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1. INTRODUCTION

This report presents the details of the governing equations, physical parame-
terizations, and numerical algorithms defining the version of the NCAR Community
Climate Model designated CCM2. The material provides an overview of the major model
components, and the way in which they interact as the numerical integration proceeds.
Details on the coding implementation, along with in-depth information on running the
CCM2 code, are given in a separate technical report entitled "User's Guide to NCAR
CCM2" (Bath et al., 1992). As before, it is our objective that this model provide NCAR
and the university research community with a reliable, well documented atmospheric
general circulation model. In contrast with earlier versions of the CCM, however, the
CCM2 represents a wholly new state-of-the-art atmospheric general circulation model,
both functionally and in terms of its implementation. As such, this version of the CCM
represents a major break from the evolutionary nature of earlier releases, and should
provide the research community with a significantly improved atmospheric modeling
capability.

a. Brief History

Over the last decade, the NCAR Climate and Global Dynamics (CGD) Division
has provided a comprehensive, three-dimensional global atmospheric model to university
and NCAR scientists for use in the analysis and understanding of global climate. Because
of its widespread use, the model was designated a Community Climate Model (CCM).
The original version of the NCAR Community Climate Model (designated CCMOA)
was based on the Australian spectral model developed by W. Bourke, B. McAvaney,
K. Puri, and R. Thurling (Bourke et al., 1977; McAvaney et al., 1978), and was described
in Washington (1982). The model was adapted to the NCAR computers by K. Puri
(Australian Numerical Meteorological Research Centre-ANMRC) during an extended
visit. It was subsequently modified by E. Pitcher (University of Miami) and R. Malone
(Los Alamos/Department of Energy) to adopt more efficient Fourier transform routines
and the improved radiation/cloudiness paraineterizations of Ramanathan and Dickinson.
The radiation and cloud models were subsequently revised to their CCMOA versions by
Ramanathan. Results of January and July simulations produced by CCMOA are presented
by Pitcher et al. (1983). The response of the model to refinements in the radiative
processes is described by Ramanathan et al. (1983).

An important broadening of the concept of the NCAR community model occurred
in late 1981 with NCAR's decision to utilize the same basic code for global forecast studies
(both medium- and long-range) and for climate simulation. Economy and increased
efficiency could then be achieved by documenting and maintaining only one set of codes.
Changes from one application to the other would also be relatively straightforward in a
model with modular design. The use of one basic model for both forecasting and climate
studies also has potential scientific value since a major part of long-range (one- to two-
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week) forecast errors is due to the drift toward a model climate which differs from that

of the atmosphere. Thus, improvements in the climate aspects of the model should be

expected to lead to improvements in intermediate to long-range forecasts. A similar

scientific benefit is that many physical parameterizations are deterministic rather than

statistical, in the sense that they are based on the details of the current model state,

rather than on some past statistical properties. Thus, many of their properties can be

studied, improved, and verified by examining them in a forecast mode.

Because of the extension of the role of the CCM to include forecast studies

as well as climate studies, and because of the expected widespread use for both

purposes by university and NCAR scientists, a versatile, modular, and well-documented

code became essential. The version designated CCMOB was developed to meet these

requirements. This code originated with an adiabatic, inviscid version of the spectral

model developed at the European Centre for Medium Range Weather Forecasts (ECMWF)

by A. P. M. Baede, M. Jarraud, and U. Cubasch (Baede et al., 1979). Physical

parameterizations and numerical approximations matching those of CCMOA were added

*to this model. The physical parameterizations included the radiation and cloud

routines developed at NCAR (Ramanathan et al., 1983), convective adjustment, stable

condensation, vertical diffusion, surface fluxes, and surface-energy-balance prescription

developed at the Geophysical Fluid Dynamics Laboratory (GFDL) (Smagorinsky, 1963;

Manabe et al., 1965; Smagorinsky et al., 1965; Holloway and Manabe, 1971). The vertical

and temporal finite differences matched those of the Australian spectral model (Bourke

et al., 1977). This combination was designated the NCAR CCMOB. It was described in a

series of technical notes, which included a Users' Guide (Sato et al., 1983) that provided

details of the code logic, flow, and style and illustrated how to modify and run that

model and a note describing each subroutine in the model library that was designed to

be used in conjunction with the code itself (Williamson et al., 1983). The details of the

algorithms were given in Williamson (1983), and circulation statistics from long January

and July simulations were presented in Williamson and Williamson (1984). The latter

report provided prospective users with a brief, concise summary of the climate produced

by the model. In addition, it demonstrated that the climate produced by the CCMOB

version matched the original CCMOA version to within the natural variability.

The advantages of the community model concept, in which many scientists use

the same basic model for a variety of scientific studies, were demonstrated in workshops

held at NCAR in July 1985 (Anthes, 1986), July 1987, and July 1990. Fundamental

strengths and weaknesses of the model have been identified at these workshops through

the presentation of a diverse number of applications of the CCM. Much constructive

dialogue has taken place between experts in several disciplines at these meetings, leading

to continued improvements in the CCM with each release.

The first such example was the introduction of the NCAR CCM1, which followed

CCMOB in July of 1987 and included a similar set of detailed technical documentation
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(Williamson et al., 1987; Bath et al., 1987a; Bath et al., 1987b; Williamson and
Williamson, 1987; Hack et al., 1989). Substantial changes were incorporated in the
radiation scheme, including a new solar albedo parameterization accounting for the solar
zenith-angle dependence of albedo on various surface types. Other changes included
improvements to the absorption of solar radiation by H 20 and 02; improvements to
the longwave absorptance algorithms for H 2 0, COa, and 03; changes to account for the
liquid water content of stratiform clouds in determining their emissivity; and incorporation
of a new finite-difference scheme in the longwave part of the radiation model (Kiehl
et al., 1987). The vertical finite-difference approximations were modified to conserve
energy without adversely affecting the model simulations, and frictional heating was
included so that the momentum diffusion produced a corresponding heating term in the
thermodynamic equation. The latter two improvements resulted in the energy in the
model being conserved to the order of one W m -2 and, moisture to one-hundredth W m - 2

energy equivalent over 90-day periods. The horizontal diffusion was modified to a V 4

form in the troposphere and included a partial correction for evaluating the operator
on pressure surfaces rather than sigma surfaces. The local moisture adjustment was
generalized to provide for a global horizontal borrowing (Royer, 1986) in a conserving
manner. The vertical diffusion was converted to a nonlinear form for which the eddy-
mixing coefficient depended on local shear and stability. The diffusion was applied
throughout the atmosphere rather than only below 500 mb, as done in CCMOB, and
eliminated the need for a dry convective adjustment in the troposphere. The surface drag
coefficient was made a function of stability following Deardorff (1972), and the equation
of state was modified to formally correctly account for moisture in the atmosphere (i.e.,
virtual temperature was used where appropriate and the variation with moisture of the
specific heat at constant pressure was accounted for). In addition to the above changes
to the physics, CCM1 included new capabilities such as a seasonal mode in which the
specified surface conditions vary with time, and an optional interactive surface hydrology
(Budyko, 1956), which followed the formulation presented by Manabe (1969). Since the
CCM1 could also be used as a global forecast model, codes to prepare initial data in the
CCM history tape format from analyzed observed atmospheric data, such as FGGE Level
IIIb analyses (Mayer, 1988), and codes to perform nonlinear normal mode initialization
(Errico and Eaton, 1987; Errico 1986) were made available.

The latest version of the NCAR Community Climate Model, CCM2, incorporates
the most ambitious set of improvements to date. A brief overview of the CCM2 is provided
in the next section.

b. Overview of CCM2

The bulk of the effort in the NCAR Climate Modeling Section over the last four
years has been to improve the physical representation of a wide range of key climate
processes in the NCAR Community Climate Model, including clouds and radiation, moist
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convection, the planetary boundary layer, and transport. The resulting changes to the
model have resulted in a significantly improved climate simulation, particularly in low
latitudes. Changes to the model formulation are so extensive that the model cannot be
thought of as having evolved from the earlier CCM1 version. Instead, the NCAR CCM2
represents an entirely new atmospheric general circulation model in both function and
implementation.

The model has been developed for a standard horizontal spectral resolution of T42
(approximately a 2.8 x 2.8 degree transform grid), with 18 vertical levels and a top
at 2.917 mb. In addition to changes in model formulation, the model code has been
entirely re-implemented with three major objectives: much greater ease of use and
modification; conformation to a plug-compatible physics interface standard; and the
incorporation of single-job multitasking capabilities. As before, a User's Guide (Bath
et al., 1992) is available that provides details of the code logic, flow, data structures and
style, and explains how to modify and run CCM2. In contrast with CCM1, the code
is internally documented, obviating the need for a separate technical note that describes
each subroutine and common block in the model library. Thus, the code itself, the Users'
Guide, the present report, and a series of reviewed scientific publications are designed
to completely document CCM2. Aspects of the CCM2 dynamic, thermodynamic, and
radiative climate statistics are documented in Climate Modeling Section (1993) and Kiehl
et al., (1993). No reference to the earlier technical reports documenting the CCM should
be required.

It is worthwhile to begin this discussion by noting the principal algorithmic
approaches that have been carried forward from CCM1 to CCM2: the use of a semi-
implicit, leap frog time integration scheme; the spectral transform method for treating the
dry dynamics; and a bi-harmonic horizontal diffusion operator. In most other respects,
the CCM2 makes use of new algorithms for both resolved dynamics and parameterized
physics.

It is well known that the large-scale moisture field is very difficult to model
accurately due to large horizontal and vertical spatial variations, coupled with the large-
amplitude, small-scale character of its sources and sinks. Spectral models often introduce
negative values of water vapor that are generally "fixed" in some fashion (Rasch and
Williamson, 1990). These techniques can also be the source of anomalous rainfall
(sometimes referred to as "spectral rain") caused by overshoots introduced by the spectral
representation, which cannot be monitored or fixed (Williamson, 1990). Shape preserving
Semi-Lagrangian Transport (SLT) methods do not suffer from these particular drawbacks.
They transport information downwind only, and are sensitive to the local characteristics
of the wind and moisture fields only. Consequently, a shape-preserving semi-Lagrangian
transport scheme (Williamson and Rasch, 1989; Rasch and Williamson, 1990, 1991;
Williamson and Rasch, 1993) is the method used for advecting water vapor as well as an
arbitrary number of other scalar fields (e.g., cloud water variables, chemical constituents,
etc.) in the CCM2.
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A second change in the CCM2 dynamical formalism is the incorporation of a
terrain-following hybrid vertical coordinate. The hybrid coordinate was developed by
Simmons and Striifing (1981) to provide a general framework for a terrain-following
vertical coordinate that reduces to a pressure coordinate at an arbitrary point above the
surface. The specific form of the hybrid coordinate in CCM2 differs from Simmons and
Striifing (1981) by allowing for an upper boundary at finite height (nonzero pressure), as
in the original development of generalized vertical coordinates by Kasahara (1974). In
addition, the vertical finite difference approximations collapse to those of CCM1 when the
hybrid scheme is reduced to a a system.

The CCM2 employs a &-Eddington. approximation to calculate solar absorption,
using 18 spectral intervals to achieve reasonable agreement with clear sky and cloudy
sky absorption (Briegleb, 1992). These include 7 intervals between 0.20 and 0.35/Lm
to capture 03 Hartley-Huggins band absorption and Rayleigh scattering; 1 interval in
the visible between 0.35 and 0.70/tm to capture Rayleigh scattering, 03 Chappius band
absorption, and 02 B band absorption; 7 intervals between 0.70 and 5.0/Lm to capture
vapor and liquid water absorption of H 2 0, as well as 02 A band absorption; and finally,
3 bands to capture CO2 absorption in the 2.7/Lm and 4.3pLm bands. A simple empirical
scaling approximation is used to accurately capture the stratospheric heating limit for
C02, 02, and H 20. To incorporate the effects of clouds, the scheme makes use of
the cloud radiative parameterization of Slingo (1989). The optical properties for liquid
droplet cloud particles are parameterized in terms of the liquid water path and effective
radius. Comparisons with available references suggests that this scheme reasonably
captures radiative heating from the surface through the mesosphere (- 0.01 mb around
80km) and particularly improves estimates of atmospheric absorption/heating below cloud
decks. The 6-Eddington approximation allows an estimate of the photon flux necessary to
compute photodissociation rates for chemistry applications and provides a versatile way
to incorporate the effects of aerosols. The use of adjustable monochromatic intervals also
allows for applications that require finer spectral resolution than those discussed above.

The treatment of longwave radiation remains much the same as in CCM1. The
major modification is the incorporation of a .Voigt line shape to more accurately treat
infrared radiative cooling in the stratosphere.

A diurnal cycle is incorporated in CCM2 in order to include the interactions
between the radiative effects of the diurnal cycle and the surface fluxes of sensible
and latent heat (and the associated free-atmosphere response). For the diurnal cycle,
both solar and longwave heating rates are updated every model hour in the standard
configuration. These heating rates and associated surface radiative fluxes are fixed
and applied to the dynamics until the next heating rate update is completed. The
longwave absorptivities and emissivities are updated every twelve hours in the standard
configuration. In the CCM1, two types of radiation calculations were performed: a "full"
calculation (both fluxes and atmospheric heating rates), and a "partial" (only surface
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radiative fluxes) calculation, (see Williamson et al., 1987, p. 46-47). The "partial"
radiation calculation is not an option in CCM2.

Land and sea ice surfaces, with and without snow cover, are modeled as
horizontally homogeneous media with vertically varying thermal properties. The
subsurface temperatures are assumed to obey a thermal diffusion equation where the net
energy flux at the surface/atmosphere interface is calculated using bulk exchange formulae
in which the transfer coefficients are stability dependent. At the lower boundary over
land surfaces, a zero heat flux condition is imposed, while over sea ice a constant ocean
temperature condition is maintained, allowing for heat transfer between the lowest sea
ice layer and the underlying ocean. The time dependent thermal diffusion equation is
solved in finite difference form for an arbitrary number of layers, using a fully implicit
Crank-Nicholson scheme. The standard configuration of CCM2 has four soil layers.

The cloud fraction parameterization in CCM2 is a generalization of Slingo (1987).
Clouds can form in any tropospheric layer, except the first layer above the surface, and
cloud fraction depends on relative humidity, vertical motion, static stability and the
*convective precipitation rate. The cloud emissivities are determined from the local liquid
water path. The liquid water path is diagnosed by vertically integrating a specified liquid
water concentration profile, which is also a function of latitude.

Turbulence in the atmospheric boundary layer (ABL), sometimes referred to as
the planetary boundary layer (PBL), is responsible for the mixing of heat, moisture,
momentum, and passive scalars. A non-local ABL parameterization, based on the work
of Troen and Mahrt (1986) and Holtslag et al. (1990), is used in the NCAR CCM2 to
represent these processes. The parameterization scheme determines an eddy diffusivity
profile based on a diagnosed boundary layer height and a turbulent velocity scale. It
also incorporates non-local (vertical) transport by large eddies, thus providing a more
comprehensive representation of the physics of boundary layer transport. Subgrid scale
vertical transport of passive scalars by boundary layer turbulence is also treated.

A simple mass flux scheme developed by Hack (1993) is used to represent all types
of moist convection. This scheme utilizes a three level conceptual cloud model with
convergence and entrainment in the first level, condensation and rain out in the middle
level and limited detrainment in the top level. The convective model is applied to three
contiguous CCM levels, starting from the bottom of the model and shifting up successively
one level at a time, after which the column is stabilized. The convection parameterization
makes use of temperature and moisture perturbations from the ABL parameterization to
determine the thermodynamic properties of ascending parcels. This scheme also provides
a consistent treatment of convective transports of an arbitrary number of passive scalars.

In the initial release of CCM2 the land surface had specified soil moisture. The
Biosphere-Atmosphere Transfer Scheme (BATS) of Dickinson et al. (1986) is now available
as an option and is documented in Dickinson et al. (1993) and Bonan (1993). As in CCM1,
sea surface temperatures are specified by linear interpolation between the climatological
monthly mean values, but now use the data of Shea et al. (1990).

6



2. OVERVIEW OF TIME DIFFERENCING

The temporal approximations are designed around a time-splitting formalism. In
this section we provide the details of the splitting and relate the various steps to the
individual processes described in later sections. When describing time-split algorithms, the
notational details often become very complex and cumbersome (e.g., CCM1 in Williamson
et al., 1987), even though each process or sub-step in isolation can be described as
a straightforward centered, forward or backward process. Therefore, we do not carry
the detailed notation forward throughout this report, but rather, describe each process
individually with simple, local notation and relate that simple notation to the complete,
and therefore complex, notation adopted in this section only.

The general prognostic equations for a generic model variable L can be written as

at = PT (0 ) + r (F) + F (14) + PA (), (2.a.1)

where PT represents those physical parameterizations applied as tendencies, PA those
parameterizations applied as adjustments, and F represents the dynamical components.
The term F is an ad hoc correction to ensure conservation of atmospheric mass and water
vapor by the dynamical processes.

We describe a basic time step assuming the unfiltered prognostic variables are
known on the Gaussian grid at time n, ( n') and time filtered prognostic variables are
known at time n- 1, (/-1 ). The time step is complete after the predicted variables are

available at grid points at time n+1, (pn+l), and time filtered values are available at time

n, (').

One complete time step proceeds as

= g - L + 2AtPn (^-,gn n1) (2.a.2)

+ =- a +2/t (= y+,tn' l) (2.a.3a)
\+ = Ln{ (e-) (2.a.3b)

{#+ = /+ + 2AtF (2.a.4)

n+1 = PA (/+) (2.a.5)

n_ = on + a0 ( -1 - 2n + _n+l) . (2.a.6)

The time filter, (2.a.6), was originally designed by Robert (1966) and later studied
by Asselin (1972). The tendency physics (2.a.2) includes (in the following order) the
cloud parameterization; radiative fluxes and atmospheric heating rates; soil temperature
update; surface fluxes; free atmosphere vertical diffusivities, ABL height, diffusivities
and countergradient term; vertical diffusion solution; gravity wave drag; and Rayleigh
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friction. Note that for greater stability (2.a.2) is, in general, implicit with the unknown

^L- appearing on the right-hand side. To make the solution practical, this step is further

subdivided into time split steps for each component as described in Section 4.1. The end

result of step (2.a.2) is the net tendency attributable to the tendency physics
--n-1

P- 2At = (2.a.7)

The dynamical step (2.a.3) is written in two general forms, with (2.a.3a) for

the semi-implicit spectral transform dynamical components and (2.a.3b) for the semi-

Lagrangian advection of water vapor (and additional constituents). Because the tendency

physics (2.a.2) is formulated in terms of u and v, but the dynamics (2.a.3a) is formulated

in terms of C and 6, it is convenient to rewrite (2.a.3a) by substituting in (2.a.2):

= + +2Atr (+,n p- n1l) + 2AtP (P-, l n - 1) (2.a.8)

One subtle point associated with the dynamics is that, in some minor ways, r explicitly
n--1

depends on ?/ , as indicated in (2.a.3a). In a traditional time-split approach, this

dependency would be replaced with an equivalent one on 0~-, leading to the equation

6+= - + 2Atr ( +, n ,) . (2.a.9)

Formally, however, the approximation actually used in the model is as given in (2.a.3a),

which yields (2.a.8). Equation (2.a.2) is used only to provide the tendencies, not for a

provisional forecast value entering in the dynamics.

The dynamics step (2.a.3a), or more properly (2.a.8), is based on a centered semi-

implicit, spectral transform method. It includes a transformation from grid to spectral

space during the forecast and an inverse transform to grid space of the updated variables.

Horizontal diffusion is applied on r surfaces in spectral space and a partial correction to p

surfaces (consisting of the leading term only) is applied locally on the return to grid space.

The details of this step are presented in Section 3.

The advection of water vapor and constituents is cleanly time split, as indicated in

(2.a.3b). In this semi-Lagrangian step, L represents the interpolation operator applied to

determine t- at the departure point. The superscript n implies that the winds at time n

are used to determine the departure point. Details are provided in Section 3.c.

The fixer step (2.a.4) applies a change to the surface pressure and water vapor (and

constituents) such that the global average of dry atmosphere mass and water vapor are

conserved in the advective process, i.e.,

j 7r+dA- a (Z q+Ap+) dA= f-dA- (Z q-Ap- 1) dA (2.a.10)

and

J ( q+A\+) dA = J (q Apn - 1) dA, (2.a.11)
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where 7r is the surface pressure. The E denotes an approximation to the integral by a
vertical sum over the grid values, and the integral f ( ) dA denotes the discrete horizontal
Gaussian quadrature approximation to the integral. Equation (2.a.11) applies to all
constituents, but only water vapor enters into (2.a.10). Details are given in Section 3.d.

The adjustment physics (2.a.5) consists of a number of adjustment type sub-steps
also, each applied in a time-split manner. These sub-steps are mass flux convective
parameterization, large scale stable condensation, and dry convective adjustment (at the
levels activated). They are detailed in Section 4.2.

Finally, the time filtering (2.a.6) is applied to complete the time step. The form
(2.a.6) is applied to u, v, T, q and ir (where 7r is surface pressure). To be consistent with
u and v, ( and 6 must also be filtered. To minimize data motion in the code, the filter is
applied in two steps to ( and 6 only:

n = n + ca -a 2) (2.a.12)

^n n _+ a ( n + I) . (2.a.13)

In the time split steps (2.a.2) through (2.a.6) all prognostic variables are not
always affected by an individual sub-step, and thus by implication the "before" and
"after" superscript notation denotes the same variable. For example, 7r (or Inn ) is not
affected by the tendency physics so that r- and T7- 1 can be used interchangeably.
Likewise, u,v (and C and 6) and T are not affected by the fixers, so (^)+ and ( )+ are
interchangeable for them. In addition, u, v (and C and 6) and r (or n 7r) are unaffected by
the adjustment physics, so ( )n+' and ( )+ are interchangeable for them. By implication
then, ( ),+l and (^)+ also become interchangeable for u and v (and C and 6). This
notational interchangeability should be kept in mind in the discussions in subsequent
sections, relating the notations used there to this overview section.

The time step is complete after (2.a.6), at which point the temporal index is
decremented and the calculation proceeds back to (2.a.2) for the next time step. In a
circular structure such as this, the program code could easily start anywhere, and the
temporal index could also be decremented anywhere. In fact, the CCM2 code appears
not to start with (2.a.2), but rather to finish up the previous time step by solving (2.a.4),
(2.a.5), and (2.a.6) first, at which time the history of state (X) is recorded if desired.
The calculation then proceeds with (2.a.2) and part of (2.a.3a), up to the completion of
the spectral transform. At this point the flow of the dynamics is interrupted while the
semi-Lagrangian step (2.a.3b) is performed. After this, the dynamics (2.a.3a) is completed
by solving the semi-implicit equations, applying the horizontal diffusion and performing
the inverse transform. This appears to be the end of the process in the code, and the
temporal indices are all shifted down one. However, as mentioned earlier, the time step as
described by (2.a.2) through (2.a.6) is actually completed at the beginning of the code.
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3. DYNAMICS

a. Hybrid Form of Governing Equations

The hybrid vertical coordinate that has been implemented in CCM2 is described
in this section. The hybrid coordinate was developed by Simmons and Striifing (1981) in
order to provide a general framework for a vertical coordinate which is terrain following at
the earth's surface, but reduces to a pressure coordinate at some point above the surface.
The hybrid coordinate is more general in concept than the modified a scheme of Sangster
(1960), which is used in the GFDL SKYHI model. However, the hybrid coordinate is
normally specified in such a way that the two coordinates are identical.

