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Abstract. Existing measurement-based load indices generally provide
adequate performance when used with dynamic load balancing algo-
rithms in parallel scientific applications. An alternative that we present
are natural load indices (NLI) that facilitate further performance im-
provement and better resource usage. Example NLIs are mass of an atom
in a Molecular Dynamics (MD) code or rainfall amounts in a climate
simulation. This paper presents performance results when we implement
NLIs in NAMD2 a MD code. MD simulations are important for drug and
medical research and require significant computational resources for long
time periods. While an initial cost is incurred during code development
in manually determining that NLIs exist, they can then be used at run-
time with lower overhead and can reduce total execution time. Results
indicate maximum improvement of 21% when comparing existing to NLI
based algorithms with 10% overall improvement.

Key words: natural load index, load balancing, NAMD2

1 Introduction

The importance of providing alternative and additional methods to improve and
fine-tune performance in parallel scientific applications comes from the increasing
complexity and size of those simulations as they strive to model the underlying
physics phenomena with more accuracy. One such class of codes are Molecular
dynamics (MD) simulations that are vital tools used by medical and pharma-
ceutical researchers. MD simulations are undergoing changes in which higher
atom counts, longer simulations and higher resolutions are increasingly taxing
system resources and lengthening the time to completion[1, 2]. Decreasing the

? Support was granted by the Tech-X Corporation and the Climate Modeling Section
of the National Center for Atmospheric Research. Computer time was provided by
NSF MRI Grant #CNS0421498, NSF MRI Grant #CNS0420873, NSF MRI Grant
#CNS0420985, NSF sponsorship of the National Center for Atmospheric Research,
the University of Colorado, and a grant from the IBM Shared University Research
(SUR) program.
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time to completion and reducing the burden of MD codes will save computa-
tional resources as well as provide faster access to the final output data saving
both time and cost. The load balancing discussed in this paper is in the context
of application and data partitioned over a distributed memory multiprocessor
system including clusters. This discussion does not include uniform access shared
memory MIMD systems.

In implementing load balancing schemes within applications the expertise of
the domain scientists are crucial in fine tuning and optimization of the code in
order to achieve a desired level of load balancing. In addition, the expertise of
the computational scientific programmer is also needed to design and implement
e�cient code for the underlying architecture. The idea of the natural load index,
NLI, is to attempt to bring together the expertise of the domain and computa-
tional scientist to achieve an e�cient dynamic load balancing method for each
application. NLIs currently require an initial analysis to identify the appropriate
load index canididates; once an NLI has been identified in the physical properties
of an application, that same NLI can be e↵ectively used in di↵erent application
packages simulating the same physical phenomena. This initial step of NLI iden-
tification can be automated and with input from the domain scientist can be
made very e�cient.

3D - PATCH
SIMULATION SPACE
(CUBES)

CUTOFF RADIUS

2D - PATCH

Fig. 1: Diagrams showing the
NAMD 3-D computational
space (patches) and use of a
cuto↵ radius in a 2-D example.

A major advantage of the NLI approach is
the ability to dynamically and e�ciently mon-
itor the changes in the identified NLI(s) dur-
ing application execution to determine when
a load imbalance occurs and to e↵ect a load
balancing step when needed. This is a more
e�cient way to monitor the load than the
measurement-based approach. Run-time mea-
surements require additional instrumentation
(and hence introduce overhead) as well reduce
the accuracy of load balances. NLIs are com-
puted and needed by the application regard-
less of load balancing methods. The goal of
this paper is to demonstrate the e↵ectiveness
of NLI and does not focus on introducing or
implementing new load balancing techniques.

We present the results and performance
comparison of modifying the Molecular Dy-
namics (MD) code NAMD2 [3, 4] to use nat-

ural load indices (NLI) as an alternative to the existing NAMD2 measurement-

based indices [5]. Example NLIs are physical properties such as mass of an atom
in a molecular dynamics (MD) model or rainfall amounts in a climate simu-
lation. An NLI is a natural property of or a produced physical quantity of a
scientific model that directly or indirectly results in the desired representation
of the reality that the model portrays.
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This paper o↵ers results in an object oriented MD code written in C++
and shows a more general applicability of our technique. We are able to show
improvement without drastically changing the underlying code or existing load
balancing algorithms on three di↵ering computer architectures, not only when
comparing NLI vs. non-NLI for individual algorithms but NLI also provide the
best overall performance when compared to all tested algorithms. These qualities
demonstrates applicability to a variety of applications and architectures that use
similar algorithms. Our prior work showed how an NLI could be implemented
in a grid decomposition, procedural based (Fortran 90) climate model. Those
results were in the context of a simulation framework [6].

