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PREFACE
In response to a growing need for more informative forecast verification in the
face of gridded verification sets, many new methods have been proposed. While
widely varying in their approaches, the new methods generally fall into two ma-
jor categories of filter and displacement, each of which can be further subdivided.
One of the displacement approaches, a field deformation approach known as image
warping, will be demonstrated here. Results for spatial verification of the spatial
forecast verification Inter-Comparison Project test cases are shown. An initial look
at space-time verification using the image warp is also discussed, with an applic-
ation to NCAR and NCEP 4-km WRF models cases from the 2005 NSSL/SPC
Spring Program. The approach is found to be very useful for obtaining guidance
about forecast performance. Both diagnostic and summary score information can
be gleaned. Initial findings for the space-time approach show that while the NCEP
model has better initial scores, the NCAR models require drastically less deform-
ation to achieve a much higher reduction in error. This is most likely a result of
the NCEP model’s highly over forecasting low-intensity precipitation spatially.
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1 Introduction
Spatial forecast verification has received a lot of attention in the last decade largely
because of the advent of higher resolution models, which present difficulties for
traditional grid-point to grid-point verification (see e.g., Mass et al., 2002). While
high-resolution forecast models may provide forecasts for a particular variable, it
may be difficult to find good observational data with which to make comparisons
that are not generated by the same model (e.g., at shorter lead times). Data
assimilation is one way to avoid both problems, but it is often of interest to make
comparisons with gridded observations. Here, it is assumed that the verification
set, which contains two fields: an observed field and a forecast field, is gridded
with both fields on the same grid.

Gilleland et al. (2009) categorized the various new methods into one of four
categories, whereby some methods fit only loosely: (i) features-based, (ii) field de-
formation, (iii) neighborhood, and (iv) scale separation. The first two can be con-
sidered as displacement methods, and the latter two as filter methods. Examples
of features-based methods include Ebert and McBride (2000); Nachamkin (2004,
2009); Davis et al. (2006a,b, 2009); Grams et al. (2006); Marzban and Sandgathe
(2006a,b); Wernli et al. (2008, 2009); Ebert and Gallus (2009), where the methods
of Nachamkin (2004, 2009) and Marzban and Sandgathe (2006a,b) fit less well
into the category. Examples of neighborhood approaches are numerous, but Ebert
(2008) provides a thorough review. Fourier decomposition is a scale separation
method that has long been applied, but other examples include wavelet decomposi-
tion (e.g., Briggs and Levine, 1997; Casati et al., 2004; Casati, 2009), and structure
function type approaches, which fit less well (e.g., Harris et al., 2001; Marzban and
Sandgathe, 2009). Field deformation approaches are among the earliest methods
to be proposed (e.g., Hoffman et al., 1995; Alexander et al., 1999; Nehrkorn et al.,
2003), but new attention has been given to them recently (e.g., Keil and Craig,
2007, 2009; Gilleland et al., 2010b). Most of these methods have been analyzed for
quantitative precipitation fields (QPFs) as part of the spatial forecast verification
inter-comparison project (ICP, http://www.ral.ucar.edu/projects/icp).

Field deformation methods are techniques applied to an entire field that at-
tempt to quantify location errors including spatial pattern errors. The simplest
techniques are mathematically defined image metrics (e.g., Venugopal et al., 2005;
Gilleland et al., 2008), which simply give a summary statistic describing the close-
ness of the spatial patterns. More ambitious field deformation approaches attempt
to morph the forecast field (and/or the observed field) to better match its counter-
part. There are vastly many ways to deform a field. Image warping is of interest
here because of its statistical elegance relative to other such methods.

There are many references pertinent to image warping and spatial statistics,
but the reader is directed to Åberg et al. (2005) and Gilleland et al. (2010b) as



they correspond most closely with the techniques described herein, and further
references can be found in these articles.

There are numerous possible extensions to the image warping described in
this document that could prove very useful to forecast verification. For example,
inclusion of covariate information might yield more meaningful results (e.g., if
topography could be included to allow for more physically meaningful warps).
Adding a vertical dimension could also be useful if information for different vertical
layers are available. This could, for example, answer the question of how well a
forecast is predicting activity at the correct pressure levels.

