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4 Introduction 

Detection of changes in climate responses is essential to facilitate appropriate 

adaptation action to be taken by decision makers; however, detection of changes in the 

extremes may not be possible in the desired timescale for action (Fowler et al., 2010). It is 

hoped that by understanding current mechanisms driving extreme precipitation and the risks, 

or likely impacts, that the uncertainty surrounding future projections can be reduced (Tebaldi 

et al., 2006), providing a realistic decision framework for designers and planners. A recent 

focus on trend analyses within a changing climate has revived interest in distinguishing 

climatic variability from “real” changes (Koutsoyiannis, 2003; Sakalauskiene, 2003; 

Ammann et al., 2007). Cohn and Lins (2005) observed that long term persistence is often 

suggestive of a trend, as fractional noises arising from climatic variability often display 

multiple ‘features’ including trends and cycles. Long established hydrological practice 

assumes that, for the purposes of design, observational series are stationary (Matalas, 1997; 

Lins and Cohn, 2011); however, this may no longer be appropriate for extreme hydrology if 
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stationarity cannot be assumed over the engineering design life (Milly et al., 2008), 

suggesting that more sophisticated analysis tools are required. 

The variability of extreme precipitation event frequency from year to year can be 

assessed through the dispersion of the annual count of events exceeding a high threshold. 

Persistence is particularly evidenced by ‘clusters’ of years (referred to as overdispersion) 

with high and low frequencies of floods or heavy precipitation (Villarini et al., 2009). The 

natural sequence of these extreme events will display some irregularity, which may appear 

within a reasonably short series to be overdispersion but following removal of external 

influence, such as seasonality, will be homogeneously Poisson distributed (Serinaldi and 

Kilsby, 2013). However, it is the occurrence of several periods of heavy precipitation in 

quick succession which may generate flood conditions. Many have examined trends in the 

return frequency of extreme events (Fowler and Kilsby, 2003a; Moberg and Jones, 2005; 

Fowler et al., 2010; Jones et al., 2012) or the number of wet days per year (Pryor et al., 2009; 

Li et al., 2011), and some studies have examined changes to the timing and frequency of 

peak-over-threshold events (e.g. Fowler and Kilsby, 2003b), but only a few have 

acknowledged the importance of several events occurring in succession or specifically 

assessed whether the intra-year dispersion is changing (e.g. Villarini et al., 2012). 

There is strong evidence that independent extreme precipitation events are not 

dispersed regularly in time, rather they follow a seasonal non-homogeneous Poisson 

distribution (Tramblay et al., 2011); however, the temporal relationship between these 

independent events is often ignored.  Many extreme value analyses focus on the magnitude of 

the events above a certain threshold and their annual return frequency (Davison and Smith, 

1990; Fawcett and Walshaw, 2007), rather than the interval between these events. Others 

examine the longevity of a spell of successive excesses (Furrer et al., 2010), identifying 

independent events by a minimum number of days below the threshold. Yet the dispersion of 

extreme events within a particular year or season is also of interest for flood risk managers.  

Extreme precipitation responses to seasonality and long-term patterns in atmospheric drivers 

present a highly complex relationship which cannot be examined with standard statistical tools. 

Improved estimates of event frequency and magnitude could be achieved using extreme value 

parameters estimated from linear models of covariate terms, e.g. seasonality (Tramblay et al., 

2011). Linear models, of varying degrees of complexity, facilitate improved estimates of the 

covariate dependent parameter estimates and can be used to describe any long-term changes in 

behaviour (Furrer and Katz, 2008). 
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Generalized Linear Models (GLM) are effective in modelling daily precipitation event 

occurrence and their dependence on atmospheric circulation patterns (Sapiano et al., 2006), 

and have been applied to many complex time series (e.g. Furrer and Katz, 2008; Maraun et 

al., 2011), although they can over-simplify data or processes which are highly random from 

year to year, such as intra-year variability (Allamano et al., 2011), or precipitation responses 

to long term atmospheric oscillations (Chavez-Demoulin and Davison, 2005). An 

enhancement to the GLM is that of Generalized Additive Models (GAM; Hastie and 

Tibshirani, 1990) based on smoothly varying flexible predictors. The GAM has been widely 

adopted as an effective model for strongly seasonal or forced responses (Wood, 2006; 

Villarini and Serinaldi, 2011), as well as for multi-annual atmospheric responses (Morton and 

Henderson, 2008; Underwood, 2009; Mestre and Hallegatte, 2009), and is considered 

particularly appropriate for use here. GAMs have gained popularity in assessing data with a 

strong time-varying component and atmospheric dependence (Hyndman and Grunwald, 

2000), as well as for identifying whether long-term behavioural changes are occurring 

(Underwood, 2009). GAMs have been widely employed in other disciplines to model the 

health impacts of air pollution or long term variability in biota spatial density, but rarely applied 

in hydrology (Morton and Henderson, 2008; Underwood, 2009).  

The direct application of GLMs or GAMs in extreme value distributions is 

computationally difficult, as the distributions are limited to the exponential family, premised on 

the mean of the distribution. A more readily applied method is that of Vector Generalized 

Additive Models (VGAM), introduced by Yee and Wild (1996), which allows a  broader 

class of statistical models to be derived from the data, and extend the family of applicable 

distributions beyond the exponential. 

The aim of this research was to develop a robust statistical tool with which to test 

changes in the frequency and magnitude of extreme daily precipitation over a spatially 

coherent region, rather than for individual locations. The objective was to characterise the 

inter-annual variability of extreme event frequency, which generate a seasonally over-

dispersed Poisson distribution, and the associated magnitude of these events. The modelling 

technique is one which could be applied in many regions of the world, but was specifically 

focussed on an application to UK extreme daily precipitation.  

Eventual application of the VGAMs to very heavy daily precipitation totals across the 

UK will facilitate robust assessments of: (i) variability in the arrival rate of heavy 

precipitation throughout the year; (ii) whether long term trends exist in the frequency 
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distribution; and, (iii) apparent changes in the seasonal distribution. In contrast with other 

spatial analyses of extreme precipitation, a point process is applied to pooled block maxima 

and spatially pooled POT event frequency to simulate the event intensity and intra-annual 

rate of occurrence, respectively (e.g. Katz et al., 2002; Eastoe and Tawn, 2010). This 

contrasts with other regional frequency analyses which make use of the regionally pooled 

block maxima (e.g. Hosking and Wallis, 1997; Jones et al., 2012) or POT maxima (e.g. 

Madsen et al., 1997) to estimate event magnitudes and the annual probability of occurrence. 

The research also differs from Maraun et al. (2011), who developed monthly models of daily 

precipitation maxima for individual sites dependent on proxies of atmospheric circulation 

patterns. Their sinusoidal Vector Generalized Linear Models (VGLM) over-simplified the 

observed seasonal responses and did not examine the inter-event arrival rate of extreme 

precipitation events. 

The remainder of this article first summarises the data sets used in Section 2 and the 

statistical theory to be applied in Section 3. It then describes the selection of the VGAM 

parameters and the development of the statistical model for extreme daily precipitation arrival 

rate and magnitude in Section 4 before describing the model validation in Section 5. 

Discussion and conclusions are presented in Section 6. 

5 Data 

5.1 Daily UK Precipitation 

While gridded data series provide a more reliable temporal series, with fewer missing 

data, the interpolated data may miss localised intense storms and underestimate point maxima. 

As this underestimation can be considerable for small radius convective storms, and the focus 

of the research was on extreme events, individual station observations were selected for this 

research. Daily precipitation observations from 199 observation stations across the UK were 

used, illustrated in Figure 1 in relation to the newly defined UK extreme rainfall regions 

(Jones et al.,  2013). Further details on the compilation of the data set, from records supplied 

on http://badc.nerc.ac.uk, and the homogeneity of the observations can be found in Jones et al. 

(2010, 2012). Annual Maxima were limited to the period 1961-2010 from each station series 

to develop the statistical models. Similarly, peak over threshold (POT) analyses, were 

identified from each station observation series over the period 1961-2010, using a station 

specific threshold for very heavy wet days (Q95; Alexander et al., 2006), that is the 0.95 

quantile of the wet day distribution. A wet day was defined as days receiving ≥1mm 
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precipitation, which has been shown to generate more reliable estimates of extreme value 

models by eliminating trace measures of precipitation (Moberg and Jones, 2005; Alexander et 

al., 2006). 

 

Figure 1 : Location of gauging stations in relation to the 14 extreme rainfall regions: North Highlands 
and Islands (NHI), East Scotland (ES), Forth (FOR), South Highlands (SH), North West (NW), North 

East (NE), North Ireland (NI), Solway (SOL), Humber (HU), South West (SW), Mid Wales (MW), West 
Country (WC), Southern England (SE), East Anglia (EA). Reproduced from Jones et al. (2013) Figure 5. 

