have a C compiler avail-
able to you, then obviously these examples will be of little help to you, and you will have to
provide your own codings in Fortran, or any other language you have access to.

There is a test file for implementations of the low-level routines in file IMPLTEST on the
distribution tape. In that file, there is a PROGRAM TLOCAL, which can be used to test
the implementations of IOR, IAND, ISHIFT, GBYTES, and SBYTES. Load and execute
TLOCAL together with the implementations of the support routines. Note that TLOCAL
has machine-dependent parameters that must be set by the user. Read the prologue docu-
mentation in the code for TLOCAL for implementation instructions. Success or failure mes-
sages will be issued to Fortran unit 6. There are no tests for I1MACH and RIMACH, but
the success of the TLOCAL test depends on proper implementation of I1MACH and
R1MACH. Constants for I1MACH and R1MACH for a large number of computers appear
in the comment cards of I1MACH and R1MACH as they appear on the distribution tape in
file LOCAL. If constants for your host computer appear there, simply uncomment the
appropriate cards for your implementation of I1MACH and R1MACH. Otherwise be very
careful to implement I1MACH and R1MACH correctly since there is no test for them. The
support routine G01MIO is used only by NCAR's GKS package, and no test for it is pro-
vided in TLOCAL.

Since many of the low-level support routines are executed frequently throughout the pack-
age, efficient versions are desirable. There are portable Fortran versions of GBYTES and
SBYTES in file LOCAL on the distribution tape; they are very slow. GBYTES and
SBYTES are used primarily in the CGM translator; machine language versions of these rou-
tines could greatly speed up the translator. Machine language versions of IAND, IOR, and
ISHIFT are also desirable.

Some entries from the file SUPPORT on the distribution tape are required by the test rou-
tines.

Step 2 - Implementation of NCAR's GKS OA Package

NCAR's implementation of the ANSI (American National Standards Institute) GIS graphics
standard is contained in files AWI and BWI on the distribution tape. (AWI stands for
"Above Workstation Interface" and BWI stands for "Below Workstation Interface.")

GKS can be implemented at various levels of complexity. The NCAR implementation is a
level OA implementation, with enhancements from level 2A that are necessary to support the
new utilities GFLASH and STITLE. The NCAR GKS package has approximately the same
functionality as the NCAR System Plot Package in pre-GKS versions of the NCAR Graphics
Package.

Version 3.00, May 1990 9

Installation Directions

AWI intercepts GKS level OA calls and codes the arguments into a common block; AWI
invokes BWI when appropriate. BWI generates the output Computer Graphics Metafile
(CGM) from the data stored in the common block in AWI. The CGM is also an ANSI stan-
dard; for details, see the "NCAR Computer Graphics Metafile Translator" and the "NCAR
Computer Graphics Metafile" section of this manual.

If you want to drive an output device directly and bypass the generation of the CGM, it
would be possible to replace BWI with such a direct device driver. This could involve a
significant amount of work. The NCAR GKS package as supplied on the distribution tape
can be used as the support GKS package for all the other package components. However,
those sites having other GKS software already running on the target computer may elect to
interface the utilities with their existing capabilities. The NCAR GKS OA package allows
for only one active workstation (we use the term "workstation" in this document in its sense
as defined in the GKS standard), and that is an MO (Metafile Output) workstation. In the
NCAR GKS package, the CGM workstation is defined as a workstation having workstation
type 1. If you load and execute the subroutines contained in AWI, BWI, the low-level sup-
port routines, and a GKS application program, then what should be produced is a CGM
Metafile in file GMETA.

A test file for the output primitives of GKS is contained in file IMPLTEST on the distribu-
tion tape. In file IMPLTEST is contained PROGRAM TGKSOA. If this program is
extracted from file IMPLTEST and loaded and executed with AWI, BWI, and the support
routines from Step 1, then a metafile will be produced in file GMETA. Since you have yet to
implement the CGM translator, you cannot draw the plot contained in GMETA. However,
octal and hex dumps of the metafile are provided in Appendix B at the end of this section.
Compare a dump of your metafile against those in Appendix B for correctness. Save the
metafile for plotting once the translator has been implemented, and compare the plot with
the plot on page 623 of the NCAR Graphics User's Guide, Version 2.00. Unless your output
device supports filled polygons and cell arrays, those objects may appear on the plot with
only their perimeters drawn (the minimal support level required by GKIS.) The Fortran
translator does contain logic for simulation of filled areas in software. See the "NCAR Com-
puter Graphics Metafile Translator" section for details.

On EBCDIC computers (most IBM equipment), the EBCDIC character set must be con-
verted to ASCII prior to being written to the CGM because the CGM standard requires
ASCII characters. This conversion is achieved using the routine GKASC in the file BWI. As
distributed, this routine does nothing except make its output equal to its input. For EBCDIC
computers, a conversion table should be put into this routine for providing the EBCIDC to
ASCII conversion.

Step 3- Implementation of SPPS

The implementation of SPPS (the System Plot Package Simulator) should be straightforward
- simply compile it and load it with a GKS package. The higher-level utilities depend
heavily upon SPPS, so it must be loaded whenever a higher-level utility is used.

There are two tests for SPPS contained in file IMPLTEST on the distribution tape. The
simpler is PROGRAM TPLOT. Loading PROGRAM TPLOT from IMPLTEST together
with the support routines from Step 1, and the NCAR GKS package will produce a metafile.
One very simple plot is produced from this test. Since you have not yet implemented the
translator, the only way to test the correctness of these plots is to compare your metafile
with the octal and hex dumps which appear in the comment cards in PROGRAM TPLOT.
There is a more complete test of SPPS contained in file IMPLTEST; this is PROGRAM

NCAR Graphics Generic Package Installer's Guide10

Installation Directions

TSPPS. This tests every SPPS entry - even the non-plotting entries. You will want to
postpone running this test until you have implemented the CGM translator so that you can
actually examine the plots produced for correctness. The plots from all of the test packages
appear in the User's Guide.

Step 4- Implementation of the NCAR CGM Translator

The NCAR CGM translator is a program that translates a CGM into instructions specific to
a given output device. It is table-driven in that there is one master translator, and for any
given output device the translator configures itself appropriately after reading in a user-
supplied description table for the given device. It should be emphasized that the device
description tables apply only to devices that allow user access to the native command set-
most entries in the table are commands specific to the output device. If the interface to a
graphics device is a software interface, such as the subroutine-call interface to many worksta-
tions, then modifications to the translator code will be required. There is a file of device
description tables on the distribution tape in GRAPHCAP. This file contains tables for
many common output devices.

The translator is the most complex component of the package to implement. After the
implementation of the support routines in Step 1, the translator could be implemented. The
translator does not depend on any of the other components of the package for its implemen-
tation.

Complete details on the installation of the translator are contained in the section of this
manual titled the "NCAR Computer Graphics Metafile Translator." That section contains
its own installation guide.

After successful implementation of the translator, all previously mentioned test files can be
plotted. This will serve as a further test for those files as well as a test for the translator
itself.

Step 5 - Implementation of the Higher-level Utilities

The higher-level utilities can be implemented on an as-needed basis - by-and-large the
implementation of one utility does not depend on that of another. The implementation of a
given utility simply amounts to compiling it and loading it with the proper libraries. For
example, to call AUTOGRPH from a user application, load the user application together
with AUTOGRPH, SPPS, a GKS package, and the support routines from Step 1.

Version 3.00 contains upgrades and replacements for previous versions of certain utilities.
CONPACK upgrades and replaces the old contouring family consisting of CONREC,
CONRCQCK, and CONRCSPR. New implementations of the package should contain only
CONPACK and not the previous utilities. The previous utilities are provided on the tape
for those who may want to maintain compatibility with previous versions of the package.
Also, BIVAR (in the EMISC file on the distribution tape) shows how to convert randomly
spaced data to gridded data for use with CONPACK. We recommend that users use
BIVAR in combination with CONPACK, rather than using CONRAN, CONRAQ, or CON-
RAS. PLOTCHAR is a replacement for PWRITX and PWRITY. It offers a greatly
simplified user interface.

Several of the utilities depend on subroutines in the file SUPPORT on the distribution tape.

Version 3.00, May 1990 11

Installation Directions

For each of the higher-level utilities there is a demonstration driver supplied on the distribu-
tion tape. These demonstration drivers invoke the given utility to produce a typical plot (or
plots). Each demo driver is a subroutine with a single argument - an error indicator that is
returned as zero for success and one for failure. In most cases, the drivers for the demo sub-
routines are as simple as

CALL OPNGKS
CALL Tname
CALL CLSGKS

There are five exceptions:

EZMAP
EZMAPA
PLOTCHAR
PWRITX
ISOSRFHR

requires the map database be opened on Fortran logical unit 1.
requires the map database be opened on Fortran logical unit 1.
requires the font database be opened on Fortran logical unit 3.
requires the font database be opened on Fortran logical unit 3.
requires a scratch file be opened on unit IUNIT, which is passed via
COMMON/UNITS/IUNIT.

The ultimate test for success or failure is a comparison of the output plots with the plots
that are listed in the table on the next page.

NCAR Graphics Generic Package Installer's Guide12

Installation Directions

Where to Find the Demonstration Plots for Each Utility

Test File Utility Plot Location*

AREAS
AUTOGRAPH
COLCONV
CONPACK
CONRAN
CONRAQ

CONRAS
CONREC
CONRECQCK
CONRECSMTH
CONRECSPR
DASHCHAR

DASHLINE
DASHSMTH
DASHSUPR
EZMAP
EZMAPA
GFLASH

GRIDAL
HAFTON
HISTGR
ISOSRF
ISOSRFHR
LABELBAR

PLOTCHAR
PWIRTX
PWRITY
PWRZI
PWRZS
PWRZT

SOFTFILL
SRFACE
STITLE
STRMLN
THREED
VELVCT

Version 2.00, Examples section
Version 2.00, Examples section
No plotted output
Version 3.00, pp. 3-151 through 3-1
Version 2.00, Examples section
Version 2.00, Examples section

Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section

Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 3.00, pp. 6-13 through 6-15

Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 3.00, p. 5-63

53

Version 3.00, pp. 5-31 through 5-40
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section

Version 3.00, pp. 4-19 through 4-23
Version 2.00, Examples section
Version 3.00, p. 6-47
Version 2.00, Examples section
Version 2.00, Examples section
Version 2.00, Examples section

*Version 2.00 = NCAR Graphics User's Guide, Version 2.00
*Version 3.00 = NCAR Graphics Guide to New Utilities, Version 3.00

Version 3.00, May 1990

TAREAS
TAUTOG
TCOLCV
TCONPA
TCONAN
TCONAQ

TCONAS
TCONRE
TCNQCI
TCNSMT
TCNSUP
TDASHC

TDASHL
TDASHS
TDASHP
TEZMAP
TEZMPA
TGFLAS

TGRIDA
THAFTO
THSTGR
TISOSR
TISOHR
TLBLBA

TPLTCH
TPWRTX
TPWRTY
TPWRZI
TPWRZS
TPWRZT

TSOFTF
TSRFAC
TSTITL
TSTRML
TTHREE
TVELVC

I

13

Installation Directions

To create the executable module for any given demo driver, use the following source
files:

· A main program that invokes the driver subroutine,

· the driver subroutine for the given utility as supplied on the distribution tape,

· the source for the higher-level utility,

* SPPS,

· a GKS package at level at least OA, and

· the low-level support routines.

When implementing any higher-level utility, be sure to read over the documentation for
that utility as supplied in the two User's Guides for any special implementation con-
siderations. For example:

· EZMAP, PWRITX, and PLOTCHAR require connecting to support data files. The
support data file for EZMAP is contained in EZMAPDAT on the distribution tape;
the support data files for PWRITX and PLOTCHAR are contained in files
PWRITXC1, PWRITXC2, PWRITXD1, and PWRITXD2 on the distribution tape.
See the documentation in the code for EZMAP for instructions on how to process the
ASCII file EZMAPDAT to create the binary file required by EZMAP. Consult the
documentation in the file PWRITXNT for creating the binary database for PWRITX
and PLOTCHAR. As noted above, PLOTCHAR supersedes PWRITX and
PWRITY and has a much simpler interface, it is recommended that PLOTCHAR be
implemented and not PWRITX and PWRITY. PWRITX and PWRITY are made
available on Version 3.00 for compatibility with previous versions of the package.

* ISOSRFHR requires a scratch file.

* DASHSUPR requires some code modification. See the code for DASHSUPR for
details on its implementation.

* If DASHSMTH is used with CONREC, then the contour lines are passed through a
smoother.

An installer should be aware of the possibility of naming conflicts between entries in
NCAR Graphics and names already on the local system. There are several entry point
names in NCAR Graphics which are particularly subject to duplication. A list of these
names is:

ANOTAT BKGND BOUND CURVE CURVE3 CURVED
DISPLA DRAWS DRAWT FENCE3 FILLIN FRAME
FRSTPT GAP GETSET GRAY GRID GTNUM
GTNUMB GTSIGN IDIOT INIT3D LINE LINE3
LINED MAPIT MAPIO MAPSAV MAPSET MINMAX
PERIM PERIM3 PLOTIT POINT POINT3 POINTS
REORD RESET SET SET3 SET3D SETER
SETI SETR TICK3 TICKS VECT3 VECTOR

NCAR Graphics Generic Package Installer's Guide14

Installation Directions

Additional Examples Available

In addition to the demo drivers for the higher-level utilities, the distribution tape also con-
tains more extensive examples of some of the utilities. Besides serving as examples, in many
cases these files serve the additional function of providing a template for user modifications
to meet specific user requirements. Most of the examples are stand alone programs. The
files containing the additional examples are:

Additional Examples Files

In the files that have multiple examples, each individual example code is separated with two
special separator lines beginning with a line of the form

NCAR-FILESTART name

and ending with a line of the form

NCARYFILE-END name

The name in the above lines is a name for the example code which is contained between the
separator lines. The two special separator lines must be stripped off before using the Fortran
code contained. It is an easy task to write a procedure that splits the master example files
into the desired individual examples.

Version 3.00, May 1990

File Contents

EAUTOG Contains 13 examples for AUTOGRAPH. The
final example requires a data file that is also sup-
plied.

ECONPA Contains 9 examples for CONPACK. These
examples all require some common code that is
also supplied.

EEZMAP Contains 10 examples for EZMAP. The final
example requires a data file that is also supplied.

EEZMPA Contains one additional example for EZMAPA.
ELBLBA Contains one additional example for ELBLBA.
EMISC Contains five miscellaneous codes. There are

codes for the color charts, for the sixteen sample
colors, and for the HSV color wheels. The code
indicating how to use BIVAR with CONPACI to
handle randomly spaced data is included as well as
a supplementary example for STITLE.

EPLTCH Contains one additional example for PLOTCHAR.
ESOFTF Contains two examples for SOFTFILL.

15

Installation Directions

User Libraries

How the files are organized and presented to the end user is pretty much up to the imple-
mentor. The following components of the package should be made available in some form
(as binary libraries, or source, or however):

1. A GKS package, level OA at minimum. This may be a commercial product, or it
may be the GKS package written by NCAR. If GFLASH or STITLE will be used at
your site, you must use either the NCAR GKS package (which contains some needed
level 2A enhancements) or a commercial package at level 2A or higher.

2. SPPS, the System Plot Package Simulator.

3. Higher-level utilities. These are the primary user interface to the package. Not all
of the utilities can be put into the same binary library because of duplication of entry
point names in the contouring family (CONRCQCK, CONREC, CONRCSPR) and the
DASH family (DASHLINE, DASHCHAR, DASHSMTH, DASHSUPR). Since CON-
PACK replaces the old contouring family and CONPACK does not have duplicate
entry point names, use it in your library unless you need the old contouring package for
compatibility with previous versions of the package.

4. User aids. The routine FINDG should be provided if users will be wanting to convert
their applications from using a pre-GKS version of the NCAR package to the current
GKS version.

5. Demo drivers and examples. Users find that it is very helpful to take the source for
the demo drivers and examples and modify them to suit their own particular needs.

6. NCAR Computer Graphics Metafile translator.

Size Considerations

It is not possible to give precise data on the memory requirements for installation of the
package, since different systems will provide different libraries, different linkers, and so on.
We can give a typical example. On a Sun 3/260 computer, the object module created for
running the CONPACK demonstration driver (sources; application driver; the CONPACK
demo TCONPA; the CONPACK and required subsidiary utilities; SPPS; NCAR's GKS
package; and the low-level support routines) is 1,171,456 bytes in size. Different utilities will
of course have different space requirements. The binary database used by EZMAP requires
587,264 bytes on a Sun, for example.

To provide an estimate of the size of metafiles created by the NCAR GKS package, the
metafile sizes, in bytes, for all of the demonstration driver plots for all of the higher-level util-
ities are listed in the following table.

NCAR Graphics Generic Package Installer's Guide16

Installation Directions

Metafile Sizes

Utility

AREAS
AUTOGRPH
CONPACK
CONRAN
CONRAQ
CONRAS

CONRCQCK
CONRCSPR
CONREC
DASHCHAR
DASHLINE
DASHSMTH

DASHSUPR
EZMAP
EZMAPA
GFLASH
GRIDAL
HAFTON

HISTGR
ISOSRF
ISOSRFHR
LABELBAR
PLOTCHAR
PWRITX

PWRITY
PWRZI
PWRZS
PWRZT
SOFTFILL
SRFACE

STITLE
STRMLN
THREED
VELVCT

CGM Size

15840
18720
47520
15840
24480
21600

17280
24480
18720
7200
7200
8640

10080
1344960

24480
41760
25920

491040

11520
38880
38880
50400

396000
95040

8640
20160
17280
5760

46080
21600

10080
14400
8640

31680

Version 3.00, May 1990

..

17

Installation Directions

Appendix A: Machine-dependent Support Routines

Following are functional descriptions of the required locally-implemented support routines.
A test suite is distributed for this package so that an implementor may verify that the imple-
mentations are correct. The routine G01MIO is needed only if files AWI and BWI (NCAR's
GKS package) are being implemented.

FUNCTION IIMACH(I)

This function is used to set up 16 machine constants:

I1MACH(1) = the standard input unit
I1MACH(2) = the standard output unit
I1MACH(3) = the standard punch unit
I1MACH(4) = the standard error message unit
I1MACH(5) = the number of bits per integer storage unit
I1MACH(6) = the number of characters per integer storage unit

Assume that integers are represented in the S-digit, base-A form:

SIGN*(X(S- 1)*A**(S- 1)+...+X(1)*A+X(0))

in which 0 .LT. X(I) .LT. A for I=0,...,S-1.

I1MACH(7) = A, the base
I1MACH(8) = S, the number of base-A digits
IIMACH(9) = A**S-1, the largest magnitude

Assume that floating-point numbers are represented in the T-digit, base-B form:

SIGN*(B**E)*((X(1)/B+. ..- X(T)/B**T))

in which 0 .LT. X(1), and EMIN .LE. E .LE. EMAX.

I1MACH(10) = B, the base

Single-precision Constants
1MACH(11) = T, the number of base-B digits
I1MACH(12) = EMIN, the smallest exponent E
I1MACH(13) = EMAX, the largest exponent E

Double-precision Constants
I1MACH(14) = T, the number of base-B digits
I1MACH(15) = EMIN, the smallest exponent E
I1MACH(16) = EMAX, the largest exponent E

NCAR Graphics Generic Package Installer's Guide18

Installation Directions

FUNCTION R1MACH(I)

This function sets 5 single-precision machine constants:

RlMACH(I) = B**(EMIN-1), the smallest positive magnitude
R1MACH(2) = B**EMAX*(1-B**(-T)), the largest magnitude
R1MACH(3) = B**(-T), the smallest relative spacing
R1MACH(4) = B**(1-T), the largest relative spacing
R1MACH(5) = LOG10(B)

FUNCTION ISHIFT(IWORD,N)

IWORD is shifted by N bits. If N > 0, a left circular shift is performed (all bits are shifted
left N bits, and the bits that are shifted out of the word to the left are shifted back into the
word at the right). If N < 0, a right end-off shift is performed (all bits are shifted right by
N bits, and the bits that are shifted out of the right of the word are lost)- if the left-most
bit is 0, then the vacated positions are filled with zeros; if the leftmost bit is 1, then the
vacated positions are undefined.

The implementor may assume that IABS(N) .LE. (word length).

FUNCTION IAND(K1,K2)

The bit-by-bit logical product of KI and K2. If K3 = IAND(K1,K2), then the i-th bit of K3
is 0 if the i-th bit of either K1 or K2 is 0; otherwise the i-th bit of K3 is 1.

FUNCTION IOR(K1,K2)

The bit-by-bit logical sum of KI and K2. If K3 = IOR(K1,K2), then the i-th bit of K3 is 0 if
and only if the i-th bit of both K1 and K2 is 0.

SUBROUTINE G01MIO (IOP, IUNIT, FNAME, IBUFF, LENGTH, IERROR)

This output routine is the central one for the metafile generator. A Fortran implementation
of this subroutine is distributed as part of the BWI file. The Fortran implementation of
G01MIO contained in BWI is correct FORTRAN 77.

Input Parameters
IOP Indicates type of operation desired:

IOP = 1, OPEN workstation for output on IABS(IUNIT). IOP = 2, CLOSE
workstation for output on IABS(IUNIT). IOP = 3, write IBUF to
IABS(IUNIT). IOP = 4, read IABS(IUNIT) into IBUF. IOP = 5, position
the record pointer to the beginning of the file. IOP = 6, position the record
pointer to the beginning of the previous record.

FNAME The filename to be used for the open operation.

IUNIT IABS(IUNIT) is the Fortran logical unit number on which IOP is to occur.

IBUFF Buffer containing data for a read or write operation.

LENGTH Length of data in IBUFF, in integer words.

Output Parameters
IERROR Error indicator that equals 0 if no errors.

Version 3.00, May 1990 19

Installation Directions

SUBROUTINE GBYTES(NPACK,ISAM,IBIT,NBITS,NSKIP,ITER)

This subroutine is used to unpack bit chunks from NPACK into the ISAM array. A portable
Fortran version of this routine is distributed, but the Fortran version is inefficient and should
be replaced with a more efficient implementation.

NPACK Address of first word of array to be unpacked. For the purposes of this subrou-
tine, NPACK is viewed as a bit stream.

ISAM Array to receive the unpacked bit chunks. They will be right-justified with
zero-fill in this array. ISAM should be dimensioned for ITER.

IBIT A bit-count offset to be used before the first bit chunk is unpacked. For example,
if IBIT=3, and NBITS=5, then 3 bits in NPACK will be skipped and the next 5
bits will be unpacked into ISAM(1).

NBITS The number of bits in each bit chunk to be unpacked. An error condition occurs
if NBITS is larger than the number of bits-per-word on the given machine.

NSKIP The number of bits to skip between each bit chunk to be unpacked. Bits are
skipped only after the first bit chunk has been unpacked.

ITER The number of bit chunks to be unpacked. For example:

CALL GBYTES(NPB,ISB,3,6,9,2)

In this call, 3 bits would be skipped at the beginning of NPB; the next 6 bits
would be unpacked into ISB(1) and right-justified with zerofill; 9 bits would be
skipped in NPB, and then the next six bits of NPB would be unpacked into
ISB(2) and right-justified with zero-fill.