2 The Image Warp
The basic idea of using image warping for forecast verification is simple. Deform
the forecast field spatially so that the intensities align better with the observed
intensities. Information about how much deformation is needed, and how much
reduction in error as determined by traditional grid-point to grid-point verification
(e.g., rmse) can be used to analyze forecast performance.

2.1 The Model

When using the image warp for forecast verification purposes, the model is

O(x, y) = F (x′, y′) + ε(x, y), (1)

where O is the observed field, F the forecast field, ε are intensity errors, and
x and y are coordinates. Note that the model is assuming that the observed
field at any given coordinate (x, y) is approximately equal to the forecast field
at possibly different coordinates (x′, y′). Image warping is essentially a smooth
mapping between two image planes, in this case an observed and forecast field, that
maps every point in one field to a point in the other. To deform an image, every
point (x′, y′) in the deformed image is assigned the intensity of the undeformed
image in the point with coordinates given by (Wx(x, y),Wy(x, y)), where W is a
mapping of points (x, y) from O to F . It is useful to write the image warping
function, W , as a vector, W (x, y) = (Wx(x, y),Wy(x, y))

T .
Subsequently, the model (1) can be formulated as

Ô(x, y) = F̃ (x, y) = F (Wx(x, y),Wy(x, y))
= F (W (x, y)), for all (x, y) ∈ D, (2)

where D is the support of the field (i.e., the grid domain). Note that the mapping,
W , is from coordinates in the estimate of the observed field (i.e., the deformed
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forecast field, F̃ ) to coordinates in the forecast field. In order to obtain the de-
formed forecast field each grid point (x, y) in F̃ is found by identifying the relevant
grid point value W (x, y) in F . A couple of issues arise because some grid points
might come from outside the domain of F , or they might not coincide with the
middle of the grid point exactly. Section 3 discusses possible ways to handle these
issues.

2.2 The Likelihood

The deformation induced through image warping is entirely determined by the
grid point mapping W . For the thin-plate spline warp (see Section 2.3) used
here, the function W depends only on how a fixed set of points are mapped.
Therefore, we fix m points pO = {pO1 , . . . ,pOm} in the observed field. Here, we
will refer to these points as control points; other names have been used such as
tie points, landmarks, etc. In early papers applying image warping to forecast
verification, attempts were made to identify features within the fields in order to
determine where these points should be located. However, this is not necessary to
obtain meaningful deformations. For example, Gilleland et al. (2010b) show that
informative deformations are obtained using a regular grid of control points, which
is the approach used here.

Next, define pF = {(W (pO1 ), . . . , (W (pOm))} = W (pO), as the maps of the
observed control points in the forecast field, called the forecast control points. The
deformed field, say F̃ , is given by F̃ (s) = F (W (s)). To measure the dissimilarity
between F̃ and O, an error log-likelihood for O − F̃ is introduced.

log p(O|F,pF ,pO,θ) = f(O, F̃ ;θ). (3)

The image warp procedure can be thought of as taking the forecast grid as
though it were a piece of paper, shift it about (e.g., translate it up or down, rotate
it, crinkle it up, etc.). If left alone, optimization of the log-likelihood in (3) may
well lead to non-physical warps (e.g., imagine folding the paper over on itself)
that would be difficult to interpret for forecast verification purposes. Therefore,
standard practice is to introduce a prior df in order to penalize such non-physical
warps. Because the warp is entirely determined by the movements of the control
points, this amounts to a prior on the control points, but because the observed
control points are fixed a priori, this reduces further to p(pF |pO,θ). Allowing for
a prior df on the parameters θ of the assumed df for the errors (i.e., p(θ)), the
posterior log-likelihood becomes

`(pF ,θ) = log p(O|F,pF ,pO,θ) + log p(pF |pO,θ) + log p(θ) + constant, (4)

The exact form of the log-likelihood in (4) is determined by the verification
sets being applied. For the procedures described here, the penalties are chosen
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and fixed so that the prior on the warp function reduces to log p(pF |pO). A
relatively simple, and generally valid, approach is described in section 2.4.

2.3 The Warp Function

There are numerous functions that can be used for image warping (e.g., polynomial,
Procrustes, B-spline, thin-plate splines, etc.,). The thin-plate spline (TPS) is a
good choice generally, and is described well in Åberg et al. (2005). Glasbey and
Mardia (1998) give a thorough review of this and other image warping functions
as well.

Note that the warp function chosen comes into play in determining the closeness
of intensities between the observed field and the deformed forecast field through
optimization of (4).