5.2 Temperature 

As the moisture holding capacity of the atmosphere is governed by temperature, 

described by the Clausius-Clapeyron relationship for the moisture holding capacity of the 

atmosphere (e.g. Held and Soden, 2006), and recent warming trends are associated with 

enhanced water vapour (Gershunov and Douville, 2008; Coumou and Rahmstorf, 2012), 

appropriate covariates for daily extreme precipitation may be air temperature and sea surface 

temperature (SST), although others may also be important. Increases in North Atlantic SSTs 
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would enhance the hydrological cycle (Wang and Dong, 2010) due to increased evaporation 

over the ocean, leading to positive moisture anomalies in the hot air masses moving over the 

UK and Western Europe from the Atlantic. Extreme precipitation responses to SSTs have 

been demonstrated in several different regions (Karnauskas and Busalacchi, 2009; Muza et 

al., 2009). Colman (1997) found a positive but weak correlation between the North Atlantic 

SST anomalies during January and February, and the England and Wales precipitation series. 

Lagged monthly North Atlantic SST is one of several strong predictors of summer flows in 

the River Thames (Wilby et al., 2004); a positive correlation also exists between monthly 

North Atlantic SSTs and southwest England precipitation anomalies (Phillips and McGregor, 

2002) and for summer rainfall in eastern England (Neal and Phillips, 2009). Data exploration 

using Poisson regression models, not shown, concluded that extreme precipitation frequency 

and intensity is significantly correlated with monthly SST for UK coastal waters. 

Temperature does not vary as rapidly over the spatial domain as precipitation, so errors 

associated with gridded temperature observations are far less than those for gridded 

precipitation. Gridded observations provide a homogeneous series, with fewer missing 

values, and publicly available data sets have been fully quality controlled and documented, 

whereas individual station records may retain some errors or have longer periods missing. 

High-resolution gridded global data sets for monthly surface air temperature (1901-2005) for 

minimum, maximum and mean temperature (Mitchell and Jones, 2005) updated to 2009 

(Jones and Harris, 2009) were obtained as 5° x 5° grid box averaged air temperatures.  

The Met Office Hadley Centre compiled SST data set, HadSST2 (Rayner et al., 2005), 

is a global gridded (5° x 5° boxes) data set of monthly averaged SST observations from 1850 

to present constructed from the International Comprehensive Ocean-Atmosphere Data Set 

(ICOADS). All temperature and sea level pressure observations were obtained from the 

KNMI Climate Explorer (http://climexp.knmi.nl; Klein Tank et al., 2002). 

5.3 Sea Level Pressure 

Connections between mean sea level pressure (MSLP) and temperature and 

precipitation patterns are also well established (e.g. Della-Marta et al., 2007). The Met Office 

Hadley Centre’s MSLP data set, HadSLP2r, is an update from 1850 to the present day of 

HadSLP2 (Allan and Ansell, 2006), constructed for a 5° x 5° global grid from monthly 

NCEP/NCAR reanalysis fields for 2005 onwards. The authors suggest that this series 

represents one of the best available for any historical investigation of the influences of large-

scale atmospheric circulation patterns. 
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5.4 North Atlantic Oscillation Index 

The North Atlantic Oscillation (NAO) index is a dipole of sea level pressures between 

Iceland and the southern tip of the Iberian Peninsula, measured either between Stykkishólmur 

and the Azores (Hurrell and Deser, 2009 and references therein) or Reykjavík and Gibraltar 

(Jones et al., 1997). Positive (negative) phases represent enhanced (diminished) Icelandic 

Low and Iberian High pressure fields. The most profound effects of the NAO are displayed 

through winter time surface temperatures, storminess and precipitation across much of the 

Northern Hemisphere. In its positive phase, warm moist air from enhanced westerly flows 

move across Europe to generate dry conditions over southern Europe and North Africa, while 

reducing North Atlantic temperatures and creating wet conditions in northern Europe. Recent 

work has also correlated inter-decadal variability in storm patterns with fluctuations in large 

scale teleconnection patterns, finding positive NAO years to have a strong influence on UK 

storm intensity and frequency (Allan et al., 2009). 

 Given that the centre of NAO action shifts over time, a principal component analysis 

of the NAO index (Hurrell, 1995), which is less sensitive to modal displacements (NOAA, 

2011), is considered to be more reliable for the current application (Casty et al., 2005; Allan 

and Ansell, 2006). Therefore, monthly time series derived from the leading EOF of monthly 

MSLP anomalies over the Atlantic sector (20-80N, 90W-40E) were obtained from the 

Climate Analysis Section, NCAR, Boulder. 

6 Method  

6.1  Extreme value distributions 

The distribution of series maxima, such as the annual maximum of daily precipitation 

totals, can be approximated by the limiting Generalized Extreme Value distribution (GEV) 

where: 

 
 
G(x;µ;σ ;ξ ) = exp − 1+ ξ(x − µ)

σ
⎛
⎝⎜

⎞
⎠⎟
−1/ξ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where 1+ ξ(x − µ)
σ

> 0  (1) 

for the location −∞ < µ < ∞ , scale σ > 0  and shape −∞ < ξ < ∞ parameters.  

The frequency of a series of daily observations exceeding a high threshold, u , with N

events per year, follows an approximate Poisson distribution with arrival rate Λ . When u  is 

sufficiently high and N is very small, the magnitude of the excesses over u approximately 

follows another form of extreme value distribution, the Generalized Pareto (GPD) with 
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parameters scale, σ > 0 , and shape, −∞ < ξ < ∞ . The GPD is directly linked to the GEV 

through the respective shape,	
  ξ , parameters (Davison and Smith, 1990) as: 

 

 

ξGPD = ξGEV

lnΛ = −1/ξ ln 1+ ξ(u − µ)
σ

⎡
⎣⎢

⎤
⎦⎥

σ =σ + ξ(u − µ)

 (2) 

The combined extreme value and Poisson distribution is often referred to as an orthogonal 

Point Process (Katz et al., 2002), where the notation arises from the property of orthogonality 

between Λ  and the parameters  σ and ξ  for all independent data (Chavez-Demoulin and 

Davison, 2005). For a more complete exposition on extreme value theory, refer to Coles (2001). 

6.2 Linear and Additive Models 

For a set of explanatory variables, X1,…,Xn , GLMs describe a response variable, Y , 

through an exponential family, such that the mean E(Yi ) = µi can be described by a smooth 

monotonic link function, g(µi ) , of the linear predictors, βixi (Nelder and Wedderburn, 

1972): 

 g(µi ) =ηi = β0 + β1x1 +…+ βnxn  (3) 

Vector Generalized Linear Models (VGLM) extend the available model families 

beyond the exponential family to extreme value distributions, applying the ηi (x)  directly to 

each of the distribution parameters.  

However, the complex relationship between the characteristic variables driving the non-

homogeneous rate of event occurrence, such as inter-annual atmospheric fluctuations, demands 

a flexible statistical model which encompasses non-linear behaviour. The required flexibility 

can be incorporated by using a GAM (Hastie and Tibshirani, 1990) where the linear predictor 

term g(µi )  becomes a summation of smooth non-linear functions fy of the covariates of an 

exponential family: 

 g(µi ) =ηxi = β0 + f1(x1)+…+ fn (xn )  (4) 

Model smoothness, f j , is transformed into a linear model via linear basis functions, b , 

for each non-linear parameter of the explanatory variables (β1,…,β j ) , i.e. 
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 f j (x) = bj
j=1

q

∑ (x)β j  (5) 

The aim is to choose a basis dimension as close to f j  as possible so that data are 

neither over- or under-smoothed. As with GLMs, the family distribution can be expanded 

beyond the exponential using vector smoothers. The vector smoothers used in VGAMs fit a 

vector of smooth functions, f j , to the vector measurements model with spline smoothers to 

minimise the quantity with a two term penalty on the lack of fit degree of smoothing (Yee, 

2011). Hastie and Tibshirani (1990) recommend the use of a combination of several 

polynomials or p-splines to model the smooth function; this shifts the focus to a model driven 

representation, focussing on a model which is flexible without over- or under-smoothing the 

response. Smoothers are chosen by default, within the VGLM R computing package, which 

removes the subjectivity required to choose the degree of smoothness (Faraway, 2006; Yee, 

2010).  