SUBROUTINE SBYTES(NPACK,ISAM,IBIT,NBITS,NSKIP,ITER)

This subroutine is the reverse of GBYTES as described above.

NPACK Address of first word of array to be packed.

ISAM Array to be packed into NPACK. The right-most NBITS bits of each word will
be packed. ISAM should be dimensioned for at least ITER.

IBIT A bit-count offset to be used before the first bits are packed into NPACK. For
example, if IBIT=3, and NBITS=5, 3 bits in NPACK will be skipped before the
right-most 5 bits of ISAM(1) are packed into it.

NBITS The number of bits in each word of ISAM to be unpacked. An error condition
occurs if NBITS exceeds the word size on the given machine.

NSKIP The number of bits to skip between each bit chunk packed.

ITER The number of bit chunks to be packed. For example:

CALL SBYTES(NPC,ISB,45,6,3,2)

In this call, 45 bits would be skipped at the beginning of NPC; the right-most 6
bits of ISB(1) would be packed into NPC; 3 bits would be skipped in NPC, and
the right-most 6 bits of ISB(2) would be packed into NPC.

NCAR Graphics Generic Package Installer's Guide20

Installation Directions

Appendix B: Dumps of the Metafile from TGKSOA

Following are octal and hex dumps of the metafile produced from test driver GKSOA. The
metafile has three 1440 byte records.

Octal Dump - Record #1

Bytes dumped in octal
I

Record #1

002

040
040
040
040
122

137
001
105

122

122
025

137

111
123

111
114

131
110
123

117

122

122

125

110

116

130
072
105

107

124

123
123

137

115

000

045

040
040
040
040
137

063
267
131

117

124
110

122

115
110

120
105

072

105

103

115

123

111

120

105

026

137
107
122

114

110

110

023

123

102

000

064

040
040
040
040
107

056
007
072

115

117
105

117

120

105
124

130

103

122
122

120

110

114

114

131

110

111

117

123
111

111

105

110

105

117

000

000

040
040
040
040

113
060

104
103

101

107

122

115

114

131

025
137

117

123

111

114

105
114

105

072

105

124

124
110

123

103

131
105

124

114

000

000

040
040
040
040
123
060
105

101

116

122
123

101

105
072

110

122

115
110

120

105

131

111

130

124

122

101
110
105

110

137

072

122

061

137

000

077

040
040
040
000

060
000
106

122

032

101
110

116

130
123

105

117

120
105

124

130
072

103

137

122

123

114

111

131
026

111

115
123

023

123

000

000

040
040
040
020
101

021
101

124

110

120

105

025

137
111

122

115

114
131

026

137

103

024

122

111

110

111

103

072

110

124

101

110

110

105

000

075

040
040
040
042
055
146
125

117

105

110
131

110
107
115

123

101

105
072

110

111

117

110

117

120

105

103

137
107

105

101

124
105

105

124

000

074

040
040
040
000

055
000
114

107

122

111
072

105

122
120

110

116

130
103

105

124

115
105

115

114

131

025

107

117

122

114

110
131

122

062

000

040

040

040
040
001

126
001
124

122

123

103
123

122

105
114

105

025

137
117

122

101

120
122

101

105

072

110
105

124

123

111

137

072

123

000

000

040

040

040
040
020

105

377
032

101

110

137
111

123

105
105

131

110

107
115

123

114

114

123

116

130

124

105

122
110

110

101

123
123

110
000

000

040

040

040
040
131

122

377
110

120

105

107
115

110

113
130

072

105

122
120

110

111

105

110

025

137

122

122

115
111

105

116

131
131

105

000

000

040

040

040
040
030

123
000
105
110

131

122
120

105

026
137

103

122

105
114

105

103

130

105

110

122

111'

123
101
103

131

024

115

115

-131

000

000

040

040
040
040
116
111
000
122

111

072

105
114

131

110
123

117

123

105
105

131

030

137

131

105

117

120

110

116
137

072

110

102
102

072

000

000

040

040
040
040
103
117

021
123

103

103

105
105

072
105
103

115
110

113
130

072

110

103

072

122

115

114
105

026
105

107

105

117
117

123

000

000

040
040

040
040
101
116

277
110
137

101

113
130

123

122
122

120

105

O26
137

103

105

131

104

123

101

105

131

110
116

117

122

114
114

131

000

000

The remaining 864 bytes of record #1 are zero

Version 3.00, May 1990

Decimal

Address

0001

0017
0033
0049
0065
0081

0097
0113
0129

0145

0161
0177

0193

0209
0225

0241

0257

0273
0289
0305

0321

0337

0353

0369

0385

0401

0417

0433
0449

0465

0481

0497

0513

0529

0545

0561

.. ---- JIt ' "

21

Installation Directions

Octal Dump - Record #2

Bytes dumped in octal

Record #2 (1440 bytes total)

002 166 070 000 000 177 000 075 074 040 040 040 040 040 040 040

040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040
040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040
040 040 040 040 040 040 040 040 040 040 040 040 040 040 040 040

040 040 040 040 040 000 000 200 124 104 000 000 000 000 124 104

001 314 314 314 060 302 000 001 060 250 014 314 014 314 163 062
163 062 100 077 000 044 021 353 141 106 027 012 153 204 034 050
141 106 041 107 153 204 046 146 141 106 053 204 153 204 060 243
141 106 065 302 153 204 072 340 141 106 120 302 000 002 100 177
000 044 021 353 107 255 027 012 121 352 034 050 107 255 041 107
121 352 046 146 107 255 053 204 121 352 060 243 107 255 065 302
121 352 072 340 107 255 122 302 000 001 124 050 000 000 105 036

105 036 000 000 123 344 077 377 077 377 100 377 000 044 137 174

153 117 132 355 155 371 125 301 155 015 122 140 151 002 122 140
143 311 125 301 137 275 132 355 136 321 137 174 141 173 141 106

146 145 101 077 001 064 112 074 107 255 150 364 124 172 150 364
107 255 000 030 000 014 000 000 000 001 001 000 001 000 001 000
001 000 001 000 001 000 001 000 001 000 001 000 001 000 001 000

001 000 000 001 000 001 000 001 000 001 000 001 000 001 000 001

000 001 000 001000001000001000001 001 000 001 000 001 000

001 000 001 000 001 000 001 000 001 000 001 000 001 000 001 000
001 000 000 001 000 001 000 001 000 001 000' 001 000 001 000 001

-000 001 000 001 000 001 000 001 000 001 001 000 001 000 001 000

001 000 001 000 001 000001 000 001 000 001 000 001 000 01 000

001. 000 000 001 000 001 000 001 000 001 000 001 00001 000 001

000 001 000 001 000 001 000 001 000 001 001 000 001 000 01 00

001 000 001 000 001 000 001 000 001 000 001 000 001 000 001 000
001 000 000 001 000 001 000 001 000 001 000 001 000 001 000 001

000 001 00 1 000 01 0 001 000 001 000 001 00 0 001 000

001 000 001 000 001 000 001-000 001 000 001 000 001 000 001 000

001 000 000 001 000 001 000 001 000 001 000 001 000 001 000 001
000 001 000 001 000 001 000 001 000 001 001 000 001 000 001 000

001 000 001 000 001 .000 001 000 001 000 001 000 001 000 001 000

001 000 000 001 000 001 000 001 000 001 000 001 000 001 000 001

000 001 000 001 000 001 000 001 000 001 122 114 000 002 000 003
000 000 000 000 000 000 000 000 121 342 002 014 122 010 000 000

002 014 002 014 000 000 100 237 000 055 077 377 046 146 000 000

046 105 170 141 155 160 154 145 040 163 164 162 151 156 147 054

040 143 145 156 164 145 162 145 144 040 151 156 040 164 150 145

040 143 145 156 164 145 162 000 000 240 000 000 000 000 000 000

000 000 0 00 000000 00000 000 000 000000 000000 000 000

· The remaining 784 bytes of record #2 are zero

NCAR Graphics Generic Package Installer's Guide

Decimal
Address

0001

0017

0033
0049

0065

0081
0097

0113
0129
0145
0161
0177

0193

0209

0225
0241
0257
0273

0289
0305

0321
0337

0353

0369

0385

0401

0417

0433

0449

0465

0481
0497

0513

0529

0545
0561

0577

0593

0609

0625

0641

22

Installation Directions

Octal Dump - Record #3

Version 3.00, May 1990

Decimal
Address Bytes dumped in octal

Record #3 (1440 bytes total)

(Only the first 6 bytes of this record are significant,
the other bytes may be non-zero, but are of no consequence.)

0001 000 002 062 000 000 100

23

Installation Directions

Hex Dump - Record #1

Bytes dumped in hex

Record #1 (1440 bytes total)

003F 003D 3C20

2020 2020 2020
2020 2020 2020
2020 2020 2020

2000 1022 0001
5330 412D 2D56

3000 1166 0001
4546 4155 4C54
4152 544F 4752

4E1A 4845 5253

5241 5048 4943

5348 4559 3A53
414E 1548 4552
4558 5F47 5245

3A53 494D 504C
4845 5253 4845
524F 4D41 4E15
4D50 4C45 585F

4845 593A 434F

5054 1648 4552

4558 5F49 5441

593A 434F 4D50
4943 1448 4552

585F 524F 4D41

5452 4950 4C45

5253 4845 593A

414C 4943 1548

4849 435F 4745

4559 3A47 4F54

4816 4845 5253

SF49 5441 4C49
3A4D 4154 485F

5253 4845 593A

3113 4845 5253

5F53 4554 3200

0000 0000 0000

2020 2020

2020 2020
2020 2020
2020 2020

1059 184E
4552 5349

FFFF 0000

1A48 4552
4150 4849

4845 593A
5F47 5245

494D 504C
5348 4559
454B 1648

4558 5F53
593A 434F

4845 5253
4752 4545

4D50 4C45

5348 4559

4C49 4318

4C45 585F
5348 4559

4E15 4845

585F 524F

5452 4950
4552 5348

524D 414E

4849 435F

4845 593A

414E 1448
5359 4D42

5359 4D42

4845 593A

0000 0000

0000 0000

The remaining 864 bytes of record #1 are zero

NCAR Graphics Generic Package Installer's Guide

Decimal

Address

0001

0017
0033
0049
0065

0081
0097
0113

0129

0145

0161

0177
0193
0209

0225
0241
0257
0273

0289

0305

0321

0337
0353

0369

0385

0401
0417

0433

0449

0465

0481
0497

0513

0529

0545

0561

0225

2020
2020

2020

2020

525F
5F33
01B7

4559
524F

5254

1548
5F52
494D

5348
4950
4C45
593A

4845

5343

4F4D

5253
5249

5550

4845

4E16
585F

3A47

4552

474C

5448
5348

5313

5F53

4D42

0000

3400

2020
2020
2020

2020

474B

2E30
0744

3A43

4D41

4F47

4552
4F4D

504C

4559
5415
585F
434F

5253

5249

504C

4845

4C4C

4C45

593A

4845

4954

4F54

5348

4953

4943
4559

4845

4554

4F4C

0000

2020

2020
2020
2020
4341

4F4E
11BF
5348

435F

4341

454B

4558
3A53

4552

4352
4D50
4845
4B16

585F

3A43

4845

4359

3A44

5253

4D41

4C45
4559

1648

454E

474F

4552
4F4C

4F4C

5359

0000

0000

I

24

Installation Directions

Hex Dump - Record #2

Bytes dumped in hex

Record #2 (1440 bytes total)

0276 3800
2020 2020
2020 2020

2020 2020
2020 2020

01CC CCCC
7332 403F
6146 2147
6146 35C2
0024 11EB

51EA 2666
51EA 3AEO
451E 0000
6B4F 5AED
63C9 55C1
6665 413F

47AD 0018
0100 0100
0100 0001

0001 0001
0100 0100

0100 0001
0001 0001
0100 0100

0100 0001

0001 0001
0100 0100

0100 0001

0001 0001

0100 0100

0100 0001
0001 0001
0100 0100
0100 0001
0001 0001

0000 0000
020C 020C
2645 7861

2063 656E

2063 656E

0000 0000

003D 3C20 2020 2020 2020
2020 2020 2020 2020 2020
2020 2020 2020 2020 2020
2020 2020 2020 2020 2020
0080 5444 0000 0000 5444
0001 30A8 OCCC OCCC 7332
11EB 6146
2666 6146

3AE0 6146
170A 51EA

2B84 51EA
52C2 0001
3FFF 3FFF
55C1 6DOD

5AED 5ED1
4A3C 47AD
0000 0001
0100 0100
0001 0001
0001 0001
0100 0100

0001 0001
0001 0001
0100 0100

0001 0001
0001 0001

0100 0100

0001 0001
0001 0001

0100 0100

0001 0001
0001 0001
0100 0100

0001 0001
0001 0001

0000 51E2
409F 002D

6C65 2073

7265 6420

7200 OOAO

0000 0000

170A
2B84
50C2

1C28

30A3

5428
40FF

5260
5F7C

68F4
0100

0100

0001

0100

0100

0001

0100

0100

0001

0100

0100

0001

0100

0100

0001
0100
0100

0001
524C

020C

3FFF

7472

696E

0000

0000

6B84 1C28
6B84 30A3
0002 407F

47AD 2147

47AD 35C2
0000 451E
0024 5F7C
6902 5260
617B 6146
547A 68F4
0100 0100
0100 0100
0001 0001
0100 0100
0100 0100

0001 0001
0100 0100
0100 0100

0001 0001

0100 0100

0100 0100
0001 0001

0100 0100

0100 0100

0001 0001
0100 0100
0100 0100

0001 0001
0002 0003

5208 0000

2666 0000
696E 672C

2074 6865

000 0000

0000 0000

The remaining 864 bytes of record #2 are zero

Version 3.00, May 1990

Decimal

Address

0001

0017
0033

0049

0065

0081

0097
0113
0129
0145

0161

0177
0193
0209

0225

0241
0257

0273

0289

0305

0321

0337

0353

0369

0385

0401

0417

0433

0449

0465
0481

0497
0513

0529
0545

0561

0577

0593

0609

0625

0641

007F

2020
2020

2020
2000

30C2
0024
6B84
6B84

47AD

47AD

47AD
53E4
6DF9

5FBD

0134
000C

0100

0001

0001
0100

0001
0001

0100

0001

0001

0100

0001

0001

0100

0001
0001
0100

0001
0001

0000

0000

6D70

7465

7465

0000

I

i --I -- - - - - -

w P P -

25

Installation Directions

Hex Dump - Record #3

Decimal

Address

Record #3 (1440 bytes total)

(Only the first 6 bytes of this record are significant,
the other bytes may be non-zero, but are of no consequence.)

0002 3200 00400001

NCAR Graphics Generic Package Installer's Guide

I

Bytes dumped in hex

26

Section m: Release Contents

Section mI: Release Contents

Bookkeeping .. 31
FNAM ES .. 31
HEADER 31

NCAR GKS OA 31
A W I 31
BWI ... 31

Required Support Routines 31
SUPPORT 31
L O C A L ... 32

Implementation Tools .. 32
IM PLTEST 32
FIN D G .. 33

Utilities .. 33
AREAS ... 33
AUTOGRPH .. 33
COLCONV 33
CONPACK 33
CO N RA N 33
CONRAQ 33
CONRAS 34
CONREC .. 34C O N R C Q CK .. 34

CONRCSPR 34
DASHCHAR .. 34
DA SH LIN E .. 34
DASHSMTH ... 34
D A SH SU P R 34
E ZM A P 34
E ZM A PA . .. 34
G F LA SH 34
GRIDAL .. 34
HAFTON 34
HISTGR 334
ISOSRF 34
ISOSRFHR 34AISOSRFHR ... 34
LABELBAR .. . 34
PLOTCHAR .. 35

PWRITY .. . 35
PWRZI ... 35P W R Z I ... 35
P W R Z S .. 35PW R Z .. 35

SOFTFILL 35
Version 3.00, May 1990 27

SRFACE 3.. 3.... 35
STITLE 35.. 35
STRMLN .. 35
TH REED 35
VELVCT 35

Utility Support Files .. 35
AGUPW RTX 35
BNCHMK 335
C O N C O M 36
C O N T E R P 36
SPPS 36
TAGUPW 36
TA R EA S 36
TAUTOG 36
T C N Q C K .. 36
T C N SM T ... 36
TCNSUP 36
TCO LCV 36
T CO N A N .. 36

TCONAS 36
TCO N PA .. 36
T C O N R E ... 36
T D A SH C ... 36
TDASH L 36
T D A SH P ... 36
T D A SH S ... 36
TEZM AP 36
T E Z M P A .. 36
T G F LA S .. 36
TGRIDA 36
THAFTO 36
T H ST G R ... 36
TISOHR 37
TISOSR 37
TLBLBA 37
TPLTCH 37
T PW R T X 37
TPWRY .. 37
TPW R ZI 37
TPW RZS ·.;... 37

TSO FTF 37

TSFTTL 37T SR F A C ... 37

T ST R M L ... 37
TTHREE .37TV ELVC 37
T V E LV C 37

NCAR Graphics Generic Package Installer's Guide28

CGM Translator 37
CGMTRANS ... 37
TRNSPPRT .. 37

Databases 38
E ZM A PD A T .. 38
FONT1 38
FO N T 2 .. 38
FONT339
FO N T 4 39
FO N T 5 .. 39
FO N T 6 .. 39
FO N T 7 ... 39
FO N T 839
FONT9 39
FO N T 10 ... 39
F O N T 11 ... 39
FONT12 39
FONT13 39
FO N T14 ... 39F O N T 14 ... 39
FO N T 15 ... 39
FONT16 39
F O N T 17 ... 39
FONT18 39
FO N T19 .. 39
FO N T 20 39
G R A PH C A P .. 39
PWRITXC 39
PWRITXC2 39
PW R ITX D 1 .. 39

RANFDATXD2 39

FRANTC 39
GRA HC 40

Database Initializers 3940
PWRITXNT. 40

E x am p les . .. 40
E A U TO G .. 40
E C O N PA ... 40
EE ZM A P 40
EEZMPA ... 40
ELBLBA 40

ESOFTF ... 40
ESOFTFE... . 40

Version 3.00, May 1990 29

Release Contents

This section gives brief descriptions for all files on the distribution tape. The files are
separated into logical groupings. In the list that follows, the titles beginning on the left mar-
gin indicate the groupings (for example, "Required Support Routines," below); the titles at
the first level of indentation correspond to the filenames on the distribution tape (for exam-
ple, "SUPPORT," below); the boldface titles at the second level of indentation correspond to
routines of interest in the files (for example, "ENCD," below).

Unless otherwise noted, assume that all software in the NCAR Graphics package is written
in FORTRAN 77 and adheres strictly to that standard.

Included in the description of a file is a list of other files needed to properly assemble and run
that file. However, the routines in the files LOCAL, SUPPORT, and SPPS are used
throughout the package, and thus it is assumed that they will be available to every routine.

The two files in the Bookkeeping group below are the first two files on the tape. They con-
tain information on how the files are ordered on the tape and when the tape was created.

Bookkeeping

FNAMES This file contains the names of all files on the distribution tape in the
sequence in which they appear on the tape. Each name is on a separate
80-character line and is in uppercase ASCII with blank fill.

HEADER This is a two-line file identifying the version of the package and the date
and time the original distribution tape was created.

NCAR GKS OA

AWI Standing for "Above Workstation Interface," AWI codes up the parame-
ters from the various GKS calls into a single common block and then,
when appropriate, invokes BWI (which follows below).

BWI Standing for "Below Workstation Interface," upon being invoked by AWI,
BWI takes the coded parameters in a single common block and generates
the appropriate CGM instructions.

Required Support Routines

SUPPORT This file contains a collection of FORTRAN 77 routines required by code
throughout the package. It should be implemented in all cases.

ENCD: Used by the VELVCT and CONREC utilities to generate ASCII
labels from numeric values by encoding them in an appropriate format.

Version 3.00, May 1990 31

Release Contents

ERPRT77: An error handling package, adapted from the non-
proprietary part of the PORT Mathematical Subroutine Library from Bell
Labs.

Q8QST4: This routine is distributed as a dummy. It is called from most
user entry points, and it may be used for gathering usage statistics.

MSKRV1, MSKRV2, MSBSF1, MSBSF2: One-dimensional and
two-dimensional smoothers.

LOCAL This file contains examples of the lowest level machine-dependent subrou-
tines that need to be implemented on each machine. Fortran and/or C
versions of these routines are provided as samples of what should be done,
but it is recommended that they be implemented in assembly language
since they are used extensively by the entire package. It is important to
realize that the supplied routines are examples only and are not neces-
sarily meant to run on your machine. If you try to use them on your
machine, care must be taken to make sure that the functional descriptions
in Appendix A of the "NCAR Graphics Installation Directions" section of
this manual are satisfied.

IOR: A function that results in the bit-by-bit logical sum of its two argu-
ments.

IAND: A function that results in the bit-by-bit logical product of its two
arguments.

ISHIFT: A function that, based on the integer value of its second argu-
ment, N, will perform on its first argument a left circular shift by N bits if
N is positive, or right end-off shift by N bits if N is negative.

GBYTES: Unpacks bits from a bit-string given in an array, and puts
them into another array.

SBYTES: Packs bits from an array into another sequential array.

I1MACH: A function that returns 1 of 16 machine-dependent integer-
valued constants.

R1MACH: A function that returns 1 of 5 machine-dependent real-valued
constants.

Implementation Tools

IMPLTEST TGKSOA: A program that generates an example of five GKS output
primitives.

TLOCAL: A program that tests correctness of implementation for the
required local routines IAND, IOR, ISHIFT, GBYTES, and SBYTES.

NCAR Graphics Generic Package Installer's Guide32

Release Contents

TPLOT: A program that produces a single simple plot that depends
only on GKS and SPPS. The code contains octal and hex dumps of the
metafile that should be produced.

TSPPS: A program that extensively tests all SPPS (System Plot Pack-
age Simulator) entries.

FINDG A program for locating all calls to entries of pre-GKS NCAR Graphics,
which may require modification to run in the GKS package.

Utilities

All the higher-level utilities files are listed here. However, with the release of Version 3.00,
several of these utilities are superseded by new utilities in Version 3.00. The new utilities
duplicate the functionality of certain older utilities, and, in different utilities, offer additional
functionality, color capabilities, or easier-to-use interfaces. Therefore, we urge you to urge
your users to use the new utilities whenever possible. The files for the "replaced" utilities are
provided here for backward-compatibility only.

BIVAR, public domain software that interpolates from random data to gridded data, is
included in the Version 3.00 release. We suggest that users use BIVAR in combination with
CONPACK to produce contours from random data. The BIVAR/CONPACK combination
supersedes the use of CONRAN, CONRAQ, and CONRAS, three utilities that are known to
contain elusive bugs. The file EMISC contains BIVAR as well as an example showing how to
use BIVAR with CONPACK. It is documented internally in the file.