A TPS is a generalization of a cubic smoothing spline. It is a function, say f ,
that minimizes a two-dimensional Laplaceian penalty, or bending energy, given by

J (f) =
∫ ∫ {(

∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
}
dxdy. (5)

The solution to (5) has the form of a linear combination of radial basis func-
tions. In the context of the warping function, this is applied to both the x- and y-
coordinates. Specifically,

Wx(x, y) = a0 + a1x+ a2y +
m∑
i=1

dxiU(‖pOi − (x, y)‖),

where U(r) = r2 log r,
∑m

i=1 dxi =
∑m

i=1 dxixi =
∑m

i=1 dxiyi = 0. Here, the differ-
ences between (x, y) and them control points are shown to emphasize that the TPS
is fit only to the control points (but can be applied to every point in the domain
to obtain F̃ ). The function W consists of an affine part (rigid transformations)
and a nonlinear part (the radial basis functions, U). It is possible to report these
types of errors separately, which may be of interest as, for example, east-west
displacements are summarized by ax and north-south displacements by ay, and
combinations of these displacements can inform about scaling and rotation errors.
While more difficult to interpret, the nonlinear part can give information about
more intricate displacements. In this case, the amount of nonlinear displacement
is a useful summary.

The above equation, with the various constraints can be more readily inter-
preted as a linear system of equations. Specifically,[

K P
P T 0

] [
dx dy
ax ay

]
=

[
pFx pFy
0 0

]
,
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where [K]ij = U(‖pOi −pOj ‖), the i-th row of P is (1, xi, yi), ax = (a0, a1, a2)
T the

affine coefficients for the x- coordinate (similar for ay), and dx = (dx1, . . . , dxm)
T

(similar for dy). Letting L denote the left most matrix on the left-hand side of
the above equation, the minimum bending energy from Eq (5) is given by

J (W ) = J (Wx) + J (Wy) = p
T
xL
−1
m px + p

T
y L
−1
m py, (6)

where L−1
m is the upper left m×m subblock of L−1.

The extension of the TPS concept to three dimensions is known as a triharmonic
spline, and the energy functional needing to be optimized is given by∫ ∫ ∫ {(

∂2f
∂x2

)2

+
(
∂2f
∂y2

)2

+
(
∂2f
∂t2

)2

+2
(
∂2f
∂x∂y

)2

+ 2
(
∂2f
∂x∂t

)2

+ 2
(
∂2f
∂y∂t

)2
}
dxdydt.

Now, the warping function becomes

W (s, t) = f(s, t) +
n∑
i=1

diV (‖pOi − (s, t)‖),

where V (r) = r3, f(s, t) is a polynomial of degree at most 2 (here we use degree
one), and

∑
i di =

∑
i dixi =

∑
i diyi =

∑
i diti = 0. This leads to the linear

system of equations[
K P
P T 0

] [
dx dy dt
ax ay at

]
=

[
pFx pFy pFt
0 0 0

]
,

where [K]ij = V (‖pOi − pOj ‖), and the rest as before except with the added time
dimension.

2.4 Specific Models

As mentioned earlier, the normal assumption for the error likelihood (4) is generally
reasonable. However, special considerations are required for precipitation fields.
One way of how this can be handled is given at the end of the section.

For many fields, it is reasonable to assume that the errors are normally distrib-
uted. That is, [O|F,pF ,pO] ∼ N(F̃ , σ2

ε). For the prior df for the forecast control
points given the observed ones, it is also common to assume a normal df. For
example, following Åberg et al. (2005)

[pOi − pFi |pOj − pFj , j 6= i, F ] = [pOi − pFi |pOj − pFj , j 6= i]

∼ N

(∑
j 6=i
cij(p

O − pF ), σ2
∆I

)
(7)
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where I is a 2×2 identity matrix, indicating that the two coordinates are assumed
to be independent, cij are scalars that specify the degree of dependence between
control points i and j with cij 6= 0 if and only if grid points i and j are neighbors.
Note that it is assumed here that the displacement of the control points are con-
ditionally independent of the forecast field. If one has additional knowledge about
how control points should move based on only one image (e.g., using topography
as a covariate), then it is not necessary to assume such independence; but it is a
reasonable, and simplifying, assumption here. Recalling that the warp is applied
to both coordinates (using x and y subscripts on the control points to denote the
corresponding displacement), df (7) leads to the joint df for the displacements
given by [

pOx − pFx
pOy − pFy

]
∼ N

([
0
0

]
,

[
σ2

∆(I −C)−1 0
0 σ2

∆(I −C)−1

])
(8)

where [pOx − pFx , pOy − pFy ]T are the x− and y− coordinates stacked on each other
in a column, and

{C}ij =
{

0, i = j
cij, i 6= j

The interpretation of this prior model for the displacements is that the con-
trol points move in a similar way as their neighbors; thereby ensuring a smooth
deformation, as well as penalizing for non-physical warps.