The following description uses the same general development as Simmons and
Striifing (1981), who based their development on the generalized vertical coordinate of
Kasahara (1974). A specific form of the coordinate (the hybrid coordinate) is introduced
at the latest possible point. The description here differs from Simmons and Striifing (1981)
in allowing for an upper boundary at finite height (nonzero pressure), as in the original
development by Kasahara. Such an upper boundary may be required when the equations
are solved using vertical finite differences.

Generalized terrain-following vertical coordinates

Deriving the primitive equations in a generalized terrain-following vertical
coordinate requires only that certain basic properties of the coordinate be specified. If
the surface pressure is 7r, then we require the generalized coordinate 77(p, 7r) to satisfy:

1. rl(p, 7r) is a monotonic function of p.

2. 77(7, 7r)= 1

3. 77(0, r)= 0

4. r(pt, 7r) = rt where Pt is the top of the model.

The latter requirement provides that the top of the model will be a pressure surface,
simplifying the specification of boundary conditions. In the case that Pt = 0, the last
two requirements are identical and the system reduces to that described in Simmons and
Striifing (1981). The boundary conditions that are required to close the system are:

7(7r, 7r)= 0, (3.a.1)

r(Pt, r) = w(pt) = 0. (3.a.2)

Given the above description of'the coordinate, the continuous system of equations
can be written following Kasahara (1974) and Simmons and Striifing (1981). The
prognostic equations are:

= k V x (n/cos )+ Fo, (3.a.3)at
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t= V (n/cosq5) - V 2 (E+ F) + F, (3.a.4)at

at= a cos, [(UT) + cos -(VT) + T- , + -at a cos2 [A aq c* P

Q + FTH + FFH, (3.a.5)

aq -1 [a a
at - a co 2 +(Uq) + cos q (Vq) + q - +S, (3.a.6)

a7r t _ap
o7tr l -= ·_:V. V dv . (3.a.7)

The notation follows standard conventions except that the virtual temperature is
represented by T and the following terms have been introduced, with n = (nu, nv):

au T 1p
nv = +(( + f)V- - R- - i + Fu, (3.a.8)aq p aaA

av T cos 0 ap
nv = -(C + f)U - R R + Fv, (3a.9)drl p a '9

U2 + V 2

E = 2cs 2 ' (3.a.10)

(U, V) = (u, v) cos , (3.a.11)

= - -[[ (R ) q T ' (3.a.12)

cp = + cp q cp. (3.a.13)
CP

The terms Fu, Fv, Q, and S represent the sources and sinks as determined by the tendency
physics for momentum (in terms of U and V), temperature, and moisture, respectively.
This is discussed in the overview (Section 2) and in detail in Section 4. The terms
FCH and F6H represent sources due to horizontal diffusion of momentum, while FTH
and FFH represent sources attributable to horizontal diffusion of temperature and a
contribution from frictional heating (see sections on horizontal diffusion and horizontal
diffusion correction).

In addition to the prognostic equations, three diagnostic equations are required:
P(1)

= s + R Tdlnp, (3.a.14)
Jp(rn)

d -7 A-t Jn "·`1.V -v) dq, (3.a.15)flor] at t q
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=V Vp- jV V. ( V) dr/. (3.a.16)

Note that the bounds on the vertical integrals are specified as values of r] (e.g., rit, 1) or
as functions of p (e.g., p (1), which is the pressure at r-= 1).

Conversion to final form

Equations (3.a.1) - (3.a.16) are the complete set which must be solved by a GCM.
However, in order to solve them, the function r(p, 7r) must be specified. In advance of
actually specifying q(p, 7r), the equations will be cast in a more convenient form. Most of
the changes to the equations involve simple applications of the chain rule for derivatives,
in order to obtain terms that will be easy to evaluate using the predicted variables in
the model. For example, terms involving horizontal derivatives of p must be converted to
terms involving only ap/Oir and horizontal derivatives of 7r. The former can be evaluated
once the function i7(p, 7r) is specified.

The vertical advection terms in (3.a.5), (3.a.6), (3.a.8), and (3.a.9) may be rewritten
as:

9^ ao al99
771 7 = 79 ,9p (3.a. 17)

since Ifp/ar] is given by (3.a.15). Similarly, the first term on the right-hand side of (3.a.15)
can be expanded as

ap 9p 07r
_=_t _ at(3.a.18)At ' =07r At'

and (3.a.7) invoked to specify 07r/1t.

The integrals which appear in (3.a.7),(3.a.15), and (3.a.16) can be written more
conveniently by expanding the kernel as

V. ( V =v.v * P) + v.v. . (3.a.19)

The second term in (3.a.19) is easily treated in vertical integrals, since it reduces to an
integral in pressure. The first term is expanded to:

V (ovp ap)=_V.- (Vp)

= v.-- -Vr
k(Op)
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- a (ap +v.Opv O.i
(B9)7 * 8v \9r , * (3.a.20)

The second term in (3.a.20) vanishes because (O7r/07 = 0, while the first term is easily
treated once r/(p, 7r) is specified. Substituting (3.a.20) into (3.a.19), one obtains:

\av) *V7r + -V V.aq

Using (3.a.21) as the kernel of the integral in (3.a.7), (3.a.15), and (3.a.16), one obtains
integrals of the form

v(p V) dn-V 0a V.VTr+ V.V] d

=f v. 9 7r )J (Oir
+ j dp. (3.a.22)

The original primitive equations (3.a.3)- (3.a.7), together with (3.a.8), (3.a.9), and
(3.a.14) - (3.a.16) can now be rewritten with the aid of (3.a.17), (3.a.18), and (3.a.22).

t =k.Vx(n/cos s)+Fs , (3.a.23)

a6
(3.a.24)

aT -1 a UT) +VT)
at a cos2 q5 _ UT) + cos Yw I)

Op OT
+T6 - i lap

R o

cp p

+ + FTH + FF (3.a.25)

o-1 () + cs aqo 2-- [ (Uq)0 + cos (Vq, 0 S,
a cos 0 _OA ao~'ii JO Op

Ow V(1) _ p(M)-J v V7rd (p -/ ,dp
(qt ) v 0 7r p( dt )

Op OU
nu = +(( + f)V - --9rl ap

vOp Ovnv = -(( + f)U - -p
9q ap

T cos 1 ap a7r
a pR + Fv,ap 07rr 0~

13

(3.a.21)

(3.a.26)

(3.a.27)

(3.a.28)

(3.a.29)

a ap v
a77 ar1·

.T ap arr

a p (97r aA

r-a fap

-(9,q anj



Jp()
=~-b + R / Tdlnp, (3.a.30)

Jp(r.)

p ap l(), (p\ p
-P = oV Lj V . Vrd ( ) + dp

-jV( V7) /l\d /p() )
- V. VTd -J 6dp, (3.a.31)

f(") (Op )P(')
q( () Jp(,()

; = V ^-V V- - V V- V7rr-d 65dp. (3.a.32)

Once 7(p, r) is specified, then ap/Ol can be determined and (3.a.23) - (3.a.32) can be
solved in a GCM.

In the actual definition of the hybrid coordinate, it is not necessary to specify
n7(p,7 r) explicitly, since (3.a.23) - (3.a.32) only requires that p and dp/Own be determined.
It is sufficient to specify p(rj, 7r) and to let qr be defined implicitly. This is will be done in a
later section. In the case that p(?, 7r) = C7r and rt = 0, (3.a.23) - (3.a.32) can be reduced
to the set of equations solved by CCM1.

Continuous equations using aln(r)/Ot

In practice, the solutions generated by solving the above equations are excessively
noisy. This problem appears to arise from aliasing problems in the hydrostatic equation
(3.a.30). The lnp integral introduces a high order nonlinearity which enters directly into
the divergence equation (3.a.24). Large gravity waves are generated in the vicinity of steep
orography, such as in the Pacific Ocean west of the Andes.

The equations given above, using 7r as a prognostic variable, may be easily
converted to equations using II = ln(7r), resulting in the hydrostatic equationbecoming
only quadratically nonlinear except for moisture contributions to virtual temperature.
Since the spectral transform method will be used to solve the equations, gradients will
be obtained during the transform from wave to grid space. Outside of the prognostic
equation for II, all terms involving Vw7 will then appear as 7rVII.

Equations (3.a.23) - (3.a.32) become:

( = k V x (n/ cos q) + F(, (3.a.33)

= (n/cos ) ( (3..34)
= =V.(n/cos )- V 2 (E+ D)+ FH,, (3.a.34)O9t
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aT -1 a pT RW
acos a [ (UT)+cos y (VT)] +T6-10 + Tp

at a cos2 _U T) +p cs C* p

+ + FTH +FFH, (3.a.35)

q -1 [a a a
- acos2 (Uq) + cos V (Vq) + S (3.a.36)a cos 2 LAo O

f( ap 1 )M
- J V-Vn) - V -r dp, (3.a.37)at 7p Jp(l)

ap au T ir ap all
n = +( + f)V - - R- + Fu, (3.a.38)an ap a p aw A

ap av T __r 9p all
nv =-( + f)U l 7 7 -R + Fv, (3.a.39)aql ap a p 7r a + F

fp(l)

= R+]T/ rTdlnp, (3.a.40)
JpW

= ___ 6nJ6dp

~Wap ap ' >(1 ) p(l)

The model d 7ecrieV Vy (3 ) V- I p(.a.42) w t
a>(7 rr - 77t a

>P
and

together with boundary conditions (3.a.1) and (3.a.2), is integrated in time using the semi-
implicit leapfrog scheme described below. The semi-implicit form of the time differencing

rt- 0. (Note that in this case 9p/97r = p/Tr = a.)

Semi-implicit formulation

will be i applied to (3.a34) and b(3.a.35) without the horizontal diffusion sources, and

to (3.a.37). In order to derive the semi-implicit form, one must linearize these equations
about a reference state. Isolating the terms that will have their linear parts treated
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implicitly, the prognostic equations (3.a.33), (3.a.34), and (3.a.37) may be rewritten as:

= -RTV2 lnp - V 2 + X1, (3.a.43)
at

OT R w ap 9T
A +- -7 -T + Y 1, (3.a.44)Ot c *p p ' ap

01 1 fp(l)
At '-„J (t) 6dp + Zi, (3.a.45)Ot 7rp)

where Xi,Y1, Z are the remaining nonlinear terms not explicitly written in (3.a.43) -
(3.a.45). The terms involving · and w may be expanded into vertical integrals using
(3.a.40) and (3.a.42), while the V2 lnp term can be converted to V 21I, giving:

05 TOp P(')
- = -RT- IIV2 -RV 2 ] Tdlnp + X 2 , (3.a.46)
atp Jpa)r

At P 8 P( ) P(9T RT fP (") T_ = j edp - [ & 6dp - f 8dp - + Y2, (3.a.47)
Ot cp P Jp(r) r JP(r) Jp(t) a P

9T1 1 fp(l )
-a =- , 1 d+ +Z 2. (3.a.48)at 7r p(n)

Once again, only terms that will be linearized have been explicitly represented in
(3.a.46) - (3.a.48), and the remaining terms are included in X 2, Y2, and Z2 . Anticipating
the linearization, T and cp have been replaced by T and cp in (3.a.46) and (3.a.47).
Furthermore, the virtual temperature corrections are included with the other nonlinear
terms.

In order to linearize (3.a.46)- (3.a.48), one specifies a reference state for
temperature and pressure, then expands the equations about the reference state:

T = T + T', (3.a.49)

7r rr + i', (3.a.50)

p p(, r) + p ' . (3.a.51)

In the special case that p(7r, 7r) = ai-7, (3.a.46) - (3.a.48) can be converted into equations
involving only II = ln r instead of p, and (3.a.50) and (3.a.51) are not required. This is
a major difference between the hybrid coordinate scheme being developed here and the a
coordinate scheme in CCM1.
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Expanding (3.a.46) - (3.a.48) about the reference state (3.a.49) - (3.a.51) and
retaining only the linear terms explicitly, one obtains:

-= RV 2 [Tr^i (+ 0 p\ + l T'Td I+n + dp + (3.a.52)
aOt [P k / 11Jpr(v) Jp'(r) P

OT RT Ipr (t7 ) [ &p\ rfp(l) PPr( 71 ) T r
-== ^ 5dpr- -f j Mdp" -] 6dpr +Y 3,(3.a.53)

t ct p" jp.(t) C Jp"(7,) Jpr(T,r) ' rJ 0pr

p 6dpr + Z 3 . (3.a.54)
at 7F p(rl t)

The semi-implicit time differencing scheme treats the linear terms in (3.a.52) - (3.a.54)
by averaging in time. The last integral in (3.a.52) is reduced to purely linear form by the
relation

dp' = d + x. (3.a.55)

In the hybrid coordinate described below, p is a linear function of ir, so x above is zero.

We will assume that centered differences are to be used for the nonlinear terms, and
the linear terms are to be treated implicitly by averaging the previous and next time steps.
Finite differences are used in the vertical, and are described in the following sections. At
this stage only some very general properties of the finite difference representation must
be specified. A layering structure is assumed in which field values are predicted on K
layer midpoints denoted by an integer index, rT k. The interface between Trk and 7/k+1 is

denoted by a half-integer index, r7 k+1/2. The model top is at 711/2 = r-t, and the earth's
surface is at 7K+1/2 = 1. It is further assumed that vertical integrals may be written as a
matrix (of order K) times a column vector representing the values of a field at the T k grid
points in the vertical. The column vectors representing a vertical column of grid points
will be denoted by underbars, the matrices will be denoted by bold-faced capital letters,
and superscript T will denote the vector transpose.

The finite difference forms of (3.a.52) - (3.a.54) may then be written down as:
6n+1 _ n-1 _ 2tX n

' + 22tX

- 2AtRh V 2 (IIn- + -+1 ) (3.a.56)
2 /

17



(cn-1 + An+1
T+ = Tn-1 + 2AtYn - 2AtDr' ±- + -- ) (3.a.57)

lIn+
l = IIn - 1 + 2AztZn - 2A\t + - E) Apr', (3.a.58)

where ()n denotes a time varying value at time step n. The quantities XYn", and Zn
are defined so as to complete the right-hand sides of (3.a.43) - (3.a.45). The components
of Ap7 are given by Arp = - p4. + -~_. This definition of the vertical difference operator
A will be used in subsequent equations. The reference matrices H" and D', and the
reference column vectors bV and h r , depend on the precise specification of the vertical
coordinate and will be defined later.

Energy conservation

We shall impose a requirement on the vertical finite differences of the model that
they conserve the global integral of total energy in the absence of sources and sinks. We
need to derive equations for kinetic and internal energy in order to impose this constraint.
The momentum equations (more painfully, the vorticity and divergence equations) without
the FU, Fv, FH, and F6H contributions, can be combined with the continuity equation

(r0 + V * v ) + t& r p 7 = o (3.a.59)
9t \9r + .V +- 9) -0

to give an equation for the rate of change of kinetic energy:

0( ap (( p a & ap Op
at (t3P7) =-V (9) q aq (BE )

RT Pp _ p
-; PV Vp- -V *Va. (3.a.60)p 9ro 9r.

The first two terms on the right-hand side of (3.a.60) are transport terms. The horizontal
integral of the first (horizontal) transport term should be zero, and it is relatively
straightforward to construct horizontal finite difference schemes that ensure this. For
spectral models, the integral of the horizontal transport term will not vanish in general,
but we shall ignore this problem.

The vertical integral of the second (vertical) transport term on the right-hand side
of (3.a.60) should vanish. Since this term is obtained from the vertical advection terms for
momentum, which will be finite differenced, we can construct a finite difference operator
that will ensure that the vertical integral vanishes.

The vertical advection terms are the product of a vertical velocity (isap/&r7) and
the vertical derivative of a field (9o/9p). The vertical velocity is defined in terms of
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vertical integrals of fields (3.a.41), which are naturally taken to interfaces. The vertical
derivatives are also naturally taken to interfaces, so the product is formed there, and then
adjacent interface values of the products are averaged to give a midpoint value. It is the
definition of the average that must be correct in order to conserve kinetic energy under
vertical advection in (3.a.60). The derivation will be omitted here, the resulting vertical
advection terms are of the form:

(. 9p ) k\

a7 (P k

1

2Apk [ ( 9p
V9^7 +1/2

(3.a.61)

APk =Pk+1/2 - Pk-1/2- (3.a.62)

The choice of definitions for the vertical velocity at interfaces is not crucial to the energy
conservation (although not completely arbitrary), and we shall defer its definition until
later. The vertical advection of temperature is not required to use (3.a.61) in order to
conserve mass or energy. Other constraints can be imposed that result in different forms
for temperature advection, but we will simply use (3.a.61) in. the system described below.

The last two terms in (3.a.60) contain the conversion between kinetic and internal
(potential) energy and the form drag. Neglecting the transport terms, under assumption
that global integrals will be taken, noting that Vp = - VII, and substituting for the
geopotential using (3.a.40), (3.a.60) can be written as:

at\ E1( ) - rPv (r a vIIn)
p Oa )

-V * v - -- V V RJTdln p +...
071 ' p( )

The second term on the right-hand side of (3.a.63) is a source (form drag)
be neglected as we are only interested in internal conservation properties.
on the right-hand side of (3.a.63) can be rewritten as

term that can
The last term

RTdInp = V- 0f p(
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Opv.V(
071 (q)

RTd lnp}

RTd np. (3.a.64)

. '97 k-1/2
(Ok - 'Ok-1) ,

i

-V d Op v)p~(l



The global integral of the first term on the right-hand side of (3.a.64) is obviously zero, so
that (3.a.63) can now be written as:

Ot (rOp) NT] O p (i )

Otv \O / O p(i P l)

+V.( v)J RTdlnp + ... (3.a.65)

We now turn to the internal energy equation, obtained by combining the
thermodynamic equation (3.a.35), without the Q, FT, and FFH terms, and the continuity
equation (3.a.59):

p (CT =-V. ( c-T -PcTTV)9t r] a 1 an an P

0p ,
+ RTAP . (3.a.66)

Ori p

As in (3.a.60), the first two terms on the right-hand side are advection terms that can be
neglected under global integrals. Using (3.a.16), (3.a.66) can be written as:

t PcpT ) = RT apV ( - VtII

TO- 1 (OV)d+..o (3.a.67)

The rate of change of total energy due to internal processes is obtained by adding
(3.a.65) and (3.a.67) and must vanish. The first terms on the right-hand side of (3.a.65)
and (3.a.67) obviously cancel in the continuous form. When the equations are discretized
in the vertical, the terms will still cancel, providing that the same definition is used for
(1/p ap/l7r)k in the nonlinear terms of the vorticity and divergence equations (3.a.38) and
(3.a.39), and in the w term of (3.a.35) and (3.a.42).

The second terms on the right-hand side of (3.a.65) and (3.a.67) must also cancel
in the global mean. This cancellation is enforced locally in the horizontal on the column
integrals of (3.a.65) and (3.a.67), so that we require:

j1 { (p ) jp(1) }

=p 1 V p
:/,, I r · ) Vdn dn (3..68). anIP ,,t a771
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The inner integral on the left-hand side of (3.a.68) is derived from the hydrostatic equation
(3.a.40), which we shall approximate as

K

(k= bs + REHk ee,
e=k

K

= s + R HkeT, (3.a.69)
e=i

- = 1s + RHT, (3.a.70)

where Hke = 0 for i < k. The quantity 1 is defined to be the unit vector. The inner
integral on the right-hand side of (3.a.68) is derived from the vertical velocity equation
(3.a.42), which we shall approximate as

P k p a k

K r /

- CU [ePe + r(v (VVII)A ) , (3.a.71)

where Cke = 0 for e > k, and Cke is included as an approximation to 1/Pk for e < k and
the symbol A is similarly defined as in (3.a.62). Cke will be determined by requiring that
the finite difference analog to (3.a.68) be satisfied. Using (3.a.69) and (3.a.71), the finite
difference analog of (3.a.68) is

{ A k [6^Pk + (Vk *Vn) ( ) R1 R H kE } ^k

~k~i I l k ^=1 L J

where we have used the relation V * V(ap/la)k = [SkaPk + T (Vk VII) A (ap/a7)k]/arlk
(see 3.a.22). We can now combine the sums in (3.a.72) and simplify to give

= P { [ + Tr (Vk VII) A C jT (3.a.73)}

ke e ee e le e ll l el e l

Interchanging the indexes on the left-hand side of (3.a.73) will obviously result in identical
expressions if we require that

Cke = HeklApk. (3.a.74)
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Given the definitions of vertical integrals in (3.a.70) and (3.a.71) and of vertical
advection in (3.a.61) and (3.a.62) the model will conserve energy as long as we require
that C and H satisfy (3.a.74). We are, of course, still neglecting lack of conservation due
to the truncation of the horizontal spherical harmonic expansions.

Horizontal diffusion

CCM2 contains a horizontal diffusion term for T, , and 6 to prevent spectral
blocking and to provide reasonable kinetic energy spectra. The horizontal diffusion
operator in CCM2 is also used to ensure that the CFL condition is not violated in the
upper layers of the model. The horizontal diffusion is a linear V2 form on rl surfaces in
the top few levels of the model and a linear V4 form with a partial correction to pressure
surfaces for temperature elsewhere.

In the top few model levels, the V2 form of the horizontal diffusion is given by

FCH = K (2) [V2 ( + f) + 2 (C + f)/a 2] , (3.a.75)

FH -= K( 2) [V26 + 2(6/a 2)] , (3.a.76)

FTH = K(2)V 2 T. (3.a.77)

Since these terms are linear, they are easily calculated in spectral space. The
undifferentiated correction term is added to the vorticity and divergence diffusion
operators to prevent damping of uniform (n = 1) rotations (Orszag, 1974; Bourke et
al., 1977). It is important to note that the V2 form of the horizontal diffusion is applied
only to pressure surfaces in the standard model configuration.

The horizontal diffusion operator is better applied to pressure surfaces than to
terrain-following surfaces (applying the operator on isentropic surfaces would be still
better). Although the governing system of equations derived above is designed to reduce
to pressure surfaces above some level, problems can still occur from diffusion along the
lower surfaces. Partial correction to pressure surfaces of harmonic horizontal diffusion
(Oa/Ot = KV 2 ~) can be included using the relations:

Vp~ = Vq - p ppV, lnpV V^ pVlnp

(3.a.78)

Vp~ =- V27 - V pppV lnp - 2V pp o V p +-- p

Retaining only the first two terms above gives a correction to the i surface diffusion which
involves only a vertical derivative and the Laplacian of log surface pressure,
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ap v2= -2 + - II+.. (3.a.79)

Similarly, biharmonic diffusion can be partially corrected to pressure surfaces as:

V4 = V4 -_ 7 V 4 II +... (3.a.80)

The bi-harmonic V 4 form of the diffusion operator is applied at all other levels (generally
throughout the troposphere) as

F( =-K(4) [V4 (C + f)-(C + f) (2/a2) 2] (3.a.81)

F6 H --K ( 4 ) [V 4 - 6(2/a2) 2], (3.a.82)

FTH -K 4 ) [V4T - wr pp I . (3.a.83)

The second term in FTH consists of the leading term in the transformation of the V 4

operator to pressure surfaces. It is included to offset partially a spurious diffusion of T
over mountains. As with the V2 form, the V4 operator can be conveniently calculated in
spectral space. The correction term is then completed after transformation of T and V4 HI
back to grid-point space. As with the V 2 form, an undifferentiated term is added to the
vorticity and divergence diffusion operators to prevent damping of uniform rotations.