AREAS Creates an area map from a set of edges that divide a two-dimensional
plane into areas. The area map may then be used in a number of ways,
such as in conjunction with EZMAPA to create solid-colored maps.

AUTOGRPH

COLCONV

CONPACK

CONRAN

CONRAQ

Draws and annotates curves or families of curves. Requires DASHCHAR
(or DASHSMTH, if smoothed curves are desired). This utility is also
referred to as AUTOGRAPH.

Converts color specifications given in one color space to another. Options
include Hue, Lightness, and Saturation (HLS), Red, Green, Blue (RGB),
Hue, Saturation, Value (HSV), and the YIQ space. New in Version 3.00.

Draws black-and-white or color contour plots from regularly spaced (grid-
ded) data. CONPACK allows for easy mapping of output, particularly
onto an EZMAP background. New in Version 3.00. Supersedes and
upgrades CONREC, CONRCQCK, and CONRCSPR. In combination
with BIVAR, also supersedes CONRAN, CONRAQ, and CONRAS.

Contours irregularly spaced data, labeling the contour lines. Requires
DASHCHAR (or DASHSMTH, if smoothed curves are desired). Also
requires CONCOM and CONTERP. Superseded by the combination of
BIVAR and CONPACK.

Like CONRAN, but smaller and faster because it has no labeling capacity.
Also requires CONTERP. Superseded by the combination of BIVAR and
CONPACK.

Version 3.00, May 1990 33

Release Contents

CONRAS

CONREC

CONRCQCK

CONRCSPR

DASHCHAR

DASHLINE

DASHSMTH

DASHSUPR

EZMAP

EZMAPA

GFLASH

GRIDAL

HAFTON

HISTGR

ISOSRF

ISOSRFHR

LABELBAR

Like CONRAN, but bigger and slower because lines are smoothed and
crowded lines are removed. Also requires CONCOM and CONTERP.
Superseded by the combination of BIVAR and CONPACK.

Contours two-dimensional arrays, labeling the contour lines. Requires
DASHCHAR (or DASHSMTH, if smoothed contour lines are desired).
Superseded by CONPACK.

Like CONREC, but faster and smaller because contours are unlabeled.
This package shares entry names with CONREC, so they cannot both be
included in a binary library. This utility is also referred to as
CONRECQCK. Superseded by CONPACK.

Like CONREC, but bigger and slower because contours are smoothed and
labeled, and crowded lines are removed. This package shares entry names
with CONREC, so they cannot both be included in a binary library. This
utility is also referred to as CONRECSPR. Superseded by CONPACK.

Provides a dashed line package with labeling capability.

Like DASHCHAR, but smaller and faster because it has no labeling capa-
city. This package shares entry names with DASHCHAR, so they cannot
both be included in a binary library.

Like DASHCHAR, but bigger and slower because lines are smoothed.
This package shares entry names with DASHCHAR, so they cannot both
be included in a binary library.

Like DASHCHAR, but bigger and slower because lines are smoothed and
crowded lines are removed. This package shares entry names with DASH-
CHAR, so they cannot both be included in a binary library.

Plots continental, U.S. state, and world political outlines according to one
of ten projections. Requires the continental outline database
EZMAPDAT.

Allows EZMAP output to be redirected to routines in the AREAS pack-
age. EZMAPA makes it possible to create solid-colored world maps and
to draw lines on a map, masked by the areas created by the area map
(lines of latitude and longitude omitted over land masses, for example).

Provides for a limited picture segmentation capability. Parts of pictures
can be saved in buffers and inserted into any subsequent picture.
GFLASH duplicates the functionality of the FLASH package in the pre-
GKS version of NCAR Graphics. New in Version 3.00.

Provides for drawing graph paper, backgrounds, perimeters, and so on.

Creates halftone (gray scale) pictures from a two-dimensional array.

Provides a general purpose package for drawing histograms (bar charts).

Creates iso-surfaces (with hidden lines removed) from a three-dimensional
array. You may optionally include PWRZI for labeling the plot.

Creates iso-surfaces (with hidden lines removed) from a high resolution
three-dimensional array.

Draws a rectangular bar that may be filled, using color or patterns, and
labeled to serve as a key for a filled plot. New in Version 3.00.

NCAR Graphics Generic Package Installer's Guide34

Release Contents

PLOTCHAR

PWRITX

PWRITY

PWRZI

PWRZS

PWRZT

SOFTFILL

SRFACE

STITLE

STRMLN

THREED

VELVCT

Provides for producing characters at various quality levels. PLOTCHAR
supersedes P\VRITX and PWRITY and provides a much simpler inter-
face. The database files PWRITXC1, PWRITXC2, PWRITXD1, and
PWRITXD2 are required as for PWRITX, see below. New in Version
3.00.

Draws characters using the Hershey database. Requires that the database
files PWRITXC1, PWRITXC2, PWRITXD1, and PWRITXD2 be run
first through the program PWRITXNT to turn card-image fonts into
binary form. Superseded by PLOTCHAR.

Draws simple software characters. Superseded by PLOTCHAR.

Plots characters in three-dimensional space. It is used only with the util-
ity ISOSRF.

Plots characters in three-dimensional space. It is used only with the util-
ity SRFACE.

Plots characters in three-dimensional space. It is used only with the util-
ity THREED.

Fills polygons in software using parallel solid lines, rows of dots, polymark-
ers, or rows of characters. Can do cross-hatching, dot and line patterns
may be specified, and color may be used. New in Version 3.00.

Creates a three-dimensional display of a function of two variables (with
hidden lines removed). You may optionally use PWRZS for labeling the
plot.

Produces scrolled or stationary movie titles. Color is available as well as
fade in and fade out. This package replaces and augments the SCROLL
package in the pre-GKS version of NCAR Graphics. New in Version 3.00.

Plots a representation of any two-dimensional vector field for which
planar vector components are given on a regular rectangular lattice,
displaying both field direction (via lines of flow containing arrowheads and
feathers) and field magnitude (based on distance between those flow lines).

Provides three-dimensional line-drawing capabilities, with entry points
equivalent to the line drawing entry points of the System Plot Package
Simulator. You may optionally use PWRZT for labeing the plots.

Creates two-dimensional velocity field displayed by drawing arrows from
the data locations.

Utility Support Files

AGUPWRTX

BNCHMK

Version 3.00, May 1990

A version of the AGPWRT subroutine of the AUTOGRAPH package.
AGUPWRTX allows AUTOGRPH to use the character set from the
PWRITX utility.

A program that generates six complex examples of usage of the higher-
level utilities. Particularly examples are provided for overlaying the out-
put from one higher-level utility onto another. It calls the following utili-
ties: GRIDAL, AUTOGRPH, CONREC, DASHCHAR, VELVCT, and
EZMAP. Additionally, it requires the database file RANFDAT, which is

35

Release Contents

CONCOM

CONTERP

SPPS

TAGUPW

a separate file on the tape. This program requires internal modifications
before use; please read the documentation in the code for instructions.

A set of routines used by the CONRAN and CONRAS packages.

A set of routines used by the CONRAN, CONRAQ, and CONRAS pack-
ages.

Standing for the "System Plot Package Simulator," this collection of rou-
tines simulates the pre-GKS NCAR System Plot Package by containing
the same entry points, which in turn call the appropriate GKS routines to
accomplish the given task. These routines are used extensively by the
higher-level utilities. For users of the pre-GKS package, these routines
should prove helpful in the conversion to the new GKS-based package.
New users should find some of the entry points convenient; for example,
SPPS provides for automatic logarithmic scaling of plots, whereas the
GKS standard does not. The FLUSH entry in the pre-GKS package has
been given the name SFLUSH in SPPS, since FLUSH conflicted with a
system entry of that name on many systems.

Demonstration subroutine for the use of AGUPWRTX with
AUTOGRPH.

TAREAS

TAUTOG

TCNQCK

TCNSMT

TCNSUP

TCOLCV

TCONAN

TCONAQ

TCONAS

TCONPA

TCONRE

TDASHC

TDASHL

TDASHP

TDASHS

TEZMAP

TEZMPA

TGFLAS

TGRIDA

THAFTO

THSTGR

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

for the AREAS utility.

for the

for the

for the

for the

for the

for the

for the

for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

AUTOGRPH utility.

CONRCQCK utility.

CNRCSMTH utility.

CONRCSPR utility.

COLCONV utility.

CONRAN utility.

CONRAQ utility.

CONRAS utility.

CONPACK utility.

CONREC utility.

DASHCHAR utility.

DASHLINE utility.

DASHSUPR utility.

DASHSMTH utility.

EZMAP utility.

EZMAPA utility.

GFLASH utility.

GRIDAL utility.

HAFTON utility.

HISTGR utility.

NCAR Graphics Generic Package Installer's Guide36

Release Contents

TISOHR

TISOSR

TLBLBA

TPLTCH

TPWRTX

TPWRY

TPWRZI

TPWRZS

TPWRZT

TSOFTF

TSTITL

TSRFAC

TSTRML

TTHREE

TVELVC

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine for the

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

Demonstration subroutine

for the

for the

for the

for the

for the

for the

for the

for the

for the

for the

ISOSRFHR utility.

ISOSRF utility.

LABELBAR utility.

PLOTCHAR utility.

PWRITX utility.

PWRITY utility.

PWRZI utility.

PWRZS utility.

PWRZT utility.

SOFTFILL utility.

STITLE utility.

SRFACE utility.

STRMLN utility.

THREED utility.

Demonstration subroutine for the VELVCT utility.

CGMTRANS

TRNSPPRT

A program that reads either a pre-CGM NCAR metafile or an NCAR
CGM and translates it into plot instructions for a given graphics device.

This file contains examples of the machine-dependent subroutines that
need to be implemented on each machine for either the CGM translator or
for the GRAPHC or FONTC programs. Fortran and/or C versions of
these routines are provided as samples.

ARGGET: Get the requested argument from the command line.

BCLRED: Close a file opened by BOPRED for sequential binary read-
ing.

BINCLS: Close a file opened for sequential binary writing. The file was
opened by BINOPN.

BINOPN: Open a file for sequential binary writing.

BINRED: Transfer "COUNT" Fortran integers from an unformatted file
that has been opened by BOPRED.

BINWRI: Transfer the contents of a buffer to the named file. Use a
sequential unformatted write to perform the transfer. The file was opened
by BINOPN.

Version 3.00, May 1990

CGM Translator

37

Release Contents

BOFRED: Open a binary fontcap file for sequential unformatted read-
ing. The file was created by the fontcap preprocessor using the local rou-
tine BINOPN.

BOPRED: Open a binary graphcap file for sequential unformatted read-
ing. The file was created by the graphcap preprocessor using the local rou-
tine BINOPN.

CHRCLS: Close a file opened for sequential character reading. The file
was opened by CHROPN.

CHROPN: Open a file for sequential unformatted reads. The file con-
tains characters with a maximum of 80 characters per record.

CHRRED: Transfer from a character file to a Fortran character array.
The file was opened by CHROPN.

FLUS: Dump device-dependent instructions.

FRPRMP: Send the "frame finished" prompt and wait for response
(used only if the device is declared NON-BATCH).

IARGCT: Used only when optional command line processing is done,
this routine returns as the function result the number of arguments on the
command line.

INTHDL: Handles user interrupts.

MSSG: Puts out a message on the error unit that corresponds in format
to the Status Message part of the "NCAR Computer Graphics Metafile
Translator" section of this manual.

MTOPEN: Open a file for direct unformatted reading of 1440 byte
records. The file is a metafile generated by BWI (see GKS OA above).

READIT: Read a character string from standard input and put it into a
FORTRAN 77 CHARACTER*1 array.

RECRED: Read in a metafile record using direct access I/O. The
metafile is opened by the MTOPEN routine.

WRITIT: Write a character string to standard output.

Databases

EZMAPDAT Continental outlines database for the EZMAP utility.

FONT1 Fontcap file for the default font used by the CGM interpreters.

FONT2 Fontcap file for the Hershey Cartographic Roman font.

NCAR Graphics Generic Package Installer's Guide38

Release Contents

FONT3

FONT4

FONT5

FONT6

FONT7

FONT8

FONT9

FONT10

FONTll

FONT12

FONT13

FONT14

FONT15

FONT16

FONT17

FONT18

FONT19

FONT20

GRAPHCAP

PWRITXC1

PWRITXC2

PWRITXD1

PWRITXD2

RANFDAT

FONTC

Fontcap file for the Hershey Cartographic Greek font.

Fontcap file for the Hershey Simplex Roman font.

Fontcap file for the Hershey Simplex Greek font.

Fontcap file for the Hershey Simplex Script font.

Fontcap file for the Hershey Complex Roman font.

Fontcap file for the Hershey Complex Greek font.

Fontcap file for the Hershey Complex Script font.

Fontcap file for the Hershey Complex Italic font.

Fontcap file for the Hershey Complex Cyrillic font.

Fontcap file for the Hershey Duplex Roman font.

Fontcap file for the Hershey Triplex Roman font.

Fontcap file for the Hershey Triplex Italic font.

Fontcap file for the Hershey Gothic German font.

Fontcap file for the Hershey Gothic English font.

Fontcap file for the Hershey Gothic Italian font.

Fontcap file for the Hershey Math Symbols font.

Fontcap file for the Hershey Symbol Set (Part 1) font.

Fontcap file for the Hershey Symbol Set (Part 2) font.

Master file of all graphcaps for the CGM translator.

Part I of card image representation of PWRITX Complex font digitiza-
tion. Must be run through the PWRITXNT preprocessor to convert it to
a binary form, which the PWRITX utility expects.

Part II of card image representation of PWRITX Complex font digitiza-
tion. Must be run through the PWRITXNT preprocessor to convert it to
a binary form, which the PWRITX utility expects.

Part I of card image representation of PWRITX Duplex font digitization.
Must be run through the PWRITXNT preprocessor to convert it to a
binary form, which the PWRITX utility expects.

Part II of card image representation of PWRITX Duplex font digitization.
Must be run through the PWRITXNT preprocessor to convert it to a
binary form, which the PWRITX utility expects.

Data base for the demo plots produced form the BNCHMK file.

Preprocessor for the fontcap database file to convert them into a binary
form needed by the CGM translator. Also required are several routines
from the TRNSPPRT file.

Version 3.00, May 1990

Database Initializers

39

Release Contents

GRAPHC

PWRITXNT

Preprocessor for the graphcap database file to convert them into a binary
form needed by the CGM translator. Also required are several routines
from the TRNSPPRT file.

Preprocessor for the PWRITX database files PWRITXC1, PWRITXC2,
PWRITXD1, and PWRITXD2 to convert them into binary PWRITX
database.

Examples

These files contain additional examples for the utilities listed. See the documentation for
each utility for the output.

EAUTOG

ECONPA

EEZMAP

EEZMPA

ELBLBA

EMISC

EPLTCH

ESOFTF

Extensive examples for the AUTOGRAPH utility. (These appear in the
manual AUTOGRAPH: A Graphing Utility.)

Extensive examples for the CONPACK utility.

Extensive examples for the EZMAP utility.

Additional example for the EZMAPA utility.

Additional example for the LABELBAR utility.

Miscellaneous examples: Examples for producing various color charts; a
BIVAR example illustrating how to convert randomly-spaced data to grid-
ded data for use with CONPACK, and an STITLE example.

Additional example for the PLOTCHAR utility.

Additional examples for the SOFTFILL utility.

NCAR Graphics Generic Package Installer's Guide40

Section IV: NCAR Computer Graphics Metafile
Translator

Section IV: NCAR Computer Graphics Metafile Translator

B ackground .. 43
The Metafile Standard ... 44
The NCAR CGM Translator 45
Installation ... 46

Installation Steps ... 46

G ra p h ca p F iles ... 49
Supported Graphcaps in Version 3.00 51
How the CGM Translator Works .. 53
Formatting and Encoding Coordinates .. 54

The Formatting Process 54
T he Encoding Process ... 56

W orkstation Initializations .. 57
Workstation Drawing Space .. 58
D evice V ector C ounts .. 62
D evice C olor C apabilities ... 63
D evice W indow .. 68
L ine C ontrol ... 69
L ine W idths ... 72
Marker Control 74
Graphical Text Control ... 75
B undle T ables .. 75
P olygon C ontrol ... 78
R aster C ontrol ... 81

Fontcap Files ... 86
C haracter C lass ... 86
F ont C lass ... 87
Coordinate Class .. 88
C haracter Stroke C lass .. 90
F ont T ables .. 92

Required Locally Im plem ented Routines 99
Routines Required by the Translator ... 99
Routines Required by Fontcap and Graphcap Processors 103

LaserJet Drivers .. 106
Available Graphcaps for LaserJet Printers 107

Status M essages ... 109

Appendix A: Translator ASCII Codes 111

Version 3.00, May 1990 41

NCAR Computer Graphics Metafile Translator

Background

A "metafile" or a "graphics metafile" is a file of encoded graphics instructions. Execution of
applications programs that access NCAR Graphics produces metafiles. For example, execu-
tion of the GKS POLYLINE instruction for drawing a line segment will result in the encod-
ing of that command and the appropriate coordinate positions, and the placing of this encod-
ing into the output metafile. The encoded commands in most metafiles are "device-
independent" in that they are not specific to any particular graphics device. On the other
hand, each graphics output device, such as a graphics terminal like the TEKTRONIX 4107,
or a film recorder, such as the Dicomeds at NCAR, is driven by a special command set asso-
ciated with that given device. A metafile translator is a program module that will decode the
generic device-independent instructions in a metafile and convert them to the device-specific
commands for driving a given graphics output device. Thus we speak of the t4107 transla-
tor, or the Dicomed translator.

Metafiles have two primary values in a complex computing environment: (1) simplification,
and (2) archivability and transportability.

When a computing environment contains a variety of computers and graphics peripherals, it
is faced with the problem of providing a uniform graphics package running on m different
hosts and driving n different output devices. The basic desire is to create graphics on any of
the hosts, and plot the results on any of the output devices. One way to proceed would be to
provide a plotting application for each host/device pair. Another way to proceed is to create
a generic metafile on the host (the same application run on different hosts will produce ident-
ical metafiles), and then invoke a metafile translator to drive a given output device (at most
one translator for each device). Thus, the metafile step reduces the complexity from produc-
ing m x n separate packages to producing one portable application running on all hosts and
a metafile translator for each output device.

In the NCAR software, simplification has been taken one step further with the advent of a
table-driven translator. For any output device which has user access to its native command
set, it is necessary only to complete filling in a device description table (called a graphcap
file); the master translator will configure itself appropriately for a given output device, given
the graphcap file for that device. Providing a graphcap for a particular device may not be
trivial in general, but it is much easier than writing a special translator for a given device.

Another value of metafiles is for archivability and transportability. If users have sets of plots
that they want to store for later examination, the plots can be captured in a metafile. Also,
if they want to create plots at:one site, and then view them somewhere else, the plots can be
transported via a metafile. Many NCAR scientists and visitors use this feature, which is of
course dependent on their having access to a translator at their remote site. A variant on
the transportability of metafiles is their use as a picture storage medium in a batch environ-
ment where the host has no direct link to drive the output device.

There are two primary drawbacks of having a metafile step between the picture generation
and viewing. One drawback is overhead - given a host/plotting device pair, it would be
more efficient if the host generated the device instructions for the given device directly and
displayed the result. In exchange for simplicity and flexibility, we have compromised

Version 3.00, May 1990 43

CGM Translator

efficiency. Also, metafiles are limited in interactive work - there is no support for graphi-
cal, input for example.

The Metafile Standard

The concept of metacode as-meaning a device-independent graphic picture -encoding dates
from the early 1970s. Over the years "metacode" has come to be internationally known as
"metafile."

As the concept of metafile obtained importance in the international graphics community, it
became clear that national and international standards were desirable. One of the main uses
of metafiles is to transport picture encodings from one site to another, and if everybody has
their own definition for a metafile, going from one site to another requires transformation
from one metafile format to another. Complete transformation from one metafile format to
another can be difficult or impossible, since the functionality of one format may be consider-
ably different from that of another.

In 1986, ANSI (the American National Standards Institute) accepted the CGM (Computer
Graphics Metafile) as a national standard. The ANSI committee that produced the CGM
standard contained representatives from several dozen organizations, including almost all of
the major computing vendors and government labs. The CGM has also been accepted as an
ISO (International Standards Organization) standard.

The CGM is a standard that defines a set of basic elements for a computer graphics inter-
face. The CGM is what is known as a "picture capture" metafile. The conceptual structure
of the metafile is one of a sequence of distinct self-contained pictures. This is to be con-
trasted with an "audit trail" metafile (such as the one described in Annex E of the GKS stan-
dard), which is a transcription of a graphics session. Pictures can be extracted at random
from a CGM and plotted, whereas to plot a picture from a GKS metafile, the user has to
sequentially process all instructions in the metafile prior to the desired picture before plotting
the desired picture. NCAR adopted the CGM as its standard metafile. This will replace the
earlier pre-CGM NCAR metafile definition which dates to the early 1970s. The CGM
specifies three alternative encoding schemes for the defined elements. The encoding scheme
that has been adopted at NCAR is the binary encoding. Of the three possible encoding
schemes, the binary encoding is the most machine efficient. The physical record structure
for a CGM file is not specified in the CGM standard. NCAR has specified a record structure
for the NCAR CGM that is similar to the record structure of pre-CGM NCAR metafiles; it
is the record structure only that makes NCAR's CGM definition specific to NCAR.

It should be emphasized that the CGM is a distinct and separate standard from the
GKS standard, which is an ANSI and ISO standard specifying a set of basic functions for
computer graphics programming. The CGM standard is-not totally~ unrelated to the GKS
standard, however. It is the case that the CGM elements capture much of the functionality
of the GKS functions, but far from all - the picture segmentation of GKS is absent from
the current set of CGM elements, for example. In addition, the CGM contains many ele-
ments that are not a part of the GKS standard the CIRCULAR ARC elements, for exam-
ple.

The CGM offers two significant advantages over the old NCAR metafile: it standardizes the
instruction set, and it supports several dozen commands instead of just a few. The CGM
supports raster interfaces, polylines, bundled attributes, and filled areas.

NCAR Graphics Generic Package Installer's Guide44

CGM Translator

There are over 90 elements in the CGM standard; the NCAR CGM does not support all of
these elements. For a detailed description of the NCAR CGM, see Section V of this manual.
The CGM standard itself is contained in the document ANSI X3.122-1986, Information Pro-
cessing Systems, Computer Graphics Metafile for the Storage and Transfer of Picture
Description Information. This document is available from:

ANSI
1430 Broadway
New York, NY 10018
Phone: (212) 354-3300

The NCAR CGM Translator

NCAR Graphics creates, on output, a CGM file (conforming to the NCAR-specific record
structure). To plot the encoded pictures in an NCAR CGM, SCD has written a metafile
translator. This program takes as input a Computer Graphics Metafile and from it generates
plot instructions specific to a particular computer graphics hardware device, such as a
TEKTRONIX 4107 graphics terminal. The NCAR metafile translator is capable of accept-
ing either the old NCAR metafiles (now officially known as pre-CGM NCAR metafiles), or
NCAR CGM files. The GKS feature of pattern filling is not supported in this version of the
NCAR CGM translator. Version 3.00 of the Fortran translator does support software simu-
lation of hardware fill for devices that do not have hardware fill. The Polygon Control sec-
tion under the "Graphcap Files" heading later in this section of the manual describes the key-
words controlling polygon fill. The default limit for the maximum number of vertices
accepted for software simulation of polygon fill is 12000. Software fill simulation can be time
consuming. Facilities exist for disabling this feature -see the Polygon Control section
under the "Graphcap Files" heading. All features (except pattern fill) that may be generated
by the NCAR GKS OA package are supported.