Combined analyses of the frequency and magnitude of extreme events adopt either an 

orthogonal Poisson-GP approach, or a Point Process formulated from the GEV distribution  

using Equation 2. Strict criteria were employed to extract precipitation maxima, whereby a 

year was omitted if too many daily observations were missing (refer to Jones et al., 2010 for 

details); while annual maxima were verifiable from other sources, POT were found to be less 

reliable. As a result, the spatially pooled data sets comprised many more annual maxima than 

POT maxima, making the GEV applied to block maxima a more suitable approach to 

estimate event magnitude. However, a key point of interest was the interval between extreme 

events, represented by a Poisson distribution. As a result, the relationship between the GEV, 

GP and Poisson distributions was manipulated, and a non-standard approach was adopted  

combining GEV and Poisson distributions to estimate magnitude and frequency. For ease of 

application and comparison of the eventual results, the VGAM was used for both the GEV 

and the Poisson distributions even though it is not strictly required for the latter, which is in 

the exponential family. The software’s enhanced flexibility and functionality permits direct 

estimation of parameters, e.g. for the GEV and Poisson distributions which will be used later 

in the form:  
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logΛ(x) =η1 = β0(1) + f1(1) x1(1)( ) +… fn(1) xn(1)( )
µ(x) =η2 = β0(2) + f1(2) x1(2)( ) +…+ fn(2) xn(2)( )
logσ (x) =η3 = β0(3) + f1(3) x1(3)( ) +…+ fn(3) xn(3)( )
log ξ(x)+ 1

2
⎛
⎝⎜

⎞
⎠⎟ =η4 = β0(4)

 (6) 

The shape parameter, ξ , is fit by default as an intercept only term as it is numerically 

difficult to estimate (Katz et al., 2002; Yee and Stephenson, 2007).  

7 Parameter Selection 

7.1 Model Covariates 

The arrival rate, Λ , of POT events follows an approximate non-homogeneous Poisson 

distribution, with a higher frequency during certain seasons which can give the impression of 

within-year clustering (Serinaldi and Kilsby, 2013); inter-annual fluctuations in event 

frequency are influenced by ocean-atmosphere coupling and climatic variability. These 

attributes suggest that the covariates which should be included in the model should 

encompass, as a minimum, seasonal and atmospheric components. 

7.1.1 Seasonality 
Seasonal variability in the intensity of UK daily precipitation extremes is well 

recognised, with the south tending to receive the highest daily accumulations during the 

summer, while in the northwest these occur later in the year (Fowler and Kilsby, 2003b). 

Examining the combined records of all UK stations, Rodda et al. (2009) observed that there 

is a distinct multimodal distribution in the occurrence of extremely wet days throughout the 

year, with peaks at mid-summer and late autumn. A smoothed 30-day running mean was 

applied to the relative frequency of Q95 events per day of the year for each of the 199 gauged 

records; refer to Figure 2 for two examples from the northwest and southeast of the UK. This 

approach removed anomalies arising from variability in the day of occurrence and differences 

in observation record length; sensitivity testing of the period used to calculate the running 

mean established that this multi-modality was not merely a spurious cyclical response arising 

from the calculation. The figures revealed considerable regional variation in the timing of 

extreme precipitation and the duration of the most “active” period for these events. This 

seasonal variation is an important factor in understanding within-year over-dispersion of 

extreme precipitation events, which in turn can generate flood conditions.  
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Figure 2 : Relative frequency of Q95 rainfall per day of the year for locations shown in (a), at  

(b) Paisley; and (c) Kew Royal Botanic Gardens. Vertical lines indicate the first day of the season. 

While seasonality is readily visualised in a horizontal manner relative to the calendar 

day, as in Figure 2, comparisons between years and seasons may benefit from a rotated 

seasonal approach (Robson, 1999). If θ represents the angular position of the calendar day (at 

noon) in radians, JDN the Julian day number of the event and LENYR the length of the year 

(assumed to be 365.25): 

 θ = (JDN − 0.5) 2π
LENYR

 (7) 

then for N events at i  stations, the centroid of all events, θ , can be calculated from 

Equation (8). θ  is approximately equal to the calendar day of the greatest peak in extreme 

event occurrence, while r  reflects the relative distribution of events throughout the year, 

with multimodal seasonality shown by r → 0  and unimodal seasonality by r →1 . 

 

x = 1
n

cos
i=1

N

∑ θi y = 1
n

sin
i=1

N

∑ θi

r = x2 + y2

θ =

tan−1 y
x

x ≥ 0 y ≥ 0

tan−1 y
x
+ππ x < 0

tan−1 y
x
+ 2π y < 0

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 (8) 
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Spatial differences in the seasonal behaviour of daily precipitation extremes are well 

represented by the regionally pooled maxima, with specific locational responses ably 

captured by atmospheric and oceanic covariates (e.g. Maraun et al., 2011; Serinaldi and 

Kilsby, 2012). Smoothing functions within the VGAMs applied to the covariates will reduce 

the effective contribution of insignificant parameters to zero, and so allow a common model 

for all regions to be constructed rather than several location specific models. Various 

measures of temperature and atmospheric circulation were selected a priori for inclusion as 

covariates in the model to describe extreme daily precipitation frequency and intensity, as 

these variables are well-simulated by climate models (Christensen et al., 2007); this will be 

beneficial for future iterations of the statistical models which may then be used to project 

changes to properties of extreme precipitation with greater accuracy than is currently 

achievable using the outputs from climate models alone (Fowler and Ekström, 2009). 

7.1.2 Oceanic-Atmospheric Drivers 
A literature search of the drivers of UK extreme daily precipitation recommended the 

use of either monthly NAO indices, coincident with the month of the event, or a seasonal 

counterpart (Wilby et al., 2002; Fowler and Kilsby, 2003b; Allan et al., 2009). However, sub-

seasonal NAO indices may be more descriptive of the immediate weather rather than large-

scale atmospheric patterns (Hurrell and Deser, 2009). Accordingly, a set of seasonal indices 

combining the most common winter (DJFM; Hurrell, 1995) and summer (JJA; Folland et al., 

2009) indices with a spring index comprising April-June and an autumn index of September-

October was also examined. The November NAO index was found to be more closely 

aligned with the winter index (Rodriguez-Fonseca and De Castro, 2002) and so was included 

in the winter aggregate (normally DJFM only). 

Other authors have found strong correlations between monthly SSTs and daily 

precipitation frequency and intensity in the south of the UK (Phillips and McGregor, 2002). 

SST and SLP lagged by up to 6 months and SST anomalies over a wider Atlantic region have 

also be shown to be effective predictors of summer stream flow (Wilby et al., 2002). A strong 

seasonal pattern in the frequency of UK extreme precipitation events, peaking in the summer 

or early autumn, suggests that daily air temperature range must play a key role in the onset of 

extreme precipitation events, as the peak event frequency is coincident with maximum air 

temperatures. Monthly maximum daily air temperature range was selected as a potential 

covariate to minimise the noise introduced by using daily temperature measurements. It 

should be noted that in reality daily air temperature measures means are a cofactor with 
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extreme precipitation, as large differences in air temperature between the surface and further 

aloft lead to the onset of precipitation, but precipitation also reduces the surrounding air 

temperature. 

7.1.3 Initial covariate selection 
 The covariates examined for importance in the regional VGAMs are listed in Table 1.  

Covariate Term Definition  
Year Tt  where t is the event index 
Day of the year dt   
Seasonality: sine Skt sin(dt ' )  ′t = 2π t / 365.25  
Seasonality: cosine Ckt cos(dt ')  ′t = 2π t / 365.25  
Event intensity rt xt-u Where xt is daily total 
Event occurrence yt yt=1 When xt ≥u (yt=0, otherwise) 
NAO index Nt  Nt monthly or seasonal 
Sea Surface temperature SSt  SSt coincident or ≤ 6 months lag 
Normalised mean sea level 
pressure 

SPt  SPt coincident or ≤ 6 months lag 

Monthly max air temperature ΘTX   Grid box average maximum 
Monthly min air temperature ΘTN   Grid box average minimum 
Monthly maximum range ΘDR  ΘTX −ΘTN   

Table 1 : Terms used in the Vector Generalized Additive Models 

VGAMs were applied to regionally pooled daily extreme precipitation observations to 

enhance the reliability of frequency and intensity estimates through the use of larger data sets. 

Individual station maxima were considered independent when separated by an interval ≥1day 

between successive events, selecting the maximum of any wet spell (i.e. sequence of two or 

more wet days). Although it is likely that one storm will be recorded by several stations 

within each regional pool, either on the same or a consecutive day, using repeated events 

does not increase the bias in estimates of rate or magnitude, even though there is an increase 

in the standard error estimate (Hosking, 1990; Morton and Henderson, 2008). The extreme 

value distribution models for event intensity were standardised by the station median Annual 

Maximum value, to adjust for inhomogeneity arising from orographic differences, prior to 

fitting regional GEV distributions. A combined process model was adopted to model the 

frequency of Q95 events (Poisson) and magnitude (GEV applied to AMAX) for each region. 