Under the assumptions above, and leaving out the constant parts that only
depend on the fixed parameters σ2

ε , σ2
∆ and C, the following loss function that

minimizes the error log-likelihood (4) becomes

Q(pF ) = 1
2σ2

ε

(
n∑
i=1

(O(si)− F (W (si)))
2

)
+

1
2σ2

∆

(
(pFx − pOx )T (I −C)(pFx − pOx ) + (pFy − pOy )(I −C)(pFy − pOy )

)
.

(9)

The first term penalizes differences between the observed and deformed forecast
field intensities. Note that this term involves all points in the domain, but that the
warp function itself is determined by only the subset of control points. The second
term, which is applied only to the control points, penalizes for too large displace-
ments and neighboring control points that move in different directions. The ratio
σ2
ε/σ

2
∆ specifies how much the prior will penalize certain mappings relative to the

likelihood, and C defines the dependence between the control points.
The optimization of (9) must be performed numerically. For example, by using

a robust Newton method. This, and other techniques, requires calculation of first
derivatives. See Åberg et al. (2005) for specific details.
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The above approach uses a Gaussian Markov random field approach for the
prior on control point movements (i.e., pO−pF ) because C is zero for points that
are not close to each other. It is used here for the space-time extension because
of its simplicity and it has the nice interpretation that the control points move in
a similar way neighboring points. An alternative prior, used by Gilleland et al.
(2010b), is the bending energy of the TPS. The bending energy is also a Gaussian
prior, and amounts to replacing σ2

∆(I−C)−1 in (8) with the bending energy matrix
from the TPS (see Eq (6) above). Similarly for the inverse (1/σ2

∆(I −C)) in Eq
(9). The bending energy leads to an improper Gaussian prior since it does not
penalize the affine part of the warp (translation, rotation, scaling and skew); only
the nonlinear part is penalized.

For precipitation fields, the normal assumption for the errors O−F̃ is generally
not valid. The non-normality essentially consists of two parts: (i) dry weather
at several locations leads to a zero-inflated error distribution (simultaneously no
observed and no forecast precipitation), and (ii) for grid points that have non-
zero precipitation in one or both fields, the data are highly skewed. One way to
handle the skewness in the precipitation distribution at nonzero grid points is to
try to remove it by transforming the fields (e.g., by taking the cubed roots of each
field, O1/3 and F 1/3). The zero inflation can be handled by applying a mixture
of distributions with a normal df with a very small variance around zero for the
zero-valued grid points (e.g., Gilleland et al., 2010b). For this setup, and using
J(W ) in place of σ−1

∆ (I−C) for the prior covariance on control point movements,
the objective function becomes

Q(pF ) =
n∑
i=1

{
β

2σ2
ε

(
O1/3(si)− F̃ 1/3(si)

)2

+ 1−β
2×10−4σ2

ε

(
O1/3(si)− F̃ 1/3(si)

)2
}
+

1
2σ∆

(
(pFx − pOx )TJ −1(Wx)(p

F
x − pOx ) + (pFy − pOy )TJ −1(Wy)(p

F
y − pOy )

)
,

where J (·) is defined in Eq (6) below.
In this case, a parameter β is introduced that takes values in [0, 1] providing

the mixture between the two errors (one being the error at non-zero grid points,
and one approximating a Dirac δ at zero-valued points). It is an estimate of the
percentage of zero-valued grid points in both fields, which is not especially useful
and is assumed a nuisance parameter. The values of σε and σ∆ can be thought
of as the variance of the errors and control point movements. However, in this
context it is useful to choose their values a priori in order to obtain meaningful
deformations. Therefore, they too are treated as nuisance parameters.