The remainder of the paper is organized as follows. Section 2 presents related
material pertinent to NAMD2 and its load balancing method. Section 3 intro-
duces the characteristics required of an NLI and subsequent correlations with
measured timing data. Section 4 describes the experimental framework, imple-
mentation and the NAMD2 modifications that were required. Section 4 also
presents individual algorithm performance and overall NAMD2 performance.
Finally, Section 5 discusses conclusions and directions of future work.

2 NAMD2 Background

The decomposition scheme used in NAMD divides the computation space into
a regular number of cubic regions called patches whose size is slightly larger
than the cuto↵ radius (Figure 1). The cuto↵ radius is the distance beyond which
certain forces (van der Walls) are not calculated since the contribution at those
distances is minimal. This also has the e↵ect of requiring a patch to interact
with only its nearest 26 neighbors [5].

Associated with each patch are a number of moveable and non-moveable
compute objects which together are responsible for force computations associ-
ated with the atoms assigned to a particular patch [4]. Proxy patches are repli-
cated patches normally residing on remote processors and remove the necessity
of communication in certain computations. Moveable compute objects are re-
sponsible for the non-bonded force calculations and require the most simulation
time while non-migratable work consists of bonded calculations and other back-
ground work [7, 5]. The migratable (also moveable) compute objects are those
that are redistributed during a load balancing event [7, 5]. Further descriptions
of NAMD2 used in this work are included in [8–12].

NAMD2 o↵ers four load balancing algorithms refine, alg7, orb and neigh-

bor whose combinations o↵er five configurations that may be set by the user
(refineonly, alg7, orb, other and neighbor). The load balancing portion of
NAMD2 is largely undocumented [13], but the implementation may be under-
stood by examining the code itself [14] as well as Kumar et al. [15]. The methods
are as follows: refine is a refinement procedure, alg7 is a greedy algorithm, orb
is orthogonal recursive bisection, other calls alg7 followed by refine; all require
every processor to communicate with one master processor (they are ”Central”
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algorithms). In contrast neighbor is a distributed load balancer that only bal-
ances load with a certain number of nearest processors.

The remainder of the paper will refer only to refine, alg7, orb and neighbor

because we are testing one individual invocation of an algorithm without regard
for combinations and duplications (ie. calling refine three times in one load
balancing invocation or calling orb followed by refine.

3 Correlation Discovery
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Fig. 2: Top panel for each benchmark shows the val-
ues of the individual masses (black lines) as well as
the averaged timing data (gray lines) for a uniquely
occurring mass. The bottom panel of each set is
a scatter plot of uniquely occurring mass versus
the averaged time for the computes associated with
that mass. CC stands for correlation coe�cient. The
dashed black line in the bottom-most panel denotes
the secondary trend referred to in the text.

Load imbalances are of-
ten determined by mea-
suring the execution time
of a partition of a model
that is assigned to a pro-
cessor. The measured ex-
ecution time is what we
refer to as timing data
which is the load index
used in NAMD2 [3, 5]. In
order to remove the code
related to the timing of
a partition and prior to
implementing an NLI in
the NAMD2 load balanc-
ing algorithms we had to
be confident that some
physical quantity existed
in the model that could
e↵ectively be used as a
load index.

Our earlier work re-
lated to CCSM/CAM3
[6] illustrated in de-
tail that correlations be-
tween timing data and
physical quantities (NLIs)
are e↵ective for load bal-
ancing. Our experience
with CCSM/CAM3 has
shown that an NLI can
be identified by studying
the underlying physics
equations that drive the
simulation, studying the
model code itself or by
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comparing a number of physical parameters from the model with timing data.
In the case of an MD simulation a logical starting point would be Newton’s
equation of motion and the observation that mass is the fundamental quantity
in force, momentum and acceleration calculations.

Early work by us involving LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator) [16, 17] indicated that atomic mass corresponded to
processing time although we did not explicitly calculate correlations at that time
and none are included in this paper. When we moved to NAMD, we made these
correlations explicit.
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Fig. 3: Top panel for each benchmark shows the val-
ues of the masses associated with each processor
(black lines with triangles) along with the back-
ground timing load (gray lines with circles) for that
processor. The bottom panel of each set is a scatter
plot of aggregate mass per processor versus time per
processor. CC stands for correlation coe�cient.

We used LAMMPS in or-
der to show that corre-
lation results from one
implementation could be
applied to another, NAMD2.
The correlations from
NAMD2 shown below
show that our observa-
tions from LAMMPS in
which a spatial decompo-
sition scheme is used in
initially assigning atoms
to processors were in-
deed readily applicable
to NAMD2.