The NCAR CGM translator is table-driven in the sense that, to produce instructions for a
specific output device, it reads in a device description table for that device and configures
itself appropriately. It should be emphasized at this time that the device description tables
apply only to devices that allow user access to the native command set most entries in the
table are commands specific to the output device. If the interface to a graphics device is a
software interface, such as the subroutine-call interface to many workstations, then
modifications to the translator code will be required. The C version of the NCAR CGM
translator, distributed with the UNIX, VMS, and NCAR View packages, is designed to
accommodate subroutine-call interfaces. As well as reading in a device description table, the
translator reads in font tables describing the stroke sequences necessary to draw characters
in the specified fonts. The device description tables are called graphcap files, and the font
tables are called fontcap files. The graphcap and fontcap files read in by the translator are
binary files that have been processed from original ASCII files. .Ther original files are human-
readable, whereas the binary files are only machine readable. To bring a new output device
online, you need to fill in the blanks in the master ASCII graphcap form provided in the
GRAPHCAP file on the distribution tape, or use a pre-existing device-specific graphcap from
the GRAPHCAP file on the distribution tape if that is possible. This ASCII graphcap must
be passed through the graphcap preprocessor (file GRAPHC on the distribution tape) in
order to obtain the binary version of the graphcap as required by the translator. For details
on how to create new graphcaps, see "Graphcap Files" later in this section. The situation
with fontcap files is analogous to that for graphcaps. To create new font tables, see
"Fontcap Files" later in this section. The ASCII fontcap files have to be processed by the

Version 3.00, May 1990 45

CGM Translator

fontcap preprocessor (file FONTC on the distribution tape) to obtain the binary version
required by the translator. There are 41 supported graphcaps on the Version 3.00 distribu-
tion tape. The graphcaps are summarized in the "Supported Graphcaps in Version 3.00"
table under the "Graphcap Files" heading later in this section of the manual.

Installation

The NCAR CGM translator consists of three major programs and two support files. They
are as follows:

Programs: fontcap preprocessor
graphcap preprocessor
CGM translator

Data Files: graphcap file
fontcap file

The CGM translator is the program which will, after correct installation, read CGM
metafiles and create specific graphic device commands. The files on the distribution tape
that pertain to the implementation of the translator are:

CGMTRANS Fortran source for the Fortran NCAR CGM translator.
GRAPHC Fortran source for the graphcap preprocessor.
FONTC Fortran source for the fontcap preprocessor.
GRAPHCAP Collection of ASCII graphcap files.
FONTCAP ASCII fontcap file.
LOCAL Examples of local implementations of machine-specific

routines to be written by the implementor.
TRNSPPRT Examples of local implementations of machine-specific

routines to be written by the implementor.

Installation Steps

1. Write the installation-dependent routines.

The installation-dependent routines are described in Appendix A of Section II of this
manual and under the "Required Locally Implemented Subroutines" heading in this sec-
tion. These routines deal with I/O and bit manipulation. Some of the routines are the
same as those required by the NCAR GKS OA implementation. Examples of some
machine implementations of these routines are found in files LOCAL and TRNSPPRT
on the distribution tape. It should be emphasized that the examples in LOCAL and
TRNSPPRT are not portable -care must be taken to guarantee that the implementa-
tions of these routines satisfy the functional descriptions in Appendix A of Section II of
this manual, and under the "Required Locally Implemented Subroutines" heading in this
manual section.

2. Create and execute the fontcap preprocessor.

This module is created from the local files in Step 1 above and from FONTC. Execute
this module. You will be asked to enter names for the ASCII input fontcap file and for
the binary output file. After each such name pair you will be asked if you want to pro-
cess another fontcap. You can process all fontcaps by entering an input script with the

NCAR Graphics Generic Package Installer's Guide46

CGM Translator

appropriate responses to the preprocessor - the preprocessor reads from standard input
and writes to standard output. To create your own fontcap files, see 'Tontcap Files"
later in this section. The binary fontcap produced will be read in by the translator at
translator execution time.

3. Create and execute the graphcap preprocessor.

This module is created from the local files in Step 1 above, and from GRAPHC on the
distribution tape. Execute the module. You will be asked to enter names for the ASCII
input graphcap file and for the binary output file. After each such name pair you will
be asked if you want to process another graphcap. You can process all graphcaps by
entering an input script with the appropriate responses to the preprocessor - the
preprocessor reads from standard input and writes to standard output. The graphcap
files are on the distribution tape in file GRAPHCAP. The graphcaps are all con-
catenated into one file. To use a graphcap file from GRAPHCAP as input for the
graphcap preprocessor, it will have to be stripped out of GRAPHCAP; each individual
graphcap in GRAPHCAP begins with a line of the form

NCARFILESTART name.gc

and ends with a line of the form

NCARIFILEEND name.gc

The name in the above lines is a name indicating the device that the enclosed graphcap
describes. The two special separator lines for each graphcap must be stripped off before
using the graphcap as input to the graphcap preprocessor in GRAPHC. It is an easy
task to write a procedure that splits the master graphcap file into the desired individual
graphcaps.

If a graphcap does not exist in GRAPHCAP for a device you want to bring online, you
will have to fill in the master graphcap form for that device as per the instructions in
"Graphcap Files" in this section of the manual. A binary version for a given graphcap
need be created only once, unless changes are made to it.

4. Specify how the graphcap filenames will be supplied to the translator.

Supplying the graphcap filename to the translator will depend on the specific host
environment. The GRAPHCAP file is read in by the translator in subroutine
REDDEV, and the locally implemented routine BOPRED is used to do the OPEN. In
the default state (CGMTRANS as supplied on the distribution tape), the graphcap
filename is stored in the CHARACTER*1 array GRCAPN, and this is initialized in
BLOCKDATA TRNDAT by the statement

DATA (GRCAPN(II),II=1,9)/'G', 'R', 'A', 'P', 'H', 'C', 'A', 'P', ' '/

Several possibilities exist for attaching the input graphcap file:

Place the desired graphcap on the file system with filename GRAPHCAP. This is
not a desirable solution, since you typically want to use the translator to drive
several devices, in which case it is advisable to give graphcaps mnemonic names,
such as t4107 for a TEKTRONIX 4107 driver, for example.

Version 3.00, May 1990 47

CGM Translator

* Modify subroutine REDDEV so that it requests the graphcap filename from the user.
Note that if BOPRED is used to open the file, the filename must be stored in a
CHARACTER*1 array and the name must be terminated with a blank character.

* Hardwire the graphcap filename by redefining the DATA statement in BLOCK-
DATA TRNDAT. This has the same disadvantages as the first option.

* Modify the CGMTRANS subroutine GARG so that the graphcap filename can be
passed on the command line (this is of course only possible if a command line parser
is available).

On most UNIX systems, the environment variable graphcap can be set to the path-
name of the input graphcap file. BINOPN can then be written so that it checks
whether the input filename graphcap is an environment variable, and if it is,
BINOPN will open the appropriate file. The example BINOPN in file TRNSPPRT
uses this method.

* On batch machines, pre-assign a Fortran logical unit to the input graphcap file, and
call BINOPN in REDDEV with the appropriate unit number.

5. Specify how the fontcap filename will be supplied to the translator.

A fontcap file is read by the translator in subroutine REDFNT. REDFNT calls the
locally implemented subroutine BOFRED to open its fontcap file. The user should
implement BOFRED so that font numbers 1 through 20 are used to open the fontcaps
FONT1 through FONT20 on the distribution tape. It is not necessary to supply more
than the one font in file FONT1.

6. Specify how the input metafile name will be supplied to the translator.

Subroutine FNDARG is used to attach the metafile for reading. The LOGICAL vari-
able METIPT is used to control whether the metafile name will be requested by a For-
tran read from the standard input, or whether the metafile name will be read from the
command line. METIPT is initialized to .FALSE. in BLOCKDATA TRNDAT; setting
METIPT to .FALSE. provides that the metafile name will be read from the command
line. FNDARG invokes GARG to do the Fortran or command line read. If a Fortran
read is implemented (by setting METIPT to .TRUE.), the locally-implemented routines
IARGCT and ARGGET can be dummy routines. Otherwise, IARGCT and ARGGET
are used to read the arguments from the command line. In its default state, the first
command line argument to the translator will be used for the metafile name. If an
optional second argument is supplied, it will be used as a record pointer into the input
metafile to indicate the record where translation will begin, and only one frame will be
translated in this case. The use of the optional second argument is helpful when the
translator is invoked from an interactive metafile editor.

7. When binary graphcap and fontcap files have been created, and you have an input
metafile available, compile and execute the translator. The translator uses the locally-
implemented routine FLUS to send its output to the output device. The unit number in
calls to FLUS is defaulted to 1 (the standard output on most UNIX systems).

NCAR Graphics Generic Package Installer's Guide48

CGM Translator

Graphcap Files

A graphcap file is a table describing the characteristics of a graphics device. This section
explains how to create a graphcap for a graphics output device. When the table is complete,
it must be input into the graphcap preprocessor to produce a binary -version of the graphcap,
which is in turn used by an NCAR CGM translator at execution time. The details of how
graphcaps fit into the overall picture of metafile translation are discussed at the beginning of
this section of this manual.

This discussion that follows is oriented toward the user who is familiar with the operation
and instruction set of the target computer graphics display device. Casual users will find
that generating a graphcap from scratch is not an easy task. However, modifying an existing
graphcap to produce a different color table, change the frame finished prompt, modify the
picture orientation or select a different line type are tasks easily performed. This allows
users to customize the translator to their own requirements without modifying program code.

Graphcaps are used to define device-specific commands. If the interface to a graphics output
device is via subroutine calls, then you cannot utilize the graphcap concept. The ambitious
installer may want to undertake making the necessary changes to the translator code itself in
order to implement the Fortran translator on a device with a software interface.

In its original form, the graphcap consists of a set of keywords followed by the definition of
that operation for a selected graphics device. Only those keywords needed for a given graph-
cap need appear in that graphcap. Usually, if the device does not support the option, the
keyword is left out of the graphcap. If a keyword is present but not defined, it is equivalent
to the keyword not being present. In both of these cases, the default definition (if any) will
be used. A keyword must be contained on one line; typically a keyword will appear on one
line, and the definitions for that keyword will appear on subsequent lines. A complete
description of all graphcap keywords appears later in this section.

To create or modify a graphcap, use any text editor that does not insert any of its own con-
trol characters into the file.

If you are creating a graphcap from scratch, you can use the master form, which is part of
file GRAPHCAP on the distribution tape. This master file contains keywords for all
currently supported graphlcap functions.

The keyword definitions are of four types:

1. Logical, valued TRUE or FALSE. These values are stored, for the target machine, in a
Fortran type LOGICAL variable. Note that the values specified here are TRUE and
FALSE, and not .TRUE. and .FALSE..

2. Decimal valued. Positive or negative decimal values are specified, separated by blanks.
These values are stored, for the target machine, in a Fortran type INTEGER.

3. Floating point valued. A floating point value must contain a decimal point. Floating
point values are separated lby blanks. The value is stored, for the target machine, in a
Fortran type REAL.

4. String type. A string consists of ASCII characters plus special control values that con-
trol the placement of addresses, coordinates, and counts within instruction strings. The

Version 3.00, May 1990 49

CGM Translator

legal ASCII characters are those which appear in the "CHAR" column of the table in
Appendix A at the end of this section. Each character in the keyword string definition
is separated by one or more blanks or a new line. The 3-character sequences in the ini-
tial part of the ASCII table are considered as one character in a string definition. The
ASCII decimal equivalent for each character in the string is stored, for the target
machine, in the lower 8 bits of a Fortran type INTEGER. There are 7 special charac-
ters recognized (these are actually character sequences, but are treated as a single char-
acter in keyword string definitions) by the translator. These special characters are:

* INTnnn where nnn can be any integer between 0 and 255.

This character is used when it is desired to insert an actual integer value into the
keyword string definition.

. MAD

This character is used to indicate
keyword string definition.

. RL

This character is used to indicate
raster instructions.

that a color map address is to be inserted into the

that run-length encoding will be used to generate

. VC

This character is used to indicate
word string definition.

* XC

This character is used to indicate
word string definition.

* YC

that a vector count is to be inserted into the key-

that an X-coordinate is to be inserted into the key-

This character is used to indicate
word string definition.

. XYC

This character is used to indicate
the keyword string definition.

that a Y-coordinate is to be inserted into the key-

that an XY-coordinate pair is to be inserted into

Understanding the use of these special characters will be aided by examining their use in
some of the graphcaps supplied in file GRAPHCAP on the distribution tape.

All keyword definitions may range from null to a maximum count specified by that keyword.
Keyword definitions are allowed a maximum of 80 columns per line; however, they may cross
line boundaries. For the purpose of separating keyword definition entries, a new line is
equivalent to a space.

To understand and change the bundle class, refer to the GKS standard, in particular the
description there of the workstation state list. The bundle class must be included and
defined in every graphcap used. The blank graphcap form defines the bundle entries as
required by GKS. A user may make nonstandard definitions by changing these entries.

NCAR Graphics Generic Package Installer's Guide50

CGM Translator

Comment any changes made to bundles, this will alert others to non-standard features in the
graphcap.

When defining a new device, it may be easiest to start with an existing graphcap that is simi-
lar, and work from there. For example, many of the TEKTRONID emulators only require
changes to the DEVICEGRAPHICINIT and DEVICETEXT-INIT keyword definitions to
operate properly.

A blank form is included with the graphcap files; use this as a starting point for generating a
new device table.

Keywords may be in any order, the groupings in subsequent sections are for description only.

When reading this section it is best to get a copy of a graphcap for a device you are familiar
with and use it as an example of the keyword definitions.

Supported Graphcaps in Version 3.00

The following table lists all the graphcaps supported in the Version 3.00 release of NCAR
Graphics.

Supported Graphcaps in Version 3.00

(continued on next page)

Version 3.00, May 1990

adm5 ADM5 Graphics terminal with DEC RG1000 graphics board
aed.a AED512 in ASCII mode
aed.b AED512 in binary mode
balsml.g HI DMP-29 in small chart mode
form Generic graphcap template containing all defined keywords
hp2648a HP2648a in binary mode

hpl50 HP150 personal computer
hp7475a HP7475a six pen plotter
hp7510a HP7510a color film recorder
hpljlOO1 HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,

and so on, in landscape mode at 100 dots per inch
hplj1OOp HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,

and so on, in portrait mode at 100 dots per inch

hplj1501 HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in landscape mode at 150 dots per inch

hpljl50p HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in portrait mode at 150 dots per inch

hplj3001 HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in landscape mode at 300 dots per inch

hplj300p HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in portrait mode at 300 dots per inch

hplj751 HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in landscape mode at 75 dots per inch

51

CGM Translator

Supported Graphcaps in Version 3.00 (continued)

There are 20 supported fontcaps on the Version 3.00 distribution tape. These fontcaps
appear in files FONTn, n=1,...,20, on the distribution tape. For a complete display of all
of these consult the "Fontcap Files" section of this chapter.

A schematic of how the translator works is shown on the next page. Once a binary ver-
sion of a given graphcap or fontcap is created, it need not be regenerated unless changes
are made to the ASCII original. It is assumed that the graphcap and fontcap preproces-
sors will be run on the same host that the translator is run on.

Several additions and changes have been made to the graphcap file definitions and to the
graphcap preprocessor (file GRAPHC on the distribution tape) for Version 3.00. Version
3.00 binary graplhcaps are not compatible with Version 2.00 software. Installers of Ver-

sion 3.00 will have to regenerate all binary graphcaps. The graphcap preprocessor has

NCAR Graphics Generic Package Installer's Guide

hplj75p HP LaserJet, LaserJet Plus, LaserJet Series II, LaserJet 500 Plus,
and so on, in portrait mode at 75 dots per inch

hpljo751 The original LaserJet family at 75 dots per inch in landscape mode
hpljo75p The original LaserJet family at 75 dots per inch in portrait mode
imagen IMAGEN 8/300 laser printer in graphics landscape mode
imagen.port IMAGEN 8/300 laser printer in graphics portrait mode

pc.mono PCPLOT on IBM and compatible PC's
ps.mono spooled PostScript devices
qms800 QMS800 Laser printer
r6211 RAMTEK 6211 in TEKTRONIX compatible mode
sl00 SELINAR HiREZ100 graphics terminal

t4006 TEKTRONIX4006
t4010 TEKTRONIX 4010 and TEKTRONIX 4012
t4025 TEKTRONIX 4025
t4105 TEKTRONIX 4105
t4107 TEKTRONIX 4107 (same as TEKTRONIX 4207); cell arrays

are simulated and instructions are put into segment 1

t4107.seg TEKTRONIX 4107 (same as TEKTRONIX 4207);
scan lines used for cell arrays, instructions not put in segment

t4115 TEKTRONIX 4115 cell arrays are simulated and instructions
are put into segment 1

t4115.seg TEKTRONIX 4115 scan lines used for cell arrays, instructions
not put in segment

tall590 Talaris 1590 in TEKTRONIX mode.
tekalike Tekalike on the Apple Macintosh

versaterm VersaTerm on the Apple Macintosh
vt100 VT100 with DEC VT640 retrofit
vt125 VT125
vt220 VT220 with SELINAR SG220 graphcis retrofit board
vt330 VT330

52

CGM Translator

How the CGM Translator Works

.... sc.........
Graphcap :

:::: file:::: ::

Graphcap
Preprocessor

r . ..

' 'Binary : :.:
: Graphcap : :

: :file:::::
*L -- _-_ j

** RSCI I*.... F .. c. p...
Fontcap

:::: file ::::
--- 1*@-.*

Fontcap
Preprocessor

.-
* e
' Binary: : .:.

Fontcap:: :
.. : file :::::
L _ _,%

Graphic
Output
Device

^ __._ _j ,

Version 3.00, May 1990

l~ ii

: : : : CGM : : : : - CGM Translator

-''---'-
I I

53

O -- ---

,

CGM Translator

been modified to generate an arbitrary number of binary graphcaps with a single execu-
tion.

The graphcap concept is designed to make it easy to bring online new devices that have
user access to the device commands (such as most graphics terminals). The translator is
coded to produce device instructions. If the interface to a graphics device, such as many
graphics workstations, is via subroutine calls, then most likely the actual code in the
translator will have to be modified for installation, or the C language implementation of
the NCAR CGM translator should be used.

Formatting and Encoding Coordinates

The process of creating coordinates, color or intensities, and other parameters that are part
of a device instruction is normally not simple. Many devices require bits from various parts
of the data values be packed together to form the device instruction parameters. For exam-
ple, the TEKTRONIX 40XX series requires that the first word of a device coordinate param-
eter contain 5 bits from the upper part of the Y coordinate packed with some flagging infor-
mation. Other devices require parts of the X and Y coordinate be packed together. Describ-
ing this formatting information to the translator is provided for by filling in a format table
that contains the bit positions for extracting from input data and inserting into device
parameters.

Once the data are successfully packed, many devices require a second massaging prior to
sending the packed data to the output device. Encodings take the bit stream created by the
formatting process and convert to another bit stream, which is sent to the device. The
TEKTRONIX 41XX terminal series requires that the bit stream from the formatting process
be converted into a set of printable characters for example.

Many devices require that parameters be converted in these two steps. The present discus-
sion will explain the conversion process used for all keywords that contain FORMAT or
ENCODING as a substring in the keyword.

The Formatting Process

The formatting process maps an input array of integers into an output stream of bits.

The words in the input array are addressed as in Fortran -that is, the first element of the
array is at position 1. The bits of the input words are addressed from right to left. The first
bit of each element is at position 0 (this is the rightmost bit, values increase to the left).

The output stream is a string of bits; there is no regard for word boundaries. The stream is
addressed from left to right. The first bit is at address 0.

Data is extracted from input words and inserted into the output stream according to the
information given in a formatting table as described below. The table contains 4 entries per
row. Each row defines a separate operation for extracting from an input word and inserting
into the output stream. Each row contains a start-bit bit-count data-type and data-value.
All four entries must be defined for each row. All four entries in the row are integer values.
Since several graphcaps depend on the word size of the host machine, it is legal to use one of
two special symbols to denote integers in the format tables. These symbols are "W" to
denote "the word size, in bits, of the host machine" and 'Wl" to denote W-1 (the word size
minus 1).

54 NCAR Graphics Generic Package Installer's Guide

CGM Translator

1. startbit

The starting index in the output string.

2. bitcount

The number of bits to be transferred.

3. data-type

This determines where input data originates for the extraction step. Valid values for
data-type are:

-1 This data-type indicates that bits will be extracted from the data-value
field and inserted into the output stream. The output stream is then sent to
the encoder, which has the effect of clearing the stream (the output stream
is disposed to the encoder and then to the device). If there is another row in
the format table to follow, addressing of the output stream should begin
from the left edge (address 0). The -1 data-type is typically used with the
ASCII encodings to signal the end of a number to be encoded and to insert a
separator into the device stream. The bit-count must be divisible by 8 (fill
8 bit bytes).

0 This value indicates that the contents of the data-value field should be
moved intact to the output stream.

> 0 Use the addressed input word, for example, if the value is 2, the second
input word is used as input.

4. data-value

The use of data-value is controlled by the type of operation requested by data-type.
For data.types of -1 or 0, the data-value is used as the input word; for data-types > 0,
the data-value indicates the bit position in the addressed input word (position 0 at the
right edge of the word) where data transfer is to begin. For example, if data-type is 2,
bitcount is 5, and data-value is 10, then 5 bits from word 2 would be put to the output
stream starting at bit position 10 in word 2 and continuing for 5 bits to the right in
word 2.

In most cases you will not know how many input words will be received. So how can you
enter enough data values greater than zero to cover the input stream? If you request too
many data values, unexpected and unpredictable things will happen. However, you do not
need to specify enough entries for all input data. The format table describes one coordinate
pair and will cycle until all input data has been processed. Suppose you had a table defining
XY coordinates. The X's and Y's are packed together in some strange way (TEKTRONIX
4010, for example). You just define how the first two words are packed (word 1 is the X and
word 2 is the Y). The table will cycle until all the input words have been processed. For a
color table you may have 3 entries for each color definition, so define how those 3 entries are
constructed and the table will cycle for all the rest of the data.

The following example for the TEKTRONIX 4010 coordinate formatting demonstrates how
to construct a graphcap format table. Also, in the following sections of this document, all
keywords related to formatting will contain examples specific to their subject. In the follow-
ing chart, each line describes an 8-bit byte, which is to be sent to the device. The letter P
stands for parity, and X and Y for the X and Y coordinates. The digit following X or Y is

Version 3.00, May 1990 55

CGM Translator

the bit being referred to in the coordinate as described for the input data indexing above.
The O's and l's are required by those bit positions. This description is taken from a TEK-
TRONIX Terminal Programmer's Manual.