Finite difference equations

It will be assumed that the governing equations will be solved using the spectral
method in the horizontal, so that only the vertical and time differences are presented
here. The schematic dynamics term r in equation (2.a.3a) includes horizontal diffusion
of T, (C + f), and 6. Only T has the leading term correction to pressure surfaces. Thus,
equations that include the terms in this time split sub-step are of the form

= Dyn (ip) + (-1)iK(2 i)v2i, (3.a.84)
at

for (C + f) and 6, and

OT 0 T 0 pd9T O9T &P V2iII} (3.a.85)
-t = Dyn (T)+ (-1)iK(2i ) v 2 -T- av 2 I (3.a.85)at I Op ax

where i = 1 in the top few model levels and i = 2 elsewhere (generally within the
troposphere). These equations are further subdivided into time split components:
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, =n+l = ¥pn-1 + Dyn (,n+l,.1 ,n--1) ,

=* _= n+l + (-l)iK 2 iv2i (i*n+l) ,(3.a.87)

n ~+ l =-*, (3.a.88)

for (C + f) and 6, and

Tn+= Tn-l + Dyn (Tn+lTn Tn-l) , (3.a.89)

T* = Tn+ 1 + (-1)i K(2 i) V 2 i (T*) , (3.a.90)

§7,n+l = T* + (-1)i K(2i) aT* 2i V , (3.a.91)
ap 7ir

for T, where in the standard model i only takes the value 2 in (3.a.91). The first step
from ( )n- l to ( )n+1 includes the transformation to spectral coefficients. The second
step from ( ) n +l to (^)+1 for 6 and C, or ( )n+1 to ( )* for T, is done on the spectral
coefficients, and the final step from ( )* to (^)n+1 for T is done after the inverse transform
to the grid point representation.

The following finite-difference description details only the forecast given by (3.a.86)
and (3.a.89). In what follows we use ( )n-1 instead of( )- from (2.a.8). This notation
is convenient for discussing the dynamical equations in isolation. The finite-difference
form of the forecast equation for water vapor will be presented later in Section 3c. The
general structure of the complete finite difference equations is determined by the semi-
implicit time differencing and the energy conservation properties described above. In
order to complete the specification of the finite differencing, we require a definition of the
vertical coordinate. The actual specification of the generalized vertical coordinate takes
advantage of the structure of the equations (3.a.33)- (3.a.42). The equations can be finite-
differenced in the vertical and, in time, without having to know the value of 7 anywhere.
The quantities that must be known are p and ap/97r at the grid points. Therefore the
coordinate is defined implicitly through the relation:

p(r, 7r) = A())po + B(7j)r, (3.a.92)

which gives

Op
s='B(q) . (3.a.93)D7r

A set of levels Nk may be specified by specifying Ak and Bk, and difference forms of
(3.a.33) - (3.a.42) may be derived.

The finite difference forms of the Dyn operator (3.a.33) - (3.a.42), including semi-
implicit time integration are:

n+i = n-1 + 2Atk Vx (nn/cos ) , (3.a.94)

24

(3.a.86)



n' = _n--' + 2t [V. (n/ncos),- (- E + ,1 + RH n(T))]

- 2AtRHrV2 (T')"- 1 + (T')n+l
( 2

- 2AtR (br + h ) v 2
IIn - 1 + IIn +l

2

(T')n+l = (T')n-i 2At [ 1
a cos'

- 2A'tDr Pn - 1 + 6n+ l

\ 2

2 (UT') +

- )

1 -a (VT')
a cos 0 9r

(3.a.96)

rin+l = inn-1 - 2At 1 ((n) Apn + (Vn)T VHInrnAB
T7 \ _- -

2( t (- n- 1 +- n + l- 2At - R+A
(2

(nu)k = (¢k + f) Vk - R'k

1

2Apk

+ (FU)k

( p k+[( O'9, k+1/2

I

(nv)k - ((k + f) Uk -RTk

- k+1/2

2Fk / k+1/2

+ (FV)k ,

(Uk+1 -Uk)+ (Uk- Uk-)] (3.a.98)( d -) k=-1/2

(1p ) cosa 0 O
7'

p O9') a 9o¢

(Vk+1 - Vk) + P (V - V)
(Op) k-1/2 J

(3.a.99)

rk = Tk6 +

1
2 Apk

RTk

(CP)k

(T+1 -Tk) +
( k-.-k+1/2 ( ) -1/2'9. k-l/2

(Tk - Tk-1)) , (3.a.100)

Ek = (Uk)2 + (V) 2 ,

- (TI)n

- ln"), (3.a.95)

1
Ap'

7r-r

T

-_6n)

1p ap
kP07, i

(3.a.97)

1 OH
a ---

k a A
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RTk R I +T 1 \ 1 ^

1+ v _1 qkRC k C R ( 3 _) q) (3.a.102)(c;)k c 1+ C _

K

(i a) kl = 2 Bk+1/2 [&eApe + Ve rVHABe]
/f+1/2 e=

k

- 5 [6eApe + Ve rVnlABe], (3.a.103)
e=i

P k (P 7) k
k

- Cke [b6 Ape + Veo 7rVIABe], (3.a.104)
e=1

Cke = Hek/Apk, (3.a.105)

Dke - Ap T
Cp

+ ap (Tk - Tk_1 ) (ke+l Bk-1/2)2Ap k

+ (Tk+ - Tk) (ke- Bk+1/2), (3.a.106)

Rk 0{1, £ >k (3.a.107)

where notation such as (UT') denotes a column vector with components (UkT.). In

order to complete the system, it remains to specify the hydrostatic matrix H and its
accompanying reference vector h', together with the term (1/p ap/l7r), which results from
the pressure gradient terms and also appears in the semi-implicit reference vector br:

1 ap 1 ap Bk
(l\p9 _(1) p )_B___k p(3.a.108)

p\ &9 / P~ k (97 pkPk
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0, < k,

| 2 In (k ), =e _ klk < K,l pk-)

HUe = < 2 
n (A) , ekk<K, (3.a.109)

I In ( p), p=K,k<K,

In-~K), , =K k=K,

b- T, (3.a.110)

= 0. (3.a.111)

The matrices C' and Hn (i.e., with components Cke and Hke) must be evaluated at
each time step and each point in the horizontal. It is more efficient computationally to
substitute the definitions of these matrices into (3.a.95) and (3.a.104) at the cost of some
loss of generality in the code. The finite difference equations have been written in the
form (3.a.94) - (3.a.111) because this form is quite general. For example, the equations
solved by Simmons and Striifing (1981) at ECMWF can be obtained by changing only the
vectors and hydrostatic matrix defined by (3.a.108) - (3.a.111).

b. Spectral Transform

The spectral transform method is used in the horizontal exactly as in CCM1.
As shown earlier, the vertical and temporal aspects of the model are represented by
finite-difference approximations. The horizontal aspects are treated by the spectral-
transform method, which is described in this section. Thus, at certain points in the
integration, the prognostic variables ((+ f),, T, and II are represented in terms of
coefficients of a truncated series of spherical harmonic functions, while at other points
they are given by grid-point values on a corresponding Gaussian grid. In general, physical
parameterizations and nonlinear operations are carried out in grid-point space. Horizontal
derivatives and linear operations are performed in spectral space. Externally, the model
appears to the user to be a grid-point model, as far as data required and produced
by it. Similarly, since all nonlinear parameterizations are developed and carried out in
grid-point space, the model also appears as a grid-point model for the incorporation
of physical parameterizations, and the user need not be too concerned with the spectral
aspects. For users interested in diagnosing the balance of terms in the evolution equations,
however, the details are important and care must be taken to understand which terms
have been spectrally truncated and which have not. The algebra involved in the spectral
transformations has been presented in several publications (Daley et al., 1976; Bourke
et al., 1977; Machenhauer, 1979). In this report, we present only the details relevant to
the model code; for more details and general philosophy, the reader is referred to these
earlier papers.
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Spectral algorithm overview

The horizontal representation of an arbitrary variable 4 consists of a truncated
series of spherical harmonic functions,

M AM(m)

-)= E E Ampm(,t)eimA (3.b.1)
m=-M n=Iml

where /, = sin 0, M is the highest Fourier wavenumber included in the east-west
representation, and JA/(m) is the highest degree of the associated Legendre polynomials
for longitudinal wavenumber m. The properties of the spherical harmonic functions used
in the representation can be found in the review by Machenhauer (1979). The model
is coded for a general pentagonal truncation, illustrated in Figure 1, defined by three
parameters: M,K, and N, where M is defined above, K is the highest degree of the
associated Legendre polynomials, and N is the highest degree of the Legendre polynomials
for m = 0. The common truncations are subsets of this pentagonal case:

Triangular: M = N = K,

Rhomboidal: K = N + M, (3.b.2)

Trapezoidal: N = K > M.

The quantity J\(m) in (3.b.1) represents an arbitrary limit on the two-dimensional
wavenumber n, and for the pentagonal truncation described above is simply given by
K (m) =min (N + Im, K).

The associated Legendre polynomials used in the model are normalized such that

[P d)] = 1 (3.b.3)
1-1

With this normalization, the Coriolis parameter f is

f = --- P (3.b.4)
V0.375

which is required for the absolute vorticity.

The coefficients of the spectral representation (3.b.1) are given by

= = 1 2v '(A, f)ei-mAdAPnm(,L)d. (3.b.5)

The inner integral represents a Fourier transform,

() = 2 (A, ) e-imAdA, (3.b.6)

which is performed by a Fast Fourier Transform (FFT) subroutine. The outer integral is
performed via Gaussian quadrature,

J

4 1m E= m(1j)Pnm((j)wj, (3.b.7)
j=l
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where Lj denotes the Gaussian grid points in the meridional direction, wj the Gaussian
weight at point pj, and J the number of Gaussian grid points from pole to pole. The
Gaussian grid points (bj) are given by the roots of the Legendre polynomial Pj(p), and
the corresponding weights are given by

2(1- 2 )

[J pj-l(,Lj)]2
(3.b.8)

The weights themselves satisfy
J

wj -=2.0.
j=1

(3.b.9)

n

N

0

Figure 1. Pentagonal truncation parameters

The Gaussian grid used for the north-south transformation is generally chosen
to allow un-aliased computations of quadratic terms only. In this case, the number of
Gaussian latitudes J must satisfy

J >(2N + K + M + 1)/2 for M 2(K-N),

J > (3K + 1)/2 for M > 2(K - N).
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For the common truncations, these become

J > (3K + 1)/2 for triangular and trapezoidal, (3.b.12)

J > (3N + 2M + 1)/2 for rhomboidal. (3.b.13)

In order to allow exact Fourier transform of quadratic terms, the number of points P in
the east-west direction must satisfy

P>3M+1 . (3.b.14)

The actual values of J and P are often not set equal to the lower limit in order to allow
use of more efficient transform programs.

Although in the next section of this model description, we continue to indicate
the Gaussian quadrature as a sum from pole to pole, the code actually deals with the
symmetric and antisymmetric components of variables and accumulates the sums from
equator to pole only. The model requires an even number of latitudes to easily use the
symmetry conditions. This may be slightly inefficient for some spectral resolutions. We
define a new index, which goes from -I at the point next to the south pole to +1 at the
point next to the north pole and not including 0 (there are no points at the equator or pole
in the Gaussian grid), i.e., let I = J/2 and i = j - J/2 for j > J/2 + and i =j - J/2 - 1
for j < J/2; then the summation in (3.b.7) can be rewritten as

I

1 = E r m(i)Pm(i)w. (3.b.15)
i=-I
i#O

The symmetric (even) and antisymmetric (odd) components of O1 /m are defined by

(OE) 2 (OT + m')

(3.b.16)
o m 7-1

Since wi is symmetric about the equator, (3.b.15) can be rewritten to give formulas for
the coefficients of even and odd spherical harmonics:

E ) ( /E) )P ()pm( 1 i)2wi for n- m even,
i=l

On = < (3.b.17)
I

E (OO)m (to )Pnm(ti)2wi for n - m odd.
i=1

The model uses the spectral transform method (Machenhauer, 1979) for all
nonlinear terms. However, the model can be thought of as starting from grid-point
values at time t (consistent with the spectral representation) and producing a forecast
of the grid-point values at time t + At (again, consistent with the spectral resolution).
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The forecast procedure involves computation of the nonlinear terms including physical
parameterizations at grid points; transformation via Gaussian quadrature of the nonlinear
terms from grid-point space to spectral space; computation of the spectral coefficients of
the prognostic variables at time t + At (with the implied spectral truncation to the model
resolution); and transformation back to grid-point space. The details of the equations
involved in the various transformations are given in the next section.

Combination of terms

In order to describe the transformation to spectral space, for each equation we
first group together all undifferentiated explicit terms, all explicit terms with longitudinal
derivatives, and all explicit terms with meridional derivatives appearing in the Dyn
operator. Thus, the vorticity equation (3.a.94) is rewritten

1 n
( + f)" + 1 -( - 2)+ (_ )] , (3.b.18)a(l - f) _x

where the explicit forms of the vectors V, V,, and V are given in Appendix A [(Al)-
(A3).] The divergence equation (3.a.95) is

_ 1 2 2
_n-- i __- Dx) + (1 - ~2) (Dj Dv

a = D + G(l _t -2 ) [Lad D A) Ot ( 1-/1 ) Z3X1 ( DS1 )]-V Dv (3.b.19)

- AtV 2 (RHT' n1 + R (br + h r ) n+ 1 ).

The mean component of the temperature is not included in the next-to-last term since
the Laplacian of it is zero. The thermodynamic equation (3.a.96) is

T 'n+ T- .1 -(11 12(T) + (1 )tD) 6S+. (3.b.20)

The surface-pressure tendency (3.a.97) is

ln+1 = P-1 (Apr)Tn+l (3.b.21)

The grouped explicit terms in (3.b.19)-(3.b.21) are all given in Appendix A [(A4)-(A11)].

Transformation to spectral space

The coefficients of the spectral representation are obtained by integration,

1 2 (3.22)1 2r
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The inner integral is generally performed via an FFT subroutine. The result of this

operation is denoted ?pm (/),

m () '11= f2j (A, p)e-imdA. (3.b.23)

The outer integral is performed via Gaussian quadrature,
J

n = o Zm(j)Prm (Ij)Wj, (3.b.24)
j=1

where ttj denotes the Gaussian grid points in the meridional direction, wj is the Gaussian

weight at the jth grid point, and J the number of points from pole to pole.

Formally, Equations (3.b.18) - (3.b.21) are transformed to spectral space by

performing the operations indicated in (3.b.22) to each term. We see that the equations

basically contain three types of terms, for example, in the vorticity equation the
undifferentiated term V, the longitudinally differentiated term Vx, and the meridionally
differentiated term Vi. All terms in the original equations were grouped into one of these
terms on the Gaussian grid so that they could be transformed at once.

Transformation of the undifferentiated term is obtained by straightforward

application of (3.b.22) - (3.b.24),

J

{V}- = -Vm (lj)P7(uj)w)jw (3.b.25)
j=1

where Vm(Lj) is the Fourier coefficient of V with wavenumber m at the Gaussian grid

line Lj. The longitudinally differentiated term is handled by integration by parts, using

the cyclic boundary conditions,

m 1127r /

(3.b.26)

1 /r2 7

= im2 Ve-iMA dAX

so that the Fourier transform is performed first, then the differentiation is carried out in

spectral space. The transformation to spherical harmonic space then follows (3.b.25):

{ 1 ) m =T p i p (Ij)

{a( 2)() = m ) ( ) Wji, (3.b.27)
a(1 - /,t2.) -9,\ i a(1' -- IA

j= l

where Vm/\(jj) is the Fourier coefficient of VA with wavenumber m at the Gaussian grid
line [tj.
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The latitudinally differentiated term is handled by integration by parts using zero
boundary conditions at the poles:

1 12)1 f) ^ m r^ 1 2 )
a(l_ ) L =u ( 1 -)n(_ ) d l sm d

(3.b.28)

1 (V)m l dP m
=J a- 2) ( 1 -) di)-dl

dPm
Defining the derivative of the associated Legendre polynomial by

Hm = (1 -_ 2) dP- (3.b.29)

(3.b.28) can be written

{a(l-p>)(1-sb2),) (4)} =_E(4)m Hrm~lti Wj (3.b.30)a(1 -/2) (1 - a*7 - i= -a1n j=1 si

Similarly, the V 2 operator in the divergence equation can be converted to spectral space
by sequential integration by parts and then application of the relationship

V2pm(f)e t= e(m2) Pnm()e' (3.b.31)

to each spherical harmonic function individually so that

J=1

where Dmm(T) is the Fourier coefficient of the original grid variable Dv.

Solution of semi-implicit equations

The prognostic equtiions can be converted to spectral form by summation over the
Gaussian grid using (3.b.25), (3.b.27), and (3.b.30). The resulting equation for absolute
vorticity is

(<+ f)M = VS, (3.b.33)

where (( + f)m denotes a spherical harmonic coefficient of (C + f)n+l, and the form of
VSM, as a summation over the Gaussian grid, is given in Appendix A (A12).

The spectral form of the divergence equation (3.b.19) becomes

6__~.- O" m+ At n (n + .1) r br-h r ) Il m
t i= DSm + At + [RHT'm + R(b r + ) n] , (3.b.34)

where m, Tnm , and I m are spectral coefficients of 6n+1, T'n+1, and In + l . The
Laplacian of the total temperature in (3.b.19) is replaced by the equivalent Laplacian
of the perturbation temperature in (3.b.34). DS$ is given in Appendix A (A13). The
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spectral thermodynamic equation is

T n = TS m - AtDn, (3.b.35)

with TSm defined in Appendix A (A14), while the surface pressure equation is

nM = PSnm (p) ) n , (3.b.36)I n: (=PS-Ap )T )

where PSm is also given in Appendix A (A15).

Equation (3.b.33) for vorticity is explicit and complete at this point. However,
the remaining equations (3.b.34)-(3.b.36) are coupled. They are solved by eliminating all
variables except nm:

A = DSm + 1)A [RHr(TS)m +R (br + h) (PS)m], (3.b.37)
a2

where

n(n + 1) + n_ _An = I+A t2n( ) [RHrDr + R (r+hr) ( TI r (3.b.38)

which is simply a set of K simultaneous equations for the coefficients with given
wavenumbers (m,n) at each level and is solved by inverting An. In order to prevent
the accumulation of round-off error in the global mean divergence (which if exactly zero
initially, should remain exactly zero) (Ao) - 1 is set to the null matrix rather than the
identity, and the formal application of (3.b.37) then always guarantees 6 = 0. Once 6m

is known, T m and 11m can be computed from (3.b.35) and (3.b.36), respectively, and all
prognostic variables are known at time n+1 as spherical harmonic coefficients. Note that
the mean component T'° is not necessarily zero since the perturbations are taken with
respect to a specified T'.

Horizontal diffusion

As mentioned earlier, the horizontal diffusion in (3.a.87) and (3.a.90) is computed
implicitly via time splitting after the transformations into spectral space and solution of
the semi-implicit equations. In the following, the C and 6 equations have a similar form,
so we write only the 6 equation:

(6)nm = (n+l)n (-1)i 2AtK(2i) [V2i (*)m - (-1)i (*) m (2/a2)i] (3.6.39)

(T*) =- (Tn+1) - (-1)i 2AtK(2 i) [V2i (T*)m]. (3.b.40)

The extra term is present in (3.b.39), (3.b.43) and (3.b.45) to prevent damping of
uniform rotations. The solutions are just

(6*)n = K2) (6) (6n+l)l, (3.b.41)

(T*) = K( 2i) (T) (Tn+l) , (3.b.42)n n.(..2
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K(2 ) ()= {l+2A/tDnK( ) [(( + 1) a2 (3.b.43)n a2 a27 (n + 1, (3.b.43)

Kn)(T) ={l + 2AtDnK() (nn l) } -1 (3.b.44)

K4) () = ( +2tDK ) (r -1 } (3. 5)

^)(r)={l+2A ^)f^±2))T2 (3.b.46)

a
K( 4 )(T)= {j1+2tDnK() (n a2 ) -} (3.b.46)

Kn 2) (6) and Kn4) (6) are both set to 1 for n = 0. The quantity Dn represents the "Courant
number limiter", normally set to 1. However, Dn is modified to ensure that the CFL
criterion is not violated in selected upper levels of the model. If the maximum wind speed
in any of these upper levels is sufficiently large, then D, = 1000 in that level for all
n > nc, where n, = aAt/ max IVi. This condition is applied whenever the wind speed is
large enough that n, < K, the truncation parameter in (3.b.2), and temporarily reduces
the effective resolution of the model in the affected levels. The number of levels at which
this "Courant number limiter" may be applied is user-selectable, but it is only used in the
top level of the 18 level CCM2 control runs.

The diffusion of T is not complete at this stage. In order to make the partial
correction from q7 to p in (3.a.81) local, it is not included until grid-point values are
available. This requires that V 4 HI also be transformed from spectral to grid-point space.
The values of the coefficients K(2 ) and K( 4 ) for the standard T42 resolution are 2.5 x
105 m 2 sec-1 and 1.0 x 10 1 6 m2 sec- , respectively.

Transformation from spectral to physical space

After the prognostic variables are completed at time n + 1 in spectral space
((+f)*), ()nm, (T*)m, (In+ 1)n , they are transformed to grid space. For a

variable 'b, the transformation is given by

M J(m)

rI(A,)= L) bn mpm(J) eim. (3.b.47)
mt=-M n=1m|'1

The inner sum is done essentially as a vector product over n, and the outer is again
performed by an FFT subroutine. The term needed for the remainder of the diffusion
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terms, V4 II, is calculated from

M [/((m) n \ 2 l
n = [ (j [ S) ( at) pm(L5) e\im (3.b.48)

m=-M n=lml

In addition, the derivatives of II are needed on the grid for the terms involving VI and
VVII,

U anI
VVII=

a(l - Q\) a
These required derivatives are given by

an11 M [-5 im I
m=-M n=

and using (3.b.29),

(1 - u2) m= -
H m=-Mm-"-

V
+ a (1a(l- IL2

2 )- PZ) an>
QUL,

(m)

V n pIIp() eimn

=Iml

(3.b.49)

(3.b.50)

(3.b.51)

[(m)
IIn Hnm (A) eim ,

n=l7nl

which involve basically the same operations as (3.b.48). The other variables needed on
the grid are U and V. These can be computed directly from the absolute vorticity and
divergence coefficients using the relations

m n(n + 1)
(C+; f)n 2 /n4 + fyn, (3.b.52)

-n(n -1)m
m n(na2 X1) (3.b.53)

in which the only nonzero fm is fl = Q/v/.375, and

19x (1 - ~)a
U =- /a (3.b.54)

a iA a dar /

1 ao (1 -/ 2) axV -= 1 + (3.b.55)
a OA a 9p,

Thus, the direct transformation is
M JA(m)

U =- = aE
m=-M n= Iml

n(n + 1) 6mPT(l) -.7n(7 +1) "
1 ( ( + f) m H n (U) eimx

7(n + 1) ( +f
n n I)

a Q
H2 ,2 0T.375

M HJ(m) im

V=- a E In(n+ (
m=-M n=_lml| +

f)"nP (/A) + .l h(p)] eim (3..57)
T.-n n(n+ 1) 5 7
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The horizontal diffusion tendencies are also transformed back to grid space. The
spectral coefficients for the horizontal diffusion tendencies follow from (3.b.39) and (3.b.40):

FT (T*)n = (-l)i+1 K 2 i [V 2 i (T*)], (3.b.58)

F, ((+ f)*) = (-)i+1 K 2 i {2i (+ f)* -(-) i (C + f)* (2/a2) }, (3.b.59)

Fs (6') = (-1) K 2 {V2i (*) - (-1)i * (2/a2)i } (3.b.60)

using i = 1 or 2 as appropriate for the V2 or V 4 forms. These coefficients are transformed
to grid space following (3.b.1) for the T term and (3.b.56) and (3.b.57) for vorticity
and divergence. Thus, the vorticity and divergence diffusion tendencies are converted
to equivalent U and V diffusion tendencies.