7.2 Model construction 

Penalized maximum likelihood methods for parameter estimation, which are the default 

option in the computer software (Yee, 2011), were used to fit a Poisson VGAM for frequency 

and GEV VGAM for intensity for each region. Penalized maximum likelihood is 

computationally efficient and highly flexible in the selection of model parameters (Wood, 
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2000), and the resultant model simplicity aids model parameter interpretation. To achieve a 

suitable balance between model over-fitting and excessive parsimony, the maximum model 

effective degrees of freedom (edf) are specified and so dictate the response of the term, with 

edf=1 representing a linear response; the default minimum in VGAM is edf=3 (Yee, 2011). 

Modified vector backfitting to fit the smooth functions, where f (xt ) is decomposed into linear 

and non-linear components, improves model convergence rate and numerical stability (Yee, 

2011) and was adopted here. 

Cubic regression splines were used to fit the smoothed parameters as these 

outperformed more complex options, such as polynomial splines, in efficiency and efficacy. 

Complexity was gradually increased from simple models of the response, yi , against 

individual explanatory variables to combinations of several covariates, selecting those which 

explained the highest proportion of variability. Model terms were combinations of those 

listed in Table 1, tested for suitability through measures such as the model deviance statistic, 

the Akaike Information Criterion (AIC; Akaike, 1974), and the significance of the correlation 

with precipitation frequency. In deriving a parsimonious, yet representative, model Wood and 

Augustin (2002) suggest that a covariate term should be dropped from the model when the 

following criteria are satisfied: 

• the term edf is close to its lower limit;  

• the confidence region for the smooth contains zero everywhere;  

• removing the term reduces the deviance statistic.  

As stepwise iteration to reject unnecessary covariates (Hastie and Tibshirani, 1990) is 

time consuming, particularly when many covariates are involved, a modified approach was 

used where only the significant terms from less complex models were included in later 

multivariate models. Parameter link functions were selected automatically to ensure that the 

Poisson arrival rate,Λ > 0 , and GEV parameters for location, µ > 0 , scale,σ > 0 and shape, 

ξ > −0.5 (Mestre and Hallegatte, 2009); log-link was used to maintain model stability through 

avoiding numerical problems associated with negative rate or shape parameters (Yee, 2010). 

Parameter definitions for the Poisson-GEV model were initially established from X1,…,Xq  

covariates as Equation 6.  

Although over-dispersed event frequency could be represented with a negative-

binomial distribution (Lang, 1999), a Poisson distribution with time-varying rate parameter 

was considered more representative of the physical processes driving event occurrence 
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(Chavez-Demoulin and Davison, 2005). Allowing the arrival rate to vary reflects the 

independence of the maxima and their non-identical distribution throughout the year. 

Most regional models were fitted to a sub-set of stations covering the full record period, 

1961-2009, to minimise the influence of varying numbers of stations per year in the pool. The 

only exceptions were Humber (HUM) and Mid Wales (MW) where, due to the low number 

of observation stations in each region, the whole data pool was employed to construct the 

models. 

7.3 Covariate Selection 

The results indicated that the SST one month prior to an event (Lag 1) is more powerful 

as a covariate than coincident SST, while the coincident monthly NAO index was found to be 

more important than its seasonal counterpart in all regions. The 6-month lag normalised SLP 

was a powerful covariate in the bivariate model, but detracted from model performance in 

combination with any other covariate and so was removed; the information provided from 

SLP was also replicated by including the monthly NAO. The importance of air temperature 

metrics also varied between regions, with the maximum monthly air temperature range most 

frequently achieving the lowest deviance scores and highest model significance. Seasonality 

as a rotated statistic (Robson, 1999) was statistically better than the simple calendar day 

covariate, but was found to represent the seasonal cycle poorly and severely increased the 

computational demand. Consequently, the simpler calendar day representation of seasonality 

was adopted as a covariate in the final model in preference to the sinusoidal parameter. 

Finally, the year of occurrence was replicated by inter-annual fluctuations in the other 

covariates and so was not incorporated in the models. 

To achieve the best data representation, whilst minimising measures such as the 

deviance statistic or AIC and, therefore, maximising model parsimony, each covariate was 

also tested for its relative degree of flexibility. The modelled smooth terms indicated that 

only SST required a fully flexible representation, i.e. f2 ST1t( ) ; while the relationship with 

calendar day was semi-flexible using a piece-wise linear regression spline f1 dt( )  and other 

terms were represented by a linear relationship with event frequency (NAO and ΘDR ). While 

there is evidence that allowing the scale parameter to depend on covariates improves the 

distribution fit (e.g. Mestre and Hallegate, 2009; Chavez-Demoullin and Davison, 2005), the 

fully flexible model was computationally more expensive with AIC scores showing limited or 

no improvement in the model. This is similar to Cooley (2009), albeit applied to a 



~	
  20	
  ~	
  

considerably larger data set, who found that allowing the scale parameter to be flexible 

introduces unnecessary complexity for limited computational gain. To minimise computational 

instability and maintain a degree of parsimony in the VGAM, σ was also modelled as an 

intercept only term. 

7.4 Final Model Selection 

Statistical testing of the VGAM model using the four covariate model, which achieved 

the lowest deviance and AIC scores, against a more parsimonious model, dependent only ondt
and ST1 , suggested that the difference between the models was negligible and the simpler 

model should be selected. However, a subjective review of data representation is an important 

part of model selection (Villarini and Serinaldi, 2011), and this indicated that the higher 

parameter model was more representative of event frequency. The final model includes a 

combination of flexible, semi- and fully-linear covariates. The variables selected for their 

explanatory power of event frequency and magnitude in all regions are: day of year (dt ), 

monthly NAO index ( Nt ), lagged monthly SST ( ST1t ) and monthly maximum air 

temperature range (ΘDRt ). Air temperature will be particularly beneficial for adaptation 

planning using climate projections, as confidence in projections of this variable are much 

higher than for extreme daily precipitation (Christensen et al., 2007; Fowler and Ekström, 

2009). Known relationships with seasonality and the NAO may also aid seasonal forecasting 

and planning by improving the probability of accurately forecasting one or more extreme 

events in the year. The selected model may also be more sensitive to future changes in extreme 

precipitation through the inclusion of two different temperature terms, which tend to be better 

represented within Global Circulation Models (GCM) and Regional Climate Models (RCM; 

Hegerl and Zwiers, 2011). 

The Poisson model was fitted first to represent event frequency and followed by the 

GEV model, using the same covariates for the GEV model as for the Poisson model; this 

approach aids model interpretation. The final model form for both Poisson and GEV 

distribution model parameters are described in Equation 7 and parameter estimates can be 

found in Table 2: 
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logΛ(x) = β0(1) + f1(1)(dt )+ f2(1)(ST1t )+ β3(1)Nt + β4(1)ΘDRt

µ(x) = β0(2) + f1(2)(dt )+ f2(2)(ST1t )+ β3(2)Nt + β4(2)ΘDRt

logσ (x) = β0(3)

log ξ(x)+ 1
2

⎛
⎝⎜

⎞
⎠⎟ = β0(4)

 (9) 

Seasonality,dt , was found to be the most important covariate for most regions and 

models, explaining between 45-90% of the variability in event frequency; the next most 

important variable was monthly maximum air temperature range ,ΘDRt , followed by lagged 

monthly SST, ST1t , or monthly NAO index, Nt  (dependent on location). Calendar day and 

air temperature jointly encompass the twin seasonality in event frequency observed in several 

regions as air temperature is, perforce, seasonally driven. Air temperature range was more 

important than the calendar day in explaining extreme precipitation event frequency in south 

eastern regions, which tend to receive more summertime convective storms driven by 

temperature gradient. Similarly, SSTs and NAO differ in importance between regions, 

displaying a north-south divide whereby the explanatory power of the NAO was greatest in 

northern and Atlantic facing regions, while SST dominated in south and eastern regions.  

