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PREFACE

This document serves as a tutorial/manual for the R package in2extRemes, which
provides point-and-click windows for the extRemes (versions > 2.0) package. The
aim of in2extRemes and this document is to facilitate a shortened learning curve
for performing statistical (univariate) extreme value analysis (EVA). Originally, the
graphical user interfaces (windows) were provided by extRemes (versions < 2.0),
which predominantly interfaced to the R package ismev, a software package that
accompanies Coles (2001). Now, extRemes > 2.0 is a command-line (no windows)
EVA software package similar to ismev.

This document gives a brief overview of EVA, as well as a tutorial on how
to install, start and use in2extRemes. Knowledge of R is not required to use
in2extRemes apart from a few minor commands that are detailed here.
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Table 1: Notation used in this manuscript.

EVA Extreme Value Analysis
EVD Extreme Value Distribution
EVT Extreme Value Theory

df (cumulative) distribution function
GEV generalized extreme value

GP generalized Pareto

PP point process

POT peak-over-threshold
qq-plot quantile-quantile plot

iid independent and identically distributed

1 location parameter

o scale parameter

o logarithm of the scale parameter (¢ = Ino)

19 shape parameter (£ > 0 implies a heavy tail df)

MLE  Maximum Likelihood Estimation/Estimate/Estimator
AIC Akaike Information Criterion
BIC Bayesian Information Criterion

1 Notation used in this tutorial

The notation used is designed to simplify later sections without having to show
every GUI window. Therefore, it is important to familiarize yourself with this
section. Some general abbreviations and notation used in this manuscript are
given in Table 1 for ease of reference.

The command (in2extRemes () above) will open a GUI window similar to the
one in figure 1 (actual appearance will depend on your specific operating system).
This window will be referred to as the main window. At the top left are three menu
items: File, Plot and Analyze. Clicking on any of these displays a submenu of
choices (e.g., figure 2).

Sometimes submenu choices have a further submenu of selections that can be
made. When this is the case, a small arrow appears to the right of the choice
to indicate the existence of more choices (e.g., Simulate Data and Transform
Data under File in figure 2).

If the instructions are to click on the File menu, then Simulate Data, followed

1X



Figure 1: The main in2extRemes dialogue window. Actual appearance is system
dependent.

O 0O [X| Into the extRemes Package

Filel Plotl Analyzel




Figure 2: The main in2extRemes window showing the choices under File. Actual
appearance is system dependent.

ONON®) [X| Into the extRemes Package

Filel Plotl Analyzel

Read Data
Simulate Data

Block Maxima
Decluster
Transform Data -

Data Summary

Scrubber
Clear log file

Save

Exit

by Generalized Extreme Value (GEV), then we will write

File > Simulate Data > Generalized Extreme Value (GEV)

Figures 2 - 4 show the submenus for each of the three main window choices.
The choices are separated into groups of similar functionality. For example, the
first two selections under File involve setting up data sets that can be handled by
the various windows. In this case, a file can be read into the R session or data
can be randomly generated from a GEV or GP df by selecting Simulate Data.
In either case, an R object of class "in2extRemesDatalObject" is created, which
is a list object with certain set components. The important component being the
data component, which contains the data frame object holding the data that has
either been read from a file or simulated within R. It is possible to take an existing
data object in R and convert it to an "in2extRemesDataObject" object using the
as.2extRemesDataObject function. Only objects of class "in2extRemesDataObject"
will be available for use within the in2extRemes windows. Note that unlike most
GUI window programs, you must select which data set you want to use each time

x1



you open a new window; as opposed to selecting a data set and having each new
window operate on the currently opened file.

The next three choices under the File menu manipulate existing data that
have already been read into R and structured as "in2extRemesDataObject" class
objects (i.e., data that are in a specific format and are recognized by the point-and-
click windows). The first, Block Maxima, creates an entirely new data object,
whereas the latter two simply add columns to the existing data set.

The Block Maxima option takes the maxima of one variable over blocks
defined by another variable where both are columns of the same data frame (usu-
ally, a column containing the years is used for the blocks so that annual maxima
are taken). A new "in2extRemesDataObject" object is created containing the
block maxima data along with any other columns whose row entries correspond
to the first instance of the block maximum within each block. An example of
performing this step is given later in section 6.

The Decluster option will be discussed in more detail in section 10, and the
options under Transform Data should be fairly straightforward.

Data Summary allows one to obtain a simple summary of a data set. Scrub-
ber allows you to remove a data column or a fitted object from an existing
"in2extRemesDataObject" object.

Clear log file erases the current in2extRemes.log file and replaces the con-
tents with a message that the file has been cleared along with the date and time
that it was cleared.