P 0 1 Y9 Y8 Y7 Y6 Y5
P 1 1 Y4 Y3 Y2 Y1 YO
P 0 1 X9 X8 X7 X6 X5

P 1 0 X4 X3 X2 X1 XO

The graphcap table to describe this encoding is:

More examples are provided in each FORMAT type keyword.

The Encoding Process

The encoding process the output stream from the formatter and performs another mas-
saging of the data prior to disposing to the device. The encoding is defined by one of the
decimal values described below.

0 - binary encoding

1 - ASCII decimal encoding

2 - ASCII hexadecimal encoding

3 - ASCII octal encoding

4 - ASCII TEKTRONIX encoding

No change to the formatted data.

The bit stream from the formatter is translated into
an ASCII string representing the decimal equivalent of
the string. The bits 1111 would be converted to the
ASCII sequence 15 and sent to the device as an integer
49 and an integer 53.

The bit stream from the formatter is translated into
an ASCII string representing the hexadecimal
equivalent of the string. The bits 1111 would be con-
verted to an ASCII F and sent to the device as an
integer 170 (the ASCII decimal equivalent of F.)

The bit string from the formatter is translated into an
ASCII string representing the octal equivalent of the
string. The bits 1000 (octal 10) would be converted to
two ASCII characters 1 0 and sent to the device as
integer 49 (the ASCII decimal equivalent of 1) and
integer 48 (the ASCII decimal equivalent of 0.)

This type of encoding is used by the TEKTRONIX
41xx class of devices.

NCAR Graphics Generic Package Installer's Guide

DEVICE-COORD-F ORMAT
/* bit-start bit-count data-type

1 2 0
3 5 2
9 2 0

11 5 2
17 2 0
19 5 1
25 2 0
27 5 1

I _

I

data-value
1
9
13

4
1 1
9
2
4

56

CGM Translator

5 - ASCII Real This encoding translates a bit stream into a printable
floating point number. The conversion from the bit
stream, which is interpreted as a whole number,
depends on the corresponding FLOATING-JNFO key-
word. The FLOATING-JNFO type keywords provide
4 real numbers to the encoder. The first two are the
minimum and maximum values expected from the bit
stream. The last two specify the minimum and max-
imum floating point values to generate. A linear map-
ping is performed from input to output.

Workstation Initializations

The following keywords (presented in boldface) describe the strings used to set the device
into graphics or text mode. Graphics mode is the state where graphics instructions are
received and understood; text mode is used for normal communications and editing.

DEVICE-GRAPHICIJNIT

Description:

Type:

Default:

Enter graphics mode. Sent at invocation of the translator, and at the begin-
ning of each new frame when the DEVICE-BATCH keyword (see below) is
set to FALSE.

String

Null

Maximum number of entries: 300 characters

DEVICETEXTIJNIT

Description: Enter text (non-graphics) mode. Sent at termination of the translator.

Type:

Default:

String

Null

Maximum number of entries: 100 characters

DEVICE-BATCH

Description:

Type:

Default:

Logical value indicating whether the translator sends the USER-PROMPT
and waits for keyboard <return>. This operation happens at completion of
a picture. Batch devices may include laser printers and film devices. Non-
batch devices may be graphics display terminals. Batch devices do not
prompt for user intervention, they automatically proceed to the next frame.

Logical

FALSE, user intervention is required to advance pictures.

Maximum number of entries: 1

Version 3.00, May 1990 57

CGM Translator

DEVICE-ERASE

Description: String sent to the device when the display surface is to be cleared.

Type:

Default:

String

Null

Maximum number of entries: 150 characters

DEVICE-CURS ORL-HOME

Description:

Type:

Default:

String sent to the device when the cursor is to be positioned at the home
position. The translator considers home as the upper left hand corner of the
picture drawing surface.

String

Null

Maximum number of entries: 50 characters

USER-PROMPT

Description:

Type:

Default:

The string sent to the device indicating to the user that the picture on the
display surface is finished. At this point, some device dependent action (usu-
ally a <return>) is required to continue. This string is used only if
DEVICE-BATCH is set FALSE. Typically, the prompt is displayed in
Graphics mode. On small single-page plotters you may wish to terminate
graphics mode in this string and then send the prompt. This has the effect of
sending the prompt to the CRT connected to the plotter but not displaying it
on the plotter.

String

Null

Maximum number of entries: 80 characters

Workstation Drawing Space

This set of keywords describes the drawing surface available on the workstation. The pic-
ture can be drawn in any orientation or transposition by properly changing the lower left and
upper right coordinates and perhaps interchanging the order of coordinate processing as
defined by the DEVICE-COORD-FORMAT.

If your device has lower left X, Y at (0, 0) and upper right at (1000, 1000), you could draw
the picture upside down by setting the lower left coordinates to (0, 1000) and the upper right
coordinates to (1000, 0). The GKS standard (section 4.6.3) requires that the aspect ratio of
the workstation viewport be the same as that of the workstation window. To implement
this, the translator examines the device coordinate ranges as specified in the following key-
words and chooses the largest square that can be displayed; it then centers this square on the
output device and uses it as the workstation viewport (unless coordinate offsets are defined
using the appropriate keywords below).

NCAR Graphics Generic Package Installer's Guide58

CGM Translator

DEVICE-COORD-J OWERLEF TX

Description: The device X coordinate of the lower left corner of the drawing surface.

Type: Decimal

Default: Null

Maximum number of entries: 1

DEVICECOORDLOWER-LEFTY

Description: The device Y coordinate of the lower left corner of the drawing surface.

Type: Decimal

Default: Null

Maximum number of entries: 1

DEVICE-COORDUPPERLRIGHT-X

Description: The device X coordinate of the upper right corner of the drawing surface.

Type: Decimal

Default: Null

Maximum number of entries: 1

DEVICECOORDUPPER-RIGHTY

Description: The device Y coordinate of the upper right corner of the drawing surface.

Type: Decimal

Default: Null

Maximum number of entries: 1

DEVICE-COORD-XOFFSET

Description: A device coordinate value added to X addresses before they are sent to the
device. The translator attempts to center the plot based on the lower left,
upper right values. When the coordinate space is asymmetric (X coordinate
interval is not the same as the Y coordinate interval), offset values will help
properly place the frame. Another use is to offset the frame to a specific side
of the display.

Type: Decimal

Default: 0 (zero)

Maximum number of entries: 1

Version 3.00, May 1990 59

CGM Translator

DEVICECOORD-YOFFSET

Description:

Type:

Default:

A device coordinate value added to Y addresses before they are sent to the
device. See DEVICECOORDXOFFSET discussion.

Decimal

0 (zero)

Maximum number of entries: 1

DEVICE-COORD-XS CALE

Description:

Type:

Default:

In some cases an X unit does not equal a Y unit. This keyword allows a scale
factor to be introduced into the device coordinate computation stream. It
will scale the X coordinates up or down by the specified amount.

Floating point

1.0

Maximum number of entries: 1

DEVICECOORD.YSCALE

Description: See the DEVICECOORD-XSCALE discussion.

Type: Floating point

Default: 1.0

Maximum number of entries: 1

DEVICECOORD-FORMAT

Description: The format used to convert device coordinates in the metafile to the format
required by the output device. The input array to this format is a set of
coordinate pairs. See the discussion of formatting under "Formatting and
Encoding Coordinates" earlier in this section. Two examples follow. They
describe the required bit positions as P for parity, Xn for an X bit and Yn for
a Y bit. The parity bit is not relevant to the encoding process, so those bits
are skipped over in these examples. We use the AED512 7-bit binary encod-
ing for the first example.

P X9 X8 X7 Y1O Y9 Y8 Y7
P X6 X5 X4 X3 X2 X1 XO
P Y6 Y5 Y4 Y3 Y2 Y1 YO

The format table will appear as follows:

NCAR Graphics Generic Package Installer's Guide60

CGM Translator

DEVICECOORD-FORMAT
/* bitstart bit-count data-type data-value

1 3 1 9
4 4 2 10
9 7 1 6

17 7 2 6

For the next example, we will use the AED512 ASCII decimal encoding.
This encoding uses a 16-bit address, and each coordinate is terminated by a
blank. The X coordinate is first followed by the Y coordinate.

DEVICECOORD-FORMAT
/* - ; bit-start bit-count data-type data-value

0 16 1 15
0 8 -1 32
0 16 2 15
0 8 -1 32

Type: Decimnal rows with 4 elements per row.

Default: Null

Maximum number of entries: 120 (30 rows * 4 columns)

DEVICE-COORD-ENCODING

Description:

Type:

Default:

The encoding scheme used for device coordinates. See the "Formatting and
Encoding Coordinates" discussion earlier in this section.

Decimal in the range of 0 to 5

0 (zero)

Maximum number of entries: 1

Version 3.00, May 1990 61

CGM Translator

DEVICEC O ORD-FLOATING-INFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output floating point. This option
is used when the DEVICECOORD-ENCODING is set to ASCII real (5).
The keyword requires 4 floating point numbers. The first two describe the
minimum and maximum data values received by the encoder. The last two
describe the minimum and maximum floating point values sent to the device.

Floating point

Null

Maximum number of entries: 4

Device Vector Counts

The vector count is a parameter that indicates the number of points (X, Y coordinate pairs)
that are part of the current instruction. These keyword definitions are activated by the VC
parameter, which may be included in the LINE, MARKER, and POLYGON instruction
start keywords. VC may also be used in the RASTER-HORIZONTAL instruction start
keyword.

DEVICEVECTOR-COUNTJENCODING

Description:

Type:

Default:

The encoding scheme used for vector counts. See the 'Tormatting and
Encoding Coordinates" discussion earlier in this section.

Decimal in the range of 0 to 5

0 (zero)

Maximum number of entries: 1

DEVICE-VECTOLRCOUNT-FLOATINGJINFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output format floating point. This
option is used when the DEVICEVECTORLCOUNT-ENCODING is set to
ASCII real (5). The keyword requires 4 floating point numbers. The first
two describe the minimum and maximum data values received by the
encoder. The last two describe the minimum and maximum floating point
values sent to the device.

Floating point

Null

Maximum number of entries: 4

NCAR Graphics Generic Package Installer's Guide62

CGM Translator

DEVICE-VECTOR-COUNT-FORMAT

Description: The format used to convert vector count data from the CGM to the format
required by the output device. This formatter will receive only one input
data word. See the discussion on "Formatting and Encoding Coordinates"
earlier in this section.

Example

This example encodes a 7-bit vector count. The index is right-justified in the
vector count parameter passed into the formatter. The P represents parity
bit, and V followed by a digit is a bit out of the vector count. Parity is not
relevant and is skipped over. We are using the binary encoding scheme.

P V6 V5 V4 V3 V2 V1 VO

This format would be set up as follows:

Type:

Default:

Decimal rows with 4 elements per row

Null

Maximum number of entries: 32 (8 rows * 4 columns)

Device Color Capabilities

This section describes the general color availability on a given device. For specific color
operations refer to the LINE, MARKER and POLYGON primitives referenced in later parts
of this section.

DEVICECOLOR-AVAILAABLE

Description:

Type:

Default:

Flag to indicate the availability of color on a device. If the device color is
TRUE then the DEVICEMAAP-JNDEX.RANGE-DEFINED keyword must
be defined in the graphcap. If the device has multiple monochrome intensi-
ties, then this keyword should be defined as TRUE. If
DEVICEJMAPAVAILABLE is TRUE (see below) and
DEVICE-MAP-MODEL is 0 (monochrome - see below), then RGB triples
are mapped to monochrome intensities by the formula Y = 0.3*R + 0.6*G +
0.1*B as per the CGM Standard (p. 126 of the CGM Standard document).

Logical

FALSE, no color on the device

Maximum number of entries: 1

Version 3.00, May 1990

DEVICE-VECTOR-COUNT-FORIAT
/* bit-start bit-count data-type data-value

1 7 1 6

63

CGM Translator

DEVICE-COLOR JNDEX-ENCODING

Description:

Type:

Default:

The encoding scheme used for color indices. See the discussion on "Format-
ting and Encoding Coordinates" earlier in this section.

Decimal in the range of 0 to 5

0 (zero)

Maximum number of entries: 1

DEVICECOLORINDEX-FORMAT

Description: The format used to convert color indices in the CGM to the format required
by the output device. The formatter will receive only one input data word.
See the discussion on "Formatting and Encoding Coordinates" earlier in this
section.

Example

This example uses a 4-bit color index (0 to 15 decimal). The P represents
parity bit; O's (zero) and 1's represent themselves and c followed by a digit is
a bit out of the color index. Parity is not relevant and is skipped over. We
are using the binary encoding scheme.

P 0 1 1 c3 c2 cl cO

This format would be set up as follows:

Type:

Default:

Decimal rows with 4 elements per row

Null

Maximum number of entries: 60 (15 rows * 4 columns)

DEVICE-COLOR-INDEX-FLOATING-INFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output format floating point. This
option is used when the DEVICECOLOR-INDEX-ENCODING is set to
ASCII real (5). The keyword requires four floating point numbers. The first
two describe the minimum and maximum data values received by the
encoder. The last two describe the minimum and maximum floating point
values sent to the device.

Floating point

Null

Maximum number of entries: 4

NCAR Graphics Generic Package Installer's Guide

DEVICECOLOR-INDEX-FORMAT
/* bit-start bit-count data-type data-value

1 3 0 3
4 4 1 3

64

CGM Translator

DEVICE-MAP-AVAILABLE

Description: A flag indicating the availability of a user-settable color/intensity map.

Logical

FALSE, no user-settable map available

Maximum number of entries: 1

DEVICE-MAPItNDEXRANGE-MAX

Description:

Type:

Default:

The size of the user-settable color/intensity map. If the map has 256 entries
(0 to 255), then use 256.

Decimal

0 (zero)

Maximum number of entries: 1

DEVICE2MAPINDEX-RANGE-DEFINED

Description:

Type:

Default:

The range of colors defined by the default settings. If the device has entries 0
to 7 defined, then use 8. This keyword must be defined if the device has
color capability, even though the color map is not settable.

Decimal

0 (zero)

Maximum number of entries: 1

DEVICE-MAPINTENSITY-ENCODING

Description:

Type:

Default:

The encoding scheme used for intensity settings. See the discussion on "For-
matting and Encoding Coordinates" earlier in this section.

Decimal in the range of 0 to 5

0 (zero)

Maximum number of entries: 1

DEVICE-MAPIJNTENSITY-FLOATINGINFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output format floating point. This
option is used when the DEVICE.MvAPINTENSITY-ENCODING is set to
ASCII real (5). The keyword requires four floating point numbers. The first
two describe the minimum and maximum data values received by the
encoder. The last two describe the minimum and maximum floating point
values sent to the device.

Floating point

Null

Maximum number of entries: 4

Version 3.00, May 1990

Type:

Default:

65

CGM Translator

DEVICE-MAP-INTENSITYFORMAT

Description:

Type:

Default:

The format used to convert the color or intensity values in the CGM to the
format required by the output device. This formatter expects sets of three
input data words if in a full color mode and single input data words if in a
monochrome mode. Observe the setting of the DEVICE MAP-MODEL key-
word for the mode used by this formatter. See the discussion on "Formatting
and Encoding Coordinates" earlier in this section.

Example

Assume a RGB color model with 100 map entries. The formatter will have
300 words passed to it (3 per entry). The device uses 8 bits per intensity.
We are using a binary encoding for this example.

All the intensity settings are treated the same, so we only need one entry in
the table to format all 300 settings.

The next example will also have 100 RGB map entries. The device uses an
ASCII decimal encoding. Red and Green are separated by a blank. Green
and Blue are separated by a period. Green and the Red of the next entry are
separated by a colon.

Decimal 4 entries per row

Null

Maximum number of entries: 200 (50 rows * 4 entries per row)

NCAR Graphics Generic Package Installer's Guide

DEVICEMAP-INTENSITY-FORMAT
/* bitstart bit-count data-type data-value

0 8 1 7

DEVICE-MAP-INTENSITY-FORMAT
/* bitstart bit-count data-type data-value

0 8 1 7
0 8 -1 32
0 8 2 7
0 8 -1 46
0 8 3 7
0 8 -1 58

66

CGM Translator

DEVICE-MAPINDIVIDUAL

Description:

Type:

Default:

A flag that indicates a DEVICE-MAP-INSTRUCTION-START and a
DEVICE-MAP-INSTRUCTIONTERMINATOR needs to be sent for each
entry. If the flag indicates no need, the
DEVICE-MAP-INSTRUCTION-START and
DEVICE-aMAP-INSTRUCTIONTERMINATOR are sent only once for
map intensity streaming.

Logical

FALSE, DEVICE-MAP-INSTRUCTION-START and
DEVICE-MAP-JNSTRUCTIONTERMINATOR are sent only once for
map intensity streaming.

Maximum number of entries: 1

DEVICELMAPJINS TRUCTION-S TART

Description:

Type:

Default:

The string sent to the device to enable it to receive a new intensity map
definition. The MAD string parameter is used in this string if map addresses
are required by the device instruction.

String

Null

Maximum number of entries: 50

DEVICE-MAPINS TRUCTIONTERMINATOR

Description: Terminate the color map instruction.

Type:

Default:

String

Null

Maximum number of entries: 20 characters

DEVICE MAPINIT

Description:

Type:

Default:

The intensity map used for initialization of the device prior to display of each
picture. These data are relative to the device model selected via the
DEVICE-MAP-MODEL and are given in device dependent intensity values.

When the Encoding is ASCII real (value 5), then the values given here must
be integers in the range of the first two values of the
DEVICE MAP-FLOATINGINFO. The map intensities are mapped to the
floating values when sent to the encoding-process. This is necessary because
this keyword allows only decimal input.

Decimal

Null

Maximum number of entries: 768 (256 * 3)

Version 3.00, May 1990 67

CGM Translator

DEVICE-MAP-MODEL

Description: This keyword defines the type of intensity model used by the device. There
are four types included in the translator.

0 - Monochrome

1-RGB

2- BGR

3- HLS

This model is used on monochrome devices (one
color) that have variable intensities. A good example
is a black and white film device such as the Dicomed
COM devices.

Red, Green, Blue, a popular model on color devices.
Intensities are given as 3-tuples.

Blue, Green, Red. Not common, but used on some
RAMTEK color devices.

The Hue, Lightness and Saturation model, which is
easier for most users to work with than RGB. This
model is used by TEKTRONIX color devices.

Type:

Default:

Decimal in the range of 0 (zero) to 3

1 (RGB)

Maximum number of entries: 1

Device Window

This section describes keywords for specifying a workstation window (in the GKS sense).
Four coordinates are specified which define a rectangular window which is a subset of the
normalized VDC rectangle with corner points (0,0) and (32767,32767). The specified window
is then mapped onto the entire viewport. For example, if the workstation window is defined
by the corner points (0,0) and (16383,16383), then the lower left quarter of a plot would be
blown up to fill the entire viewport. Specification of such a window can be used for zooming
and panning.

DEVICEWINDOW-LOWER-LEFT-X

Description:

Type:

Default:

The X coordinate of the lower left corner of the window in the range 0 to
32767.

Decimal

0

Maximum number of entries: 1

DEVICE-WINDOWLOWER-LEFT-Y

Description:

Type:

Default:

The Y coordinate of the lower left corner of the window in the range 0 to
32767.

Decimal

0

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide68

CGM Translator

DEVICE-WINDOW-UPPER-RIGHT-X:

Description:

Type:

Default:

The X coordinate of the upper right corner of the window in the range 0 to
32767.

Decimal

32767

Maximum number of entries: 1

DEVICE-WINDOW-UPPER-RIGHTY

Description:

Type:

Default:

The Y coordinate of the upper right corner of the window in the range 0 to
32767.

Decimal

32767

Maximum number of entries: 1

Line Control
Used for drawing vectors and stroked characters. This set of instructions may also be used
by the translator to position the device graphics cursor.

LINE-DRAWP OLY-FLAG
Description: Some devices support polylines, which are distinguished by the polyline

instruction start, followed by the coordinates for the entire line. Other dev-
ices do not support polylines, which requires that each coordinate pair be
accompanied by an instruction, whether it is a move or draw.

This flag indicates the availability, or lack of availability, of a polyline
instruction on the device.

When a polyline instruction is available, the
LINE-DRA\¥_JNSTRUCTIONSTART is used to initiate the polyline and
the LINE-DRAWJNSTRUCTION-TERMINATOR ends the polyline.

When there is no polyline on the device, the MOVE set is used for moving
and the DRAW set is used for drawing.

Type:

Default:

Logical

FALSE, no polyline available on the device

Maximum number of entries: 1

LINE-DRAWJINS TRUCTION-S TART
Description: The instruction that produces a line on the display surface. If the device has

polylines, then this instruction is sent at the start of a polyline.

Type:

Default:

String

Null

Maximum number of entries: 30

Version 3.00, May 1990 69

CGM Translator

LINE-DRAW-INS TRUCTION-TERMINATOR

Description: Terminate the draw instruction. This is also used to terminate the polyline
instruction.

Type: String

Default: Null

Maximum number of entries: 15

LINEPOINTJSTART

Description: Specifies the instruction to be issued prior to the encoding of each coordinate
pair when LINE-DRAW-POLY-FLAG is TRUE.

Type: String

Default: Null

Maximum number of entries: 20

LINEPOINT-TERMINATOR

Description: Specifies the instruction to be issued subsequent to the encoding of each coor-
dinate pair when LINE-DRAW-POLY-FLAG is TRUE.

Type: String

Default: Null

Maximum number of entries: 20

LINE-MOVE-INS TRUCTIONJS TART

Description: Move the device graphics cursor. This string is not used when the device has
polylines.

Type: String

Default: Null

Maximum number of entries: 30

LINE-MOVEINSTRUCTIONTERMINATOR

Description: Terminate the move instruction. This string is not used if the device has
polylines.

Type: String

Default: Null

Maximum number of entries: 15

NCAR Graphics Generic Package Installer's Guide70

CGM Translator

DASHBIT-LENGTH

Description:

Type:

Default:

The number of VDC (virtual device coordinate) units used for each bit of a
software dash line pattern. This dash pattern is defined in the CGM or by
the bundle tables. Modifying this allows all devices to generate a similar
sized dash. The default dash patterns are found in the translator source file
BLOCKDATA TRNDAT, which is a BLOCKDATA routine. If you select
GKS line indices 1-4, you will get one of these dash patterns.

Decimal

100. There are 100 VDC units per dash pattern bit.

Maximum number of entries: 1

LINECOLOR-INS TRUCTIONS TART

Description:

Type:

Default:

The instruction to change the line color. A color index is sent after this
string.

String

Null

Maximum number of entries: 30

LINECOLORINSTRUCTIONTERMINATOR

Description: Terminate the line color instruction.

Type:

Default:

String

Null

Maximum number of entries: 15

LINEBACKGROUNDCOLORINS TRUCTIONS TART

Description:

Type:

Default:

The instruction to change line color when the background color is being used.
This is provided for support of those few devices which require special
instructions for drawing in the background color.