All of the above applies to a single snapshot of a verification set. A spatial
displacement error may, or may not, be the result of a timing error. When applied
only to a single time point, image warping gives useful information, but it may be
possible to obtain an even more informative warp if temporal information could
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also be considered. It turns out that it is relatively straightforward to extend the
concept to further dimensions, at least mathematically, provided the resolution in
the extra dimension(s) is comparable to the spatial dimension.

Here, the temporal dimension is treated. In particular, forecasts with the same
initialization time with lead times at t− 1, t and t+ 1 are utilized and compared
to observation fields at time t. For example, if t represents the 24-h precipitation
forecast, then the question concerns how well the 24-h lead time performs. The
image warp can draw upon the 23-h lead time forecast as well as the 25-h lead
time (it is assumed that 1-h differences are comparable in resolution to the spatial
grid spacing). Of course, one could consider other lead times as appropriate.

For the space-time warp applied here, the Gaussian Markov Random Field
approach is used. Control points (as all other points) are now three-dimensional,
(x, y, t), and the objective function Q is a simple extension of (9). For example,
letting ∆t = pFt − pOt , the new term [∆T

t (I − C)∆t]/(2σ
2
t ) is added to the end.

The new penalty for undesirable deformations in the temporal dimension (σt) is
taken here to be the same as σ∆, the penalty for undesirable deformations in
space, which seems to be a reasonable strategy (further study is needed, however).
In general, allowing σt to differ would remove the requirement that the scale be
similar in time and space.

3 Some issues and details
Because the verification sets (i.e., the observed and forecast fields) have discrete
representations (grid points), and the mapping (2) is continuous, care must be
taken in determining values at grid points. That is, a map of a point (x, y) will in
most cases not lie exactly in the middle of a grid point in the undeformed field.
To determine what intensity value should be assigned to the point (x, y), some
interpolation of the values in the surrounding grid points in F must be used. For
example, one might use bilinear interpolation, however bicubic interpolation may
prove useful because it will allow for analytic calculation of higher order derivatives
for the optimization routines (e.g., Gilleland et al., 2010b).

Specifically, let r and s represent the fractional part of Wx(x, y) and Wy(x, y),
respectively. That is,

r = Wx(x, y)− bWx(x, y)c
s = Wy(x, y)− bWy(x, y)c,

where bxc is the greatest integer less than x. The value at a grid point in the
deformed field, F̃ , is then interpolated by

F̃ (x, y) =
∑
l

∑
k

bl(r)bk(s)F (bWx(x, y)c+ l, bWy(x, y)c+ k),
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where bl(r) and bk(s), and their range, depend on the type of interpolation. For
bilinear interpolation, the range for both is 0 to 1 (the center of a pixel/grid-point
being at 1/2), and they are given by b0(t) = 1 − t and b1(t) = t. For bicubic
interpolation, the range for both is from -1 to 2, and the interpolation polynomials
are given by

b−1(t) = (2t2 − t3 − t)/2
b0(t) = (3t3 − 5t2 + 2)/2
b1(t) = (4t2 − 3t3 + t)/2
b2(t) = ((t− 1)t2)/2.

Another issue that needs addressing concerns points that are mapped outside
the field’s domain (i.e., (Wx(x, y),Wy(x, y)) /∈ D). In such a case, those grid
points require extrapolation, which can be done using any type of spatial predic-
tion/interpolation approach (e.g., kriging). For some fields, such as precipitation,
where there are many zero-valued grid points, it may suffice to simply set those
values outside the domain to zero. Other approaches also exist, however. Re-
gardless, if there is a lot of important activity near the edges of the domain, the
deformation approach may be questionable. This is true of most spatial forecast
verification approaches, and typically, the forecast domain centers on the area of
interest so that this should not be a major concern.

For determining derivatives, the fields we use may not be “smooth" enough, so
some smoothing may be necessary for the optimization routines.

4 Analyzing the results
Gilleland et al. (2010b) propose a method for summarizing the results of image
warping for the purpose of ranking multiple forecasts. They applied this technique
to a host of test cases, and found that the summaries provided useful information.
The main drawback to the summary is in its complexity. Heuristically, the best
forecast is the one that requires the least amount of movement (better termed
bending energy) and yields the highest improvement in the traditional grid-point
to grid-point statistics. Unfortunately, this is complicated by the fact that a per-
fect forecast would require no deformation, and subsequently would not have any
improvement in the statistic. Further, a very poor forecast might have a very large
reduction in error. Therefore, some care needs to be taken in summarizing fore-
cast performance. This is the reason for the complexity in the IWS score proposed
by Gilleland et al. (2010b), requiring some user-chosen weights, but fortunately
results are relatively insensitive to these choices.