Figures 3 and 4 are examples of the smoothing functions which were fitted to each 

regional Poisson and GEV VGAM but shown here only for the Northern Ireland (NI) region; 

±2 standard error bars are indicated by dashed lines. The strong seasonality observed in both 

the frequency and magnitude of events is well replicated by the model seasonality,dt . The 

linear term for air temperature range is indicative of a negative correlation between air 

temperature range and event magnitude or frequency, which is consistent with observations in 

this region of the most intense precipitation during the summer when the diurnal temperature 

range is at its lowest (Zhou et al., 2009). Event frequency has a positive correlation with lagged 

SST for all regions. However, the SST relationship is less well defined in the GEV model, 

where southern regions show a positive correlation between North Atlantic SST and extreme 

precipitation event intensity but there is a more variable relationship in northern and Atlantic 

facing regions. 
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Region Estimated Model Terms 
Poisson Generalized Extreme Value 
logΛ  µ  σ  ξ  

β0  dt ST1t Nt θt β0  dt ST1t Nt θt exp(β0 )
 

exp(β0 )− 0.5  

NHI  -1.90 -1.04 0.10 0.21 -0.20 0.81 -0.11 2.0e-2 -2.5e-2 -1.8e-2 0.22 0.13 
ES  -0.57 -0.23 0.01 0.05 -0.28 0.76 0.67 2.3e-2 -2.7e-2 -3.5e-2 0.23 0.13 
FOR  -0.88 0.84 0.03 0.07 -0.34 0.94 0.12 1.2e-2 -2.8e-2 -3.1e-2 0.25 0.03 
SH  -0.64 -1.07 0.03 0.25 -0.28 0.93 -0.17 2.2e-4 -2.9e-3 3.0e-3 0.21 0.03 
NW  -1.20 0.47 0.03 0.08 -0.23 0.92 0.12 6.9e-5 -1.0e-2 -5.2e-3 0.23 0.09 
NE  -2.91 0.85 0.16 -0.14 -0.28 1.06 -0.19 7.9e-3 -3.7e-2 -3.5e-2 0.25 0.07 
HUM  -3.25 2.39 0.05 -0.19 -0.24 1.09 -0.38 -2.2e-3 -3.2e-2 -1.5e-2 0.25 0.08 
EA -2.86 4.69 0.07 -0.06 -0.25 0.84 4.2e-2 1.9e-3 -0.05 -7.2e-4 0.25 0.06 
SE  -2.54 3.37 0.10 -0.02 -0.31 0.67 0.39 6.2e-3 -9.1e-3 6.3e-3 0.21 0.16 
WC  -2.07 1.43 0.06 -0.03 -0.24 0.71 -0.07 2.2e-2 -1.5e-2 -9.7e-3 0.21 0.04 
MW  -2.09 2.47 0.01 0.17 -0.29 1.17 0.51 -1.9e-2 -1.6e-2 -2.5e-2 0.21 0.09 
SOL  -0.85 -0.23 0.02 0.18 -0.27 1.01 0.15 -5.1e-4 -1.0e-3 -1.7e-2 0.19 0.14 
SW  -1.48 0.93 0.06 0.01 -0.26 0.51 0.14 2.8e-2 3.0e-3 9.0e-3 0.21 0.10 
NI -2.21 -0.15 0.10 -0.03 -0.20 1.01 0.04 -1.2e-3 -2.0e-2 -1.6e-2 0.21 0.13 

Table 2 : Contributions of atmospheric variables (model term covariates) to distribution parameters, with 
the most influential covariate highlighted in bold for each extreme rainfall region. 

 

 
Figure 3 : Generalized Extreme Value VGAM fitted to the Northern Ireland Region annual maxima 

precipitation to model event intensity. Lagged SST (sst1.cov) has 12 degrees of freedom (edf), day of year 
(jdn) is piece-wise linear centred about a knot at days 100 and 300 and edf=12, NAO (naom.cov) and 



~	
  23	
  ~	
  

monthly air temperature range (airdrm.cov) are both linear. The dashed lines are ±2 SE bands. From top 
left going clockwise, the fitted functions are  

Figure 4 : Poisson VGAM fitted to the Northern Ireland Region Q95 precipitation to model event 
frequency. The terms are a combination of smoothed, piece-wise linear and fully linear functions as for 
the GEV VGAM. The dashed lines are ±2 SE bands. From top left going clockwise, the fitted functions 

are  

8 Model Validation 

Hypothesised changes in event seasonality, frequency and intensity should not be 

examined if the observed base distribution is modelled incorrectly. Therefore, the ability of 

each regional combined process model to represent observed extreme daily precipitation 

event frequency (the Poisson models) and magnitude (the GEV models) throughout the year 

was checked by simulating a large number of events from each VGAM distribution. Visual 

tools such as quantile-quantile plots and comparisons of the model outputs with observed 

data were then used to verify the model’s adequacy, before examining inter-annual patterns in 

extreme precipitation frequency. 

8.1 Event frequency and seasonality 

Figure 5, column 1, compares the frequency of observed events per day of year with the 

simulated frequency using covariate data for the same period of record (1961-2000) for 5 

regions, which are representative of the results from the other nine regions. The two 
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frequency densities match well without excessive reproduction of day to day variability, 

which would suggest an over-fitted model (Wood, 2006), attaining maximum and minimum 

frequency in the correct periods. The permitted degree of flexibility in the models result in 

most regions replicating the observed multiple peaks and regional variations in the timing of 

event frequency, which arise from the interaction and changing importance of the covariates 

throughout the year. Two regions which are less well represented by the model, MW (not 

shown) and HUM, were derived from smallest data sets; each having fewer than five stations 

with complete records from 1961 to 2009. While the minimum frequency density is 

underestimated in the two regions, the model simulates the correct timing, duration, and 

magnitude of maximum and minimum event frequencies. 

Each VGAM produced a sequence of daily Poisson rate parameter estimates, dependent 

on the relevant covariate data from which a median distribution for the year could also be 

derived. Multiple draws from the simulated distributions were required to objectively 

characterise the variability of observed extreme event frequency, and to replicate the 

randomness with which events may occur given different driving atmospheric conditions. 

The quantile-quantile plots depicted in Figure 5, column 2, are derived from the standardised 

distributions of observed frequency against standardised frequencies simulated from 500 

random draws. These show good correlation between the observed and simulated distribution 

quantiles for most regions; a few regions (e.g. FOR, NHI) are less well represented at the 

lower tail of event frequency. As these regions tend to be dominated by the influence of the 

North Atlantic Oscillation on storm occurrence and intensity, it is likely that the discrepancies 

have arisen through the model tendency towards SST flexibility rather than towards the NAO 

index. 

8.2 Intensity 

A similar exercise was carried out for the regionally standardised annual maxima, 

sampling from the fitted GEV-VGAMs 500 times to establish a range of possible event 

magnitudes. Figure 5, column 3, illustrates the quantile-quantile plots obtained from the 

standardised observed AMAX vs. maxima sampled from the GEV distribution; these regional 

plots are generally representative of the observed maxima. As with the Poisson model, the 

largest one or two maxima are not well represented by one or two regional models which 

show under- or over-estimated maxima (e.g. FOR) but, for the most part, the simulated and 

observed quantiles lie within expected confidence bounds. A likely cause of the discrepancies 

is the use of a homogeneously applied model, which does not apply preferential weighting to 
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covariates in different regions. The disparate nature of station observations within some 

larger regions, such as NHI, where lack of data precluded further regional sub-division, also 

has an impact on the regional model fit. The latter may be resolved when regional boundary 

definitions are improved with additional station information. In contrast, introducing regional 

weights on different covariates would augment the model complexity as accurate 

representation would require the weighting to vary temporally in response to different 

covariate combinations. The potentially limited return for such an increase in complexity and 

computational cost was not considered worthwhile. 

Annual return period magnitudes were also estimated from the simulated model 

quantiles for each region, using covariate data for 1961-2000, and compared to return period 

magnitudes calculated for observed annual maxima (Figure 5, column 4). The shape and 

steepness of each estimated distribution curve compares well with those for the observed 

annual maxima, providing reassurance that the model is adequate in its representation of 

event return frequency and magnitude. 



~	
  26	
  ~	
  

 

Figure 5 : Comparison of Observed and Simulated results from: the Poisson VGAM for mean event 
frequency per day of year (Column 1); quantile-quantile plots (Column 2) ; quantile-quantile plots of the 

GEV VGAM for event magnitude (Column 3) and estimated annual return period magnitudes (Column 4). 

9 Conclusions 

Allowance for non-stationarity in regional precipitation or flood estimates has been 

addressed by the research community, but is currently far from common practice (Jakob et 

al., 2011); most analyses of extreme precipitation have focussed on traditional extreme value 

analyses to estimate the likely return frequency of specific events (Ghil et al., 2011). This 

article has presented a new approach to accommodate non-stationarity in frequency and 
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magnitude estimates of extreme daily precipitation by using spatially pooled data to examine 

seasonality. Allowing the parameters to vary temporally, in response to external covariates, 

represents the non-identically distributed nature of precipitation maxima over the course of 

the year. A Vector Generalized Additive Model for Poisson and GEV distributions, 

dependent on external covariates such as sea surface temperature, was developed to allow for 

the non-stationarity in observed event intensity and frequency and to assess apparent changes 

in the distributions; this is an effective method to abandon the stationarity paradigm (Milly et 

al., 2008; Lins and Cohn, 2011). Fitting a statistical model to observed data enabled the use 

of observed atmospheric and meteorological conditions to simulate event probability many 

hundred times and examine hypothesised changes to event frequency or ‘clustering’ over 

long time periods, including the recent decade. Data limitations prescribed a non-standard 

approach, combining the Poisson and GEV distributions to model frequency and intensity 

rather than the orthogonal point process using Poisson and GP distributions. It is not 

considered to have had a detrimental effect on the statistical models for UK extreme 

precipitation produced here. However, in locations where there is a marked difference 

between the wet and dry seasons this approach may not be so valid; selecting the single 

largest daily rainfall total per year reduces the available information for covariate selection 

and consequently affects the model fit. The GP distribution, fitted with a seasonally varying 

threshold (Coelho et al., 2008) may prove a more informative model if sufficient POT 

maxima are available. 