String

Null

Maximum number of entries: 30

LINEBACKGROUNDCOLORINSTRUCTIONTERMINATOR

Description: Terminate the line color instruction when using the background color.

Type:

Default:

String

Null

Maximum number of entries: 15

Version 3.00, May 1990 71

CGM Translator

Line Widths

This section describes keywords for controlling line widths. First we give a brief description
of how the Fortran translator handles linewidth. The translator first checks to see if there is
a linewidth command available on the device (the graphcap entry
LINE-WIDTHINSTRUCTION-START is non-empty). If there is no line width instruction
on the device, CGM LINE WIDTH elements are ignored, hence all lines are drawn using the
nominal line width on the device. The Fortran translator only supports the default value for
LINE WIDTH SPECIFICATION MODE which is "1" for "scaled," so all CGM LINE
WIDTH elements are interpreted as linewidth scale factors. If the device does have a line

width instruction, then a linewidth is computed in device coordinates. The equation used is:

DCWDTH = newscale-value * 8. * LWTSCF

where DCWDTH is type INTEGER and all other values are floating point. In the above
equation "new-scale-value" is the floating value received from the CGM LINE WIDTH ele-
ment, and LWTSCF is the value given by the LINE-_WIDTH-SCALE graphcap entry (1.0
by default). Now, after computing DCWDTH, the computed value is compared with the
values provided by the LINE-WIDTH-RANGE graphcap entry. If the computed value is

less than the smaller range value, then DCWDTH is set to the smaller range value; if the
computed value is greater than the larger range value, then DCWDTH is set to the larger
range value. In the default case, the interpretation of a LINE WITH value of 1.0 would yield
a computed device-specific line width of 8.

LINE-WIDTH-INSTRUCTION.S TART

Description: Change the line width on the display surface.

Type: String

Default: Null

Maximum number of entries: 30

LINEWIDTHINS TRUCTION-TERMINATOR

Description: Terminate the line width instruction.

Type: String

Default: Null

Maximum number of entries: 15

LINE-WIDTH-ENCODING

Description: The encoding scheme used for line width values. See the discussion on "For-
matting and Encoding Coordinates" earlier in this section.

Type: Decimal in the range of 0 to 5

Default: 0 (zero)

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide72

CGM Translator

LINE-WID TH-FLOATING-INFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output format floating point. This
option is used when the LINE-WIDTH-ENCODING is set to ASCII real (5).
The keyword requires 4 floating point numbers. The first two describe the
minimum and maximum data values received by the encoder. The last two
describe the minimum and maximum floating point values sent to the device.

Floating point

Null

Maximum number of entries: 4

LINEWIDTH-FORMAT

Description: The format used to convert line widths in the CGM to a format recognized
by the output device. The formatter will receive one input data word.

Example

A 16-bit binary line width is being sent to the device.

Type: Decimal 4 entries per row

Default: Null

Maximum number of entries: 32 (8 rows * 4 entries per row)

LINEWIDTHRANGE

Description:

Type:

Default:

Two values giving the smallest and largest widths available in device units.
Required if the LINEWIDTHJNSTRUCTIONSTART is defined.

Decimal

Null

Maximum number of entries: 2 (always required if this keyword is defined)

LINEWIDTHS CALE

Description:

Type:

Default:

A value multiplied into the computed device line width units before it is sent
to the device.

Floating point

1.0

Maximum number of entries: 1

Version 3.00, May 1990

LINEI \IDTH-FORMAT
/* bit-start bit-count data-type data-value

0 16 1 15

73

CGM Translator

Marker Control

This section controls the generation of polymarkers. The translator only uses software
markers; that is, it internally generates the appropriate stroke sequences for the requested
markers and then draws them using the line-drawing routines. Since the line instructions are
used to draw the markers, the color change instructions below should be the same as those
for line color. The translator does the appropriate scaling, depending on the marker size
scale factor.

MARKER-DOT-SIZE

Description:

Type:

Default:

This keyword controls the default size of the dot marker (marker number 1)
when the markers are stroked in software. This keyword specifies whether
"fat" dots should be drawn. A value of 0 means "draw the dot marker at the
smallest possible size;" a value of 1 means draw a "fat" dot. Some devices
require a pen move be executed before drawing a line, and on those devices a
simple dot will not be produced by doing a pen-up/pen-down sequence to the
same coordinate. For such devices it is necessary to draw a small box for a
dot (which we call a "fat" dot). Also, many laser printers draw extremely
faint dots at the default size, and producing fat dots on such devices is
appropriate. Since it takes four line draws to draw a fat dot, drawing time
for fat dots is proportionally longer.

Decimal

0

Maximum number of entries: 1

MARKER-COLOR-INS TRUCTIONS TART

Description: Change the marker color.

Type:

Default:

String

Null

Maximum number of entries: 30

MARKER-COLOR-INSTRUCTIONTERMINATOR

Description: Terminate the color instruction.

Type:

Default:

String

Null

Maximum number of entries: 15

In addition, the graphcap preprocessor recognizes and parses the four keywords:

MARKER-VECTORCOUNT-FORMAT
MARKER-VECTOR-COUNT-ENCODING
MARKERINSTRUCTION-START
MARKER-INSTRUCTIONTERMINATOR

The valu res e keywords are passed to the translator, but the translator does not
respond to them.

NCAR Graphics Generic Package Installer's Guide74

CGM Translator

Graphical Text Control

The translator internally generates stroke sequences for all graphical text based on the sup-
plied fontcap file(s). All text attributes (size, scale factor, path, expansion factor, and so on)
are applied before the characters are drawn. The translator uses the line-drawing routines to
draw the characters. The translator does not take advantage of hardware characters.

In its current state, the graphcap preprocessor parses the following keywords and their
values are passed to the translator, but the translator does not respond to them:

TEXTJNSTRUCTIONSTART
TEXT-INSTRUCTIONTERMINATOR
TEXTCOLOR-INSTRUCTION-START
TEXTCOLORINSTRUCTIONTERMINATOR
TEXT_-ECTOR-COUNTENCODING
TEXT-VECTOR-COUNT-FORRMAT

Bundle Tables

These keywords give limited control over device bundle tables. These entries are currently
untested and no guarantee is made that they will work. For a detailed description of what
bundle tables are, and what they can be used for, consult the GKS standard. The translator
provides for five pre-defined bundle tables for the classes LINE, MARKER, POLYGON, and
TEXT. The installer may modify these bundle tables, but such modification should be docu-
mented for the benefit of the users. The tables are coded in an obvious fashion- the first
element of each keyword applies to the first table, and so on. For example, the first element
in the keyword BUNDLE-LINE-INDEX is the bundle table index used for the bundle that
consists of the first elements of each of the keywords BUNDLE-LINE_TYPE,
BUNDLELINEWIDTH, and BUNDLELINE-COLOR.

BUNDLE-LINE-INDEX

Description: Define the indices for the LINE bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLE-LINETYPE

Description: Define the line types for the LINE bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

Version 3.00, May 1990 75

CGM Translator

BUNDLE-LINEWIDTH

Description: Define the line width scale factors for the LINE bundle tables.

Type: Floating point

Default: 1. 1. 1. 1.1.

Maximum number of entries: 5

BUNDLE-LINECOLOR

Description: Define the line color indices for the LINE bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLEIMARKERJNDEX

Description: Define the indices for the MARKER bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLE.MARKER_TYPE

Description: Define the marker types for the MARKER bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLE-MARKER-SIZE

Description: Define the marker size scale factors for the MARKER bundle tables.

Type: Floating point

Default: 1. 1. 1. 1. 1.

Maximum number of entries: 5

BUNDLE.MARKERCOLOR

Description: Define the marker color indices for the MARKER bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

NCAR Graphics Generic Package Installer's Guide76

CGM Translator

BUNDLE-POLYG ONINDEX

Description: Define the indices for the FILL AREA bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLEPOLYGON-INTERIOR

Description: Define the fill area interior styles for the FILL AREA bundle tables.

Type: Decimal

Default: 0 0 0 0 0 (hollow)

Maximum number of entries: 5

BUNDLE-POLYGONS TYLE

Description: Define the style indices for the FILL AREA bundle tables.

Type: Decimal

Default: 0 0 0 0 0

Maximum number of entries: 5

BUNDLE-POLYG ON-COLOR

Description: Define the color indices for the FILL AREA bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLETEXT-INDEX

Description: Define the indices for the TEXT bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

BUNDLETEXT-FONT

Description: Define the text fonts for the TEXT bundle tables.

Type: Decimal

Default: 1 1 1 1 1

Maximum number of entries: 5

Version 3.00, May 1990 77

CGM Translator

BUNDLE-TEXT-PRECISION

Description: Define the text precisions for the TEXT bundle tables.

Type: Decimal

Default: 11 1 11 (character precision)

Maximum number of entries: 5

BUNDLETEXT-CEXPN

Description: Define the character expansion factors for the TEXT bundle tables.

Type: Floating point

Default: 1.0 0.6 0.8 1.2 1.4

Maximum number of entries: 5

BUNDLE-TEXT-CSPACE

Description: Define the character character spacings for the TEXT bundle tables.

Type: Floating point

Default: 0. 0. 0. 0. 0.

Maximum number of entries: 5

BUNDLETEXT-COLOR

Description: Define the color indices for the TEXT bundle tables.

Type: Decimal

Default: 1 2 3 4 5

Maximum number of entries: 5

Polygon Control

This section controls the generation of polygons, closed objects that may be filled or hollow.
The coordinates are encoded and formatted using the DEVICE-COORD definitions. If there
is no polygon instruction on the device, then the polygon color instructions should be the
same as the line color instructions.

POLYGON-JNSTRUCTIONS TART

Description: If the device has a polygon instruction, then this field is defined. If the field is
not defined, then line instructions are used to generate the outline of the
polygon and fill style is hollow.

Type: String

Default: Null

Maximum number of entries: 40

NCAR Graphics Generic Package Installer's Guide78

CGM Translator

POLYGON-NS TRUCTIONTERMINATOR

Description: Terminator for the hardware polygon instruction.

Type: ASCII characters

Default: Null

Maximum number of entries: 20

POLYGON-POINTSTART

Description: Specifies the instruction to be issued prior to the encoding of each coordinate
pair.

Type: String

Default: Null

Maximum number of entries: 20

POLYGONPOINTTERMINATOR

Description: Specifies the instruction to be issued subsequent to the encoding of each coor-
dinate pair.

Type: String

Default: Null

Maximum number of entries: 20

POLYGONCOLOR-INSTRUCTION-START

Description: The instruction to change polygon color.

Type: String

Default: Null

Maximum number of entries: 20

POLYGONCOLOR-INS TRUCTIONTERMINATOR

Description: Terminate the polygon color instruction.

Type: String

Default: Null

Maximum number of entries: 15

POLYGONJBACKGROUNDCOLOR-INSTRUCTIONSTART

Description: The instruction to change the polygon color when using the background
color. This is provided for those few devices that require special instructions
for filling when using the background color.

Type: String

Default: Null

Maximum number of entries: 30

Version 3.00, May 1990 79

CGM Translator

POLYG ON-BACKGROUNDCOLOR-JNS TRUCTION-TERMINATOR

Description: Terminate the polygon color instruction when using the background color.

Type:

Default:

String

Null

Maximum number of entries: 15

POLYGONMLAXIMUM-POINTS

Description:

Type:

Default:

Specifies the maximum number of points allowed in a hardware polygon
instruction.

Decimal

32767

Maximum number of entries: 1

POLYGON-SIMULATE

Description:

Type:

Default:

If a device has a hardware fill instruction (the
POLYGON-JNSTRUCTION-START keyword has been defined), then
hardware fill will be done for all polygons having less than one plus the
number of vertices specified by the POLYGON-MAXIMUM-POINTS key-
word. In all other cases, software fill will automatically be invoked unless the
POLYGON-SIMULATE keyword is set to FALSE. If the
POLYGON-SIMULATE keyword is set to FALSE, then only the boundaries
of the polygons will be drawn (in the current fill color) whenever software fill
would have otherwise been invoked. This keyword is designed to disable
automatic software fill on devices that have no hardware fill instruction.

Logical

TRUE

Maximum number of entries: 1

POLYGON-SIMULATION-SPACING

Description:

Type:

Default:

This keyword specifies the interline spacing between fill lines for the software
fill algorithm used in the translator. The number is in the virtual device
coordinate space 0 to 32767. The software fill algorithm is invoked whenever
POLYGONSIMULATION-FLAG is TRUE and either there is no hardware
fill instruction, or there is a hardware fill instruction but the number of ver-
tices in the polygon exceeds POLYGONMAXIMUM-POINTS.

Decimal

0.9*(327 67./ABS(DEVICECOORDUPPER-RIGHT-Y-
DEVICECOORD-.OWERLEFT-Y))

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide80

CGM Translator

POLYGONSIMULATIONTRUNCATION

Description: Specifies the length to be clipped off of fill lines in the software fill simulation.
The number is in the range 0 to 32767. This keyword is potentially useful for
film devices that show bright spots at line overlaps.

Type: Decimal

Default: 0

Maximum number of entries: 1

POLYGON-HATCHSPACING

Description: This keyword specifies the interline spacing between fill lines for the hatch
line patterns in polygon instructions when the interior style is "hatch." The
number is in the virtual device coordinate range 0 to 32767.

Type: Decimal

Default: 300

Maximum number of entries: 1

Raster Control

This section controls the translation of cell arrays. These keywords are utilized to interpret
the CGM CELL ARRAY element (generated from the GKS CELL ARRAY function). For
a detailed description of what cell arrays are, and how they are used, consult the GKS stan-
dard. Cell arrays are produced on devices having a raster display capability; not all output
devices have such a capability. In the case that an output device does not have a raster
display capability, the keyword RASTER-SIMULATE should be set to FALSE; in this case
a rectangle will be drawn around the cell array. If the output device has polygon fill, then
cell arrays can be simulated if the RASTER-SIMULATE keyword is set to TRUE; see below
for details.

The cell array can be drawn in any orientation or transposition by properly changing the
lower left and upper right coordinates and perhaps interchanging the order of coordinate pro-
cessing as defined in the RASTERDATA-FORMATT. If your device has lower left at (0,0),
and upper right at (1000,1000), then you could draw the cell array upside down by setting
the lower left coordinates at (0,1000) and the upper right coordinates at (1000,0) .

Since cell arrays are subject to all of the coordinate transformations of GKS, it is possible
that the cell array will not align with the coordinate axes. In this case, the translator will
behave as if RASTER.SIMULATE were set to TRUE (that is, polygon fill will be used to
create the cell array elements). A full implementation using raster scan lines for.transformed
cell arrays will appear in a later version of the translator. Also, the current translator is lim-
ited to accepting only horizontal scan line instructions. If an output device scans in the verti-
cal direction, it will be necessary to set RASTER-SIMULATE to TRUE in the current ver-
sion of the translator.

Version 3.00, May 1990 81

CGM Translator

RASTER-SIMULATE

Description:

Type:

Default:

If RASTER-SIMULATE is set to FALSE, then the translator will draw a
rectangle around the cell array and nothing more. If an output device does
not support scan line instructions, it can simulate cell arrays using polygon
fill. If RASTER-SIMULATE is set to TRUE, polygon fill is used to draw
each element of the cell array; if the device does not support polygon fill, then
a rectangle will be drawn around each element of the cell array.

Note in particular that if RASTER-SIMULATE is set to TRUE, then any
other RASTER keywords will be ignored, and polygon fill will be used.

Logical

FALSE. (Do not simulate scan line instructions.)

Maximum number of entries: 1

RAS TERC O ORD-LOWER-LEF T-X

Description:

Type:

Default:

The device X coordinate (in pixel space) of the lower left corner of the draw-
ing surface.

Decimal

Null

Maximum number of entries: 1

RASTER-COORDLOWERLLEF TY

Description:

Type:

Default:

The device Y coordinate (in pixel space) of the lower left corner of the draw-
ing surface.

Decimal

Null

Maximum number of entries: 1

RASTER-COORD-UPPER-RIGHT-X

Description:

Type:

Default:

The device X coordinate (in pixel space) of the upper right corner of the
drawing surface.

Decimal

Null

Maximum number of entries: 1

RASTER-COORD-UPPER-RIGHTY

Description:

Type:

Default:

The device Y coordinate (in pixel space) of the upper right corner of the
drawing surface.

Decimal

Null

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide82

CGM Translator

RASTERCOORD-XOFFSET

Description:

Type:

Default:

A device coordinate value added to X addresses before they are sent to the
device. The translator attempts to center the plot based on the lower left
and upper right values. When the coordinate space is asymmetric (X coordi-
nate interval is not the same as the Y coordinate interval), offset values will
help to place the frame properly. Another use of offset values is to move the
display to a particular part of the display surface.

Decimal

0 (zero)

Maximum number of entries: 1

RASTER-COORDYOFFSET

Description:

Type:

Default:

A device coordinate value added to Y addresses before they are sent to the
device. See the description of RASTERCOORD-XOFFSET above.

Decimal

0 (zero)

Maximum number of entries: 1

RAS TER-COORD-XS CALE

Description:

Type:

Default:

In some cases, an X coordinate unit does not equal a Y coordinate unit. This
keyword allows a scale factor to be introduced into the device coordinate
computation stream. It will scale the X coordinates by the specified factor.

Floating point

1.0

Maximum number of entries: 1

RASTER-COORD-YSCALE

Description:

Type:

Default:

In some cases, a Y coordinate unit does not equal an X coordinate unit. This
keyword allows a scale factor to be introduced into the device coordinate
computation stream. It will scale the Y coordinates by the specified factor.

Floating point

1.0

Maximum number of entries: 1

RASTER-DATA-FORMAT

Description: This specifies the format used to convert the pixel color index values into
device-specific pixel instructions. The input array to this format is a string of
pixel color index values. Depending upon the
RASTERJHORIZONTALI-NSTRUCTIONJSTART definition, the input
array may contain a color index for every pixel, or it may be runlength
encoded (an array containing pairs of values, the first element of the pair
specifying a runlength which is a count specifying a number of pixels, and the
second element specifying a color index). Consult the "Formatting and
Encoding Coordinates" discussion earlier in this section.

Version 3.00, May 1990 83

CGM Translator

In the example that follows, we describe the formatting required for the
TEKTRONIX 4107 for producing a RUNLENGTH WRITE instruction.
The formatter receives an array of runlength encoded pixel values. The first
value is the pixel count, and the second is the color index. Each set of run-
length values must be formatted such that

RUNTCODE = numberoof-pixels * (2 exp(n)) + color-index

where n is the number of bits per pixel used to specify the color index. In the
following example, we use n=4, which allows the full 16 colors to be specified.
The desired format table is:

Type:

Default:

Decimal rows with 4 elements per row

Null

Maximum number of entries: 40 (10 rows * 4 columns)

RASTER-DATA-ENCODING

Description:

Type:

Default:

The encoding scheme used for the device raster data. See the "Formatting
and Encoding Coordinates" discussion earlier in this section.

Decimal in the range 0 to 5.

0 (zero)

Maximum number of entries: 1

RASTER-DATA-FLOATING-JNFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output floating point. This key-
word is utilized when the RASTER-DATA-ENCODING is set to ASCII real
(5). The keyword requires four floating point numbers. The first two
describe the minimum and maximum data values received by the encoder.
The final two describe the minimum and maximum floating point values sent
to the device.

Floating point

Null

Maximum number of entries: 4

RASTER-VECTOR-COUNT-FORMAT

Description: The format used to create the device-specific raster vector counts. The for-
matter will receive only one input data word. The following example encodes
a 16-bit data count.

NCAR Graphics Generic Package Installer's Guide

RASTER-DATA-FORMAT
/* bit-start bit-count data-type data-value

1 11 1 10
12 4 2 3

84

CGM Translator

RASTERVECTOR-COUNT-FORMAT
bit-start bit-count data-type data-value

0 16 1 15

Type: Decimal rows with 4 elements per row.

Default: Null

Maximum number of entries: 40 (10 rows with 4 elements per row)

RASTER-VECTOIRCOUNT-ENCODING

Description:

Type:

Default:

The encoding scheme used for the device raster data. See the "Formatting
and Encoding Coordinates" discussion earlier in this section.

Decimal in the range 0 to 5

0 (zero)

Maximum number of entries: 1

RASTER-VECTORLCOUNT-FLOATING-INFO

Description:

Type:

Default:

The mapping from fixed point (integer) to output floating point. This key-
word is utilized when the RASTERVECTOR-COUNT-ENCODING is set
to ASCII real (5). The keyword requires four floating point numbers. The
first two describe the minimum and maximum data values received by the
encoder. The final two describe the minimum and maximum floating point
values sent to the device.

Floating point

Null

Maximum number of entries: 4

RASTERIHORIZONTAL-INSTRUCTION-START

Description:

Type:

Default:

Defined if the output device has scan line commands; RASTER-SIMULATE
must be FALSE to invoke the device raster scan commands.

String

Null

Maximum number of entries: 50 characters

RASTER-HORIZONTAL-INSTRUCTIONTERMINATOR

Description:

Type:

Default:

Defined if the output device has scan line commands; RASTER-SIMULATE
must be FALSE to invoke the device raster scan commands.

String

Null

Maximum number of entries: 50 characters

Version 3.00, May 1990 85

Fontcap Files

Fontcap Files

Within the context of NCAR Graphics, a fontcap is a table describing a character font. This
section describes how to generate fontcap files. Fontcap files have two formats: ASCII and
binary -the ASCII file is created using a text editor, and the binary version is used for
input to the CGM translators. The binary versions are generated automatically from the
ASCII versions by using the fontcap preprocessor FONTC. The details of how fontcaps fit
into the overall picture of metafile translation are discussed in the beginning of this section of
this manual.

In its ASCII form, the fontcap consists of a set of keywords followed by definitions for those
keywords. A keyword must be contained on one line; typically a keyword will appear on one
line, and the definitions for that keyword will appear on subsequent lines. A complete
description of all fontcap keywords appears later in this section.

To create or modify a fontcap, use any text editor that does not insert any of its own control
characters into the file.

Definitions of fontcap keyword values are decimal (integer) values. All value definitions may
range from null to a maximum count specified by the associated keyword. Keyword
definitions are allowed a maximum of 80 columns per line; however, they may cross line
boundaries. A new line is equivalent to a space for separating definition entities.

Character digitizations are effected on a digitized grid. The size of this grid will depend on
what the implementor of the font wants to use. The FONT CLASS keywords (described
below) establish the digitization grid. Units in this grid are referred to as font units.

Note: Keywords in the fontcap must appear in the order they are described in this section.
There are no default definitions. All keywords must be defined unless explicitly stated other-
wise.

Character Class

The following keywords define the collating sequence and the size of the characters in the
font. There may not be any gaps in the collating sequence between the first character
specified by the CHARACTER-START and the last character specified by
CHARACTER-END.

CHARACTERLSTART

Description: The decimal equivalent of the first character in the collating sequence.

Type: Decimal

Maximum number of entries: 1

CHARACTERIEND

Description: The decimal equivalent of the last character in the collating sequence.