Horizontal diffusion correction

After grid-point values are calculated, frictional heating rates are determined from
the momentum diffusion tendencies and are added to the temperature, and the partial
correction of the V4 diffusion from 7 to p surfaces is applied to T. The frictional heating
rate is calculated from the kinetic energy tendency produced by the momentum diffusion

FFH = -u- FuH(U*)/C; - v FnFv (V*)/C;, (3.b.61)

where FH,,, and FvH are the momentum equivalent diffusion tendencies, determined from
FCH and F56 just as U and V are determined from ( and 6, and

cp = cp [1+ ( P -1) q+ . (3.b.62)
L \ Cp ) q

These heating rates are then combined with the correction,

Tkn+ = Tk + (2AtFFH)k + 2At t (rB ') K( K V4 4 I 1 (3.b.63)

The vertical derivatives of T* (where the * notation is dropped for convenience) are defined
by

(BŽaT)\ T I

7rBap = 2apl [B ( 2 - T 1)] ,\jBp } - 2Ap 2

(rBa) 2k [Bk+1 (Tk+1 - Tk) + Bk_ (Tk -- Tk_1)] (3.b.64)

( a)K 2AP [BK-(TK-TK-)]
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The corrections are added to the diffusion tendencies calculated earlier (3.b.58) to
give the total temperature tendency for diagnostic purposes:

FTH(T)k = FT(T*)k + (2 AtFFH)k + 2AtBk ( 7rT p K V . (3.b.65)
( PT*) K

c. Semi-Lagrangian Transport

The forecast equation for water vapor (and constituent) specific humidity in the 7j
system is from (3.a.36) excluding sources and sinks.

dq Oq 9p Oq
d = + V Vq + 7 = 0 (3.c.1)

dt Ot Orq (3.c

Equation (3.c.2) is more economical for the semi-Lagrangian vertical advection, as A.r
does not vary in the horizontal, while Ap does. Written in this form, the 77 advection
equations look exactly like the a equations.

These are the necessary equations for the time split subset (2.a.3b). For simplicity,
in this section we will use the notation adopted in the previous section, i.e., ( ),-1 for
( )- of (2.a.3b) and ( )n+1 for (^)+. Thus, the tendency sources have already been added
to the time level labeled (n - 1) here. The semi-Lagrangian advection step (2.a.3b) is
further subdivided into horizontal and vertical advection sub-steps, which, in an Eulerian
form, would be written

q* = qn-1 + 2At (V . Vq) (3.c.3)

and

q =+l q + 2At ( ) (3.c.4)

In the semi-Lagrangian form used here, the general form is

q* = L (x (q - 1 ), (3.c.5)

qn+ L,7 (q*). (3.c.6)
Equation (3.c.5) represents the horizontal interpolation of q"-1 at the departure point
calculated assuming 7 = 0. Equation (3.c.6) represents the vertical interpolation of q* at
the departure point, assuming V = 0.

The horizontal departure points are found by first iterating for the mid-point of the
trajectory, using winds at time n, and a first guess as the location of the mid-point of the
previous time step

\ Ml =\A- Atu (A 1, (p ) /cos pM, (3.c.7)M - AA
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(Pk+l =A - Atn (A I , 4) , (3.C.8)

where subscript A denotes the arrival (Gaussian grid) point and subscript M the midpoint
of the trajectory. The velocity components at (Ak, Yk ) are determined by Lagrange cubic
interpolation. For economic reasons, the equivalent Hermite cubic interpolant with cubic
derivative estimates is used at some places in this code. The equations will be presented
later.

Once the iteration of (3.c.7) and (3.c.8) is complete, the departure point is given
by

AD = AA - 2Atu (AM, PM) / cos (PM, (3.c.9)

VD = AA - 2Atvn (AM, PM), (3.c.10)

where the subscript D denotes the departure point.

The form given by (3.c.7)- (3.c.10) is inaccurate near the poles and thus is only
used for arrival points equatorward of 70° latitude. Poleward of 70° we transform to
a local geodesic coordinate for the calculation at each arrival point. The local geodesic
coordinate is essentially a rotated spherical coordinate system whose equator goes through
the arrival point. Details are provided in Williamson and Rasch (1989). The transformed
system is rotated about the axis through (AA - 2, 0) and (AA + ', 0), by an angle PA so
the equator goes through (AA, PA). The longitude of the transformed system is chosen
to be zero at the arrival point. If the local geodesic system is denoted by (A', wo'), with
velocities (u', v'), the two systems are related by

sin -' = sin 4 cos OA - cos 4 sin OA cos (AA - A), (3.c.11)

sin 0 = sin 4' cos 'A + cos 4' sin IA cos A' , (3.c.12)

sin A' cos p' = -sin (AA - A) cos , (3.c.13)

v cos =' = v [cos ( cos OA + sin 0 sin cA cos (AA - A)]

- u sin OA sin (AA - A), (3.c.14)

u' cos A' - v' sin A' sin ' = ucos (AA - A) + v sin f sin (A - A) . (3.c.15)

The calculation of the departure point in the local geodesic system is identical to (3.c.7) -
(3.c.10) with all variables carrying a prime. The equations can be simplified by noting that

(A','Ap) = (0,0) by design and u (A',V') = U(AA,'PA) and v (A',') = v(AA,PA).
The interpolations are always done in global spherical coordinates.

The interpolants are most easily defined on the interval 0 < 0 < 1. Define

0 = (XD - Xi) / (i+ 1 - i), (3.c.16)

39



where x is either A or V and the departure point XD falls within the interval (Xi, i+l).

The Hermite cubic interpolant is given by

qD = qi+ 0
1

3 + (3qi+i - hidi+) 02 (1 - 0) + (3qi + hidi) 0 (1 - 0)2 + qi (1 - 0)3, (3.c.17)

where qi is the value at the gridpoint xi, di is the derivative estimate given below, and

hi= txi+ - xi.

di = q[xi,xi-i] + (xi - xi-)q[xi+lxii, Xi-l]

+(i - i-1) (xi - i+l)q[xi+2,Xi+l,Xi, Xi-1] , (3.C.18)

di+ = q [xi, xi-i] + [(xi+l - xi) + (xi+l - xi-)] q [xi+1, i, xi- 1]

+ (i+i - Xi-1) (xi+l - i) q [Xi+2, Xi+, Xi Xi- 1] , (3.c.19)

using the normal divided difference notation

q [x2, x] = {q (x2) - q (x)} / (x2 - x 1 )
(3.c.20)

q [Xn, Xn-1, .. ,l] {q [Xn, Xn-l,.. ,X2] - q [Xn-1, Xn-2, * * * X]} / (Xn - l).

The Lagrangian cubic interpolant used for the velocity interpolation, which is equivalent
to (3.c.17)- (3.c.19), is

fD = (XD - Xi+2 ) { (XD -Xi+l) [(XD -i) ai-lfi-1 + (XD - xi-1 ) aifi]

t(··-·i-·,(·· · i~~~~~~, / ^ . .1 (3.c.21)
+ (XD - Xi-1) (XD - Xi) ai+lfi+l} (3.c.21)

+ (XD - Xi-) (XD - Xi) (XD - Xi+l) ai+2fi+2,

where

ai-1 = - [m (1 + m)(1 + m + p)]- , (3.c.22)

ai= [m(1 + p)] 1 , (3.c.23)

ai+l= [p(l +m)] 1, (3.c.24)

ai+2 = - [p (1+ p)(1 + m + p), (3.c.25)

p = (xi+2 - Xi+) / (xi+1 - xi), (3.c.26)

m = (xi - xi-) / (i+ - xi), (3.c.27)

where f can represent either u or v, or their counterparts in the geodesic coordinate
system. The two dimensional (A, co) interpolant is obtained as a tensor product application
of the one-dimensional interpolants, with A interpolations done first. Assume the
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departure point falls in the grid box (Ai, A+i) and (pi, Pi+l). Four A interpolations are
performed to find q values at (AD,yj-1),(AD, pj), (AD, pj+l), and (AD, pj+2). This is
followed by one interpolation in p using these four values to obtain the value at (AD, VDo).

Cyclic continuity is used in longitude. In latitude, the grid is extended to include a pole
point (row) and one row across the pole. The pole row is set equal to the average of the
row next to the pole for q and to wavenumber 1 components for u and v. The row across
the pole is filled with the values from the first row below the pole shifted 7r in longitude

for q and minus the value shifted by 7r in longitude for u and v.

Once the departure point is known, the constituent value of q* = qD-1 is
obtained as indicated in (3.c.5) by Hermite cubic interpolation (3.c.17), with cubic
derivative estimates (3.c.18) and (3.c.19) modified to satisfy the Sufficient Condition for
Monotonicity with C° continuity (SCMO) described below. Define Aiq by

Aiq - qi (3.c.28)
Xi+1 - Xi

First, if Aiq 0 then

di di+ . (3.c.29)

Then, if either

di
0 < 3 (3.c.30)

Aiq
or

di+l0< <3 (3.c.31)

is violated, di or di+l is brought to the appropriate bound of the relationship. These
conditions ensure that the Hermite cubic interpolant is monotonic in the interval [Xi, xi+l].

The horizontal semi-Lagrangian sub-step (3.c.5) is followed by the vertical step
(3.c.6). The vertical velocity is obtained from that diagnosed in the dynamical
calculations (3.a.93) by

2 ( p ) / (Pk+l pk ) (3.c.32)

with rlk = Ak +Bk. Note, this is the only place that the model actually requires an explicit
specification of q7. The mid-point of the vertical trajectory is found by iteration

7l 1 -7 TA - ht n (?) . (3.C.33)

Note, the arrival point T A is a mid-level point where q is carried, while the 7 used for the
interpolation to mid-points is at interfaces. We restrict r7M by

1 < r]AMI < rK, (3.c.34)

which is equivalent to assuming that q is constant from the surface to the first model
level and above the top q level. Once the mid-point is determined, the departure point is
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calculated from

riD = r7A - 2Ati n (rM), (3.C.35)

with the restriction

ril < 'rD < r]K. (3.C.36)

The appropriate values of tI and q are determined by interpolation (3.c.17), with the
derivative estimates given by (3.c.18) and (3.c.19) for i = 2 to K - 1. At the top and
bottom we assume a zero derivative (which is consistent with (3.c.34) and (3.c.36)), di = 0
for the interval k = 1, and 6 i+1 = 0 for the interval k = K - 1. The estimate at the
interior end of the first and last grid intervals is determined from an uncentered cubic
approximation; that is di+l at the k = 1 interval is equal to di from the k = 2 interval,
and di at the k = K -1 interval is equal to di+1 at the k = K - 2 interval. The monotonic
conditions (3.c.30) to (3.c.31) are applied to the q derivative estimates.

d. Mass fixers

The fixers which ensure conservation (2.a.4) are applied to the dry mass and water
vapor so that

J r+-J / +ap+ = J -r - J A P, (3.d.1)
2 3 2 3

+A+ = J -Ap- (3.d.2)
3 3

where, from the definition of the vertical coordinate,

Ap = poA + 7rAB, (3.d.3)

and the integral f denotes the normal Gaussian quadrature while f includes a vertical
2 3

sum followed by Gaussian quadrature. The actual fixers are chosen to have the form

7r+ (A, ) = M7r+ (A, p) , (3.d.4)

preserving the horizontal gradient of II, which was calculated earlier during the inverse
spectral transform, and

q+ (A, ,77) = q+ + aq+l + - q- , (3.d.5)

with f3 = 3. In (3.d.4) and (3.d.5) the ( ) denotes the provisional value before
adjustment. The form (3.d.5) forces the arbitrary corrections to be small when the mixing
ratio is small and when the change made to the mixing ratio by the advection is small.
Satisfying (3.d.1) and (3.d.2) sequentially gives
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f q-Ap- -Sf q+A+
3 3

c = I3f + - q-3 A+ (3.d.6)
3

and

M = P + q-Ap-) (3.d.7)

3 2

The correction for dry mass depends on water vapor amount, and the correction for water
vapor depends on the dry mass. These corrections should be done simultaneously. Because
they are done sequentially in CCM2, neither is exactly conserved. In practice, the error
associated with a sequential adjustment is negligible.
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4. MODEL PHYSICS

4.1 Tendency Physics

As discussed earlier, the tendency physics include (in the following order) the
parameterization of cloud amount; the evaluation of radiative fluxes and atmospheric
heating rates; the evaluation of surface fluxes; the soil temperature update; evaluation
of free atmosphere vertical diffusivities, diagnosis of the PBL height, PBL diffusivities and
non-local transport term followed by the vertical diffusion solution; evaluation of gravity
wave drag tendencies; and Rayleigh friction. Note that for greater stability the formulation
of many of these processes is implicit, and the time step is further sub-divided into time
split steps for each component to make the solution of the tendency terms more practical.
The final result of the evaluation of these processes is the net tendency attributable to
the tendency physics as shown in (2.a.7). Also note that we use the more conventional ps
notation for surface pressure (as opposed to 7r) for the following model physics discussion.

a. Cloud Parameterization

Cloud amount (or cloud fraction) in the CCM2 is evaluated via a diagnostic
method. This approach amounts to a generalization of the scheme introduced by Slingo
(1987), and depends on relative humidity, vertical velocity, atmospheric stability and the
convective precipitation rate (i.e., precipitation arising from the parameterization of moist
convection, section 4h). Three types of cloud are diagnosed by the scheme: convective
cloud, layered cloud, and low-level marine stratus. Some of the major changes from Slingo
(1987) are: clouds are allowed to form in any tropospheric layer, except the layer nearest
the surface; the minimum convective cloud fraction is 20% (i.e., for nonprecipitating cases);
low-level frontal clouds occur for all w < 0; and the relative humidity thresholds for mid-
and upper-level layered clouds are functions of atmospheric stability.

Total column convective cloud amount between the base and top of convective
activity is diagnosed on the basis of the presence of moist convective activity and the
associated convective precipitation rate using

Aonv = 0.20 + 0.125 n(1.0 + P), (4.a.1)

where P is the convective precipitation rate in mm/day (see 4.h.36) and Aconv is not
allowed to exceed 80%. The convective cloud amount in each layer is assumed to be
randomly overlapped within the convectively active region, the bounds of which are
provided by the moist convection parameterization. Thus, the total cloud fraction in
(4.a.1) is distributed in the vertical according to

Acov = 1.0 - (1.0 - Aconv)/N, (4.a.2),
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where N is the number of model levels within the convectively active region. For the
subsequent cloud fraction calculation, the large scale relative humidity within the grid
box is adjusted to account for the assumption that the fraction of convective cloud, Aconv,
is saturated. The specific humidity grid value itself is unchanged. Thus, the adjusted large
scale relative humidity, RH', is given by

RH- AR onv
RH RH - (4.a.3)1 - ACOlV

where RH is the actual grid box relative humidity. Frontal and tropical low cloud fraction,
i.e., clouds occurring below 700 mb, is diagnosed according to

RRH''-0.9 2
AC R= w -< 0.9, <0 (4.a.4)

while stratus associated with low-level inversions is determined from
while stratus associated with low-level inversions is determined from

Ac,

0 RH' <0.6

(-6.67 a -0.667)x (1- o 9-RH') x (P-750)dp 0.3 150

0.6 < RH' < 0.9 and

(4.a.5)
0 < -0.125, 750 < p < 900

(-6.670p - 0.667) x (P-750) RH' > 0.9 and

<-0.125- < -0.125DP

where p is the maximum inversion strength and RH' is the adjusted layer relative
humidity given by (4.a.3). The pressure factor, (P50), accounts for the transition from
marine stratus cloud for low level inversions to trade cumulus clouds that occur for a
higher inversion.

Middle and upper level cloud is defined to occur between 750 mb and

Ptp -250 - 165 cos2 . (4.a.6)

Mid- and high-level stratified (or layered) cloud amount is determined from the relation

A = max r RHRHlim(pq) 1 (4.a.7)RH -RH,~ (p,7)

1-RHlim(p,cO)

RHim(p, l)=.999-.10 [1 25 0- 4 (4.a.8)

where N 2 is the square of the Brunt-Vaisalla frequency:

N2 g2p 0(
~~N2 ~ -=~~ 0 ap ~(4.a.9)0 &p'
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Note that the ratio N 2 /2.5 x 10 - 4 is not allowed to exceed 1. The cloud cover in any layer
is finally defined as

Ac = (1.0 - AConv)Ac + Aconv , (4.a.10)

where Ac is not allowed to exceed 0.999. Cloud liquid water paths (LWP) are computed
from a prescribed, meridionally and height varying, but time independent, cloud liquid
water density (pe), Kiehl (1991):

LWP = J edZ, (4.a.11)

where

pe - pe(-/h), (4.a.12)

p0 is equal to 0.18 g m 3 , and he is a meridionally varying, empirically derived local liquid
water scale height currently evaluated as

he = A + B cos2 4, (4.a.13)

with A = 1080 and B = 2000. Using (4.a.13) and (4.a.11) to evaluate the LWP between
pressures Pk+l and Pk results in a cloud liquid water path in layer k of

LWP (k) - phe [e-Zki /he e-Zk/h] , (4.a.14)

where zk is the height of the kth layer interface.

For diagnostic purposes, the CCM2 calculates three levels of cloud fraction,
assuming random overlap. These diagnostics, denoted as low, middle, and high cloud,
are bounded by the pressure levels p, to 700 mb, 700 mb to 400 mb, and 400 mb to the
model top.

b. Physical Parameterization of Radiation

Diurnal cycle

A diurnal cycle has been included in the CCM2 with the objective of treating the
detailed interactions between the radiative effects of the diurnal cycle and the surface
sensible and latent heat exchanges. In the standard configuration, both the longwave
and shortwave heating rates are evaluated every model hour as discussed in the following
sections. Between hourly evaluations, the longwave and shortwave fluxes and heating rates
are held constant. The surface radiative fluxes are also fixed between hourly calculations.
The incorporation of the diurnal cycle has also required the introduction of heat storage
capabilities over land and sea ice surfaces, and will be discussed later in this section.

The insolation at the top of the model atmosphere is given by

SI = So cos , (4.b.1)

where 5 o is the solar constant, ( is the solar zenith angle, and e is the eccentricity factor
(square of the ratio of mean to actual distance that depends on the time of year). We
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represent the annual and diurnal cycle of solar insolation with a repeatable solar year
of exactly 365 days and with a mean solar day of exactly 24 hours, respectively. The
repeatable solar year does not allow for leap years. The expressions defining the annual
and diurnal variation of solar insolation are given by:

cos = sin sin 6 - cos cos 6 cos(27rtlocal)

e = 1.000110 + .034221 cos 00 + .001280 sin 0o + .000719 cos 200 + .000077 sin 200

= .006918 - .399912 cos 00 + .070257 sin 0o - .006758 cos 200+

.000907 sin 200 - .002697 cos 300 + .001480 sin 300

where
27rd

0o = 35 (mean orbit angle)
365

and
d = calendar day of year(= 0, for January 1 and 364 for December 31)

5 = latitude in radians

6 = solar declination in radians

tlocal = calendar day with local time (ranges from 0.0 to 365.0).

Note that the calendar day d varies continuously throughout the repeatable year and is
updated every model time step.

The expression for cos t was taken from Sellers (1965, p.15), while the expressions
for e and 6 were obtained from Paltridge and Platt (1976), pages 57 and 63, respectively.
The eccentricity factor e is appropriate for the current earth orbit and, according to
Paltridge and Platt (1976), is accurate to better than 10 4 . Maximum eccentricity factor
(the orbit point closest to the sun (perhelion)) occurs about January 3 (calendar day 2.0),
and minimum e (the orbit point farthest from the sun (aphelion)) occurs about July 5
(calendar day 185).

The declination 6 (the angle between the celestial equator and the sun) is
appropriate for the present earth obliquity of about 23 °. The declination expression
above is accurate to better than 3' of arc (Paltridge and Platt, 1976); since the change
in declination in 24 hours is never greater than 30' of arc, (and remembering that the
disc of the sun itself subtends an angle of r- 30' of arc), the above expression is quite an
adequate approximation. Minimum declination 6 occurs on about December 22 (calendar
day 355.0), and maximum declination 6 occurs on about June 21 (calendar day 172.0).

It does not seem necessary to compute solar insolation more accurately (for
example, accounting for equation of time changes in the solar day during the year, or
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accounting for long-term secular changes in orbit') for two reasons: (1) the solar insolation
given above multiplies approximate factors dealing with the scattering and absorption in
the model's atmosphere/surface system (for example, the surface albedos in the model are
not known to an accuracy of better than 1-2% of solar insolation (Briegleb et al., 1986),
and (2) for multiyear model runs, it is desirable when looking at interannual variability
that the solar insolation repeat precisely every year in order to eliminate this source
of variation. The loss (in a run of larger than 4 years) of the leap year day seems an
acceptable approximation since this loss would only amount to 5 days after a 20-year run,
for example.

The local time (tiocal) in the expression for cos depends on the calendar day as
well as model longitude:

A
tiocal =- d + 360 (4.b.2)

where A = model longitude in degrees starting from Greenwich running eastward. This
would mean, for example, that a model calendar day d having no fraction (such as 182.00)
would refer to local midnight at Greenwich, and to local noon at the date line (180°
longitude).

Solar radiation

The 6-Eddington approximation of Joseph, Wiscombe, and Weinman (1976) and
also Coakley, Cess and Yurevich, (1983) has been adopted and is described in Briegleb
(1992). This approximation has been shown to simulate quite well the effects of multiple
scattering.

The solar spectrum is divided into 18 discrete spectral intervals (7 for 03, 1 for the
visible, 7 for H 20, and 3 for C0 2 ). The CCM2 model atmosphere consists of a discrete
vertical set of horizontally homogeneous layers within which radiative heating rates are
to be specified. Each of these layers is considered to be a homogeneous combination of
several radiatively active constituents. Solar irradiance, as well as surface reflectivity for
direct and diffuse radiation in each spectral interval, are specified, as well as the cosine of
the solar zenith angle.

The 6-Eddington method for CCM2 involves evaluating the 6-Eddington solution
for the reflectivity and transmissivity for each layer in the vertical. The layers are
then combined together, accounting for multiple scattering between layers, which allows
evaluation of upward and downward spectral fluxes at each interface boundary between
layers. This procedure is repeated for all spectral intervals to accumulate broad band
fluxes, from which the heating rate can be evaluated from flux differences across each
layer.

The 6-Eddington approximation allows for gaseous absorption by 03, C02, 02, and
H20. Molecular scattering and cloud water droplet scattering/absorption are included.
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A summary of the spectral intervals and the absorption/scattering data used in the
formulation is given in Briegleb (1992).