The benefit of using a VGAM rather than linear modelling was the resultant parameter 

flexibility, allowing for temporal variation throughout the year with respect to multiple 

influences. GAMs have rarely been applied to hydrological series, and the extension to 

extreme value distributions through VGAMs has seldom been applied to daily precipitation 

extremes, making this a novel analysis of extreme precipitation. 

The contribution of each covariate to the estimated parameters confirmed that 

seasonality, represented by calendar day, is the principal driver of daily extreme precipitation 

event frequency in the UK, with monthly maximum daily air temperature range having the 

second most importance. Calendar day and air temperature jointly encompass the twin 

seasonality in event frequency observed in several regions as air temperature is, perforce, 

seasonally driven. SSTs and NAO differ in importance between regions, displaying a north-

south divide with northern Atlantic regions dominated by the NAO and south eastern regions 

by SSTs. 
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A negative relationship exists between monthly air temperature range and both event 

frequency and magnitude. This parallels the observed relationship between the frequency and 

magnitude of summer convective events (Zhou et al., 2009) and confirms that the probability 

of extreme precipitation is higher, and events are more likely to be intense, during times of 

elevated temperature when the diurnal temperature range is at its lowest. Climate projections 

suggest that increases in global mean temperature will also bring about a reduction in diurnal 

air temperature range (Christensen et al., 2007); a trend which is already seen in many 

regions in observations (Jenkins et al., 2010). In combination with the positive relationship 

found with SSTs, this implies that UK short duration (daily) precipitation extremes will 

increase in frequency and intensity with increases in global mean temperature, confirming 

hypotheses derived from physical processes about the nature of future extreme precipitation 

(Trenberth, 2011). 

Poisson models based on VGAM parameters were able to replicate observed event 

frequency well, without over-fitting the model; regional GEV-VGAM models reproduced 

event maxima satisfactorily. There are minor differences between the relative importance of 

the covariates in each of the models, which may have arisen from the non-standard approach 

combining Poisson and GEV distributions. It should be noted that the point process approach 

is potentially a more powerful technique which, if it had been feasible to apply, might have 

clarified the relationship between extreme responses and their drivers and so minimised these 

differences between the models. Simulating from these statistical models of event probability, 

in conjunction with known atmospheric or meteorological conditions, it will now be possible 

to establish whether apparent changes in observed extreme behaviour response arise from 

climatic regimes or represent a longer term trend. The final model includes two different 

temperature terms, which tend to be better represented within GCMs and RCMs (Hegerl and 

Zwiers, 2011), and so it may be more effective in deriving the likely future changes in extreme 

precipitation than direct modelling approaches. Assuming that GCMs or RCMs can adequately 

reproduce the VGAM model covariates, for instance atmospheric indices such as the NAO 

are notoriously difficult due to their shifting centre of action (Stephenson et al., 2006), it 

should, therefore be possible to extend the research to determine the approximate magnitude 

of changes to the frequency and intensity of extreme precipitation under future climate 

conditions.  

Statistical downscaling from regional climate models would benefit from these 

improvements to the characterisation of UK extreme precipitation and could be used to assess 
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likely future changes in hydrological responses. Comparing the results presented in this 

article with those obtained from climate projections for the control period would be of 

interest to understand discrepancies in the current representation of both the physical 

processes driving extreme precipitation in climate models and the simulation of extreme 

precipitation itself. 

10 References 

Akaike, H., 1974, A new look at the statistical model identification. IEEE Transactions on 
Automatic Control, 19:716–723. 

Alexander, L. V, Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., 
Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., 
Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., Brunet, 
M., Taylor, M., New, M., Zhai, P., Rusticucci, M., and Vazquez-Aguirre, J.L., 2006, 
Global observed changes in daily climate extremes of temperature and precipitation. J 
Geophys Res, 111:D05109. doi:10.1029/2005jd006290. 

Allamano, P., Laio, F., and Claps, P., 2011, Effects of disregarding seasonality on the 
distribution of hydrological extremes. Hydrol Earth Syst Sci, 15:3207–3215. 
doi:10.5194/hess-15-3207-2011. 

Allan, R., and Ansell, T., 2006, A New Globally Complete Monthly Historical Gridded Mean 
Sea Level Pressure Dataset (HadSLP2): 1850–2004. Journal of Climate, 19:5816–5842. 
doi:10.1175/jcli3937.1. 

Allan, R., Tett, S., and Alexander, L., 2009, Fluctuations in autumn-winter severe storms 
over the British Isles: 1920 to present. International Journal of Climatology, 29:357–
371. 

Ammann, C.M., Joos, F., Schimel, D.S., Otto-Bliesner, B.L., and Tomas, R.A., 2007, Solar 
influence on climate during the past millennium: Results from transient simulations with 
the NCAR Climate System Model. Proceedings of the National Academy of Sciences, 
104:3713–3718. 

Casty, C., Wanner, H., Luterbacher, J., Esper, J., and Böhm, R., 2005, Temperature and 
precipitation variability in the European Alps since 1500. International Journal of 
Climatology, 25:1855–1880. doi:10.1002/joc.1216. 

Chavez-Demoulin, V., and Davison, A.C., 2005, Generalized additive modelling of sample 
extremes. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54:207–
222. doi:10.1111/j.1467-9876.2005.00479.x. 

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I.M., Jones, R., Kolli, 
R.K., Kwon, W.-T., Laprise, R., Magana Rueda, V., Mearns, L.O., Menendez, C.G., 
Raisanen, J., Rinke, A., Sarr, A., and Whetton, P., 2007, Regional Climate Projections. 
In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller 
HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working 
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate 
Change. Cambridge University Press, Cambridge, UK,. 



~	
  30	
  ~	
  

Coelho, C.A.S., Ferro, C.A.T., Stephenson, D.B., Steinskog, D.J., 2008, Methods for 
Exploring Spatial and Temporal Variability of Extreme Events in Climate Data. Journal 
of Climate, 21, pp.2072–2092. 10.1175/2007JCLI1781.1 

Cohn, T.A., and Lins, H.F., 2005, Nature’s style  : Naturally trendy. Geophysical research 
letters, 32:23402.1–23402.5. 

Coles, S., 2001, An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag, 
Berlin. 

Colman, A., 1997, Prediction of summer central England temperature from preceding North 
Atlantic winter sea surface temperature. International Journal of Climatology, 17:1285–
1300. 

Cooley, D., 2009, Extreme value analysis and the study of climate change. Climatic Change, 
97:77–83. doi:10.1007/s10584-009-9627-x. 

Coumou, D., and Rahmstorf, S., 2012, A decade of weather extremes. Nature Climate 
Change, 2:1–6. doi:10.1038/nclimate1452. 

Davison, A.C., and Smith, R.L., 1990, Models for Exceedances over High Thresholds. 
Journal of the Royal Statistical Society Series B (Methodological), 52:393–442. 

Della-Marta, P., Luterbacher, J., Von Weissenfluh, H., Xoplaki, E., Brunet, M., and Wanner, 
H., 2007, Summer heat waves over western Europe 1880–2003, their relationship to 
large-scale forcings and predictability. Climate Dynamics, 29:251–275. 
doi:10.1007/s00382-007-0233-1. 

Eastoe, E.F., and Tawn, J.A., 2010, Statistical models for overdispersion in the frequency of 
peaks over threshold data for a flow series. Water Resour Res, 46:W02510. 
doi:10.1029/2009wr007757. 

Faraway, J.J., 2006, Extending the linear model with R: generalized linear, mixed effects and 
nonparametric regression models. Chapman & Hall/CRC. 

Fawcett, L., and Walshaw, D., 2007, Bayesian inference for clustered extremes. Extremes, 
11:217–233. doi:10.1007/s10687-007-0054-y. 

Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S., and Hurrell, J.W., 2009, 
The Summer North Atlantic Oscillation: Past, Present, and Future. Journal of Climate, 
22:1082–1103. doi:10.1175/2008jcli2459.1. 

Fowler, H., Cooley, D., Sain, S., and Thurston, M., 2010, Detecting change in UK extreme 
precipitation using results from the climateprediction.net BBC climate change 
experiment. Extremes, 13:241–267. doi:10.1007/s10687-010-0101-y. 

Fowler, H.J., and Ekström, M., 2009, Multi-model ensemble estimates of climate change 
impacts on UK seasonal precipitation extremes. International Journal of Climatology, 
29:385–416. doi:10.1002/joc.1827. 

Fowler, H.J., and Kilsby, C.G., 2003a, A regional frequency analysis of United Kingdom 
extreme rainfall from 1961 to 2000. International Journal of Climatology, 23:1313–
1334. 