Summary statistics are required for many applications, but the real power of
most spatial verification techniques lies in their ability to provide useful diagnostic
information. Often, this cannot be done for large numbers of cases (e.g., in an
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Figure 1: WRF ARW 24-h accumulated precipitation (forecast) and Stage II ana-
lysis (observation) valid 1 June 2005 (one of the nine real ICP test cases). Grid-
point to grid-point verification results (RMSE, MAE and ME) before and after
image warping are shown.
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Figure 2: Objects defined by MODE for WRF ARW 24-h accumulated precipit-
ation (forecast, solids) and Stage II analysis (observation, outlines) valid 1 June
2005 (one of the nine real ICP test cases).

1

2

3

operational setting), but is still useful for many purposes (e.g., in a research set-
ting). Circle histograms showing the distribution of the amount of displacement
in different directions is potentially a very useful summary tool (not done here).
This would give the user a feel for whether a model makes systematic errors in
a particular direction. Applying such histograms to smaller regions within a lar-
ger region is also probably a good idea as errors in certain directions may vary
regionally (e.g., Fig. 1).

4.1 Spatial Image Warping

In both Figs. 1 and 2, it can be seen that the forecast was spatially displaced by
being generally too far north in the central part of the region, but is mostly too far
south in the southeastern region. Image warping, therefore moves the central activ-
ity predominantly south, while it moves the southeastern forecasted precipitation

11



northwards. The features-based procedure known as MODE (Davis et al., 2009)
also picks up on these discrepancies; recall that features-based procedures handle
features individually so that the forecast features identified in Fig. 2 are labeled 1
(red), 2 (green) and 3 (light blue). The dark blue features were not matched to
anything in the analysis field, and the blue outlines identify the associated analysis
features.

Fig. 1 shows different ways of visualizing the image warp procedure. In the up-
per left most panel, the original (undeformed) forecast field is shown with vectors
super-imposed to show how the image warp is deforming the field. The result-
ing deformed forecast is shown in the upper right corner, and it is easy to see
that it matches better with the analysis field (top middle) than the undeformed
forecast. Grid-point to grid-point differences are shown between the undeformed
forecast field and analysis (lower left panel) and between the deformed forecast
and analysis (lower right panel). While errors still exist, they are fewer for the
deformed forecast. Summary statistics also show this. In particular, the RMSE
is 2.09 originally, and this is reduced to 1.68 after deformation. Therefore, 1.68
represents the RMSE after accounting for displacement errors. The middle panel
of the bottom row demonstrates what the deformation does to the grid itself. Re-
call that image warping is akin to moving, rotating stretching, and “crinkling" the
grid (i.e., intensities are not involved). While possible to interpret this panel in
terms of how the deformation is made, it is less straightforward, but it does show
visually how much and how complex the deformation is. It also shows that the
deformation is physically meaningful (e.g., it does not fold over onto itself). This
procedure was applied to all nine of the real ICP test cases (see e.g., Ahijevych
et al., 2009). See Gilleland et al. (2010b) for the results, and results from a larger
set of 32 cases that were also analyzed with MODE (Davis et al., 2009).

Fig. 3 demonstrates the image warp deformations for the five geometric cases
of the ICP shown in Fig. 4. In each case, the deformed image is almost exactly
identical to the observed field (negligible grid-point to grid-point RMSE’s). this
demonstrates that even when the assumption of normality for the error term in
(1) is wildly violated, as it is here, the resulting deformations are still valid. As
usual, it is when inferences are to be made concerning the deformation that the
distributional assumption becomes important. This is especially true when using
image warping to forecast ahead in time (e.g., as in Åberg et al., 2005). In the
context of forecast verification, however, this is less of an issue. Although it is
important to characterize the uncertainty in the verification results, confidence
intervals on the deformations may be very difficult to interpret, and are certainly
difficult to display. While the procedure is set up in a statistically elegant fashion
that enables a straightforward framework with which to construct such intervals,
more work needs to be done to determine a useful way to convey them, and to
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Figure 3: Image warping applied to the five ICP geometric cases (see Fig. 4), and
one additional case (lower right panel).
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Figure 4: The five ICP geometric cases along with their respective known errors.
Object on left is the observed object in each case, and is the same for each.
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propagate them to summary statistics, such as the IWS (Gilleland et al., 2010b).
One issue that arises concerns whether or not the image warp procedure pro-