For cloud scattering and absorption, the radiative parameterization of Slingo [1989]
for liquid water droplet clouds is employed. In this parameterization, the optical properties
of the cloud droplets are represented in terms of the prescribed liquid water path (LWP
in units of kg m-2 , see 4.a.11-14) and effective radius, re = f r3n(r)dr/ f r2n(r)dr, where
n(r) is the cloud drop size distribution over radius r;

b
c = LWP(a + -)

re

w = 1 - c- dr (4.b.3)(4.b.3)

g= e + fr,

The quantity Tc is the cloud extinction optical depth (0 to oo), w is the particle single
scattering albedo (0 to 1), g is the asymmetry parameter (-1 to +1), and a...f are positive
constant coefficients for 4 spectral ranges: (.25-.69 um, .69-1.19 pLm, 1.19-2.38 tm, and
2.38-4.00 /Lm). These parametric expressions represent the basic physical dependencies of
the optical properties on effective radius re: larger effective radius for fixed LWP means
fewer droplets and smaller effective cross section, hence, smaller Tr. Larger droplets mean
more absorption of radiation transmitted through the droplets, hence, smaller w; larger
droplets mean more forward scattering and hence, larger g. However, for the purposes
of CCM2, the cloud droplet effective radius is fixed at 10pm, appropriate for marine
stratocumulus clouds (Slingo, 1989).

Partial cloudiness and cloud overlap radiative effects are represented in the
following manner. A parameterization that gives results approximately equal to the
random overlap assumption, without the computational cost of calculating the spectrum
of cloud cases and which gives the proper limits of zero cloud cover and complete cloud
cover in a single layer, is utilized. The cloud extinction optical depth (rc) for each layer is

3

modified as: T = TC A 2 and Ac is the fractional cloud cover in the layer; the power 3 was
found necessary to give results approximately the same as the random overlap assumption.
Despite the simplicity of this assumption for dealing with partial cloud cover and cloud
overlap effects, the resulting heating rates in a cloudy atmosphere are better represented
than they were for CCM1.

The 6-Eddington scheme is implemented so that the solar radiation is evaluated
once every model hour over the sunlit portions of the model earth. The surface albedo
is specified in two wavebands (0.2-0.7 /Lm, and 0.7-5.0 um) and distinguishes albedos for
direct and diffuse incident radiation. Albedos for ocean surfaces, geographically varying
land surfaces, and sea ice surfaces are distinguished (and summarized in Briegleb, 1992).
Ozone is prescribed, and CO 2 is assumed to be uniformly mixed with constant mass
mixing ratio. Diagnostic cloud amount (Ac) is evaluated every model hour just prior to
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the solar radiation calculation. As mentioned previously, the clouds are assumed to be
composed of water droplets, with a globally constant effective cloud radius (re) of 10 1m.

For some diagnostic purposes, such as estimating cloud radiative forcing (Kiehl and
Ramanathan, 1990) a clear-sky absorbed solar flux is required. A diagnostic calculation is
included to give an estimate of clear-sky column absorbed and surface absorbed flux. For
computational efficiency, the clear sky top of atmosphere and surface fluxes are evaluated
assuming two homogeneous atmospheric layers. The top layer contains only 03, while
the lower layer contains all other absorbers/scatterers except clouds. The actual surface
albedos are employed.

Details of the implementation are as follows. The CCM2 model atmosphere is
divided into K + 1 layers in the vertical; an extra top layer (beyond the K layers specified
by CCM2) is added. This extra layer prevents excessive heating in the CCM2 top layer
when the top pressure is not very low; also, as CCM2 does not specify absorber properties
above its top layer, the optical properties of the CCM2 top layer must be used for the extra
layer. Layers are assumed to be horizontally and vertically homogeneous for each model
gridpoint and are bounded vertically by layer interfaces. For each spectral band, upward
and downward fluxes are computed on the layer interfaces (which include the surface and
top interface). The spectral fluxes are summed and differenced across layers to evaluate
the solar heating rate. The following discussion refers to each of the spectral intervals.

In general, several constituents absorb and/or scatter in each homogeneous layer.
Every constituent is defined in terms of a layer extinction optical depth r, single scattering
albedo w, asymmetry parameter g, and the forward scattering fraction f. The forward
scattering fraction (not mentioned previously, see 4.b.3) is the fraction of radiation
scattered into the strong forward peak and is taken as g2 (see Briegleb, 1992). To define
bulk layer properties, the combination formulas of Cess [1985] are used:

T =- i, (4.b.4)

Ei WiTiW = (4.b.5)

gi giwirig = gii (4.b.6)
WT

E= i (4.b.7)
WT

where the sums are over all constituents.

The 6-Eddington solution for each layer requires scaled properties for r, W, 9, given
by the expressions:

T* = r(1 - Wf), (4.b.8)
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*-=w (1- f (4.b.9)

g-f
g* f (4.b.10)

1-f
The scaling accounts for the scattering effects of the strong forward peak in water droplet

scattering. The 6-Eddington nonconservative (w < 1) solutions for each layer for direct
radiation at cosine zenith angle /lo are (following the notation of Coakley, Cess, and
Yurevich, 1983):

R(/o) = (a - 7)Te-' / ° + ( + )R - (a - ), (4.b.11)

T(/,o) = (a + y)T + (a - y)Re- ' /^° - (a + y - 1)e-rT/ °, (4.b.12)

R (u + l)(u - 1)(e'* - e-'t)N- 1, (4.b.13)

T 4uN - 1 , (4.b.14)

where

a = *W/o (1 I - 2 i (4.b.15)

- =w(l 1- o ) ' (4.b.16)
1 + -3 /(1 2

N = (u + 1) 2 eX - (u - 1)2e-X', (4.b.17)

3 1-*
U=2 (1 *9*) (4.b.18)

A= /3(1 - w*)(1 - wg*), (4.b.19)

where R(yo), T('io) are the layer reflectivity and transmissivity to direct radiation
respectively, and R, T are the layer reflectivity and transmissivity to diffuse radiation
respectively. It should be noted that in some cases of small but nonzero a, the diffuse
reflectivity can be negative. For these cases, R is set to 0, which produces negligible
impact on fluxes and the heating rate.

To combine layers, it is assumed that radiation, once scattered, is diffuse and
isotropic (including from the surface). For an arbitrary layer 1 (or combination of layers
with radiative properties R l ( /to), T (1to),R 1 ,T 1) overlying layer 2 (or combination of layers
with radiative properties R 2 (o), T 2 ( 0L), and R 2, T 2 ), the combination formulas for direct
and diffuse radiation incident from above are:

R 12 (Iuo) = R(l 1uo)

i{(Ti(Go) - e-r /o)R 2 + e-;/IoR 2 (to)
1 -----+ ------- -R-R2 (4.b.20)

1 - R1R2
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Ti 2(O0) = e-1/,'T2 (ao)

T 2{(Ti (to) -e- e // O) + e-;Ti/o R2 (/to)Ri}
± 1-R 1 R+ , (4.b.21)

- - - T 1 R 2T 1R12 = R1 + R- R' (4.b.22)

T12= -TT2 (4.b.23)
1- R1R 2

Note that the transmissions for each layer (Ti(/,o),T 2 (uo)) and for the combined
layers (T12(kIo)) are total transmissions, containing both direct and diffuse transmission.
Note also that the two layers (or combination of layers), once combined, are no longer a
homogeneous system.

To combine the layers over the entire column, two passes are made through the
layers, one starting from the top and proceeding downward, the other starting from the
surface and proceeding upward. (In passing from the top down, the layer 6-Eddington
computation of R(,o), T(/to), R, T is terminated if the total transmission to direct
radiation for the spectral band (normalized to 1.0 at top) is less than .001; this produces a
negligible error and saves computational overhead). The result is that for every interface,
the following combined reflectivities and transmissivities are available:

e-T //'o direct beam transmission from top of at-
mosphere to the interface (r* is the scaled
optical depth from top-of-atmosphere to
the interface),

Rup.(/o)= reflectivity to direct solar radiation of
entire atmosphere below the interface,

Tdn(uo) = total transmission to direct solar ra-
diation incident from above to entire
atmosphere above the interface,

Rup = reflectivity of atmosphere below the inter-
face to diffuse radiation from above,

Rdn = reflectivity of atmosphere above the inter-
face to diffuse radiation from below.

With these quantities, the upward and downward fluxes at every interface can
be computed. For example, the upward flux would be the directly transmitted flux
(e-'*/I ) times the reflection of the entire column below the interface to direct radiation
(Rup(jLo)), plus the diffusely transmitted radiation from above that reaches the interface
(Tdn(ILO) - e-*/o0 ) times the reflectivity of the entire atmosphere below the interface to
diffuse radiation from above (Rup), all times a factor that accounts for multiple reflections
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at the interface. A similar derivation of the downward flux is straightforward. The
resulting expressions for the upward and downward flux are:

e-'/Io Rupn(o)) + (Tdn(/o) - e - ' / O)R u .
Fup - -- , (4.b.24)

1 -RdnRup

Fdn e- /°

(Tdn(uLO) - e- ' /o) + e-7* /°(Rup(Lo)Rd (4b25)
1 - RdnRup

The upward and downward spectral fluxes at each interface are summed to evaluate
the spectrally integrated fluxes, then differenced to produce the solar heating rate,

Q g- Fdn (Pk+l) - Fup (Pk+) Fd n (Pk) + Fup (Pk) (4.b.26)
Qsol - Pk+ -4.b.26)

Cp Pk+ -Pk

which is added to the nonlinear term (Q) in the thermodynamic equation.

Longwave radiation

Longwave fluxes are calculated at each model level in both up and down directions.
The approach to solving the transfer equations is to employ absorptivities and emissivities.
Thus, the clear-sky fluxes at a half-level k are

rpk dB
F,(pk) = B(O)c(O,pk) + (PK',pk) (p')dp', (4.b.27)

and

-- - dp)(p'd,
FT(Ppk) = UBTS-X ap' Pk)d p' (4.b.28)

k

where B(p) = aT 4 (p) is just Stefan-Boltzmann's law, and the absorptivity is defined as

a (PP) = 1dB - Ja(p', ) dT(p )df/ (4.b.29)
dT

and the emissivity is

e(O,p)- = B(O) A(0,p)B(0)d, (4.b.30)

where A, is the absorptivity due to a given gas, Bo(p') is Planck's function, and P is the
wavenumber. An isothermal layer is assumed to exist from the model top to p = 0. For
CO2 and 03, the band-absorptance technique is used to evaluate a and c. This method
uses the fact that gas absorption is limited to a finite spectral width. The Planck functions
are evaluated at the center of the bands, and integration over P is carried out for Ai. Thus,

dBo (4..31)
aco2 (p, p') dB (P')Aco2 (p', p). (4.b.31)4cT 3 (p') dT'
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BCo2 is evaluated for P = 667 cm - 1, where Aco2 (p',p) is the broad-band absorptance
from Kiehl and Briegleb (1991). Similarly,

1
co2 (0, ) = T() Bco2 (O)Aco (0, p) (4.b.32)

For ozone,
1 IdBo 3 (P)Ao(P,

ao3 (p, p ) - 4(P)Ao3(P ,P), (4.b.33)

and

03 (0, p) = 4 Bo3 (0)A3 (0,p), (4.b.34)UT 4 (0)

where Ao3 is the ozone broad-band absorptance from Ramanathan and Dickinson (1979).
A new feature to the longwave absorptance formulation for CCM2 is the inclusion of
Voigt line profile effects for CO 2 and 03. For the mid-to-upper stratosphere (p < 10mb),
spectral absorption lines are no longer Lorentzian in shape. To account for the transition
to Voigt lines a method described in Kiehl and Briegleb (1991) is employed. Essentially
the pressure appearing in the mean line width parameter, y,

Po
?- 7o (4.b.35)

is replaced with

7 = 70 + 6 I (4.b.36)

where 6 = 5.0 x 10-3 for CO2 and S = 2.5 x 10- 3 for 03. These values insure agreement
with line-by-line cooling rate calculations up to p 0 0.3 mb. Water vapor cannot employ
the broad-band absorptance method since H 20 absorption extends throughout the entire
longwave region. The method of Ramanathan and Downey (1986) is used for water-vapor
absorptivities and emissivities. The overlap treatment between water vapor and other
gases is also described in Ramanathan and Downey (1986). Thus, the total absorptivity
is given by

(p, p') = aco(p,p') + ao,(pp) + aH 2o(p,p'), (4.b.37)

and the total emissivity is

e(0,p) = ec 2(0,p) + 03 (0, p) + eH2 (0,p). (4.b.38)
Clear-sky fluxes are thus obtained by integrating Equations (4.b.30) and (4.b.31). Details
of the integration of these equations are given in Section 4.b.

The downward longwave clear-sky flux at the surface is thus,

Fr,(ps) = B(O)c(O,p,) + PA app)dpB(p )dp (4.b.39)

while the upward flux at the surface is just

F T (ps) = 0BT. (4.b.40)
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The downward cloudy-sky flux at the surface is

Fl(ps) = Fll(Ps) fclear + uT 4 (pclbk)A'(Pcl2)

+ aT (Pclbk) + pp (p, p') d d f (4.b.41))
k=3 I Jclbk

where pclbk is the pressure level of the cloud base at k.

The cloud emissivity is accounted for by defining an effective cloud amount for each
model layer,

Ak= e (Pk) Ak (4.b.42)

where the broad-band emissivity, e, is defined as

e (pk) = 1- e- O.LWP(k), (4.b.43)

where the cloud liquid water path, LWP, is defined by (4.a.11). The 0.1 m 2g- 1 factor
is an absorption coefficient based on observations of Griffith et al. (1980). fcld(k) is the
probability of a cloud existing in layer k, and clear sky below this layer,

k-1

fld(k) = A (1 - Al), (4.b.44)
i=2

or
K

I (1-A')
fd(k) = A i`2 (4.b.45)

l(1 -At)
i=k

The clear-sky fraction for the total atmospheric column, fcear, is given by

N

fclear = f( 1 - Ai), (4.b.46)
i=l

where A' is the fractional cloud cover in layer i and N is the total number of atmospheric
layers. The fractional cloud cover is provided by the cloud parameterization scheme
discussed in Section 4a. The net longwave flux at the surface is

FN(ps) - FT(p) + Ft(p8 ). (4.b.47)

Fluxes within the atmosphere are evaluated at each model half-layer for longwave
heating-rate calculations on full pressure-levels. The upward flux between the surface and
the lowest cloud layer is equal to the clear-sky upward flux,

FTl(Pk) = Fclr(Pk) (4.b.48)
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Within the layers that contain clouds, the upward flux is
k

FTd(Pk) = Fcr (Pk)fclear(k) + Z{ T4(Pcltl)
£=ko10

(4.b.49)
pk P dBJ /c a(p' Pclt)idp ' )dp X fcld(t) Pklo ,< Pk < Pk+l,

-Pcltl dP J
where fcld(e) is the probability that a cloud is in layer e and clear sky exists above layer e:

K

k n (1-A')

fld() = At It (1 - A') = Al '=+l (4.b.50)

i=k+1

kIw is the lowest level of cloud, kHI is the highest layer of cloud, and pcti is the cloud-
top level. The upward flux above the clouds is obtained from a similar expression. The
downward flux above the cloudy region is equal to the clear-sky flux,

Fav (Pk) = Fl,(pk). (4.b.51)

Within the clouds and below the clouds, the downward flux is
kH I

P Sk

Fcld,blw(Pk) = Fr(pk)fcld(k) + d BaT (plb) + a(p',p) ()dp'
e=kl PclblP (4.b.52)

x fcld(t), Ps < Pk < PHI,

where Plbl is the cloud-base level, fcld(£) is the probability of a cloud existing in layer i
and clear sky below this level,

K

R=1 nJ(1 -Al)
fcld(e) = A I(l - A',) = A-i=k (4.b.53)

i=k H(1-AD
i=e

The longwave atmospheric heating rate is obtained from

Q0, (p ) 9 F t (pk+) - Fl(Pk+l) - F(pk) + F(pk) .b.
Qiw^p k)>= - ---------------------. (4.b.54)Cp Pk+1 -Pk

which is added to the nonlinear term (Q) in the thermodynamic equation.

The full calculation of longwave radiation (which includes heating rates as well as
boundary fluxes) is computationally expensive. Therefore, modifications to the longwave
scheme were developed to improve its efficiency for the diurnal framework. For illustration,
consider the clear-sky fluxes defined in (4.b.27) and (4.b.28). Well over 90% of the longwave
computational cost involves evaluating the absorptivity a and emissivity e. To reduce this
computational burden, a and e are computed at a user defined frequency that is set to
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every 12 model hours in the standard configuration, while longwave heating rates are
computed at the diurnal cycle frequency of once every model hour.

Calculation of a and e with a period longer than the evaluation of the longwave
heating rates neglects the dependence of these quantities on variations in temperature,
water vapor, and ozone. However, variations in radiative fluxes due to changes in cloud
amount are fully accounted for at each radiation calculation, which is regarded to be
the dominant effect on diurnal time scales. The dominant effect on the heating rates of
changes in temperature occurs through the Planck function and is accounted for with this
method.

Numerical algorithms

The continuous equations for the infrared calculations require a sophisticated
vertical finite-differencing scheme due to the integral term f adB in Equations (4.b.30)-
(4.b.31). The reason for the additional care in evaluating this integral arises from the
nonlinear behavior of a across a given model layer. For example, if the flux at interface Pk
is required, an integral of the form fpp a(p',Pk)dB(p') must be evaluated. For the nearest
layer to level pk, the following terms will arise:

A a(p',pk)dBl(p) = ( ) a(Pk,pk)] [B(p) - B(k+l)] (4.b.55)
Jpk+1

employing the trapezoidal rule. The problem arises with the second absorptivity a(pk, Pk),

since this term is zero. It is also known that a is nearly exponential in form within a layer.
Thus, to accurately account for the variation of a(p,p') across a layer, many more grid
points are required than are available in CCM2. The nearest layer must, therefore, be
subdivided and a must be evaluated across the subdivided layers. The algorithm that is
employed in CCM2 is to use a trapezoid method for all layers except the nearest layer.
For the nearest layer a subdivision, as illustrated in Figure 2, is employed.

For the upward flux, the nearest layer contribution to the integral is evaluated from
k+1

JH adB(p') = a22 [B(p+j) - B(pk)] + a21 [B(p) - B(pk)], (4.b.56)
JP,

while for the downward flux, the integral is evaluated according to
k

pPH

H adB(p') = all [B(Pk) - B(pH)] + a12 [B(p )- B(pk)] (4.b.57)
The 1,2; j 1, 2, are absorptivities evaluated for the subdivided paths

The aij, i = 1,2; j = 1,2, are absorptivities evaluated for the subdivided paths
shown in Figure 2. The path-length dependence for the absorptivities arises from the
dependence on the absorptance A(p,p') [e.g., Eq. (4.b.33)]. Temperatures are known
at layer midpoints. Temperatures at layer interfaces are determined through linear
interpolation in logp between layer midpoint temperatures. Thus, B(pk) = aBT4 can be
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evaluated at all required levels. The most involved calculation arises from the evaluation

of the fraction of layers shown in Figure 2. In general, the absorptance of a layer can

require the evaluation of the following path lengths:

((Pk,Pk+l) = f(T)pAp, (4.b.58)

and

u(pk,pk+l) = g(T)Ap, (4.b.59)

and

/(pk, Pk+l) = h(T)p, (4.b.60)

where f, g, and h are functions of temperature due to band parameters (see Kiehl and

Ramanathan, 1983), and T is an absorber mass-weighted mean temperature.

k+1
PH

zt ta22

__21

,,, ]_12 ,

or., + +
(X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ k

PH

Figure 2. Subdivision of model layers for radiation flux calculation

These path lengths are, in particular, used extensively in the evaluation of Ao3

(Ramanathan and Dickinson, 1979) and Aco2 (Kiehl and Briegleb, 1991). But path

lengths dependent on both p2 (i.e., R) and p (i.e., u) are also needed in calculating the

water-vapor absorptivity, oH2 0 (Ramanathan and Downey, 1986). To account for the
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subdivided layer, a fractional layer amount must be multiplied by ~ and u, e.g.,

611 = (p Hp') x UINPL(1, k), (4.b.61)

Ull= u(pk,p + l ) x WINPL(1, k), (4.b.62)

and

11 = (p,pHH+l) x PINPL(1,k), (4.b.63)

where UINPL, WINPL, and PINPL are factors to account for the fractional subdivided
layer amount. These quantities are derived for the case where the mixing ratio is assumed
to be constant within a given layer (CO 2 and H20). For ozone, the mixing ratio is assumed
to interpolate linearly in physical thickness; thus, another fractional layer amount ZINPL
is required for evaluating Ao (p, p') across subdivided layers.

Consider the subdivided path for a 22; the total path length from pH to Pk+1 for
the p2 path length will be

(pk P+ 1) PH [H-P +1 ], (4.b.64)-)I+H PH H H

kc . +1

where p-H 2 p HP. The total layer path length is, therefore, proportional to

( P +) ((p) 2 - (p1) 2 ) (4.b.65)

The path length ~ for a22 requires the mean pressure

P2 { 2 {2 }W + lH(4.b.66)

and the pressure difference

A k k _k+

AP22 H _PH+l (4.b.67)

2

Therefore, the path 422 is

^^ ^ ^ P 2 H - {Pk 1 (4.b.68)
22 P22 /P22 2 ( 2 ( } (4 8)

The fractional path length is obtained by normalizing this by 6(pa,P'+1),

UINPL(2, k) = DAF3(k) { (P .P^ ) ) (pk+1)2} (4.b.69)2 (4.b.69)

where

hDAF3() (4.b.70)(AF3( )2 (pk+)2 (4..70)
H^ H2 (n
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Similar reasoning leads to the following expressions for the remaining fractional path
lengths, for a21,

UINPL(3, k) = DAF3(k)

for al,
{ ( pk +P ( ) 2

2 -(P~~~~~~~~~r~~~~l) 2~~~~~~

UINPL(1, k) = DAF3(k) { (p)2 -

}I (4.b.71)

( +pk 2
(4.b.72)

and for a12,

UINPL(4, k) = DAF3(k) { (p) 2 - (pk ±
-- 2 )

2

(4.b.73)

The UINPL are fractional layer amounts for path length that scale as p2 , i.e., ij.

For variables that scale linearly in p, e.g., iiuj, the following fractional layer amounts
.are used:

WINPL(1, k) = DAF4(k) {H p2' '~~~~~ (4.b.74)

p- pk_+l

2
WINPL(2, k) = DAF4(k)

WINPL(3, k) = DAF4(k) {

WINPL(4, k) = DAF4(k) H -

PH+ ) _ pk+l

2 2H

+l + p

where
1

DAF4(k) = (4.b.78)

These fractional layer amounts are directly analogous to the UINPL, but since u
is linear in p, the squared terms are not present.

The variable /ij requires a mean pressure for the subdivided layer. These are

PINPL(1, k)=

PINPL(2, )=1PINPL(2, k) =

+p +p
2 HfI

{
Pk , k+lI
pt + PH + k+l

2 h

60

(4.b.75)

(4.b.76)

(4.b.77)

I
(4.b.79)

(4.b.80)
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PINPL(3, k) = + {P + H+ } (4.b.81)

I {pk _ p k+l
PINPL(4,k) =1 { P H + pkH (4.b.82)2 I H J

Finally, fractional layer amounts for ozone path lengths are needed, since ozone is
interpolated linearly in physical thickness. These are given by

ZINPL(1, k) = ( p / ) (4.b.83)
n k+1

PH

( )
ZINPL(2, k)= - P , (4.b.84)

ZINPL(3, k) = ZINPL(1, k) + 2ZINPL(2, k), (4.b.85)

ZINPL(4, k) = ZINPL(2, k) + 2ZINPL(1, k). (4.b.86)

c. Surface Energy Exchanges

The boundary condition on the surface/sub-surface temperature calculation
discussed in the next section is the net surface energy flux given by

Fnet(Ts) = FRAD - T 4 - Cpl (w0'')s - pl (w'q')s, (4.c.1)

where FRAD is the absorbed solar flux plus the downward longwave flux (provided by the
radiation parameterization); cppi (w'0')s is the surface sensible heat flux (positive into the
atmosphere); Lpl (w'q')s is the surface latent heat flux (positive into the atmosphere); and
aT4 is the longwave blackbody surface emission.