Fowler, H.J., and Kilsby, C.G., 2003b, Implications of changes in seasonal and annual 
extreme rainfall. Geophysical Research Letters, 30:1720–1723. 

Furrer, E.M., and Katz, R.W., 2008, Improving the simulation of extreme precipitation events 
by stochastic weather generators. Water Resources Research, 44. 
doi:10.1029/2008WR007316. 



~	
  31	
  ~	
  

Furrer, E.M., Katz, R.W., Walter, M.D., and Furrer, R., 2010, Statistical modeling of hot 
spells and heat waves. Climate Research, 43:191–205. doi:10.3354/cr00924. 

Gershunov, A., and Douville, H., 2008, Extensive summer hot and cold extremes under 
current and possible future climatic conditions: Europe and North America. In: Diaz H, 
Murnane R (eds) Climate Extremes and Society. Cambridge University Press, pp 74–98. 

Ghil, M., Yiou, P., Hallegatte, S., Malamud, B.D., Naveau, P., Soloviev, A., Friederichs, P., 
Keilis-Borok, V., Kondrashov, D., Kossobokov, V., Mestre, O., Nicolis, C., Rust, H.W., 
Shebalin, P., Vrac, M., Witt, A., and Zaliapin, I., 2011, Extreme events: dynamics, 
statistics and prediction. Nonlin Processes Geophys, 18:295–350. doi:10.5194/npg-18-
295-2011. 

Gilleland, E., Katz, R.W., and Young, G.E.T.-1. 6., 2009, extRemes: Extreme value toolkit. 
http://cran.r-project.org/package=extRemes. 

Hastie, T.J., and Tibshirani, R.J., 1990, Generalized Additive Models. Taylor and Francis. 
Hegerl, G., and Zwiers, F., 2011, Use of models in detection and attribution of climate 

change. Wiley Interdisciplinary Reviews: Climate Change, 2:570–591. 
doi:10.1002/wcc.121. 

Held, I.M., and Soden, B.J., 2006, Robust Responses of the Hydrological Cycle to Global 
Warming. Journal of Climate, 19:5686–5699. doi:10.1175/JCLI3990.1. 

Hosking, J.R.M., 1990, L-Moments: Analysis and Estimation of Distributions Using Linear 
Combinations of Order Statistics. Journal of the Royal Statistical Society Series B 
(Methodological), 52:105–124. 

Hosking, J.R.M. & Wallis, J.R., 1997. Regional Frequency Analysis: an approach based on 
L-moments. Cambridge University Press, Cambridge, UK. 

Hurrell, J.W., 1995, Decadal Trends in the North Atlantic Oscillation: Regional Temperatures 
and Precipitation. Science, 269:676–679. 

Hurrell, J.W., and Deser, C., 2009, North Atlantic climate variability: The role of the North 
Atlantic Oscillation. Journal of Marine Systems, 78:28–41. 

Hyndman, R.J., and Grunwald, G.K., 2000, Applications: Generalized Additive Modelling of 
Mixed Distribution Markov Models with Application to Melbourne’s Rainfall. 
Australian & New Zealand Journal of Statistics, 42:145–158. doi:10.1111/1467-
842x.00115. 

Jakob, D., Karoly, D.J., and Seed, A., 2011, Non-stationarity in daily and sub-daily intense 
rainfall - Part 2: Regional assessment for sites in south-east Australia. Nat Hazards 
Earth Syst Sci, 11:2273–2284. doi:10.5194/nhess-11-2273-2011. 

Jenkins, G., Perry, M., and Prior, J., 2010, The climate of the UK and recent trends. 
http://ukclimateprojections.defra.gov.uk/content/view/816/500. 

Jones, M.R., Blenkinsop, S., Fowler, H.J., and Kilsby, C.G., 2013, Objective classification of 
extreme rainfall regions for the UK and updated estimates of trends in regional extreme 
rainfall. International Journal of Climatology, In Press. 

Jones, M.R., Fowler, H.J., Kilsby, C.G., and Blenkinsop, S., 2010, An updated regional 
frequency analysis of United Kingdom extreme rainfall 1961-2009. BHS 2010: Role of 
Hydrology in Managing Consequences of a Changing Global Environment:110–118. 



~	
  32	
  ~	
  

Jones, M.R., Fowler, H.J., Kilsby, C.G., and Blenkinsop, S., 2012, An assessment of changes 
in seasonal and annual extreme rainfall in the UK between 1961 and 2009. International 
Journal of Climatology, 33(5):1178-1194. doi:10.1002/joc.3503. 

Jones, P.D., and Harris, I.E., 2009, CRU Times Series (TS) high resolution gridded datasets. 
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dataent_1256223773328276. 

Jones, P.D., Jonsson, T., and Wheeler, D., 1997, Extension to the North Atlantic oscillation 
using early instrumental pressure observations from Gibraltar and south-west Iceland. 
International Journal of Climatology, 17:1433–1450. 

Karnauskas, K.B., and Busalacchi, A.J., 2009, The Role of SST in the East Pacific Warm 
Pool in the Interannual Variability of Central American Rainfall. Journal of Climate, 
22:2605–2623. doi:10.1175/2008JCLI2468.1. 

Katz, R.W., Parlange, M.B., and Naveau, P., 2002, Statistics of extremes in hydrology. 
Advances in Water Resources, 25:1287–1304. 

Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., 
Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., 
Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, 
S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., Van Engelen, A.F. 
V, Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, 
T., López, J.A., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., 
Alexander, L. V, and Petrovic, P., 2002, Daily dataset of 20th-century surface air 
temperature and precipitation series for the European Climate Assessment. International 
Journal of Climatology, 22:1441–1453. doi:10.1002/joc.773. 

Koutsoyiannis, D., 2003, Climate change, the Hurst phenomenon, and hydrological statistics. 
Hydrological Sciences Journal, 48:3–24. 

Lang, M., 1999, Theoretical discussion and Monte-Carlo simulations for a Negative Binomial 
process paradox. Stochastic Environmental Research and Risk Assessment, 13:183–200. 
doi:10.1007/s004770050038. 

Li, X., Jiang, F., Li, L., and Wang, G., 2011, Spatial and temporal variability of precipitation 
concentration index, concentration degree and concentration period in Xinjiang, China. 
International Journal of Climatology, 31:1679–1693. doi:10.1002/joc.2181. 

Lins, H.F., and Cohn, T.A., 2011, Stationarity: Wanted Dead or Alive? JAWRA Journal of 
the American Water Resources Association, 47:475–480. doi:10.1111/j.1752-
1688.2011.00542.x. 

Madsen, H., Pearson, C.P. & Rosbjerg, D., 1997. Comparison of annual maximum series and 
partial duration series methods for modeling extreme hydrologic events: 2. Regional 
modeling. Water Resources Research, 33(4), pp.759–769. 

Maraun, D., Osborn, T., and Rust, H., 2011, The influence of synoptic airflow on UK daily 
precipitation extremes. Part I: Observed spatio-temporal relationships. Climate 
Dynamics, 36:261–275. doi:10.1007/s00382-009-0710-9. 

Matalas, N.C., 1997, Stochastic Hydrology in the Context of Climate Change. Climatic 
Change, 37:89–101. doi:10.1023/a:1005374000318. 

Mestre, O., and Hallegatte, S., 2009, Predictors of Tropical Cyclone Numbers and Extreme 
Hurricane Intensities over the North Atlantic Using Generalized Additive and Linear 
Models. Journal of Climate, 22:633–648. doi:10.1175/2008jcli2318.1. 



~	
  33	
  ~	
  

Milly, P.C.D., Betancourt, J., Falkenmark, M., Hirsch, R.M., Kundzewicz, Z.W., 
Lettenmaier, D.P., and Stouffer, R.J., 2008, CLIMATE CHANGE: Stationarity Is Dead: 
Whither Water Management? Science, 319:573–574. doi:10.1126/science.1151915. 

Mitchell, T.D., and Jones, P.D., 2005, An improved method of constructing a database of 
monthly climate observations and associated high-resolution grids. International 
Journal of Climatology, 25:693–712. doi:10.1002/joc.1181. 

Moberg, A., and Jones, P.D., 2005, Trends in indices for extremes in daily temperature and 
precipitation in central and western Europe, 1901-99. International Journal of 
Climatology, 25:1149–1171. 

Morton, R., and Henderson, B.L., 2008, Estimation of nonlinear trends in water quality: An 
improved approach using generalized additive models. Water Resour Res, 44:W07420. 
doi:10.1029/2007wr006191. 

Muza, M.N., Carvalho, L.M. V, Jones, C., and Liebmann, B., 2009, Intraseasonal and 
Interannual Variability of Extreme Dry and Wet Events over Southeastern South 
America and the Subtropical Atlantic during Austral Summer. Journal of Climate, 
22:1682–1699. doi:10.1175/2008JCLI2257.1. 