In order for us to
use mass as an NLI, the
mass of a particular de-
composition domain had
to correlate with it’s re-
spective execution time.
Confirming this behav-
ior in NAMD2 consisted
of collecting the tim-
ing data for each move-
able compute object as
well as the timed back-
ground load for each pro-
cessor. The timing data
from the compute ob-
jects was compared di-
rectly to the aggregate
mass (in atomic mass
units (AMU)) of the
atoms associated with
that compute object. Recall from Section 2 that a moveable compute object
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is based on a patch so the aggregate mass assigned to a compute object is actu-
ally the aggregate mass of the patch from which it originates. The background
load in AMU is calculated by summing the masses from the patches assigned to
a specific processor.

The correlations between the timing data and atom mass for the three bench-
marks’ moveable compute and background loads are shown in Figures 2 and 3.
Data processing for the moveable compute objects consisted of calculating the
average time for each individual mass present in that particular benchmark. Be-
cause timing data varies considerably when measuring complex code in modern
computer systems (this due to the e↵ects of cache, interrupts, I/O and operat-
ing system events) an average value is a better indicator of long term statisti-
cal behavior. Note that the correlation coe�cients are generally good (a value
of 1.0 indicates perfect correlation, see our work in [6]) with the exception of
APO-A1 (Apolipoprotein A-I ) moveable computes. Even though the APO-A1
correlations for moveable computes are very low, a load balance using AMU is
still possible because: 1) The APO-A1 correlations for background load is su�-
ciently high and 2) there is a secondary trend that shows very good correlations
for higher aggregate masses (dashed line, bottom panel of Figure 2C).

4 Experimental Approach
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Fig. 4: Bar graph showing NLI and ORIG
speedups (compared to no load balancing) for
each processor count, simulation type and plat-
form. Cases in which NLI outperformed the
original implementation are shown in italic-bold
typeface. ORIG refers to the original implemen-
tation in NAMD before we applied any modifi-
cations.

Experiments were carried out
for each of three MD bench-
marks, JAC (the protein di-
hydrofolate reductase), ER-
GRE (an estrogen receptor)
and APO-A1 because of their
accessibility and usage in the
scientific literature and be-
cause they are indicative of
problems currently being sim-
ulated with MD codes. We
tested the four NAMD2 load
balancing algorithms: refine,

alg7, orb and neighbor, ab-
breviated neigh [15]. Table
2 shows processor counts as
well as the results of compar-
ing a particular algorithm’s
speedup using the m -based
implementation and the mod-
ified NLI version. An impor-
tant note regarding scaling is
that as processor counts increase for a specific simulation and load balancing
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method that the NLI technique improves (Table 2). Figure 4 shows the overall
best performance for the original and NLI implementations graphically.

The results of the new version of NAMD2 using an NLI as the load indicator
for load balancing shows improvement in 65 out of 88 trials in which individual
performance of an algorithm was compared. The best improvement for an indi-
vidual algorithm was 21%. Furthermore 13 out of 22 trials indicate that using
an NLI gives the best overall performance for a given simulation (10%). Exper-
iments were carried out on an IBM Power5, IBM BlueGene/L and Intel Xeon
systems. It is important to note that the trials for which better performance was
not obtained were still within very close proximity of the measurement-based
index. In this work we did not attempt to design and optimize load balancing
techniques for specific use with an NLI.

Table 1: Standard deviations calculated from wall-clock time per time-step for
two simulations on the Power5-p575 (Data corresponds to simulation in Figure
5) and BlueGene/L platforms before and after load balancing for NLI and the
original NAMD2 implementation.

Standard Deviation
Platform ORIG NLI

Power5-p575 Total Simulation 0.00368 0.00286
After Load Balance 0.00213 0.00193

BlueGene/L Total Simulation 0.01316 0.01004
After Load Balance 0.01008 0.00874

Speedups reported are over already load-balanced code and while the speedups
presented are small, they add up to large absolute time savings in long MD sim-
ulations. Consider that the best case scenario from the ER-GRE benchmark at
124 processors on the IBM Power5 decreases the execution time per time-step
from 0.0152 to 0.0138 seconds (�0.0014 sec.). That value can amount to an
absolute time savings of over 38 (out of 422) hours during a 108 time-step sim-
ulation. Similar arguments have successfully been applied to climate models [6]
and are applicable to other large simulations such as those found in the fusion,
ocean modeling and combustion modeling communities. Keep in mind that we
are applying NLIs to already highly-optimized codes with existing mature load
balancing systems.