The surface sensible and latent heat fluxes, along with their momentum
counterparts are defined by:

cppi(w'O'), = cpplCHIV1I1(0 - 01), (4.c.2)

Lpl(w'q'), = LpiDwCH |Vii (q* - q), (4.c.3)

P (w')s = -p1CMIV1 U1, (4.c.4)

Pi(w'v')s = -P1CMIV1 iI1, (4.c.5)

where V, u, v,w, , q, and p are the horizontal velocity vector, zonal, meridional
and vertical wind components, potential temperature, specific humidity, and density,
respectively. The subscripts s and 1 refer to values at the surface and at the lowest model
level, respectively. The additional factor, Dw, in (4.c.3) is the potential evaporation which
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represents the availability of water from the surface as a fraction of that available from a
water surface. The variable qs is defined as the saturation value of q at temperature T,.
We note that L is either the latent heat of vaporization Lv, or the sum of the latent heat
of vaporization and latent heat of fusion Li. The distinction between the two is noted
where appropriate later in the text.

Following Louis et al. (1982) and Holtslag and Beljaars (1989), the two surface
layer exchange coefficients used in (4.c.2)-(4.c.5) are defined as:

CM = CNfM(Ris), (4.c.6)

CH = CNfH(Ris). (4.c.7)

The neutral exchange coefficient is:

k2

N In ((zi + Zo)/zo)ln ((zi + zo)/zo) (4.c.8)

where k = 0.4 is the Von Karman constant, zl is the height of the lowest model level,
and z0 is the roughness length for momentum. Here we have assumed that the roughness
lengths for momentum, heat, and constituents are the same, which is not true in general
(see Beljaars and Holtslag 1991). If differing roughness lengths are accounted for, then the
neutral exchange coefficients for heat and momentum differ. For heat, the denominator
in (4.c.8) becomes In ((zl + ZOM)/ZOM) In ((zl + ZOH)/ZOH), where ZOM and ZOH represent
the roughness lengths for momentum and heat respectively. In CCM2, the roughness
length over land varies geographically, based on surface type data (see Table 1), while
over ocean zo = 10- 4 m. The roughness lengths (zo) and potential evaporation (Dw) were
determined by assigning values shown in Table 1 to Matthews' (1983) 1° x 1° vegetation
data and arithmetically averaging all values within each CCM2 grid box, including ocean
values near coast lines. Over open water, sea-ice, and any land covered with snow, D-=1.
Further discussion can be found in Section 5b.

The surface layer Richardson number in (4.c.6) and (4.c.7) is defined as:

Ri = 9gz (Ov - Ov (4.c.9)
01 Vi2 P

where g is the acceleration of gravity, 0vl and 0vq are the virtual potential temperatures,
and IV112 > 1. Under unstable conditions (Ris < 0), the functions which modify the
neutral exchange coefficient are taken from Louis et al. (1982):

10R/
fM(Ris)= 1 - (4.c.10)

1 + 75CN {((zl + zo)l/o) IRis 1} / 2

fH(Ris) 1 - 15 -7 5 R (4.c.11)
I + 75CN {((zl + zo)/zo) Ri}x 1/2 '
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Under stable conditions (Ris > 0), the functions which modify the neutral exchange
coefficient are taken from Holtslag and Beljaars (1989):

fM(Ri)fH i) = 1 (1 + 8i)
fM(Ris) - fH(Ris) -- 1 + 10Ri, (1 + 8Ri,)' (4.c.12)

The above forms for fM and fH are reasonable fits to available observations in the surface
layer as shown by Holtslag and Beljaars (1989).

TABLE 1: Surface Data for Roughness Length, Potential Evaporation,
and Thermal Surface Type

Type Description 1 Matthews' Roughness3 Potential Thermal5

Vegetation Type2 Length(m) Evaporation 4 Surface
Type

1 Mixed farming W (Cultivation .06 .25 6
tall grassland intensity>75%)

2A Tall/medium grassland H,I,O,Q,R .10 .10 6
evergreen shrubland

2B Short grassland, meadow J,L,P,S,T .05 .10 6
and shrubland

3 Evergreen forest 4,5,7,8 1.00 .25 5
(needleleaved)

4 Mixed deciduous A .90 .25 5
evergreen forest

5 Deciduous forest 9,B .80 .25 5

6 Tropical evergreen 1,2,3 2.00 .25 4
broad-leafed forest

7 Medium/tall grassland 6,C,D,E .60 .25 5
woodlands F,G,N

8 Desert U .05 .01 7
9 Tundra K,M .04 .25 6

10 Land Ice - .04 1.00 2

lSee also Briegleb et al. (1986).
2 The association of Matthews' (1983) more detailed types and the types here was

done both by using Matthews' description, as well as surface albedos (Matthews,
private communication), and other observations-see Briegleb and Ramanathan
(1982) and Briegleb et al. (1986).

3 Roughness Length zo, from Dickinson et al., (1986).
4 Potential Evaporation, Dw
5Determines surface thermal properties; see Table 2.

Land surface properties, such as the potential evaporation, and snow cover are
prescribed in the initial release of CCM2. These properties are internally determined by

63



the model when exercising the optional BATS land surface parameterization (Dickinson
et al., 1993; Bonan, 1993).

A seasonally varying snow cover that depends only on latitude and month is also
prescribed. If SJAN and SJULY are respectively the January and July water equivalent
snow depth values, then the water equivalent snow depth for calendar day d is given by

S(d) S + As cos 3 (d - do), (4.c.13)

S = 2(SJAN + SJULY), (4.c.14)

1
As= 2(SJAN - SJULY), (4.c.15)

where do = 46.0 (phase of max/min in snow depth), and if S < SMIN = 0.001 m, S = 0.
The reference January and July values of the snow depth S are determined using the data
of Forderhase et al., (1980). Regions where the snow depth was undetermined are set to
30 mm for January and 10 mm for July on the original 5° x5° grid. Over the Antarctic,
a constant (i.e., seasonally invariant) value of 20 mm was assumed. Bilinear interpolation
was used to evaluate the data on the model Gaussian grid.

Since surface albedo and potential evaporation are strongly influenced by variations
in snow cover, the fraction of the surface covered by the prescribed snow amount (i.e., the
fraction which has snow properties) is estimated by

20S
fsnow 20S + (4.c.16)

(see Briegleb, 1992; Dickinson et al., 1986). The surface aerodynamic roughness Zf equals
zo when zo > 0.25 m, and has a minimum of 0.25 m.

Whenever a particular grid location has nonzero snow depth S, D" is modified
according to the relation

D = fsnow + (1 - fsnow)Dw, (4.c.17)

where fsnow is the same horizontal snow cover fraction used in the surface albedo
computation, and Dw is the fixed evaporation factor assigned to the underlying surface.

d. Surface/Soil Temperature Calculation

Land and sea ice surfaces, with and without snow cover, are modeled as horizontally
homogeneous media of vertically varying thermal properties (see Table 2). The subsurface
temperatures are assumed to obey the thermal diffusion equation:

9T 9F OT
pC =F =-- z, (4.d.1)

where T is temperature, t time, p mass density (kg m-3 ), C'the mass heat capacity
(J kg-'K- 1), F the thermal flux (positive downward), z physical depth (m), and X the
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thermal conductivity (W m-1K-l). At the surface/atmosphere interface, the net energy
flux and its first partial derivative, with respect to surface temperature, are assumed
given. At the lower boundary over land surfaces, a zero heat flux condition is imposed.
Over sea ice a constant ocean temperature condition (-2 C) is maintained, allowing for
heat transfer between the lowest sea ice layer and the underlying ocean.

The thermal diffusion equation is solved in finite difference form for an arbitrary
number of layers using a fully implicit Crank-Nicholson scheme (see Smith, 1965):

pc(Trn+l - n+ ) / 1n
Pece (TO T) = (4.d.2)

where -= 1,2,..., L refers to the layer index (1 = surface, increasing downward), n is
the time index, and At = model time step. The implementation allows for variable tc, p, C
and layer depths z. At the surface atmosphere interface, the net flux is allowed to have a
linear temperature dependence making the scheme a backward-implicit method of solving
for T (see Washington and Verplank, 1986).

As shown earlier (4.c.1), the net surface energy flux is given by

Fnet(Ts) = FRAD - -T, 4- C pp (w'')- - Lpl (w'q')s. (4.d.3)

The net surface flux energy derivative with respect to temperature is assumed to be given
by

OFnet OSH 9LH
Qr aTsrp aTs I r 1i9Ts In (4.d.4)0T8 Tn ~9T 8 0T Tn

where SH - Cpp (w'O')s and LH - Lpl(w'q')8 . Note that the longwave surface
emission temperature dependence is ignored in this relationship in order to fix all
radiation dependencies on temperature during the surface temperature computation. This
procedure is followed to be consistent with the time integration procedure, and to ensure
that energetically, the precise energy fluxes used to forecast the temperature

(F^(^;) ^OFn e t (TsT - )) (4.d.5)
\3'S T7

are consistent with the fluxes previously calculated by the radiation, and with those passed
on to the vertical diffusion routines.

Once the forecast temperature Tn+l is available, the net flux terms of sensible and
moisture flux from the surface into the lowest model atmospheric level (required by the
vertical diffusion) are evaluated as:

n+1 n OSH4
SH = aSHS- + T (T 1 - Ts) , (4.d.6)

Q+ = <Q + 1 (T + l -T ), (4.d.7)Q+ -n.d 7T7
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where the moisture flux Q is the kinematic quantity (w'q') for surfaces above melting
temperature and {LH/(pl(L, + Li))} for surfaces below melting temperature, where L,
and Li are the latent heats of vaporization and fusion respectively.

TABLE 2: Surface Thermal Properties for Four Layers

Thermal
Surface
Type1 Description 2 0 2 C, 3 C4 D D d D4 Dy5 p6

2 sea ice - - 2.200 1.90xtop day 14 days year9.2x02
3 land ice - -2.20 1.90x106 2.07x10 3 .25 .50 .50 .50 9.2x1023 land ice - - 2.20 1.90x106 2.07xi03 .25 .50 .50 8.50 9.2x 102
4 equat forest 0.8 .40 1.408 2.60x10 6 1.04x10 3 .10 .366 1.369 6.99 2.5x10 3

5 mid-lat forest 0.8 .20 1.104 1.80x10 6 7.20x10 2 .09 .390 1.459 7.45 2.5x10 3

6 shrubland 0.9 .10 1.071 1.40x10 6 5.60x10 2 .08 .435 1.628 8.31 2.5x10 3

7 desert 1.0 .01 1.019 1.04x10 6 4.16x10 2 .06 .492 1.841 9.40 2.5x10 3

1 ocean is type 1
2 (W m-1K- 1)
3 (J m-3K- 1 )
4 (J kg-1K- 1)
5 (m)
6 (kg m- 3 )

The thermal properties of the surface were chosen as follows: the thermal surface
type (see Table 1 and Table 2) is the dominant type (i.e. the most frequently occurring
within a Gaussian grid box) determined by ascribing values of Table 1 to the 1°xl°

resolution data of Matthews (1983). The thermal properties for each surface (thermal
type) are based on a parameterization developed by Verstraete (1988): for all soil types
at all times, the volume heat capacity is parameterized by

Cv(O) = (1 + 40)106 (J m-K-1), (4.d.8)

where 0 is the volumetric soil water content, which can vary from 0 (completely dry soil)
to 0.5 (water fills the available space in the soil, i.e., 50%). Similarly, the soil thermal
conductivity is given by

(0) = co(1 + 1.90)(W m-lK-l), (4.d.9)

where no is 0.8 W m- 1 K- 1 for loam, 0.9 W m-lK - 1 for clay, and 1.0 W m- 1K - 1 for
sand.

One can choose depths for any number of subsurface layers based on the soil

penetration depth (taken to be three times the e-folding depth of a sinusoidally varying
surface temperature V/2n/Cw, where w = circular frequency of surface temperature
oscillation; see Sellers, 1965):

D =3 C/-- (4.d.10)

where w is taken for any desired list of times. The mass density is chosen to be a constant
(2.5x 103 kg m 3 ).
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The thickness of the topmost ground layer was chosen so that the diurnal range (maximum

to minimum temperature) and phase (peak temperature lag with respect to solar incident

maxima at local noon) compared reasonably well to observations referred to in Bhumralkar

(1975).

As mentioned previously, the number of layers is arbitrary. In Table 2 we give an

example of four layers (used in the standard implementation), where the lowest three layers

from the top have equivalent periods of one day, two weeks, and one year, respectively.

Over land, we are assuming that the top layer (of 6-10 cm thickness) absorbs all incident

solar radiation. Over sea/land ice, which is partially transparent to solar radiation

(compared to soil), we arbitrarily chose a constant layer thickness of 50 cm.

When snow cover is present over land we assume that the snow is homogeneously
mixed by mass to determine the thermal properties of the surface:

pi = soil mass density of top layer
C1 = soil mass specific heat of top layer

c1 = soil thermal conductivity of top layer
Z1 = depth of top layer

Ps, Cs, I, zs = same properties as above, but for snow
ml = total mass of top layer - p z (without snow)
m, = total snow mass psZs
PT _= 1 Pi+mSPS

mlli+ma

mi +m,,
T ml Zi +m s Zs

1 T ml +mzZT = --

Rather than placing a horizontally uniform but arbitrarily thin snow layer over the
surface, this mixing by mass was done to avoid numerical oscillations from occurring.
In any case, homogeneous mass mixing to determine thermal properties was deemed

physically realistic.

We note that the thermal properties of the snow (p, C, Kc), before mixing with the

top surface layer, are assumed to be equal to a 10% ice and 90% air mixture. We assume
that the physical depth of the snow is 10 times its liquid water equivalent depth.

Numerical algorithms

The general diffusion equation is:

OT F ( T\
PC ^ = - =- (- KTa) (4.d.11)at drz - z '

where the thermal heat flux F is positive downward; p is the mass density (kg m- 3), C is
the heat capacity by mass (J kg-l K-1), and ne is the thermal conductivity (W m-l K-1).
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We assume L homogeneous layers, for which the thermal and physical properties (Kc, C, p)
are constant within each layer, and allow variable layer thickness. The backward implicit
top boundary condition is:

Fnet + OT {T (T+1 - Tr). (4.d.12)

There are three general equations: for the top layer, for any intermediate layer, and
for the bottom layer. All three equations will apply whenever L > 3. The general fully
implicit finite difference equation for times n + 1 and n is

( + - _" (OF' n+

C e -t (4.d.13)

where i = layer index (1,2, ... L from top to bottom), and where At = model time step.
(Note that T, = T1 ).

We approximate the flux and temperature derivatives as follows (and suppress the
time index n for simplicity): ( T\ Te+i - Te

/( "Z) = e+le -, (4.d.14)
z = Ke+1 z1 -Z£

where Ze is the mid-point depth of layer £ = (ze + z-i), ze is the geometrical depth of
layer interfaces where = 0 is the surface/atmosphere top interface and zL, is the bottom
interface with a perfectly insulated medium, and te+l,e = -(te + Ke+i).

The flux derivative is then:
/ F\ (~e~l~e TE+1-Te Te-Te i

Z ) Z- Z(4 d.15)

Defining Aze = Ze - ze-1 (£th layer physical thickness)

Az+= e Z+l - ze (Ith layer mid-point physical thickness with layer below)
A-= Ze - Z-1 (gth layer mid-point physical thickness with layer above)

gives:

(O F\) I- {e+,._.(Te._ Tg) K'',e _ (TT \i)}

(AZ_ efze j{/ e+Te+i - +-' \ei4 - 1e6 } (4.d.16)
I1 { ^e+l,______e (he,e- 1

\.Az~ z + T~ + Az + Az+ Az- T e

Defining

fe= fe A (4.d.17)

gives:

(-F7) = (ke+1,e fe+) T+li - (ke,e-1 fe ± Ke+i,e fe+) Te + (,e-1i fe) Te-1 . (4.d.18)
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Consider the top layer equation first:

T n +l -_ Tn f 2n+1\
Pi Ci 1 +- F 1 F

A T-'1 -T' T

Z1 - Zo

Collecting the n + 1 temperatures on the left-hand side and all known terms n on the
right-hand side gives

OTT
Pi Ci T. Tn+

+21f - +l +
At Z1 - ZO

(4.d.20)

OT
{(--21 ft} +n et - p l- T,]

{-T21 l+}T2 += + f -9
'Z - Zo At Z - Z0

Next, consider an intermediate layer e (I > 2 and e < L - 1):

(-~,e-1 f-) Te+1l + P{ e + (iee-i f- + Te+1e f+)} T+

(4.d.21)

- (ie+le f+) Tn+1 = P TCeT

Finally, for the bottom layer we consider the bottom boundary condition to be fixed
temperature (equal to TB = -2°C for sea ice overlying an ocean), or zero flux condition
(over land).

Consider the zero flux condition first. In this case, TL 1 = TL+1 , where L +1 is a
"virtual" layer underlying the lowest actual layer in the model; thus, the finite difference
equation becomes that for a general intermediate layer, or:

(-·LL-1 fL) TL + { PL + LL-1 jL t L+ = + LCLt LT (4.d.22)LA + LL-1 At T

For the case of a fixed lower boundary temperature, we specify Tn+l = TB, and use:

1
L-L+1,L = Ke Az = ZL - ZL fL+ = AZA+ (4.d.23)

which results in an equation of the form of (4.d.21).
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The equations for Te+l1 e = 1, 2,... L form a coupled set of linear equations of the
form:

Al1 A 12 0 0 ... 0 T\ +1
A21 A22 A23 0 ... 0 b

1 _ bI0 A 3 2 A33 A34 ... 0 3 (4.d.24)

0 ... 0 0 AL-1,L ALLT bLJ

or a set of L x L linear equations, where we can see the definitions of the A(L x L) matrix
and b(L) vector, respectively, from the finite difference equations above.

A consistency check on the calculation can be done by evaluating the vertical sum of
the thermal energy. Vertically summing equation 4.d.13, where the thermal flux divergence
is defined by 4.d.14 yields:

L

En + l = y peCeTT + l (ze - zel-), (4.d.25)
£=1

with a similar equation for E n using the temperatures Te. Over land, with the zero
thermal flux as the bottom boundary condition, the following condition is satisfied:

E' + - =' F ±Fnet (T + T)
At = F net +t a 1t (T1 + - Tl. (4.d.26)

Over sea ice, an extra term arises due to the thermal flux from the underlying ocean.

e. Vertical Diffusion and Atmospheric Boundary Layer Processes

Local diffusion scheme

An explicit, non-local Atmospheric Boundary Layer (ABL) parameterization
is incorporated into the vertical diffusion parameterization in CCM2. The ABL
parameterization includes a determination of the boundary layer depth. Above the top
of the ABL, CCM2 employs a standard local diffusion parameterization for the free
atmosphere. In practice, the free atmosphere diffusivities are calculated first at all
levels. The ABL scheme then determines the ABL depth and diffusivities and replaces
the free atmosphere values for all levels within the ABL. The ABL parameterization, its
implementation in CCM2, and its impact on the behavior of the model are discussed in
Holtslag and Boville (1993), while the formalism only is discussed here.

The local form of the vertical diffusion terms of momentum, sensible heat, and
moisture follows those described by Smagorinsky et al. (1965) and Manabe et al. (1965)
where the tendencies are given by

9u 1 aTx OrT

'at p 9 (4.e.1)at p aO z p '
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av _ rI- a9r
a-7 _- dr= - (4.e.2)at p oz op

OT 1 OH g OH
At - pc; az c p ' (4.e.3)

aq 1 9R 9R
1At 0z 9 ' OR(4.e.4)at p aOz op

where cp is given by cp = [1 + ( £ - 1) q cp. Above the surface layer, the upward fluxes

of momentum, sensible heat, and moisture due to turbulent motions are given by

u o 9au
rX = pw'u' = -pKn = gp2Kc , (4.e.5)

Oz p'

av 2 a v
TrP = p' v' = - pKm = K (4.e.6)

dz dp= 0 p 0p'

H = pw'O' = -cppKoe = cgp2Ka , (4.e.7)

aq 2 q
R =pw'q' =-pK =gp2 K (4.e.8)

where 0 = T and p* is a reference pressure which in practice is taken to be Ps.

The variables Kc, where c E (q, ,u,v) are "eddy-diffusivities" that are typically taken
as functions of length scales 4C and local vertical gradients of wind and virtual potential
temperature, e.g.,

Kc - 2 SFc(Ri). (4.e.9)

Here S is the local shear, defined by

OvS = V (4.e.10)

and the mixing length ec is generally given by
1 1 1

1 kZ + 1c (4.e.11)4c kz AC
where again k is the Von Karman constant, and Ac is the so-called asymptotic length scale,

taken to be 30 m above the ABL. Since the lowest model level is always greater than 30 m

in depth, tC is simply set to 30 m in CCM2. Furthermore, Fc(Ri) denotes a functional
dependence of Kc on the gradient Richardson number:

Ri g Ov/ (4.e.12)
R- S 2
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where 09 is the virtual potential temperature,

v = 1 + (- 1 ] (4.e.13)

For simplicity, in our present implementation of the local K approach, we specify
the same stability functions Fc for all c. For unstable conditions (Ri < 0) we choose

F(Ri) = (1 - 18Ri)l/2 , (4.e.14)

as in CCM1 (Williamson et al., 1987), and we use (4.c.12) for stable conditions (Ri > 0).
This means that no distinction is made between vertical diffusion of heat, scalars and
momentum.

"Non-local" atmospheric boundary layer scheme

In a local diffusion approach, the turbulent flux of a quantity is proportional to
the local gradient of that quantity (e.g., (4.e.5)-(4.e.8)). In such an approach the eddy
diffusivity depends on local gradients of mean wind and mean virtual temperature (see
(4.e.9)). These are reasonable assumptions when the length scale of the largest turbulent
eddies is smaller than the size of the domain over which the turbulence extends. In the
Atmospheric Boundary Layer (ABL) this is typically true for neutral and stable conditions
only. For unstable and convective conditions, however, the largest transporting eddies may
have a similar size as the boundary layer height itself, and the flux can be counter to the
local gradient (Deardorff, 1972; Holtslag and Moeng, 1991). In such conditions a local
diffusion approach is no longer appropriate, and the eddy diffusivity is better represented
with turbulent properties characteristic of the ABL. We will refer to such an approach as
non-local diffusion.

To account for "non-local" transport by convective turbulence in the ABL, the local
diffusion term for constituent c is modified as

w'C'=- ( -K yc) , (4.e.15)

where Kc is the non-local eddy diffusivity for the quantity of interest. The term cy
is a "non-local" transport term and reflects non-local transport due to dry convection.
Eq. (4.e.15) applies to potential temperature, water vapor, and passive scalars. No
countergradient term is applied to the wind components, so (4.e.1) and (4.e.2) remain
unchanged. For stable and neutral conditions the non-local term is not relevant for
any of the quantities. The eddy diffusivity formalism is, however, modified for unstable
conditions.

In the non-local diffusion scheme the eddy diffusivity is given by

=Kc = Wt Z (1- Z) 2 , (4.e.16)
K,-kw zh(1-h) 2
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where wt is a turbulent velocity scale and h is the boundary layer height. Equation (4.e.16)
applies for heat, water vapor and passive scalars. The eddy diffusivity of momentum Km,
is also defined as (4.e.16) but with wt replaced by another velocity scale Wm. With proper
formulation of wt (or w,) and h, it can be shown that equation (4.e.16) behaves well from
very stable to very unstable conditions in horizontally homogeneous and quasi-stationary
conditions. For unstable conditions wt and Wm are proportional to the so-called convective
velocity scale w,, while for neutral and stable conditions wt and Wm are proportional to
the friction velocity u*.