Type: Decimal

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide86

Fontcap Files

CHARACTER-WIDTH

Description: For mono-spaced fonts (see the definition of the FONT-TYPE keyword
below), this is the width in font units of each character in the font. For pro-
portionally spaced fonts, this is the width of the widest character, including
white space.

Type: Decimal

Maximum number of entries: 1

Font Class

This class of keywords defines various character positions in the font. All fonts are assumed
to be digitized on a fixed grid with lower left corner equal to (0,0). Since this assumption
requires that the left side of the font coordinate system is always 0, the obvious keyword
FONT-LEFT is not required below. The keywords in this class closely follow the text
model delineated in the GKS standard and the installer is encouraged to consult that docu-
ment for further explanation.

FONT-RIGHT

Description: The right side of the font coordinate system.

Type: Decimal

Maximum number of entries: 1

FONT-TOP

Description: The vertical top of the font coordinate system. In general, this value should
be chosen so that abutting two characters vertically will allow appropriate
white space between them.

Type: Decimal

Maximum number of entries: 1

FONTCAP

Description: The vertical top of a capital letter given in the font coordinate system.

Type: Decimal

Maximum number of entries: 1

FONT-HALF

Description: The vertical center of a capital letter in the font coordinate system.

Type: Decimal

Maximum number of entries: I

Version 3.00, May 1990 87

Fontcap Files

FONT-BASE

Description: The vertical base of a capital letter in the font coordinate system.

Type: Decimal

Maximum number of entries: 1

FONTJBOTTOM

Description: The vertical bottom of the font coordinate system. Extenders drop down to
this level.

Type: Decimal

Maximum number of entries: 1

FONT-TYPE

Description: Flags the font type. There are four legal types:

0 -mono-spaced stroked font
1 - proportionally spaced stroked font
2- mono-spaced filled font
3 proportionally spaced filled font

The stroked fonts are graphically represented by sequences of line draws; the
filled fonts are graphically represented by filled areas. If large stroked char-
acters are drawn, the line draws will become obvious whereas filled charac-
ters do not have this drawback. However, in general it is much more expen-
sive to draw filled characters.

Type: Decimal

Maximum number of entries: 1

Coordinate Class

The coordinate class defines where each part of a character stroke is stored in an integer
word (the packing instructions). The total of the coordinate definitions must fit in an integer
word on the target machine. The paint class is not used except by the NCAR Dicomed cam-
era translator and need not be defined unless the font is to be used by the Dicomed. Paint
class defines a condition of where to start the actual beam exposure for each stroke. The
start positions refer to the location in an integer word to start storing a bit string. The
string is stored left to right. The start position aligns with the leftmost bit of the string to
be stored. The indices are valued at 0 (zero) at the right of a word and increase to the left.
For example, if it is desired to store the Y coordinates in the lower 9 bits of a word, then set
COORDYSTART to 8 and COORDY-LEN to 9.

COORDXLSTART

Description: The starting point for storage of the X coordinate of a stroke.

Type: Decimal

Maximum number of entries: 1

NCAR Graphics Generic Package Installer's Guide88

Fontcap Files

COORD-_YSTART

Description: The starting point for storage of the Y coordinate of a stroke.

Type: Decimal

Maximum number of entries: 1

COORD-PENSTART

Description: The starting point for storage of the pen up/down indicator.

Type: Decimal

Maximum number of entries: 1

COORD-XLLEN

Description: The number of bits in the X coordinate.

Type: Decimal

Maximum number of entries: 1

COORDYJLEN

Description: The number of bits in the Y coordinate.

Type: Decimal

Maximum number of entries: 1

COORD-PENLEN

Description: The number of bits in the pen indicator.

Type: Decimal

Maximum number of entries: 1

PAINTB3EGINSTART

Description: The starting point for storage of the paint begin indicator.

Type: Decimal

Maximum number of entries: 1

PAINT-ENDJSTART

Description: The starting point for storage of the paint end indicator.

Type: Decimal

Maximum number of entries: 1

PAINT-BEGINLEN

Description: The number of bits in the indicator.

Type: Decimal

Maximum number of entries: 1

Version 3.00, May 1990 89

Fontcap Files

PAINT-END-LEN

Description: The number of bits in the indicator.

Type: Decimal

Maximum number of entries: 1

Character Stroke Class

This class defines the characters in their proper collating sequence. It has only one keyword,
which delimits each character.

CHAR

Description: This keyword defines the strokes (for FONT-TYPEs equal to 0 or 1), or
polygons (for FONTTYPEs equal to 2 or 3) for each character in the font.
Each character must be in its proper position in the collating sequence and
preceded by a CHAR keyword. The definition of a character will differ
depending upon the FONTTYPE. If the font is proportionally spaced, then
the first two entries in the CHAR value define the character left and charac-
ter right values that define the horizontal limits of the character body. For
proportionally spaced fonts, these character left and character right values
should be defined so that two horizontally contiguous characters will have the
appropriate white space between them. For filled fonts, the "paint start" and
"paint end" values have no meaning and consequently should not be specified.
Examining some example fonts in the package should help clarify the
definition of the CHAR values. The PEN value flags a move or draw for
stroked fonts, and flags begin polygon or continue polygon for filled fonts.

A single data item in a CHAR value will have five components (only the first
three for filled fonts).

X-coordinate

Y-coordinate

PEN

Paint Start bit

Paint End bit

The X coordinate given in font coordinate space.

The Y coordinate given in font coordinate space.

The pen. For stroked fonts, 0 indicates pen up (a
move); 1 indicates pen down (draw). For filled fonts, 0
indicates the start of a new polygon, and 1 indicates to
add the current point to the current polygon.

The draw at start of vector bit. Interpreted same as
PEN. Only effective for the NCAR Dicomed transla-
tor, and must not be specified for filled fonts.

The draw at end of vector bit. Interpreted same as
PEN. Only effective for the NCAR Dicomed transla-
tor, and must not be specified for filled fonts.

All five components must be included for each stroke in a stroked font, but
only three items must appear for each data item in a filled font. The paint
bits may be zero or one at any time unless you intend to use the font for the
Dicomed.

Presented below are examples of two characters as defined in two different
fontcap files. The first character "#" is defined as a member of a mono-

NCAR Graphics Generic Package Installer's Guide90

Fontcap Files

spaced font, and the second character "A" is defined as a member of a propor-
tionally spaced font. Note that for the proportionally spaced font, the first
two parameters in the value specification specify the character left and char-
acter right values. In the first example, the X and Y lengths are 6 bits. In
the second example, the X and Y lengths are 8 bits. The PEN and PAINT
are 1 bit.

CHAR
/* #
/* pen paint-st painted

33
18
18
33
29
29
22
22

7
5

12
14
18
3
1

16

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

character left
122

x-coord
127
123
127
131
125
129

character right
132

y-coord
132
123
132
123
126
126

Type: Decimal

Maximum number of entries:

* For X coordinates, Y coordinates, PEN and PAINT, the user
defines the range of values allowed with the COORDINATE
CLASS keywords.

* There are a maximum of 300 strokes allowed per character.

* A maximum of 100 characters may be defined.

* The total stroke count cannot exceed 5121.

Version 3.00, May 1990

CHAR
/* A
/*

pen
0
1
0
1
0
1

paint-st
0
1
0
1
0
1

painted
0
.1
0
1
0
1

x-oord -or

91

Fontcap Files

Font Tables

There are 20 supported fontcaps. The tables on the following pages list all the supported
fonts. The left column in the tables gives the ASCII character used in a TEXT element, and
the other columns present the character as it will be stroked. The association of the Hershey
fonts with the font numbers is given by:

NCAR Graphics Generic Package Installer's Guide

NCAR GKS Table column Font name
font number heading

1 1 DEFAULT
-2 M2 HERSHEY:CARTOGRAPHIC-ROMAN
-3 M3 HERSHEY:CARTOGRAPHIC-GREEK

-4 M4 HERSHEY:SIMPLEX-ROMAN
-5 M5 HERSHEY:SIMPLEXGREEK
-6 M6 HERSHEY:SIMPLEX-SCRIPT

-7 M7 HERSHEY:COMPLEX-ROMAN
-8 M8 HERSHEY:COMPLEXGREEK
-9 M9 HERSHEY:COMPLEX-SCRIPT

-10 M10 HERSHEY:COMPLEXITALIC
-11 M11 HERSHEY:COMPLEX-CYRILLIC
-12 M12 HERSHEY:DUPLEX-ROMAN

-13 M13 HERSHEY:TRIPLEX-ROMAN
-14 M14 HERSHEY:TRIPLEX-ITALIC
-15 M15 HERSHEY:GOTHICGERMAN

-16 M16 HERSHEY:GOTHIC-ENGLISH
-17 M17 HERSHEY:GOTHICJTALIAN
-18 M18 HERSHEY:MATH-SYMBOLS

-19 M19 HERSHEY:SYMBOL-SET1
-20 M20 HERSHEY:SYMBOLSET2

92

Fontcap Files

A

spc

$

&

/
0
1

2
3
4

5
6
7
8
9

>

1

4t

$
%
&

()

4-

/
0
1

2
3
4

5
6
7
8
9

>

2

M2
I

I

II

#
$

&

(
)C5C

/
0
1
2
3
4
5
6
7
8
9

M3

I

I

#
$

&

(
)

+

/
0
1
2
3
4
5
6
7
8
9

M4

I I

#
$

&

(
)
+

/
0
1
2
3
4

5
6
7
8
9

-?

M5

#
$

&

(
)

/
0
1
2
3
4
5
6
7
8
9

>
?

M6
i -

#
$

&

(
)
*

+

/
0
1
2
3
4
5
6
7
8
9

<

?

M7

II

#
$
%
&

(
)
+

/
0
1
2
3
4
5
6
7
8
9

?

M8

If

#
$

&
I

(
)

/
0
1
2
3
4

5
6
7
8
9

>
?

M9

II

$

&

(
)
+

/
0
1
2
3
4

5
6
7
8
9

t.

Version 3.00, May 1990

M10

$

&
I

(
)
*

+

/
0
1
2
3
4
5
6
7
8
9

I,

-- I I I---- -- I I I. .~~~~~~] - ·- a

I

I I

93

Fontcap Files

A

A
B
C
D
E'
F
G
H

I
J
K
L
M
N
0
P
Q
R
S
T
U
V
wW
X
y

Z

\.
]

1

@

A
B
C
D
E
F
G
H
I
J
K
L
M
N

0
p
Q
R
S
T
U
V
w
x
Y

z
[

]

M2

A
B
C
D
E
F
G
H
I

J
K
L
M
N
0
p
Q
R
S
T
U
V
w
x
Y
z

M3

A
B
X
A
E

r
H

K
A
M
N
0
n

p

T
T

4i

z

M4

A
B
C
D
E
F
G
H
I
J

K
L
M
N
0
p

Q
R
S
T
U
V
W

X

Y
Z

A

M5

A
B
X
A
E

r
H
I'

K
A
M
N
0
n
0
p

T
T

Z
z

A

M6

A

'3
b
£

Cx
S

x
£

m
n
G72
0'1
.2

U

Wab
S.

u
~v
w
x

v

A

M7

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P

Q
R
S
T
U
V
w
x
Y
Z

[
\
]
I

M8

A
B
X
A

E
F
r
H
I

K
A
M
N
0
H

p

T
T

q-

z
[
\
]

M9

A

256

q,

5

Y
w
3)y

y

NCAR Graphics Generic Package Installer's Guide

M 10-

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P

Q
R
S.
T
U
V
w
x
Y
Z

I I ---- II --- I I I I I. I I

94

Fontcap Files

A 1
: ,_i

a
b
c

d
e

f
9
h

j
J
k

m

n

o

p

q
r

t

u

v

w

x

y
z

a
b
c

d
e

f

9
h

i

k
I
m
n

0

p

q

r

s

t

u

v

w

x

y
z

I

}

M2 M3 M4

a

b
c

d
e
f

9
h
i

j
k

m

n

o

p

q
r
S

t
u

w

x

y
z

M5

a

of

Ox
6

7

K

x

?T

0

p

T

Ut

M6

0~

if

t

IL4l

PI

M7

a
b
c

d
e
f

g
h
i

kk

m
n
o

p
q
r
s

t
u

v

w

x

y
z

I

M8

a

X
6

7

L

v

co
*1

V

c

M9

aI

t

C-

0l

/L

I

I'l

I

Version 3.00, May 1990

M1 0

a
b
c

d
e

f
g
h
i

k
l

m
n

0

p
q
r
s

t
u

v

w

x

y
z

.. _

I I I I - I I I I I I---̀ .. i _

-- -. II
i

]

95

Fontcap Files

A I M11

spc
I

$.

&

/
0
1
2
3
4
5
6
7
8
9

?

II

If
$
,%
&

(
)

/
0
1
2
3
4
5
6
7

8
9

M1 2

I

$

&

(
)
+

/
0
1
2
3
4
5
6
7
8
9

I

M1 3

$

&
)

(
)
*

+h

/
0
1
2
3
4

5
6
7
8
9

t

M1 4

$

&

(
)
*

+

/
0
1
2
3

4

5
6
7
8
9

M15

$

&
(

(
)
*

+

/
0
1
2

3

4
5
6
7

8
9

9

M1 6

I

$

&
I

)

/
a
2

3

4

5

7

8

.9

9

M1 7

I

t
&

(
)
*

+

/
0
1
2

3
4
5
6
7
8
9

!

9

M1 8

#

%
&

(
)
*

+

/
0
1
2
3
4
5
6
7

8
9

9

M19

a

V

m

C-

S

Y(>

/

/
I
\

NCAR Graphics Generic Package Installer's Guide

M20

fi
fifl
fi

1

P
ff
fi
fl
ffi
ffl

9

.E)

h

c[

w

ffI

S£E

p

-

I I I I. I I I I-11

.

II

I

ti tf

96

Fontcap Files

A |IM 1

9

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
S
T
U
V
W
x
Y
z
[

1

A
B
B
r

E

3

T1
M
H
0
n
P
c
T
y

Xx

LI

hI
b

3
10

M12

A
B
C
D
E
F

H

J
K
L
M
N

p0
Q
R
S
T
U
V
w
x
Y
z

M1 3

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
S
T
U
V

x
Y
z

M14

A
B
C
D
E
F
C
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V

-
x
y

zZ

M15

2

sJB

UE

.3

M1 6

A
6TT
(C

Bi

M

®

X

Z

13

0

q

tR
b

m

10
Z

M17

a

D

p

Q

xa

Bl

M1 8

z

*

0

0o

I

x

[I

II

3

M1 9

r

N

r-4
A

>0

._

Version 3.00, May 1990

M20

1W

0
lit

*S

)

0

0

INI

0

0

-- .. ____j-- -- - ..

,,J
i

97

Fontcap Files

A

a

b
c

d
e
f

9
h

j

k

m

n

0

p

q

r

s

t
u

v

w

x

y

z

(
I

)

M1 1

a

6
B

r

e
3I

3

K

M

H

0

p
C

T

y

Li

bI
I

bl
10

M1 2

a

b
c

d
e
f

9
h

i
k
I

m
n

o

p
q
r

s

t
u

v

w

x

y
Z

M13

a
b
c

d
e
f

g
h
i

k
1

m
n
o

p
q
r
s

u

v

w

x

y
z

M1 4

a
b
c
d
e

f
g
h
i

k
I

m
n

0

p
q
r

s

t
u

v

w

x

y
z

M15

a
b
C

b
e

f
9

i

i

I
m
n

o

q

r

f
t
u

t)

3

M1 6

a

b
t

f

i

it

I

U

q
r

S

w
x

I

M1 7

a

b
r

b
r
f
9

i
i

k
I

m

n

0

p
q
r

s

f

u

UU

x

3

M1 8

oc

Fj

C

t
c

u

D

n
E
-4

T
4-

a
vV

,/
f
00

I'I
§

r\v

M19

4

V

*

PIi

r

&

4.'

I-'t

0

Q
-It.

I

0-

0

.%1

NCAR Graphics Generic Package Installer's Guide

M20

18

5:

r-[
E

0

IV

I I I I I I I I I I

98

CGM Translator

Required Locally Implemented Subroutines

The graphcap preprocessor, the fontcap preprocessor, and the CGM translator all invoke
low-level support routines from a collection of such subroutines that are machine-specific and
need to be supplied locally by the installer.

Three of the routines, IlMACH, GBYTES, and SBYTES, can be found in "NCAR Graphics
Package Installation," Section II of this manual; the descriptions for all other required sup-
port routines will be given in this section.

Examples of IlMACH, GBYTES, and SBYTES are contained in file LOCAL on the distribu-
tion tape; examples of the other required support routines are in file TRNSPPRT on the dis-
tribution tape. It must be emphasized that these examples are machine-specific and are
meant as examples only. The installer must take care to make certain that the implementa-
tions of the support routines satisfy the functional descriptions given below.

The support routines described below are separated into those required by the translator,
and those required by the fontcap and graphcap preprocessors.

Routines Required by the Translator

This part describes the routines required by the Fortran NCAR CGM translator (file
CGMTRANS) at each installation. All variable types are given in terms of FORTRAN 77.
In the descriptions below, "allok" represents no errors occurring during the execution of the
described routine.

The routines I1MACH, GBYTES, and SBYTES are required but not discussed here. Their
description will be found in Appendix A of Section II of this manual.

ARGGET (NUMBER, STRING)

ARGGET gets the requested argument from the command line. This is an optional routine
required only if command line processing is implemented. If command line processing is not
implemented, implement this routine as a dummy, or remove its call from the code.

INPUT NUMBER -INTEGER, argument number requested

OUTPUT STRING - CHARACTER*1 STRING(80), string containing the argu-
ment

BCLRED (UNIT, IOS, STATUS)

BCLRED closes a file opened by BOPRED for sequential binary reading.

INPUT UNIT -INTEGER, the unit to close

OUTPUT IOS -INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status

zero allok
non-zero - error closing the unit

Version 3.00, May 1990 99

CGM Translator

BINRED (UNIT, COUNT, BUFFER, IOS, STATUS)

BINRED transfers "COUNT" Fortran INTEGERS from an unformatted file. The file was
opened by BOPRED.

INPUT
UNIT -INTEGER, the unit from which to read
COUNT - INTEGER, the number of integer words to transfer

OUTPUT
BUFFER -INTEGER BUFFER(COUNT), the buffer of integer words
read in
IOS -INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status

zero - allok
non-zero -error reading from the unit

BOFRED (UNIT, FNUM, IOS, STATUS)

BOFRED opens a binary fontcap file for sequential unformatted reading. The file was
created by the fontcap preprocessor (file FONTC) using the local routine BINOPN.

The example BOFRED, which is included in file TRNSPPRT on the distribution tape is
written to open a local file FONTn (where n is the number in FNUM). For example, a
CALL BOFRED(IUNIT,23,IOS,STATUS) would open file named FONT23.

INPUT UNIT - INTEGER, the unit to open
FNUM - INTEGER, a font number

OUTPUT IOS - INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status

zero - allok
non-zero - error opening the unit

BOPRED (UNIT, FLNAME, IOS, STATUS)

BOPRED opens a binary graphcap file for sequential unformatted reading. The file was
created by the graphcap preprocessor using the local routine BINOPN.

INPUT

OUTPUT

UNIT - INTEGER, the unit to open. (On UNIX systems using C I/O,
this will be an output argument.)
FLNAME - CHARACTER*1, a string containing a pathname, blank
terminated

IOS- INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS -INTEGER, the error status

zero - allok
non-zero - error opening the unit

NCAR Graphics Generic Package Installer's Guide100

CGM Translator

FLUS (BUFFER, COUNT, UNIT)

FLUS flushes device-dependent instructions to the output device.

INPUT BUFFER - INTEGER, a packed array of device instructions
COUNT INTEGER, the number of 8-bit bytes to transmit
UNIT - INTEGER, the unit where instructions are sent

FRPRMP (BUFFER, COUNT, IOS, STATUS)

FRPRMP sends the USER-PROMPT and waits for response. This routine is used only if
the graphcap keyword DEVICE-BATCH is FALSE. Any user response will cause execution
to resume.

INPUT BUFFER - INTEGER, an array containing the user prompt. Unpacked
with the low order 8 bits of every word containing the ASCII decimal
equivalent of an ASCII character.
COUNT - INTEGER, the number of integer words in BUFFER

OUTPUT IOS INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status.

zero- allok
non-zero- error writing user prompt, or reading user response

INTEGER FUNCTION IARGCT (DUMMY)

This function is used only when optional command line processing is installed. This routine
returns as the function result the number of arguments on the command line. This routine
will be used in conjunction with ARGGET.

INPUT None - DUMMY is a dummy argument

OUTPUT As the function result, the number of arguments on the command line at
translator invocation

INTHDL

INTHDL is provided as a means to handle user interrupts. It is invoked as the first execut-
able statement in CGMTRANS. Basically, this routine should specify what to do in the case
of intercepting a user interrupt. If a user starts plotting a complex plot, it is useful to pro-
vide some quick exit from plotting if the user does not want to continue plotting and wait
several seconds or minutes for the given plot to finish. The implementation of this subrou-
tine is highly machine-specific. The file TRNSPPRT on the distribution tape contains an
example INTHDL for standard UNIX systems. This subroutine intercepts user interrupts,
flushes the output buffers and returns to text mode. To reproduce this logic on other sys-
tems, it is necessary to establish where to go on intercepting a user interrupt, and then when
an interrupt is intercepted, call the CGMTRANS subroutines STRTUP, ERASE, ENDIT,
and BFDMP.

If you do not want to take the time to implement INTHDL initially, then you should simply
supply a dummy subroutine for INTHDL.

Version 3.00, May 1990 101

CGM Translator

MSSG (UNIT, MSGNUM, ADDINF)

MSSG puts out a message on the error unit. The message should read:

Message Flag= MSGNUM Other info= ADDINF

This corresponds to the message format given under the "Status Messages" heading, which is
at the end of this manual section.

INPUT UNIT - INTEGER, the unit number to use for writing the message
MSGNUM - INTEGER, the error number
ADDINF - INTEGER, usually the I/O status, but may be some other
information

OUTPUT None

MTOPEN (UNIT, FLNAME, IOS, STATUS)

MTOPEN opens a file for direct unformatted reading of 1440 byte records. This routine
opens a pre-CGM NCAR metafile, or an NCAR CGM.

INPUT UNIT INTEGER, the unit to open. (This may be an output argument
on UNIX systems using C I/O.)
FLNAME - CHARACTER*1, a string containing the pathname of the
metafile

OUTPUT IOS INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status

zero- allok
non-zero -error opening the file

READIT (BUFFER, MAX)

READIT reads a character string from standard input and puts it into a FORTRAN 77
CHARACTER* 1 array.

INPUT MAX- INTEGER, the maximum number of characters to read into the
BUFFER

OUTPUT BUFFER -CHARACTER*1, array to hold the characters read from
standard input

NCAR Graphics Generic Package Installer's Guide102

CGM Translator

RECRED (UNIT, RECNUM, BUFFER, WORDS, IOS, STATUS)

RECRED reads in a metafile record using direct access I/O. The metafile is opened by the
MTOPEN routine.