The wall-clock time per individual time-step indicates that NLI produces
data with less variation and hence lower standard deviations than that produced
by the equivalent measurement-based simulation. Table 1 shows data from two
parallel platforms with standard deviations calculated after the load balance and
calculated for the entire simulation. Figure 5 illustrates the wall-clock time per
time-step data from which the IBM Power5-p575 standard deviations in Table 1
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are calculated. A prominent variation between NLI (shown in Figure 5) and the
original method is that NLI allows a load balance to be invoked at the start of
the simulation and removes the necessity for collecting the statistics required of
a measurement-based method; NLI to this point has a head start. The behavior
of the wall-clock time per time-step after a load balance has been invoked further
indicates that NLI outperforms the original method because of the lower values of
the calculated standard deviations (Table 1) which indicates a more accurate dis-
tribution of work.
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Fig. 5: Wall-clock time /simulation time-step
plotted for each of 1000 time-steps in a 124 pro-
cessor ER-GRE simulation on the IBM Power5-
p575. Black lines represent the measurement-
based original NAMD2 load balancing imple-
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spurious timing events occur with NLI. The
break at time-step 100 is where the load balanc-
ing occurs for the original implementation and
is required since timing statistics must be col-
lected. NLI allows a load balance to be executed
at time-step 2.

5 Conclusions and

Future Work

The results demonstrated are
encouraging for a number of
reasons. We are able to ap-
ply more e�cient load bal-
ances due to the removal of
timer infrastructure and over-
head, because we can apply
load balances earlier in a sim-
ulation and because we are
making more accurate load
balancing decisions. Detailed
points include: 1) In the work
regarding CCSM/CAM3 we
were able to demonstrate
how an NLI could be imple-
mented in a grid decomposi-
tion, procedural based (For-
tran90) model using a marker
for moist convective rainout
[6]. Those results were in the
context of a simulation frame-
work. This NLI implementa-
tion o↵ers results in an ob-
ject oriented MD code writ-
ten in C++ and shows a more
general applicability of our
technique. 2) When modify-
ing NAMD2, we did not want
to make drastic changes to the
underlying structure of the
code in order to show that the
NLI method was e↵ective and
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straightforward to implement. 3) Using existing algorithms shows that using an
NLI is advantageous without changing anything in the algorithm proper. This
demonstrates applicability to a variety of applications that may use similar algo-
rithms. 4) Overall improvement occurs when using NLI in NAMD2 particularly
on the IBM Power5 platform. As processor count increases, NLI performance
generally increases. 5) Correlations and characteristics from one benchmark do
not drastically change when executing them on di↵erent architectures. All cor-
relations were collected from 1 processor simulations executed on the Intel Xeon
cluster, but performance improvement spanned all architectures. 6) The NLI
gives application developers another option for making load balancing decisions
which in certain cases has clear advantages over traditional measurement-based
load indices.

Current work involves providing a formalization for using the NLI technique
in a number of models. Current work also involves a successful implementa-
tion in CSSM/CAM3 as well as correlations from POP3 [18], an ocean model
and LAMMPS indicate that the NLI technique has a general applicability and
should be classified with existing load indices. Future work should investigate
specific algorithms that may be more conducive to using the NLI in NAMD2 load
balancing implementations. Furthermore, our implementation may benefit from
more substantial modifications of NAMD2 as would taking into consideration
the masses associated with proxy patches. We also plan to apply load balancing
decisions based on atom types and bond types rather than mass alone. Atom
type is indicative of the number of available bonds with more bonds requiring
more computation. In turn, the bond types themselves may also be indicative of
computational di↵erences.

Table 2: Matrix of individual algorithm performance calculated as the time of the
original NAMD2 measurement-based execution time divided by the time for the
NLI version. Speedups greater than one indicate that our NLI method outper-
formed the original NAMD2 implementation. Boldface type indicates speedups
greater than or equal to 1.0 and shows where an NLI based algorithm is the best
performer.

Power5-p575 BlueGene/L P4-Xeon

Sim. Procs. neigh alg7 orb refine neighr alg7 orb refine neigh alg7 orb refine

jac 16 1.07 0.98 1.06 1.05 1.02 0.99 1.02 0.94 1.01 0.99 1.01 1.01
32 1.09 1.01 1.09 1.08 1.03 0.94 1.06 1.02 1.01 0.92 1.00 1.01
64 1.12 1.01 1.21 1.11 1.05 0.98 1.12 1.03 - - - -

er-gre 14 1.08 1.04 1.05 1.03 1.00 1.05 0.98 0.96 1.03 1.03 0.98 0.96

30 1.08 1.02 1.01 0.97 1.01 1.06 0.98 0.92 1.04 1.04 1.06 0.92

62 1.09 1.10 1.10 1.05 1.01 1.03 1.04 0.98 - - - -

124 1.10 1.02 1.08 1.10 1.03 1.03 1.03 1.06 - - - -

apo-a1 144 1.03 0.80 1.05 0.99 1.00 0.89 1.02 0.91 - - - -

312 1.03 0.93 1.06 1.00 1.00 0.88 1.09 0.96 - - - -



10 Stefan Muszala et al.

References
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