The major advantage of the present approach over the local eddy diffusivity
approach is that large eddy transport in the ABL is accounted for and entrainment effects
are treated implicitly. Above the ABL, yc = 0 so (4.e.15) reduces to a local form with KC
given by (4.e.9). Near the top of the ABL we use the maximum of the values by (4.e.9)
and (4.e.16), although (4.e.16) almost always gives the larger value in practice.

The non-local transport term in (4.e.15), 7Yc, represents non-local influences on the
mixing by turbulence (Deardorff, 1972). As such, this term is small in stable conditions,
and is therefore neglected in these conditions. For unstable conditions, however, most
transport of heat and moisture is done by turbulent eddies with sizes on the order of
the depth h of the ABL. In such cases, a formulation for yc consistent with the eddy
formulation of (4.e.15) is given by

W* (W'C'),
Y = a (4.e.17)

where a is a constant and (w'C')s is the surface flux (in kinematic units) of the transported
scalar. The form of (4.e.17) is similar to the one proposed in Holtslag and Moeng (1991).
The non-local correction vanishes under neutral conditions, for which w, = 0.

The formulations of the eddy-diffusivity and the non-local terms are dependent
on the boundary layer height h. We follow Troen and Mahrt (1986) and determine h
iteratively by using

Ri, {u(h)2 + v(h)2
h (.{u(h) +v() (4.e.18)(gl/O) (or(h) - 0

where Ricr is a critical bulk Richardson number for the ABL; u(h) and v(h) are the
horizontal velocity components at h; g/0s is the buoyancy parameter; 90(h) is the virtual
temperature at h; and As is an appropriate temperature of air near the surface. The value
of the critical bulk Richardson number Ricr in (4.e.18) depends generally on the vertical
resolution of the model. For the standard model resolution, we use Ricr = 0.5.

Following Troen and Mahrt (1986), 0s for unstable conditions is given by:

s = Ov (zs) + b (w v) , (4.e.19)
Wm
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where b is a constant, (w'O'), is the virtual heat flux at the surface, and unstable
conditions are determined by (w'Ov)1 > 0. In (4.e.19), Ov (zs) is a virtual temperature
in the atmospheric surface layer (say at a height of 10 m). The second term on the right
hand side of (4.e.19) represents a temperature excess, which is a measure of the strength
of convective thermals in the lower part of the ABL. This value, and a similar one for
moisture, is also used by the convection scheme.

The above described determination of h for unstable conditions incorporates both
the effects of mean wind shear and convection. Note that in the limit of free convection,
(4.e.18) provides that Ov(h) = Os. For stable conditions (w'O')s < 0, we apply

, = OV (Zs), (4.e.20)

with z, = 10 m. The latter virtual temperature is calculated from the temperature and
moisture of the first model level and of the surface by applying the procedure in Geleyn
(1988).

On the basis of (4.e.18), the boundary layer height h can be determined by iteration
for all stability conditions, when the surface fluxes and the profiles of Ov, u, and v are
known. The computation starts by calculating the bulk Richardson number Ri between
the level of 0s and subsequent higher levels of the model. Once Ri exceeds the critical
value, the value of h is derived by linear interpolation between the level with Ri > Ri,,
and the level below.

Using the calculated value for h and the surface fluxes, we calculate the velocity
scales, the eddy diffusivities with (4.e.16), and the countergradient terms with (4.e.17),
for each of the transported constituents. Subsequently, the new profiles for 0, q, u, and v
are calculated using an implicit diffusion formulation.

The turbulent velocity scale of (4.e.16) depends primarily on the relative height z/h
(h is boundary layer height), and the stability within the ABL. Here stability is defined
with respect to the surface virtual heat flux (w'' )s. Secondly, the velocity scales are
also generally dependent on the specific quantity of interest. We will assume that the
velocity scales for mixing of passive scalars and specific humidity are equal to the one
for heat, denoted by wt. For the wind components, the velocity scale is different and
denoted by w,. The specification of wt and w, is given in detail by Troen and Mahrt
(1986). Holtslag et al., (1990) have rewritten the velocity scale, in terms of the more
widely accepted profile functions of Dyer (1974), and have given a new formulation for
very stable conditions. Below we follow the latter approach.

For stable ((w'0l), < 0) and neutral surface conditions ((w7 0 )s = 0), the velocity
scale for scalar transport is

wt = c (4.e.21)
Oh
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where u, is the friction velocity defined by

= [(u'w')2 + (v'w')2] 1/4 (4.e.22)

Furthermore, Oh is the dimensionless vertical temperature gradient given by (Dyer, 1974),
z

Oh 1 + 5= , (4.e.23)L
for 0 < z/L < 1. Here L is the Obukhov length, defined by

3-u3
L =)(W (4.e.24)

k(g/o) (w')o
For z/L > 1,

Oh = 5 + L (4.e.25)

which matches (4.e.23) for z/L = 1. Equation (4.e.25) is a simple means to prevent ¢h
from becoming too large (and KC too small) in very stable conditions. In stable conditions,
the exchange coefficients for heat and momentum are often found to be similar. Therefore
we may use Wm-Wt.

For unstable conditions (w'' )s > 0, we have that Wt and Wm differ in the surface
layer (z/h < 0.1) and in the outer layer of the ABL (z/h > 0.1). For the surface layer, wt
is given by (4.e.21) with

z -1/2
Okh = (i -15.) . (4.e.26)

Similarly, Wm is written as

Wm=-, (4.e.27)
Om

where ¢bm is the dimensionless wind gradient given by

\Z-- 1 / 3

=(b (1 - 15) . (4.e.28)

In the surface layer, the scalar flux is normally given by

(w'c')0- -uz (0) (4.e.29)

Comparison with (4.e.15) and (4.e.16) shows that, in the surface layer, we should have
a = 0 in (4.e.17) for consistency.

For the outer layer, wt and Wm are given by

Wt = m/Pr , (4.e.30)

where

Wm ( 3 + C1W) 1 , (4.e.31)

and

w- ((g/Ovo) (w'Ov)oh)/ 3 (4.e.32)
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is the convective velocity scale. Furthermore, Pr is the turbulent Prandtl number and
cl is a constant. The latter is obtained by evaluating the dimensionless vertical wind
gradient qm by (4.e.28) at the top of the surface layer, as discussed by Troen and Mahrt
(1986). This results in c1 = 0.6. For very unstable conditions (h > -L or w*/u, > 0),
it can be shown with (4.e.30) that Wm is proportional to 0.85 w., while for the neutral
case Wm = u*. The turbulent Prandtl number Pr (= Km/Kh = Wm/wt) of (4.e.30) is
evaluated from

Oh Z aez w,*
Pr = (L)+ak W (4.e.33)

(Om L - hWm-

for z = O.lh. Equation (4.e.33) arises from matching (4.e.15), (4.e.16), (4.e.17), and
(4.e.29) at the top of the surface layer. As in Troen and Mahrt we assume that Pr is
independent of height in the unstable outer layer. Its value decreases from Pr = 1 for
the neutral case (z/L = 0 and w* = 0), to Pr = 0.6 for w*/u*, 10 in very unstable
conditions.

In very unstable conditions, the countergradient term of (4.e.17) approaches

wCo
= dWCO (4.e.34)

where d _ a/0.852 , because for very unstable conditions we obtain Wm - 0.85w*. Since
typically d c_ 10 (Troen and Mahrt 1986), we have a = 7.2. Similarly, the temperature
excess of (4.e.19) reads in this limit as d(w'O)o/w. This leads to b (= 0.85 d) = 8.5 in
(4.e.19).

Finally, using the velocity scales described above, the flux equation (4.e.15) is
continuous in relative height (z/h) and in the boundary layer stability parameter (h/L
or w*/u*).

In summary, the vertical diffusion tendency is given by the vertical derivative of
the turbulent flux defined in (4.e.15):

AC 1 a
OC_ I x 0[pw'C'J

t - p p K z %

= & [K( C)] (4.e.35)

The vertical diffusion is implemented using a time-split implicit method, as in CCM1.
The countergradient term in the non-local ABL scheme depends on the surface flux,
the boundary layer depth and the velocity scale, but not explicitly on the diffused
quantity. Therefore the countergradient term cannot be treated implicitly. Forward time
differencing is used for the diffusion, whereas a leap frog (centered) method is used for the
dynamics. Thus, the diffusive forward step is over two time steps. The time discretization
then results in:

cn+l n- 1 [P 1 (4.e.36nln+)
2At - ^~ [P -' K- -1) (4.e 36)
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where subscripts n - 1 and n + 1 refer to time levels, with Kc -1 and 7y -1 evaluated using
model variables at time n - 1. The whole diffusion process is time split from all other
processes so that time n - 1 variables may already have contributions from the dynamics
and other physical process. Equation (4.e.36) can be rewritten as

Cn+1 = (1 - 2AtG-)- C*, (4.e.37)

C* = C- - 2AtH-l(n-l), (4.e.38)

where G and H are differential operators. There can be a problem in applying (4.e.38) for
trace constituents, including water vapor, because these quantities are positive definite.
The application of the countergradient term, Hn-l(7n-) may result in negative values
for C*, which are not removed by the subsequent implicit diffusion step. This problem
is not strictly numerical; it arises under highly non-stationary conditions for which the
ABL formulation is not strictly applicable. In practice, we evaluate C* and check for

negative values in the constituent profiles. If a negative value is found, we set C* =

Cn-1 for that constituent profile (but not for other constituents at the same point). Note

that (4.e.37) is just the normal diffusion equation, which is solved using the numerical
techniques discussed in the next sub-section.

Numerical solution of nonlinear, time-split vertical diffusion

As described in section 2, the vertical diffusion is calculated prior to the main
dynamical calculation. This time-split diffusion is

n+1 _n+1

n+l n-1 A k+/2 + -1/2 (4.e.39)

=k = c + 2 k+ /2 - (4.e. --
n+l _ n+l

PkAzk

n+ 1= On - 1 + 2LAt g k+1/2 k-1/2 (4.e.41)
k1) nl n--1 C* _ n-{1

Rn+l _ Rn+l
n-k1 = q +2 n -- k+ -1/2 k-1/(4.e.4

,n 1 = qn- 1 + 2A t -1 (4.e.42)k k PAZn-1
Pkzk

where

= [F (c pV /n- 1l
= Cp [+( - )p 1 + (4.e.43)

The surface fluxes are given by the explicit forms (4.c.2)-(4.c.5):

R.++/2 = R+12 = Lp (w'q'), (4.e.44)

K+1/2 = HK1/2 = l (w ) (4.e.45)
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AK+1/2 = TK+1/2 = P1 (T' ) (4.e.46)

n+ T n
1K+1/2 = 'TK+1/2 = P1 (W ') * (4.e.47)

Note that these surface fluxes are explicit and ensure conservation of energy and moisture
in the surface exchange. The surface stresses TA and r, could be made implicit without
affecting this conservation. In the free atmosphere, for k = 1 to K - 1,

n+1 n+1
n+l _ fn-1 n-1 Ufk+1 k
rk+1/2 = (Pk+1/2) K+1/2 4 n-1 - (4.e.48)

k+ l - Zk

(f\-i Vn1 l
- Vn+ 1

Tk+1/2- Pk+l/2 Kk+l+/ 2 n-1 n-' (4.e.54)
Zk+l -- Zk

P/ 2 \Vk+1/2 )K n+1 _n+

where

n+l _n-
1 n-1 k+-1 -k

Pk+1/2 Pk+/2 Kk+l T --1 n R -- (4.e.52)

k+ik+-/21 -/k
H'n+'1 - - -* (n-1 n-1 kq+1 + k ) (4. e.51)
k-i+1/2 Pk+1/2 Pk+l/2 K lk+l/2n-1 n-l 'K md.1

number

n--1

pn- k-1 _ = (K )k+l/2 . f(R+l/2 ) 1 (4.e.54)

with a minimum value for K,,n+ll of Kmin = 0.01.

and

f(R P= + - q 1 +q n 1) (4.e.55)

with a critical Richardson number at which f goes to zero of

RC=0.2 . (4.e.56)

s then determined from the neutral KN is calculated bynction of Richardson

number

?-,i r(_- 1 - i )2 (vPz -

with a minimum value for K'~+/ of Kmin -0.01.

max (0, 1 - RI/RIc) for RI > 0 (stable) ,

f- /1V- 18-Rj for RI < 0 (unstable) ,

with a critical Richardson number at which f goes to zero of

RIc 0.2 . (4.e.56)

The neutral KN is calculated by

.n-1 \ n -1 )- 1 2 + (Vn- 1 Vn- 1 ) 2

tVN2 )fPk+l/2 [ +- U ._ 2n-l (4.e.57)(KN 1 ) k+l/2 = 2++1/2 T 2 ['k + ' ) (4.e.57)
with/RTVk+1/2 PkAZk+1/2

with
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RT n-vk',/2 R + ) 2 (qi1 + )] 2 (Tl- + T ) I (4.e.58)

nA n-1 n-1 nAZk+l=/2 =Zl + Zk , (4.e.59)

and k+1/2 is determined from (4.e.11) and (4.e.13). The Richardson number in the free
atmosphere is calculated from

29 (Zn-1 n--1
2g (Zk - Zk+l

RIk+1/2 ( an-1 I fn-1(on + ov_+4)

(4.e.60)

X tl k- "V k -k+1

nl-n- 1) 2 + (n-1 n- 1) 2 j

Within the diagnosed atmospheric boundary layer, the diffusivities are modified by the
non-local atmospheric boundary layer scheme described earlier. At the top of the model,
the fluxes are set to 0,

1n+/2 n = n+ 1/2 - /n+ - 0. (4.e.61)TA1/2 ! 1/2 1/2 - 1/2

The diffusion equations can be summarized as

Un -1 Un-1 - ak (Un 1 -Ln+- 1U n 1 - ;+1, (4.e.62)

+ 1 - { n -k = ( -+) -) -Ck ( + - u+ 1) (4.e.63)v +l - { ak = ak (v+ - + +1) -Ck (k 1 - ), (4.e.63)qk - jq Ik ka+(qn±1 qk )- k qk-1)

+--{vn n}k= v 1 (4.e.67)

{qn -} = q 1, (4.e.68)

Tn-- = Tk- 1 , (4.e.69)

and for k = K,

={ u1 n - 1} K Tk K '= (4-e. 70 )

vn1 Vn1 + ; n+1 (4.e.71)
{I }KVK .n- L K+1+/

.
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n_-l - l 2At 4+l
1

{ q- 1 }K = q + R (4.e.72)
P K+½ -+l/2

{-1 }K = OK + CP" -HK+ (4.e.73)

where
(pn-i 2

ak =- pk (P+---2t P K+/2 1 < k K K-1, (4.e.74)
a A p= c (pk+1 - p) P +1/2

aK = 0, (4.e.75)

cx = 0, (4.e.76)

ck pn-1 ( n- ) Pk- 2 /2 2 < k <K. (4.e.77)
AP n--1 (Pn--l n-l k-1 k-1/2

The left-hand side of (4.e.65) can be written in terms of T because it is represented as a

difference.

Following Richtmeyer and Morton (1967, pp. 198-201), the solutions for u,v, ,
and q have the form,

n+l = Fuk + EkUk+l, (4.e.78)

where for k = 1,

{u n - 1 }
Fu 1

l {- (4.e.79)
bl

a,
El- b, (4.e.80)

and for 2 < k < K - 1,

Ek=- a , (4.e.82)
bk - CkEk-l

Ek bk ckEk-1) (4.e.82)

and for k = K,

EK =0, (4.e.83)

{W U}K + CKFUK-1
FUK = K CKK- (4.e.84)

bK -- CKEK-1
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In the above, the diagonal coefficient is given by

bk 1 + ak + Ck. (4.e.85)

Note that, since the model actually forecasts vorticity and divergence, the new
diffused velocity fields uj + 1 and vj +1 are not explicitly carried by the model, and the
corresponding diffused vorticity and divergence are not calculated. Rather, the net effects
of the diffusion Fu. (Un+l ) and F,, (v n + l ) are saved for addition to the nonlinear terms
nu and nv in the vorticity and divergence equations (after multiplication by cos <),

n+ 1 _ n-1

Fu= 2At (4.e.86)

n+1 _ n-1

Fv = 2A (4.e.87)

The heating rate due to the diffusion is also calculated,
Tn+l T-1

FTV = 2A (4.e.88)

and added to the nonlinear term in the temperature tendency equation. The
frictional heating associated with (4.e.86) and (4.e.87) is also added to the
nonlinear term in the thermodynamic equation. The individual heating rates
FTV (Tn+l) ,-u'n-1Fu (un+l) c;, and -vn-lFvv (vn+l) /C are saved for diagnostic
purposes. The new moisture qn+l is retained as the basis for the next time-split step
in the moisture equation. The moisture tendency due to vertical diffusion is also saved for
diagnostic purposes,

F1n+l _ q n-

Fq (q n + l ) = q - (4.e.89)

f. Gravity Wave Drag

Vertically propagating gravity waves can be excited in the atmosphere where
stably stratified air flows over an irregular lower boundary. These waves are capable of
transporting significant quantities of horizontal momentum between their source regions
and regions where they are absorbed or dissipated. Previous GCM results have shown
that the large-scale momentum sinks resulting from breaking gravity waves play an
important role in determining the structure of the large-scale flow, particularly for higher
resolution truncations. The CCM2 incorporates the stationary orographic gravity wave
drag parameterization described by McFarlane (1987). We will discuss the implementation
details here, and refer the reader to McFarlane's paper for a discussion of fundamental
theoretical aspects of gravity wave drag effects.

As with all CCM2 physical parameterizations, non-resolvable-scale effects of
vertically propagating gravity waves are determined in physical space on the transform
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grid. The wave drag force in pressure coordinates is written as

9O 9V , 0
t = g p = n -(9 T ), (4.f.1)

where
aA 2pNU -

T = -cA2pNU - - -MU; (4.f.2)
HH

n is a unit vector parallel to the reference level flow VO; U is the component of the local
flow which is parallel to the reference level flow

U= V V/Vo I ; (4.f.3)

N is the local Brunt-Vaisalla frequency defined as

N (-gp 09)1/2
N ( 492P f A4 )

A(z) is the local wave amplitude; H is the local scale height; and the "tunable" parameter

a is defined as

a = Ele/2, (4.f.5)

where Ae is a representative horizontal wavenumber and E is an efficiency factor assumed

to be less than unity. The wave amplitude at the reference level is defined in terms of the

subgrid-scale orographic variance, but constrained so that the local Froude number does
not exceed some critical value denoted by F,. Thus

Ao = min {2Sd, F Uo/No} , (4.f.6)

where Sd is the standard deviation of the subgrid-scale orography associated with

horizontal space scales assumed to be most responsible for the generation of vertically

propagating gravity waves. The wave momentum flux at the surface is written as

-go = aA2pooNol/Ho. (4.f.7)

The wave momentum flux above the reference level is assumed to be constant with
height, except in regions of wave saturation. Thus at all model levels above the reference

level, the local wave amplitude is computed in terms of the wave amplitude of the layer

below, so that the wave momentum flux is constant except in saturation regions where

A = FcU/N. (4.f.8)

The wave momentum flux at some level k is then given by

[-9 T]k= + [apNU (F \) ..}[-9r]k = mim 1 -gr'T - -k-- ^. I(4.f.9)

I L v / - k
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Numerical approximations

The gravity wave drag parameterization is applied immediately after the nonlinear
vertical diffusion. The interface temperatures are first determined from

T n--1 Tn-1
n-n-1 T rk+l n--1 n+- -1

TI+l/2- T-c + l )ni n (Pk+l/21Pk ) (4.f.10)
In n-1_

PPk /

The projection of the interface winds on the reference level wind is evaluated as

Uk+1/2 = Vk + I+ n -1 l (4.f.11)-~n-- ' ( 4 ..11
In k) \ /

where
n--1 n--1

- n-1 UK + n-1 VK
V¥-k ( K(4 f.12)

K I
while the interface Brunt-Vaisalla frequencies are given by

1/2
_2 pOn-1 T n-1 (n-l T nn-1

N+l/ -9 P-k+1/ 2 -k+1
l k +/2 (4. f.13)k-fc+1/2- ~~ R-p~~~~~~~ n~~~~~~~-1 -2 n-i K T1i 4/

Nk+T/2 2 Pk+l -k k+1/2k 1/2

The top interface Brunt-Vaisalla frequency is evaluated assuming an isothermal
atmosphere above the top model layer so that

( S2 1/2

N 1/2 = Cpn-l1 ) (4./.14)

Assuming that the magnitude of the reference level wind exceeds a critical value of
2 m s-l, and that the subgrid-scale standard deviation exceeds a critical value of 5 m,
the surface momentum flux is given by

K+ = 2HKeKNK-1/2 V 1 , (4 f15)

where

he = min (2Sd, FCUK-1/2/NK-1/2) , (4.f.16)

Sd is the subgrid-scale orographic standard deviation, Fc is the critical Froude number
taken as ½, and H is the local scale height. The remaining momentum fluxes are computed
from the lowest level upwards using

=m ELF Umin -+/ }l (4.f.17)
7' k+1/2 ^g+3/2 2HkNk+l/ 2

with the exception of the top interface level, where the momentum flux is calculated
assuming the top interface is located an equal increment in lnp above the two interfaces
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immediately below, and that all variables are constant above the uppermost integer level

{/2 EmFg3 ,2H P1/2 f (4.f.18)

The momentum tendencies (stress divergence) are then evaluated as

\- Vk 1 /2 Pk-1/2
(9+ _-vr f L ^ -^-l(4.f.19)

1 k - IVn: 7 1 -n- 1 } 4----

-t
k IV I { k+l1/2 - k-1/20

The magnitude of the vector momentum tendency is evaluated as

(9' au\ / + --V (4..21)

and limited to a maximum of 250 m s-1 day-1 (denoted by (DV/t)max) so that (4.f.19)
and (4.f.20) become

(Dv) (Dv\ min (9V) (DV\ \I (9V)

-At l (t m at a t atj (4.f.22)

and

The m agnitude of the vector momentum tendency is evaluated as

thet rmodnt mi atu at a

The componento momentum 2 m ten s - day -e (deneed o the nnlineart) therms n and n

in the vorticity and divergence equations (along with the previously saved tendencies in
(4.e.86) and (4.e.87))

Fu t cos/ ¢ Fu + ( at (4.f.24)

and

Fv = cos (Fv. + (/ (4.f.25)

The frictional heating associated with the momentum tendencies in (4.f.22) and
(4..23),The componen t momentum tendencie is also added to the non-linear term in the

thermodynamic equation.

g. Rayleigh Friction

For stratospheric applications of the CCM2, a Raleigh friction term has been

included in the zonal momentum equation to provide a crude parameterization of the

effect of breaking gravity waves in the mesosphere and to prevent reflection of waves from
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the top boundary. This term is implemented in the form

av
= -KRV (4.g.1)at

The friction coefficient is determined from

KR= 1 + tanh 75 x 103 )days , (4.g.2)

where

z =-hn (A + B), (4.9.3)

and h = 7 x 103 m. This term, which is not intended to be a faithful representation of

mesospheric dynamics is inactive in the standard model configuration.