Neal, R.A., and Phillips, I.D., 2009, Summer daily precipitation variability over the East 
Anglian region of Great Britain. International Journal of Climatology, 29:1661–1679. 
doi:10.1002/joc.1826. 

Nelder, J.A., and Wedderburn, R.W.M., 1972, Generalized Linear Models. J R Statist Soc A, 
135:370. 

NOAA, 2011, Teleconnection Patterns. 
http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml. 

Phillips, I.D., and McGregor, G.R., 2002, The relationship between monthly and seasonal 
South-west England rainfall anomalies and concurrent North Atlantic sea surface 
temperatures. International Journal of Climatology, 22:197–217. doi:10.1002/joc.726. 

Pryor, S.C., Howe, J.A., and Kunkel, K.E., 2009, How spatially coherent and statistically 
robust are temporal changes in extreme precipitation in the contiguous USA? 
International Journal of Climatology, 29:31–45. doi:10.1002/joc.1696. 

R Core Development Team, 2011, R: A Language and Environment for Statistical 
Computing. http://www.r-project.org/. 

Rayner, N.A., Brohan, P., Parker, D., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T.J., 
and Tett, S., 2005, Improved analyses of changes and uncertainties in sea surface 
temperature measured in situ since the mid-nineteenth century: The HadSST2 Dataset. J 
Climate, 19:446–469. 

Ribatet, M., Sauquet, E., Grésillon, J.-M., and Ouarda, T., 2007, A regional Bayesian POT 
model for flood frequency analysis. Stochastic Environmental Research and Risk 
Assessment, 21:327–339. doi:10.1007/s00477-006-0068-z. 

Robson, A.J., 1999, Statistical procedures for flood frequency estimation, Institute of 
Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK. 

Rodda, H.J.E., Little, M.A., Wood, R.G., MacDougall, N., and McSharry, P.E., 2009, A 
digital archive of extreme rainfalls in the British Isles from 1866 to 1968 based on 
British Rainfall. Weather, 64:71–75. doi:10.1002/wea.354. 



~	
  34	
  ~	
  

Rodriguez-Fonseca, B., and De Castro, M., 2002, On the connection between winter 
anomalous precipitation in the Iberian Peninsula and North West Africa and the summer 
subtropical Atlantic sea surface temperature. Geophys Res Lett, 29:1863. 
doi:10.1029/2001gl014421. 

Sakalauskiene, G., 2003, The Hurst Phenomenon in Hydrology. Environmental research, 
engineering and management, 25:16–20. 

Sapiano, M.R.P., Stephenson, D.B., Grubb, H.J., and Arkin, P.A., 2006, Diagnosis of 
Variability and Trends in a Global Precipitation Dataset Using a Physically Motivated 
Statistical Model. Journal of Climate, 19:4154–4166. doi:10.1175/JCLI3849.1. 

Serinaldi, F. & Kilsby, C.G., 2012, A modular class of multisite monthly rainfall generators 
for water resource management and impact studies. Journal of Hydrology, 464–465, 
pp.528–540. doi: 10.1016/j.jhydrol.2012.07.043 

Serinaldi, F., and Kilsby, C.G., 2013, On the sampling distribution of Allan factor estimator 
for a homogeneous Poisson process and its use to test inhomogeneities at multiple 
scales. Physica A: Statistical Mechanics and its Applications, 392:1080–1089. 
doi:10.1016/j.physa.2012.11.015. 

Stephenson, D.B., Pavan, V., Collins, M., Junge, M. M., Quadrelli, R., 2006, North Atlantic 
Oscillation response to transient greenhouse gas forcing and the impact on European 
winter climate: a CMIP2 multi-model assessment. Climate Dynamics, 27(4), pp.401–420. 

Tebaldi, C., Hayhoe, K., Arblaster, J., and Meehl, G., 2006, Going to the Extremes. Climatic 
Change, 79:185–211. doi:10.1007/s10584-006-9051-4. 

Tramblay, Y., Neppel, L., and Carreau, J., 2011, Brief communication “Climatic covariates 
for the frequency analysis of heavy rainfall in the Mediterranean region”. Nat Hazards 
Earth Syst Sci, 11:2463–2468. doi:10.5194/nhess-11-2463-2011. 

Trenberth, K.E., 2011, Attribution of climate variations and trends to human influences and 
natural variability. Wiley Interdisciplinary Reviews: Climate Change, 2:925–930. 
doi:10.1002/wcc.142. 

Underwood, F.M., 2009, Describing long-term trends in precipitation using generalized 
additive models. Journal of Hydrology, 364:285–297. 
doi:10.1016/j.jhydrol.2008.11.003. 

Villarini, G., and Serinaldi, F., 2011, Development of statistical models for at-site 
probabilistic seasonal rainfall forecast. International Journal of Climatology, 32:2197–
2212. doi:10.1002/joc.3393. 

Villarini, G., Serinaldi, F., Smith, J.A., and Krajewski, W.F., 2009, On the stationarity of 
annual flood peaks in the continental United States during the 20th century. Water 
Resour Res, 45:W08417. doi:10.1029/2008wr007645. 

Villarini, G., Smith, J.A., Vitolo, R., and Stephenson, D.B., 2012, On the temporal clustering 
of US floods and its relationship to climate teleconnection patterns. International 
Journal of Climatology. doi:10.1002/joc.3458. 

Wang, C., and Dong, S., 2010, Is the basin-wide warming in the North Atlantic Ocean related 
to atmospheric carbon dioxide and global warming? Geophys Res Lett, 37. 
doi:10.1029/2010GL042743. 



~	
  35	
  ~	
  

Wilby, R.L., Conway, D., and Jones, P.D., 2002, Prospects for downscaling seasonal 
precipitation variability using conditioned weather generator parameters. Hydrological 
Processes, 16:1215–1234. doi:10.1002/hyp.1058. 

Wilby, R.L., Wedgbrow, C.S., and Fox, H.R., 2004, Seasonal predictability of the summer 
hydrometeorology of the River Thames, UK. Journal of Hydrology, 295:1–16. 
doi:10.1016/j.jhydrol.2004.02.015. 

Wood, S.N., 2000, Modelling and smoothing parameter estimation with multiple quadratic 
penalties. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 
62:413. 

Wood, S.N., 2006, Generalized additive models: an introduction with R. Chapman & 
Hall/CRC. 

Wood, S.N., and Augustin, N.H., 2002, GAMs with integrated model selection using 
penalized regression splines and applications to environmental modelling. Ecological 
Modelling, 157:157–177. doi:10.1016/s0304-3800(02)00193-x. 

Yee, T.W., 2010, VGLMs and VGAMs: An overview for applications in fisheries research. 
Fisheries Research, 101:116–126. doi:10.1016/j.fishres.2009.09.015. 

Yee, T., 2011, VGAM: Vector Generalized Linear and Additive Models (RDC Team, Ed.). 
http://cran.r-project.org/package=VGAM. 

Yee, T., and Stephenson, A., 2007, Vector generalized linear and additive extreme value 
models. Extremes, 10:1–19. doi:10.1007/s10687-007-0032-4. 

Yee, T., and Wild, C.J., 1996, Vector Generalized Additive Models. J R Statist Soc B, 
58:481–493. 

Zhou, L., Dai, A., Dai, Y., Vose, R., Zou, C.-Z., Tian, Y., and Chen, H., 2009, Spatial 
dependence of diurnal temperature range trends on precipitation from 1950 to 2004. 
Climate Dynamics, 32:429–440. doi:10.1007/s00382-008-0387-5. 

 


	NCAR/TN-501+STR
	TN-501+STR cover page
	TN 501_verso

	Table of Contents

	1 List of Tables
	Table 1 : Terms used in the Vector Generalized Additive Models
	Table 2 : Contributions of atmospheric variables (model term covariates) to distribution parameters,with the most influential covariate highlighted in bold for each extreme rainfall region

	2 List of Figures
	Figure 1 : Location of gauging stations in relation to the 14 extreme rainfall regions
	Figure 2 : Relative frequency of Q95 rainfall per day of the year for locations shown in (a), at (b)Paisley; and (c) Kew Royal Botanic Gardens
	Figure 3 : Generalized Extreme Value VGAM fitted to the Northern Ireland Region annual maximaprecipitation to model event intensity
	Figure 4 : Poisson VGAM fitted to the Northern Ireland Region Q95 precipitation to model eventfrequency
	Figure 5 : Comparison of Observed and Simulated results from: the Poisson VGAM for mean eventfrequency per day of year (Column 1); quantile-quantile plots (Column 2) ; quantile-quantile plots of theGEV VGAM for event magnitude (Column 3) and estimated annual return period magnitudes (Column4)

	3 Acknowledgments
	4 Introduction
	5 Data
	6 Method
	7 Parameter Selection
	8 Model Validation
	9 Conclusions
	10 References