duces the “correct" deformations when they are known. The geometric cases
demonstrate quite clearly that it does. In fact, it was thought to include a ro-
tation error in the cases. However, the resulting case was actually an aspect ratio
error, and the image warp procedure first brought this to light; showing that it
can aid the subjective observer. To show that the technique could decipher rota-
tion from aspect ratio errors, image warping was applied to a true rotation error
(Fig. 3, lower right panel), and it clearly could. In practice, this is not of great im-
portance, but it demonstrates the accuracy of the technique. Further, with careful
programming, image warping can be done efficiently enough as to be performed
operationally (each case shown here was carried out on an ordinary laptop at about
five minutes per case).

4.2 Space-time Image Warping

Using a larger set of data from the same National Severe Storms Lab (NSSL)/Storm
Prediction Center (SPC) 2005 Spring Program that is better resolved in time
(hourly) than the ICP real test cases are used to obtain an initial look at adding
the temporal component to the spatial image warp (also, instead of 24-h accumu-
lations, only 1-h accumulations are used here). In order to better focus on the
ability of the image warp to adequately deform through both space and time, only
a relatively small region is chosen for analysis (Fig. 5). Further, only NCAR and
NCEP WRF ≈ 4-km models are studied. Results for 26 April 2005 at the 20th
hour are shown here, though other times were also studied with similar results (in
terms of the image warping procedure). That is, the analysis is for 26 April 2005
at 20h UTC, and time t corresponds to the forecast valid on this date at the 20th
hour (UTC), t−1 is the forecast valid at the 19th hour, and t+1 at the 21st hour.
All forecasts were initialized at the same time (0 UTC).

Figs. 6 and 7 show image warping results for the NCAR and NCEP, resp.,
models for 26 April 2005. The valid time is for t = 20 hours UTC on this date.
This case was chosen in part because both models had deformations that moved
in both space and time (many cases did not require movement through time). It
is clearly difficult to decipher subjectively whether points should be moved across
a temporal coordinate versus through a spatial one, but careful study suggests
that the resulting deformation is reasonable. The NCAR model for time t shows
heavy precipitation in the northern part of Michigan, where the analysis has it
further south, closer to the center of the state. Its forecast for t+ 1, on the other
hand, has some heavy activity closer to where it occurs in the analysis, but too
far south. The image warp subsequently tries to move the t + 1 activity to the
north (and back in time), while also pulling some values from t− 1, although it is
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Figure 5: Domain used for the space-time analysis.

Figure 6: Space-time image warp applied to NCAR’s 4-km WRF 1-h accumulated
precipitation (mm) and Stage II analysis at this valid time.
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Figure 7: Space-time image warp applied to NCEP’s 4-km WRF 1-h accumulated
precipitation (mm) and Stage II analysis at this valid time.

Table 1: Space-Time Image Warp verification results for 26 April 2005 comparison
of NCAR and NCEP WRF models.

Loss function value RMSE reduction in RMSE
no warp warp no warp warp

NCAR 8010.1 2657.2 2.67 0.73 56.5%

NCEP 3361.6 1243.1 2.24 1.51 32.4%
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Table 2: Space-Time Image Warp verification results for 20 May 2005 comparison
of NCAR and NCEP WRF models.

Loss function value RMSE reduction in RMSE
no warp warp no warp warp

NCAR 28.51 8.03 0.04 0.009 74.4%

NCEP 15.93 6.77 0.02 0.009 57.4%

less clear that this is necessary. For the spatial case, Gilleland et al. (2010b) found
that the image warp can be sensitive to a lot of scatter, which is easily remedied
by setting a threshold to filter out activity that may not be interesting. Perhaps
a more interpretable space-time warp could also be obtained by such a scheme.
The NCEP model also does not appear to capture the heavy activity in the center
of the state, but it does have some higher values in that area. Overall, however,
it would seem that the NCEP model greatly over forecasts the spatial extent of
lower intensity precipitation. Again, setting a threshold should help to resolve this
issue.