4.2 Adjustment Physics

After the new temperatures and mixing ratios are computed from (2.c.1) and

(2.c.4), a series of convective adjustment schemes is applied to create mutually adjusted
T and q fields. If the predicted atmosphere is not saturated and the lapse rate exceeds
the dry adiabatic lapse rate, the temperatures are reset to give a dry adiabatic lapse rate,
but only in the "stratospheric" region (i.e., top three levels in the standard configuration)
of the model. The moisture field is assumed to be mixed by this process as well and
is reset to the average value. The stability-dependent vertical diffusion provides for dry
turbulent vertical mixing in the troposphere. Thus, in practice, momentum is mixed as
well as heat and moisture. If the atmosphere is moist adiabatically unstable, the moisture
and temperature fields are simultaneously modified in accordance with a simple model of
moist convection. If the atmosphere is stable but supersaturated, the moisture field is
adjusted to be saturated and the temperature field is simultaneously adjusted to reflect
the heating due to the release of latent heat. When the moisture field is changed to
eliminate supersaturation, the change is assumed to go into precipitation. The details of
these processes are presented in the following sections, where we use the notation (T, q)
to denote values before the adjustment, and (T, q) after the adjustment.

h. Moist Convection

The large-scale budget equations for dry static energy and total water can be
written as

-at- s (s + LR + CpQR
=t ap ap

A- t |R.S -- ('s t)+ LR (4.h.1)
t R..and p W +L

and
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at -Vp ap

at R.S .p ((' + )) , (4.h.2)

where s _ CpT + gz is the dry static energy; £ represents liquid water; s s - Ue is
the static energy analogue of the liquid water potential temperature introduced by Betts
(1975); R is the "convective-scale" liquid water sink (sometimes denoted by C - E);
and QR is the net radiative heating rate. The subscript R.S. denotes the resolvable-
scale contributions to the large-scale budget. Note that variations of the mean liquid
water on the large scale have been neglected. It is generally agreed that the remaining
terms in (4.h.1) and (4.h.2) are the major convective-scale contributors to the large-scale
thermodynamic budget (i.e., horizontal eddy flux transports can be neglected). The
barred quantities represent horizontal averages over an area large enough to contain a
collection of cloud elements, but small enough so as to cover only a fraction of a large-
scale disturbance. By writing the mean thermodynamic variables in terms of their average
cloud and environment properties, and assuming that the convection occupies only a small
fraction of the averaging area, we can approximate the vertical eddy transports w's7 and
w' (q' + i') by the difference between the upward flux inside a typical convective element
and the downward flux (i.e., induced subsidence) in the environment (cf. Yanai et al.,
1973). Mathematically, this approximation takes the form

Fse (p) = ) -Mc (p) ( (p) - s (p) + Le (p)) (4.h.3)

and

Fq+ (p) = -9 (w (q' + ')) -M, (p) ( (p) - qc (p) - (p)), (4.h.4)

where Mc is a convective mass flux, and sc, qc, and t represent cloud-scale properties.
Thus, (4.h.1) and (4.h.2) can be written as

9As As a
- Rt S+g -FI + LR, (4.h.5)at at R.s. S

and

At- = R .+ S. q+ - . (4.h.6)at Ot R.S. ad

Let us now turn our attention to a vertically discrete model atmosphere and
consider the case where layers k and k + 1 are moist adiabatically unstable, i.e., a non-
entraining parcel of air at level k + 1 (with moist static energy h,) would be unstable if
raised to level k. We assume the existence of a non-entraining convective element with
roots in level k +1, condensation and rainout processes in level k, and limited detrainment
in level k - 1 (see Figure 3). In accordance with (4.h.5) and (4.h.6), the discrete dry static
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energy and specific humidity budget equations for these three layers can be written as

= Sk+ 2Atg _Sk-1 = Sk- 1 + i {mc(Sc-k-_-~k)} , (4.h.7)

At i --

2Atg m~ (k+½ -

Sk+1 = S+ ) } , (4. h.9)

2 Atg r - //m(q-_}
q} k-1 qk-1 + AP {mc (qc k-)} (4.h.10)

qk = qk + { ) -M (q/mc - ) -R} , (4.h.11)

2Atg {m~ qk+½
qk+l = qk+ + +L { m -q ) } (4.h.12)

where the subscript c denotes cloud properties in the ascent region, mc is a convective mass
flux at the bottom of the condensation layer (level k + 1, "cloud base"), and 3 is a yet to
be determined "overshoot parameter" at level k - - that will take a value between zero
and one. Note that the convective-scale liquid water sink R has been redefined in terms
of mass per unit area per unit time (denoted by R), and the resolvable-scale components
have been dropped for the convenience of the following discussion. In the general case,
the thermodynamic properties of the updraft region can be assumed to be equal to their
large-scale values in the sub-cloud layer, level k + 1, plus some arbitrary thermodynamic
perturbation; i.e.,

c = k+1 + s', (4.h.13)

qc = qk+l + q', (4.h.14)

and

hc = sc + Lqc. (4.h.15)

The perturbation quantities q' and s' are in practice provided by the Atmospheric
Boundary Layer (ABL) scheme as discussed earlier.

The liquid water generation rate at level k is given by

mcek = m [q - (qc)k] (4.h.16)

Using the saturation relation

(c) = + 1 ( hc - ) (4.h.17)

where #* denotes the saturated specific humidity

q = - -(1--- -)e (4.h.18)
p- (1 - e)e,
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h* denotes the saturated moist state energy, es is the saturation vapor pressure
(determined from a precomputed table), and 7 = (L/cp) (0q*/OT)p, and assuming that
the large-scale liquid water divergence in layer k is zero, (4.h.16) can be manipulated to
give the rainout term in layer k as

LRk = L(1 - P)mk = (1 -/)mc {k - Sc + (h-- h

and the liquid water flux into layer k - 1 as

3mctk = Imc {k - Sc + 1 + (hc -h
I ~~1 +r '7»: v

( t P$ ,h/

4

(4.h.19)

(4.h.20)

-- -k-I
q h4

A 4

77hc f%7 h

I

k

- --- - - - - k+l

Figure 3. Conceptual three-level non-entraining cloud model

Equations (4.h.9) and (4.h.12) can be combined to give an equation for moist static energy
in layer k + 1

Oha t+1 M, C (hk+ 1- h ahc el.., I(4.h.21)t APk+l 2 at h
where the approximation follows from the assumption that Oh'/Ot can be neglected. Using

the relation (1 + 7yk) = a", (4.h.8) can be manipulated to give an expression for theat --t'

88

I_ I ____ _ _

- -- - - --



time rate of change of saturated moist static energy in layer k

Oh m _ _
'at (1 + k ) SC-Sk+) (- gm±LSCe- k- (4.h.22)

Ot =L 2 2

Subtracting (4.h.22) from (4.h.21) results in

9(hc-t M g p +(--- -- '- -* )
At = A~pfk+1 V(k+2 hc) (4.h.23)

_- (1 + 7 )[( Sk-Sk+)- -( S c- Sk-)] }
from which the convective mass flux m, can be written as

h -hk
me = 4.h.24)

= { Sc[( - Sk + Lk) - (SC - - )] + [k+- ]Apk 2c2 Apk + 2

where r is a characteristic convective adjustment time scale.

Physically realistic solutions require that the convective mass flux mc be positive,
implying the following constraint on the overshoot parameter 3

P (1+k) (s Sk- ) < (1+ ) (s -- Sk+ +Lr) - Ap (hk+ -hc) . (4.h.25)

A second physical constraint is that the adjustment process must not supersaturate

the "detrainment layer", k - 1. Using the relation (1 + 7yk-) s
a 1 = at

1, (4.h.7) can

be written as

at-1 = mc3 1 { (1 + )(Sc-k_ - Lk)Y} . (4.h.26)"^'"A~r^^kf+S-1 2

Equations (4.h.7) and (4.h.10) can also be combined to give

ht-l = A mc {h - hk-2 - Lk} . (4.h.27)at ANP-1

Equations (4.h.26) and (4.h.27) may also be written in discrete form, respectively, as

hk-1 = k-(1 + r -2) (1c - Sk - Lek)} , (4.h.28)
k N-1 2

and

hk-1 = hk- + - mC2At/ {hi h -2 Le>} (4.h.29)

Subtracting we have

_ k-1 - hk- 1 Ap_-1
- gmh2t >/ h, -hk) _ - s, + Sk_ + ,_- S_ 1 - SC + L) }. (4.h.30)gS k2k S

89



Substituting for m, from (4.h.24), (4.h.30) can be further manipulated to give the
following constraint on the overshoot parameter, 3:

Ap[ (1 + 7k SC- + + )]-- r hk+ -c]>

{ ( t) (A 1 - ) [7 >- {Sk - sc + t } (4.h.31)

2-
+ hC - SCh + k-1 + aPk (1 +7) (Sc--Sk_) }o

Finally, in order to minimize the introduction of 2Aq computational structures in the
thermodynamic field, we enforce one final constraint on the overshoot parameter P which
does not allow the procedure to increase the vertical gradient of h when Sa < 0 in the
upper pair of layers. Mathematically this constraint is formulated by discretizing in time
the moist static energy equations in layers k and k - 1 which can be written as

hk - hk-1 =hk - hk-1 + gmc2At a p[ - hk+] - [h -h - k

(4.h.32)

Apk + Ak-1)

We enforce the condition that hk - hk-l > G, where G is an arbitrary gradient, which
gives rise to the relation

hk - hk i 1 1

(h- hk) 2t ) \Ph [(L1 + y)(Sc- S+ + L)] - P 1 hk+-h

+ Ap [hc-hk+

> t1 hk hk-- G (G (1+) ( ) (S k-sh - h (SAt AN

+ (h -hk_ -L)k (pk + Ap+1 ) }
(4.h.33)
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The first guess for the overshoot parameter, /3, comes from a crude buoyancy argument
where

Pmin

/3=max max (4.h.34)

min { 1 + (hc-H)App,,min . (h- _ *)1 Apk_

and /3in is assumed to be 0.10 (i.e., 10% overshoot). Since /3 effectively determines the
actual autoconversion from cloud water to rainwater, P/max is determined from a minimum
autoconversion requirement which is mathematically written as

pmin

Pmax = max (4.h.35)
1 - co (S - SZmin),

where co is a constant autoconversion coefficient assumed to be equal to 1.0x 10 - 4 m - 1,
8z is the depth of contiguous convective activity (i.e., layers in which condensation and
rainout takes place) including and below layer k, and 6Zmin is a minimum depth for
precipitating convection. The physical constraints on the adjustment process are then
applied to determine the actual value of /3 appropriate to the stabilization of levels k and
k + 1.

In summary, the adjustment procedure is applied as follows. A first guess at
/ is determined from (4.h.34) and (4.h.35), and further refined using (4.h.25), (4.h.31),
and (4.h.33). The convective mass flux, m~, is then determined from (4.h.23), followed
by application of budget equations (4.h.7) - (4.h.12) to complete the thermodynamic
adjustment in layers k-1 through k+1. By repeated application of this procedure from the
bottom of the model to the top (see Figure 4), the thermodynamic structure is stabilized,
and a vertical profile of the total cloud mass flux, Mc (where Mc+ = mC+ + / mC )
can be constructed. This mass flux profile can also be used to estimate the convective-scale
transport of arbitrary passive scalars. The total convective precipitation rate is obtained
by vertically integrating the convective-scale liquid water sink

K

P =- ZRk. (4.h.36)
PH2

The free parameters for the scheme consist of a minimum convective overshoot, /min, a
characteristic adjustment time scale for the convection, T, a cloud-water to rain-water
autoconversion coefficient co, and a minimum depth for precipitating convection Zmin.
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Figure 4. Successive application of cloud model

i. Stable Condensation

If the lapse rate is stable, but the moisture is supersaturated at a point, i.e., if

> 1.0 , (4.i.1)
q k

the temperature and moisture are adjusted simultaneously so that the point is just
saturated. The new specific humidity is given by

=[q dT (+Tk -T)] (4.i.2)
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where q* is given by (4.h.18). The temperature change due to the release of latent heat
during condensation is

(Tk-Tk) -(qk -k) (4.i.3)

Substitution of (4.i.3) into (4.i.2) gives the adjusted specific humidity,

qk = qk-(-qk - q)/ (i+ d+). (4.i.4)
Cp dT

Equations (4.i.4) and (4.i.3) are iterated twice. The corresponding stable precipitation
rate at level k is given by

R, = (~k - qk) Apk/ (2Atg). (4.i.5)

The stable precipitation rate over the entire column is given by
K

Ps= RSk/pH 2o. (4.i.6)
k=1

j. Dry Adiabatic Adjustment

If a layer is unstable with respect to the dry adiabatic lapse rate, dry adiabatic
adjustment is performed. The layer is stable if

aT nCT
< - (4.j.1)op P

In finite-difference form, this becomes

Tk+1 -Tk < Clk+1 (Tk+1 + Tk) + 6, (4.j.2)

where

K(Pk+ - Pk)
C1k+ = (4.j.3)

2pk+1/2

If there are any unstable layers in a column, the temperature is adjusted so that
(4.j.2) is satisfied everywhere in the column. The variable 6 represents a convergence
criterion. The adjustment is done so that sensible heat is conserved,

Cp(TkAPk + Tk+l APk+ ) = Cp(TkApk + Tk+lAPk+l), (4.j.4)

and so that the layer has neutral stability:

Tk+l -Tk = Clk+l(Tk+l + Tk) (4.j.5)

As mentioned above, the hats denote the variables after adjustment. Thus, the adjusted
temperatures are given by

Apk APk+l
Tk+l = APk+l + ApkC2 Tk + A +Tk+l (4j6)

kl APk+l + /PLkC 2k+1 Apk+1 + APkC 2 k+1
and

Tk = C2k+lTk+l, (4.j.7)
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where
1 - Clk+l

C2*k+ = (4.j.8)
1 + C1k+1

Whenever the two layers undergo dry adjustment, the moisture is assumed to be
completely mixed by the process as well. Thus, the specific humidity is changed in the
two layers in a conserving manner to be the average value of the original values,

qk+l = qk = (qk+lApk+l + qk^Pk)/(APk+l + APk). (4.j.9)

The layers are adjusted iteratively. Initially, 6 = 0.01 in the stability check (4.j.2). The
column is passed through from k = 1 to a user-specifiable lower level (set to 3 in the
standard model configuration) up to 15 times; each time unstable layers are adjusted until
the entire column is stable. If convergence is not reached by the 15th pass, the convergence
criterion is doubled, a message is printed, and the entire process is repeated. If 6 exceeds
0.1 and the column is still not stable, the model stops.

As indicated above, the dry convective adjustment is only applied to the top three
levels of the standard model. The vertical diffusion provides the stabilizing vertical mixing
at other levels. Thus, in practice, momentum is mixed as well as moisture and potential
temperature in the unstable case.
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5. INITIAL AND BOUNDARY DATA

a. Initial Data

The previous section describes the central time loop of the model. In this section,
we describe how the loop is started from data consistent with the spectral truncation.
The basic initial data for the model consist of values of u,v,T,q,II, and I, on the
Gaussian grid at time t = 0. From these, U,V,T', and II are computed on the grid
using (3.a.11), and (3.a.49). The Fourier coefficients of these variables U m, Vy, T'1 ,IIm,
and 4s are determined via an FFT subroutine (3.b.23), and the spherical harmonic
coefficients T' m ,IIm , and (@()m are determined by Gaussian quadrature (3.b.24). The
relative vorticity C and divergence 6 spherical harmonic coefficients are determined directly
from the Fourier coefficients U m and V m using the relations,

1 9V 1 au
C a(1 - 2)9 a ' (5.a.1)

1 OU 1 V
6 a(1 - -2)j + -- (5.a.2)o(l - t 2 ) 9\ a 0it

The relative vorticity and divergence coefficients are obtained by Gaussian quadrature
directly, using (3.b.27) for the A-derivative terms and (3.b.30) for the /L-derivatives.

Once the spectral coefficients of the prognostic variables are available, the grid-
point values of C, 6, T', H, and As may be calculated from (3.b.47), the gradient VII from
(3.b.50) and (3.b.51), and U and V from (3.b.56) and (3.b.57). The absolute vorticity yr
is determined from the relative vorticity C by adding the appropriate associated Legendre
function for f (3.b.4). This process gives grid-point fields for all variables, including
the surface geopotential, that are consistent with the spectral truncation even if the
original grid-point data were not. These grid-point values are then convectively adjusted
(including the mass and negative moisture corrections).

The first time step of the model is forward semi-implicit rather than centered semi-
implicit, so only variables at t = 0 are needed. The model performs this forward step by
setting the variables at time t = -At equal to those at t = 0 and by temporarily dividing
2At by 2 for this time step only. This is done so that formally the code and the centered
prognostic equations of section 4 also describe this first forward step and no additional
code is needed for this special step. The model loops through as indicated sequentially in
section 4. The time step 2At is set to its original value before beginning the second time
step.

b. Boundary Data

In addition to the initial grid-point values described in the previous section, the
model also requires lower boundary conditions. The required data are surface temperature
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(T8) at each ocean point, the surface geopotential at each point, and a flag at each point

to indicate whether the point is land, ocean, or sea ice. A surface temperature and three

subsurface temperatures must also be provided at non-ocean points.

The sea-surface temperatures, sea-ice locations, and snow cover are changed to

reflect the seasonal changes. The sea-surface temperatures and sea-ice distributions are

specified from the monthly mean analyses of Shea et al., (1990). The mean monthly
sea-surface temperature and sea ice distribution are assigned the mid-month date and
updated every time step at each grid point using linear interpolation.

The radiation parameterization requires monthly mean ozone volume mixing ratios

to be specified as a function of the latitude grid, 23 vertical pressure levels, and time.

The ozone path lengths are evaluated from the mixing-ratio data. The path lengths are

interpolated to the model a-layer interfaces for use in the radiation calculation. As with

the sea-surface temperatures, the seasonal version assigns the monthly averages to the

mid-month date and updates them every 12 hours via linear interpolation. The actual
mixing ratios used in the standard version were derived by Chervin (1986) from analyses
of Diitsch (1978).

The radiation parameterization also requires that surface albedo be specified on

the model grid for land points. The land albedos are constants (independent of time or
moisture conditions); land albedos for snow-covered points are weighted values of snow

albedos and the constant land albedos depending on snow depth and local roughness

length. The surface albedo data are composed of five quantities-the fraction of strong

zenith-angle dependence and four surface albedos (two zenith angles and two spectral

range groups). The original source of these data is the Matthews (1983) 1°xl° global

32-type vegetation data set, which was reduced to ten vegetation types. Narrow-band

(0.2-0.5 pum, 0.5-0.7 /m, 0.7-0.85 /tm, and 0.85-4.0 /Lm) spectral albedos (for diffuse
incident radiation) were ascribed to each of these ten types (Briegleb, 1992). The ten
surface types were segregated into two groups, based on solar zenith-angle dependence
(strong or weak) and averaged to the spectral intervals (0.2-0.7 pum, 0.7-4.0 /Lm). The
1° x 10 data set was then averaged to the required horizontal resolution of the CCM2.

Roughness length and potential evaporation factor were determined in an analogous
fashion from Mathews (1983) 1° x 1° data (see Section 4c) and Table 1. The sub-grid
scale standard deviation of surface orography was specified in the following manner. The
variance is first evaluated from the global Navy 10' topographic height data over 2° x 2°

grid for T42 and lower resolutions, 1.67° x 1.67° for T63, and 1.0° x 1.0° for T106 resolution,
and is assumed to be isotropic. Once computed on the appropriate grid, the standard
deviations are binned to the CCM2 Gaussian grid (i.e., all values whose latitude and
longitude centers fall within each Gaussian grid box are averaged together). Finally, the
standard deviation is smoothed twice with a 1-2-1 spatial filter. Values over ocean are
set to zero.
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6. STATISTICS CALCULATIONS

At specified times during a model run, selected global average statistics are
computed for diagnostic purposes. Let f3 denote a global and vertical average and 2

a horizontal global average. For an arbitrary variable V, these are defined by

(6.a.1)EE- ?ijkwj (APk) /2I
k=1 j=l i=1

and

XbdA=
«2

J I

l E /ijk-wj/2I,
j=1 i=l

(6.a.2)

where recall that

The quantities monitored are:

(6.a.3)

J

wj = 2.
j=l

global rms (( + f)(s- 1) = [(( + f)2dV]

global rms S(s- 1) = (6n)2 dV]

global rms T (K) = [(Tr + T')2dV]

global average mass times g (Pa) = rndA,

global average mass of moisture (kg m - 2 ) = / 7r qn /gdV.

97

(6.a.4)

(6.a.5)

(6.a.6)

(6.a.7)

(6.a.8)

,OdV=



APPENDIX A-Terms in Equations

The terms of (3.b.18) are

V (l _+ f)n-1 (AI)V=_f_~ (Al)

V= -2Atnn , (A2)

VL = 2Art n. (A3)

The terms of (3.b.19) are

D = n-1, (A4)

D = 2Atnn, (A5)

D,= 2At nn, (A6)

Dv = 2At [En + $sl + RHrT'n]

+ At [RH ((r ) -2(T' )) + R(b + hr) (n"-1 2n)] (A7)

The terms of (3.b.20) are

z= (T')n- + 2At rn - AtD r [n-1 - 2 n] , (A8)

TA =2At(UT')n, (A9)

T =2At(VT') . (A10)

The nonlinear term in (3.b.21) is

PS = in- 1 2Atn1 [(An)T (Ap"n) + (Vn)T VIn7rn AB]

(All)

- At [(A r )T ] [6_n- 26] .

The spectral transformation of the terms in the vorticity equation (3.b.33) is given
by

VS [V P(m(T) + lm ( (t (j . (A12)
sm-j=l m_ pm ) + m - V(J l '- ) + a l - yj)
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The spectral transformation of the explicit terms in the divergence equation (3.b.34)
is

DS M =
j=l

[oD(Lj) n(n+ 1) D() )--)+ a2 _v(,j) P(u)

(A13)

+ imDm(,Lj) Pn(1 Ij)

The spectral transformation of the explicit term of the thermodynamic equation
(3.b.35) is

[mpm(lm ____j j H m (1j)
TS =Zn T ( )Pm(lj)pm(j) -mAx ( a(l) PL ( ) _ a(_ -_ _) wj.

[__T-/
(A14)

The spectral transformation of the explicit terms of the surface pressure tendency
equation (3.b.36) is

J

PSn= S PSm(lj)Pm (/lj)wj.
j=l

(A15)
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APPENDIX B-Physical Constants

Following the American Meteorological Society convention, the model uses
the International System of Units (SI) (see August 1974 Bulletin of the American
Meteorological Society, Vol. 55, No. 8, pp. 926-930).

a = 6.37122 x 106 m Radius of earth

g = 9.80616 m s - 2 Acceleration due to gravity

Q = 7.292 x 10 - 5 s-1 Earth's angular velocity

CB = 5.67 x 10-8 W m - 2 K - 4 Stefan-Boltzmann constant

R = 287.04 J kg-1 K - 1 Gas constant for dry air

cp = 1.00464 x 103J kg- 1 K - 1 Specific heat capacity of dry air

R/Cp

.622

= 2.5104 x 106 J kg- 1

3.336 x 105 J kg- 1

4.61 x 102 J kg- 1 K- 1

= 1.0 x 103 kg m- 3

1.81 x 103 J kg- 1 K- 1

at constant pressure

Ratio of molecular weight of
water vapor to that of dry air

Latent heat of vaporization

Latent heat of fusion

Gas constant for water vapor

Density of liquid water

Specific heat capacity of water
vapor at constant pressure

Melting point of ice

The model code defines these constants to the stated accuracy. We do not mean to

imply that these constants are known to this accuracy nor that the low-order digits are

significant to the physical approximations employed.
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