INPUT UNIT - INTEGER, the unit number from which to read
RECNUM -INTEGER, the current metafile record to read. Count
starts at 1. The metafile records are 1440 bytes long.
WORDS - INTEGER, the number of words to read so that 1440 bytes
are transferred

OUTPUT BUFFER INTEGER, the array containing the current metafile record
IOS - INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status.

zero- allok
1 error in reading
2 end of file found

WRITIT (STRING, COUNT)

WRITIT writes a character string to standard output.

INPUT STRING - CHARACTER*1, array of characters to write
COUNT - INTEGER, number of characters to write

OUTPUT None

Routines Required by Fontcap and Graphcap Processors

This part describes the installation-dependent routines required by the fontcap and graphcap
preprocessors. All variable types are given in terms of FORTRAN 77.

The fontcap preprocessor requires GBYTES and SBYTES, which are not discussed here. A
description of GBYTES and SBYTES is in Appendix A of Section II of this manual.

BINCLS (UNIT, IOS, STATUS)

BINCLS closes a file opened for sequential binary writing. The file was opened by BINOPN.

INPUT UNIT -INTEGER, the unit to close

OUTPUT IOS INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS -INTEGER, the error status

zero - allok
non-zero - error closing the unit

Version 3.00, May 1990 103

CGM Translator

BINOPN (UNIT, FLNAME, IOS, STATUS)

BINOPN opens

INPUT

OUTPUT

a file for sequential binary writing.

UNIT - INTEGER, the unit to open. (This may be an output argument
on UNIX systems using C I/O.)
FLNAME - CHARACTER*1, string containing the path name of the
file to open. The string must be terminated with a blank.

IOS -INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS- INTEGER, the error status

zero - allok
non-zero - error opening the file

BINWRI (UNIT, COUNT, BUFFER, IOS, STATUS)

BINWRI transfers the contents of BUFFER to the file named by UNIT. Use a sequential
unformatted write to perform the transfer. The file was opened by BINOPN.

INPUT UNIT - INTEGER, the unit on which to write
COUNT - INTEGER, the number of Fortran integers to transfer from
BUFFER
BUFFER -INTEGER, array of data which is to be transferred

OUTPUT IOS - INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS - INTEGER, the error status

zero - allok
non-zero error writing

CHRCLS (UNIT, IOS, STATUS)

CHRCLS closes a file opened for sequential character reading. The file was opened by
CHROPN.

INPUT UNIT- INTEGER, the unit to close

OUTPUT IOS -INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS INTEGER, the error status

zero - allok
non-zero -error closing the unit

NCAR Graphics Generic Package Installer's Guide104

CGM Translator

CHROPN (UNIT, FLNAME, IOS, STATUS)

CHROPN opens a file for sequential unformatted reads. The file contains characters with a
maximum of 80 characters per row (record).

FLNAME - CHARACTER*1, string containing the path name of the
file to open. The string must be terminated with a blank.

UNIT - INTEGER, the unit the file was opened on
IOS - INTEGER, the I/O status, valid only if STATUS is set to non-
zero
STATUS - INTEGER, the error status

zero - allok
non-zero- error opening the file

CHRRED (UNIT, COUNT, BUFFER, IPTR, IOS, STATUS)

CHHRED transfers from a character file to a Fortran character array. The file was opened
by CHROPN.

INPUT UNIT INTEGER, the unit from which to read
COUNT - INTEGER, the number of characters to transfer

BUFFER - CHARACTER*1, string containing the current row of the
file
IPTR - INTEGER, index of the first valid character in BUFFER. (This
should always be 1 in a Fortran implementation.)
IOS - INTEGER, the I/O status, valid only if STATUS is set to non-
zero. If STATUS is zero, then IOS is set to the number of bytes
transferred.
STATUS - INTEGER, the error status

zero- allok
one -end of file
> 1 - system dependent error flag

Version 3.00, May 1990

INPUT

OUTPUT

OUTPUT

105

CGM Translator

LaserJet Drivers'

This section describes the implementation of the LaserJet drivers that are new with Version
3.00. The LaserJet drivers are functional only with the Fortran version of the NCAR CGM
interpreter (sometimes called "ftrans" or "cgmtrans"). The LaserJet drivers will not work
with the C version of the NCAR CGM interpreter (sometimes called "ctrans").

There are ten supported graphcaps on the distribution tape for use with HP LaserJet
printers. The LaserJets will accept only bit-map images, so the translator has to rasterize its
output before sending it to a LaserJet printer. This rasterization process can be quite time
consuming. Consequently, there are several different graphcaps to produce plots at various
resolutions ranging from 75 dots per inch to 300 dots per inch. Also, there are two graph-
caps to support the original LaserJet printers. These are at-75 dots per inch resolution only.

There is a COMMON block in the translator for storage of the output raster image for the
LaserJet printers. This is the common block with name RASBUF. Since the storage
requirements may be significant, no storage is allocated for the LaserJet raster images by
default - the reason being that unless someone is going to use the LaserJet drivers, then a
storage penality should not be exacted. If you are going to use any LaserJet printer, you will
have to dimension the RBUF array appropriately by redefining MXRBUF.

We now describe how to figure out how big MXRBUF should be. A full image on a LaserJet
is plotted on an 8-inch by 10-inch rectangle, with the actual plot being in an 8-inch by 8-inch
square to satisfy the aspect ratio requirements of the standards. To figure out how much
space needs to be allocated in the RASBUF common array RBUF, take the resolution in
dots per inch and first figure out how many bits are needed. For example, if the resolution is
75 dots per inch, then the required number of bits to store the output image is 75 x 8 x 75 x
10 = 450000. To get the required dimension for RBUF, divide the number of bits by the
number of bits per word. For the previous example of 75 dots per inch resolution, on a 32-
bit machine RBUF should be dimensioned for 450000/32 = 14063. For the maximum resolu-
tion of 300 dots per inch on a 32-bit machine, dimension RBUF for 225000. The dimension
of RBUF can be changed by using a text editor on the file CGMTRANS to change the value
'MXRBUF=1" to whatever it should be. If you want to be assured that you can use any of
the LaserJet drivers on a 32-bit machine, set MXRBUF--=225000.

NCAR Graphics Generic Package Installer's Guide106

CGM Translator

Available Graphcaps for LaserJet Printers

hpljo751 This graphcap supports the original LaserJet family of printers.
The only resolution available for those printers is 75 dots
per inch. This graphcap produces plots in landscape mode
the X-axis of the plot is parallel with the long side of the page.

hpljo75p This graphcap supports the original LaserJet family of printers.
The only resolution available for those printers is 75 dots
per inch. This graphcap produces plots in portrait mode-
the X-axis of the plot is parallel with the short side of the page.

hplj751 This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in landscape mode at 75 dots
per inch resolution.

hplj75p This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in portrait mode at 75 dots
per inch resolution.

hpljlOOl This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in landscape mode at 100 dots
per inch resolution.

hpljl00p This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in portrait mode at 100 dots
per inch resolution.

hpljl501 This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in landscape mode at 150 dots
per inch resolution.

hpljl50p This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in portrait mode at 150 dots
per inch resolution.

hplj3001 This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in landscape mode at 300 dots
per inch resolution.

hplj300p This graphcap supports the HP LaserJet, the LaserJet Plus,
the LaserJet Series II, the LaserJet 500 Plus, and so on.
This driver produces plots in portrait mode at 300 dots
per inch resolution.

The translator writes its output raster buffer for the LaserJet printers in the same way it
writes to any device. If your LaserJet is available on a UNIX system via the "lpr" command,
then piping the output of the translator to "lpr" should work. In most instances it will not
work just to stream the output from the translator directly to the printer since the printer

Version 3.00, May 1990 107

I

. r

CGM Translator

needs to be initialized. In the cases where the operating system does not provide an access
path to the LaserJet, you will want to capture the output file from the translator and then
dispose that file to the LaserJet in a separate command. For a particular example, if you are
running on a Sun workstation and a LaserJet is attached to Serial Port A (consult your
LaserJet Printer Owner's Reference Manual for pin assignments), then you can dispose the
output file from the translator by executing the object module obtained from compiling and
loading the following C code (specify the output file from the translator as coming from stan-
dard input):

#include <stdio.h>
#include <sgtty.h>

main ()
{

int
int

struct
char
FILE

int

fd;

c;
sgttyb

*s;

*laser;

mode;

control;

if ((fd = open("/dev/ttya", 2)) == -1)

{
fprintf(stderr, "error opening /dev/ttyaO) ;
exit (-1)

}

ioctl (fd, TIOCGETP, &control);

control.sg_ispeed =
control.sg_ospeed =
control. sgflags &=

control.sg_flags &=
control.sg_flags 1=

B9600;

B9600;

(' EVENP);

(~ ODDP)
RAW;

ioctl (fd, TIOCSETP, &control);

laser = fdopen(fd, ',');

while ((c = getchar()) != EOF) .putc(c, laser);

}

NCAR Graphics Generic Package Installer's Guide108

CGM Translator

Status Messages

This section describes the processing status of the metafile translator. This information is
displayed on your device at translator termination. The messages have the form:

MESSAGE FLAG=X, OTHER INFO=Y

where X is the translator error number. The errors are listed by number below.

1. Normal termination flag. The OTHER INFO is the number of frames processed. No
Error.

2. Error opening the metafile. The OTHER INFO is a system dependent error flag indi-
cating the reason for failure.

3. Error decoding the record position field from the command line. The record pointer
given to the translator for display of a specific frame was not a valid integer.

4. Error reading a metafile record. The OTHER INFO will be a system-dependent error
status.

5. Metafile type change. This will occur only if a pre-CGM NCAR metafile is mixed with
an NCAR CGM.

6. An invalid metafile type was detected. The translator attempts to skip and look for
another record to use.

7. Invalid metafile instruction. The translator attempts to continue processing. The Ele-
ment Class is displayed in OTHER INFO.

8. The record type changed when an instruction crossed a record boundary. The transla-
tor will abort.

9. The requested frame has been plotted. Not used when in "display all frame" mode.
This should not be-displayed.

10. Error encoding an integer value. Typically the integer is larger than allowed by the
given field length.

11. The device coordinate data type had an invalid value.

12. Error opening the graphcap file. The OTHER INFO will display a system-dependent
status value.

13. Error reading the graphcap file. The OTHER INFO will display a system-dependent
status value.

14. Error closing the graphcap file. The OTHER INFO will display a system-dependent
status value.

15. Error opening the fontcap file. The OTHER INFO will display the requested font
index.

16. Error reading the fontcap file. The OTHER INFO will display the requested font index.

17. Error closing the fontcap file. The OTHER INFO will display the requested font index.

18. Polyline bundle index greater than defined. No action taken.

Version 3.00, May 1990 109

CGM Translator

19. Polymarker bundle index greater than defined. No action taken.

20. Text bundle index greater than defined. No action taken.

21. Polygon bundle index greater than defined. No action taken.

22. Invalid polymarker type requested. No action taken.

23. Error in the number of cell array cells given.

24. CGM color table attribute index larger than table allows. No action taken.

25. No room for latest direct color specification. No action taken.

26. An unknown pre-CGM NCAR metafile instruction was found.

27. An unknown pre-CGM NCAR option instruction setting was found.

28. End of Metafile. Instruction causes the translator to terminate.

29. Metafile and Translator versions do not match. The OTHER INFO is the metafile ver-
sion number.

30. Bad record size. The record bit count is not in the valid range. The OTHER INFO is
the bit count of the bad record.

31. Error writing to the display surface.

32. No version number found. A METAFILE VERSION instruction must be encountered
before a BEGIN PICTURE instruction.

33. Divide by zero. An individual fontcap entry has caused a floating point error in subrou-
tine CTRANS -check the fontcap.

34. The number of points in a POLYGON instruction exceeds the maximum allowable for
software simulation; the polygon boundary is drawn. The OTHER INFO is the number
of points requested. This is a non-fatal message.

35. Invalid FILL AREA style index. The OTHER INFO is the requested index. A boun-
dary is drawn. This is a non-fatal condition.

36. Invalid HATCH INDEX requested. The OTHER INFO is the requested index. This is
a non-fatal condition - hatch index 1 is used.

37. Invalid virtual device window specified.

38. Invalid device coordinate space requested.

39. Maximum number of error message number 24's (as described above) have been issued
for this frame.

40. Size of the raster buffer for the HP LaserJet driver is not large enough. The OTHER
INFO is the dimension of the raster buffer array. See the implementation instructions
for the HP LaserJet driver for details.

NCAR Graphics Generic Package Installer's Guide110

CGM Translator

Appendix A: Translator ASCII Codes

The table that begins below and continues on the following pages describes the ASCII char-
acter representations used in the graphcaps. Each character is represented by the code used
in graphcaps, its ASCII name, and its decimal position in the collating sequence.

Translator ASCII Codes

CHARACTER

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF

VT
FF
CR
SO
SI

DLE
DC1
DC2
DC3
DC4

NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

NAME

Null
Start of Heading
Start of Text
End of Text
End of Transmission
Enquiry
Acknowledgment
Bell
Backspace
Horizontal Tab
Line Feed

Vertical Tab
Form Feed
Carriage Return
Shift Out
Shift In
Data Link Escape
Device Control
Device Control
Device Control
Device Control

Negative Acknowledgment
Synchronization Character
End of Transmission Block
Cancel
End of Medium
Substitute
Escape
Field Separator
Group Separator
Record Separator
Unit Separator

DECIMAL

0
1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31

(continued on next page)

Version 3.00, May 1990 111

.-

i

i

. . . _ J

CGM Translator

Translator ASCII Codes

CHARACTER

SPC

#
$

*

of

0
1
2
3
4

5
6
7
8
9

?

NAME

space

t

#
$

&

(
*

+

0
1
2
3
4

5
6
7
8
9

?

?

DECIMAL

32
33
34
35
36
37
38
39
40
41
42

43
44-
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63

(continued on next page)

NCAR Graphics Generic Package Installer's Guide112

CGM Translator

Translator ASCII Codes

CHARACTER

@
A
B
C
D
E
F

*G
H
I
J

K
L
M
N
0
P
Q
R
S
T
U

V
W
X

x
Ii

NAME
,~~~~~~~~~~~ , ,_

@
A
B
C-
D
E
F
G
H
I
J

K
L
M
N
0
P
Q
R
S
T
U

V
W
Xx
y

Z

J]

DECIMAL

64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95

(continued on next page)

Version 3.00, May 1990

--

I I I I I~~~

113

CGM Translator

Translator ASCII Codes

CHARACTER

a
b
c
d
e
f
g
h
i
J

k
1

m
n
o

p
q
r
s

t
u

v

w
x
y
z

DEL

NCAR Graphics Generic Package Installer's Guide

NAME

a
b
c
d
e
f
g
h
i
j

k
1

m
n
o

q
r
s

t
u

v

w

x

y.
z

{

}

delete

DECIMAL

96
97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127

114

Section V: NCAR Computer Graphics Metafile

CGM

Section V: NCAR Computer Graphics Metafile

Record Formatting and NCAR Datatypes 117
Supported and Unsupported Elements 118

Version 3.00, May 1990 115

CGM

NCAR Computer Graphics Metafile

This section describes the NCAR implementation of the Computer Graphics Metafile (CGM)
standard. For a general description of metafiles and of the CGM, read the introductory
material in the section of this manual titled the "NCAR Computer Graphics Metafile Trans-
lator."

The elements of the NCAR metafile comprise a proper subset of the elements of the Ameri-
can National Standards Institute (ANSI) CGM standard, as described in the document.
ANSI X3.122-1986, Information Processing Systems, Computer Graphics Metafile for the
Storage and Transfer of Picture Description Information. This document is available from:

ANSI
1430 Broadway
New York, NY 10018
Phone: (212)-354-3300

The CGM is also an International Standards Organization (ISO) standard.

Record Formatting and NCAR Datatypes

The NCAR CGM is a private encoding of the Binary Encoding described in the CGM stan-
dard. The CGM standard only describes the bit stream that comprises a metafile; it does
not describe how the bit stream is broken into physical records.

Experimentation at NCAR has indicated that fixed-length records have great portability
advantages when the files will potentially be used on diverse computer systems. It is advan-
tageous to specify the record length as an integral number that is divisible by the word
lengths of as many computers as possible. A value of 11520 bits, or 1440 8-bit bytes, serves
as a reasonable compromise between the requirements and capabilities of a range of systems
from microcomputers to supercomputers. This value was previously used in the record
structure of the pre-CGM NCAR metafile.

The NCAR implementation of the CGM allows non-CGM records to be mixed with CGM
records on certain occasions. To flag CGM or non-CGM records, a 4-byte control field is
reserved at the beginning of each record. The first 16 bits of this control field is a data count
that indicates the number of bytes in the remainder of the record that actually contain useful
data. (This count does not include the first four bytes, so the largest legal value it can have is
1436 decimal.) The next 4 bits in the control field comprise the datatype identifier field.
Defined datatypes include header (0100 binary), NCAR-formatted. printer (1000 binary), pre-
CGM NCAR metafile (0010 binary), and NCAR CGM (0011 binary).

The single bit following the 4-bit datatype identifier is used as a "new-frame bit." When the
new-frame bit is set, the data record in which it is contained is the first record of a new pic-
ture. This formatting feature does not prompt any graphical action; it is the BEGIN PIC-
TURE and END PICTURE instructions that identify the boundaries of the graphical con-
tents of a picture. You will find the new-frame bit very useful for non-interpretive processing
software such as metafile editors that extract whole frames from metafiles, split metafiles,
and concatenate metafiles.

Version 3.00, May 1990 117

CGM

The new-frame bit as defined above was also defined for the pre-CGM NCAR metafiles. The
two bits following the new-frame bit are now defined for the new NCAR CGM only. The
first of the newly defined bits is the "begin metafile" bit, which marks the first record of a
metafile and hence the record containing the metafile descriptor. The bit that follows the
"begin metafile" bit is the "end metafile" bit, which declares that the record is the last record
of a metafile and that it contains an END METAFILE instruction. These two bits allow
multiple metafiles to reside on a single physical medium, and to be easily recognized by non-
interpretative processors such as editors.

The control bits are summarized in their order as follows:

The zero-byte terminating record of the pre-CGM metafile is of little use, and, in fact, has
caused problems in the design logic of metafile editors. It is no longer necessary to terminate
an NCAR metafile with a zero-byte count record. The metafile is a single binary file ter-
minated with an EOF (End Of File) mark.

Although instructions may cross record boundaries, an individual operand component such as
a coordinate or a color index may not be split across record boundaries. The 16-bit align-
ment requirement in the CGM standard makes it impossible to split operand components
across record boundaries, since the default precision value of the metafile is 16 bits. This
default value applies to coordinate precision, color index precision, and so on. Splitting
operand components across record boundaries would be possible if precision were increased
beyond 16 bits. All instructions start on 16-bit boundaries.

The CGM defines a metafile descriptor that contains no pictorial information, but includes
descriptive information that aids in interpreting the metafile. The NCAR metafile descriptor
consists of one or more fixed-length data records that look like any other metafile data
records. There is only one metafile descriptor, and it occurs at the beginning of the metafile.
The new-frame bit of the 32-bit control field is set to zero in metafile descriptor records.
The metafile descriptor in the NCAR CGM is that sequence of contiguous records at the
beginning of the metafile up to (but not including) the first record with the new-frame bit
set.

Supported and Unsupported Elements

As previously mentioned, the NCAR CGM is a proper subset of those elements mentioned in
the CGM standard. The following tables detail which elements are, and which elements are
not, supported in the NCAR CGM as of October 1989. "Supported" means that the ele-
ments can be generated by the NCAR GKS package, and they are interpreted by the NCAR
CGM translator.

NCAR Graphics Generic Package Installer's Guide

Bits Description

1-16 Byte count for the record
17-20 Data-type flag
21 New-frame bit
22 Begin metafile bit
23 End metafile bit
24-32 Undefined

118

Class Supported Elements Unsupported Elements

0 no-op
BEGIN METAFILE
END METAFILE
BEGIN PICTURE
BEGIN PICTURE BODY
END PICTURE

1 METAFILE VERSION VDC TYPE
METAFILE DESCRIPTION INTEGER PRECISION
METAFILE ELEMENT LIST REAL PRECISION
METAFILE DEFAULTS INDEX PRECISION

REPLACEMENT COLOUR PRECISION
FONT LIST COLOUR INDEX PRECISION

MAXIMUM COLOUR INDEX
COLOUR VALUE EXTENT
CHARACTER SET LIST
CHARACTER CODING

ANNOUNCER

2 COLOUR SELECTION MODE SCALING MODE
VDC EXTENT LINE WIDTH SPECIFICATION
BACKGROUND COLOUR MODE

MARKER SIZE SPECIFICATION
MODE

EDGE WIDTH SPECIFICATION
MODE

3 VDC INTEGER PRECISION VDC REAL PRECISION
CLIP RECTANGLE AUXILIARY COLOUR
CLIP INDICATOR TRANSPARENCY

4 POLYLINE DISJOINT POLYLINE
POLYMARKER RESTRICTED TEXT
TEXT APPEND TEXT
POLYGON POLYGON SET
CELL ARRAY RECTANGLE
GENERALIZED DRAWING CIRCLE

PRIMITIVE CIRCULAR ARC 3 POINT
CIRCULAR ARC 3 POINT CLOSE
CIRCULAR ARC CENTRE
CIRCULAR ARC CENTRE CLOSE
ELLIPSE
ELLIPTICAL ARC

ELLIPTICAL ARC CLOSE

Version 3.00, May 1990

CGM

119

CGM

NCAR Graphics Generic Package Installer's Guide

Class Supported Elements Unsupported Elements

5 LINE BUNDLE INDEX CHARACTER SET INDEX
LINE TYPE ALTERNATE CHARACTER SET
LINE WIDTH INDEX
LINE COLOUR EDGE BUNDLE INDEX
MARKER BUNDLE INDEX EDGE TYPE
MARKER TYPE EDGE WIDTH
MARKER SIZE EDGE COLOUR
MARKER COLOUR EDGE VISIBILITY
TEXT BUNDLE INDEX PATTERN TABLE
TEXT FONT INDEX PATTERN SIZE
TEXT PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR
CHARACTER HEIGHT
CHARACTER ORIENTATION
TEXT PATH
TEXT ALIGNMENT
FILL BUNDLE INDEX
INTERIOR STYLE
FILL COLOUR
HATCH INDEX
PATTERN INDEX
FILL REFERENCE POINT
COLOUR TABLE
ASPECT SOURCE FLAGS

6 ESCAPE

7 MESSAGE
APPLICATION DATA

120

	NCAR GRAPHICS
GENERIC PACKAGE
INSTALLER'S GUIDE
	Acknowledgments
	Addendum to NCAR Graphics Generic Package Installer's Guide
	Contents
	Section I: Important Information
	Section II: NCAR Graphics Installation Directions
	Section mI: Release Contents
	Section IV: NCAR Computer Graphics Metafile Translator
	Fontcap Files
	Section V: NCAR Computer Graphics Metafile