To better determine how well the image warp performed through both space
and time, it is useful to observe some summary statistics. Table 1 shows the
before- and after- deformation values for the loss function Q, and RMSE. It also
shows the percent reduction in RMSE betemed by the deformation. The NCEP
model fairs better than the NCAR model in terms of the initial RMSE and in
terms of the before and after value of the loss function, but this may be a result
of the frequency bias of small values by the NCEP model. This can be seen by
the fact that less energy was spent to deform the NCAR model, while a higher
percent reduction in RMSE is obtained along with a lower resulting RMSE. That
is, for this case, values of the NCAR model require less movement, and result in a
deformed field that is closer to the analysis field. Similar results are obtained for
another case (valid on 20 May), but where this time there is considerably less rain
activity in the region. Subsequently, initial traditional score values (RMSE) are
lower, and both drop to about 0.009. Considerably more morphing is required for
the NCEP configuration than NCAR’s, however, and again the percent reduction
in the RMSE is much greater for NCAR’s configuration (≈ 15% difference).
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5 Summary and Conclusions
High-resolution forecast verification applied to an observed field on the same grid is
a challenging new area of research. Many procedures have been proposed in the last
decade to better ascertain forecast performance in this context. An international
inter-comparison project, the ICP, has been established to better understand the
many new methods, and how they inform about forecast quality. Initial results
from the ICP pertaining to QPF fields have been presented in a special collection
of papers for the journal Weather and Forecasting. As part of these initial findings,
most methods can be classified as belonging (if only loosely for some methods) to
one of four categories. Two of these categories are filter based, and the other two
are displacement based (Gilleland et al., 2009, 2010a). This paper discusses a field
deformation approach that belongs to the latter category, called image warping.

Gilleland et al. (2010b) showed that image warping works well for the spatial
snapshots of a gridded verification set. They also introduced a summary statistic
that allows for comparison of multiple forecasts using the image warp results. This
paper gives some more technical details about the procedure utilized therein.

Beyond the spatial snapshot case, an initial look at incorporating both space
and time is given here. Initial results applied to a limited set of cases show that
the approach has merit, and further study is recommended to determine both how
best to carry out the technique, as well as how to interpret the results.

In particular, careful study of the parameter values for the space-time case
needs to be conducted. For example, in the present study, the temporal penalty is
held to be the same as the spatial one. Perhaps this is not the optimal choice, how-
ever. To some extent, it will depend on the specific model or user need. However,
it would be useful to have some guidance about what values are most appropriate.
Similarly, the present study assumes that the temporal spacing is comparable to
the spatial resolution. That is, one hour is assumed to be comparable to about 4
km of space. This assumption should be checked. For both of these issues, it may
suffice to look at simple geometric cases, similar to what has been done in the ICP.
For example, it may be useful to look at an observed circle and warp against a
circle in the same spot but at different times (with no activity in the other fields).
What happens when t− 1 and t+ 1 have the circle, but t has nothing?

It is also important to investigate whether the image warp pulls forecast rain
from time when a human observer would prefer to pull it from space. If this is the
case, it can most likely be remedied by changing the penalties for space and/or
time, but it is important to obtain guidance about proper values to use.

Are the methods for comparing multiple forecasts given in Gilleland et al.
(2010b) naturally extendable to the space-time case? If not, is there a way to
summarize the results both for comparing multiple forecasts and for summarizing
a single forecast’s performance?
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More technical issues that need to be addressed include the aforementioned
question about the calculation and communication of uncertainty. Of course, this
needs to be addressed for the simpler case of space only. Additionally, it has been
assumed that space and time are independent in regards of the penalty term of
the loss function. This may be perfectly reasonable from a practical point of view,
but it should be investigated from a statistical perspective.

It was also mentioned that one could use other time points besides t− 1, t and
t + 1. In fact, it may depend on the forecast, and an initial subjective opinion
would likely determine the best set to include. Inclusion of t ± k times, however,
will need to be chosen carefully, and some of the concerns stated above may need
to be re-checked.

Overall, the image warp technique is a valid, useful, and highly accurate proced-
ure for analyzing forecast performance. It not only can yield summary measures,
but can also provide a wealth of diagnostic information. An initial study of in-
cluding time and space has shown that this is a potentially very helpful addition
to the framework, and that it is possible to do.
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