Save invokes the save.image () function to save the R workspace. It is a good
idea to do this periodically.

Exit closes the main window, but does not quit the current R session (use
q("yes"), q("no") or qO) for that).

The remaining options under Plot and Analyze will be discussed in sub-
sequent sections. However, to continue with the notation description, it is helpful
to look at the Scatter Plot option under Plot. That is,

Plot > Scatter Plot

Figure 5 shows the window that pops up after the Scatter Plot selection
is made. Most windows have the Data Object list box, which will display the
available data objects. Note that if no "in2extRemesDatalObject" class objects
exist, then an error will be returned, which will show up in your R session window.
A data object must be selected from this list box. In this example, a data set
called Phx has been selected. In a grooved box just below the Data Object list
box are two optional arguments. The first is a data entry field, which allows you
to enter a value. In this case, the value must be a single character, and the default
is a circle (the letter "o"). This option tells the plot function which character to

xii



Figure 3: The main in2extRemes window showing the choices under Plot. Actual

appearance is system dependent.
SMSHS) [X| Into the extRemes Package

File | Plot | Analyze |

Scatter Plot
Mean Residual Life Plot

Fit POT model to a range of thresholds
Auto tail-dependence function

Fit Diagnostics
Fitted Model Density with Histogram
Return Level Plot
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Figure 4: The main in2extRemes window showing the choices under Analyze.

Actual appearance is system dependent.
0.0 [X| Into the extRemes Package

File | Plot | Analyze |

Extreme Value Distributions
Poisson Distribution

Parameter Confidence Intervals
Likelihood-ratio test

Fit Summary

Extremal Index
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Figure 5: Example of a GUI window. Results from Plot > Scatter Plot.
\ Scatter Plot

Data Object

Flood

Ft

PORTwinter

Phx

bmFt

Point Character (pch) o el
" line
X-axis variable: y-axis variable:

ear — || MinT | A
Month /| MinT.neg 7

OK ’ Cancel ‘ Help H

use to make the plot. Next are two radio buttons giving a choice between making
a scatter plot or a line plot (the default being a scatter plot). Finally, the abscissa
and ordinate axes variables are selected in the next two list boxes. The values in
these lists will be filled in after a selection from Data Object is made.

The short-hand notation that will be used to describe the above procedure for
making a scatter plot according to the choices in figure 5 is as follows.

Plot > Scatter Plot

Select:

Data Object > Phx

x-axis variable: > Year
y-axis variable: > MinT.neg

Because the default selections for Point Character (pch) and point vs line
radio buttons are used, they are not explicitly stated in the above short-hand
instructions. Note that the different choice fields (e.g., Data Object) are given
in bold face, while the specific selection choices are shown in this font.



2 Introduction

Extreme value analysis (EVA) refers to the use of extreme value theory (EVT) for
analyzing data where interest is in rare, or low probability, events (e.g., annual
maximum precipitation, temperature excesses over a very high threshold, wind
speeds exceeding a high threshold, etc.). Not all high-impact events fall under the
category of EVA, but typically the events under consideration also have a high
impact on human life, economic stability, infrastructures, the environment, etc.

As an example, the recent heavy rain and consequent flooding in September
2013 in Colorado resulted in several deaths, the loss of property, severe damage to
numerous roads, among other problems (http://wwa.colorado.edu/resources/front-
range-floods/assessment.pdf). A single flooding event in the area is not unpre-
cedented (e.g., Boulder, Colorado, where some of the worst flooding occurred, is
named for the large boulders deposited by previous floods at the base of Boulder
Creek), it is rare enough for the asymptotic assumptions of EVT to provide a
good approximation. In particular, the Boulder Creek flooding was on the scale
of a 50- or 100-year event meaning that the probability of seeing an event of such
magnitude in a given year is on the order of 1/50 or 1/100.! Of course, the simul-
taneous flooding across the Colorado front range area was an extremely rare event
(on the order of a 1000-year event). The assumptions for fitting extreme value
distributions (EVD’s) to data can, and should always, be checked, so it is not
necessary to a priori decide on its appropriateness. A brief background on EVA
is given in section 3, and the reader is referred to Coles (2001) for more detailed
information (see also Beirlant et al., 2004; de Haan and Ferreira, 2006; Reiss and
Thomas, 2007; Resnick, 2007).

The R (R Core Team, 2013) package ismev (Heffernan and Stephenson, 2012)
is an R port of the same-named S-plus package accompanying Coles (2001). The
R package extRemes (versions < 2.0 Gilleland and Katz, 2011) provided graphical
user interfaces (GUI’s) or windows to functions from the ismev package, along with
some additional functionality of its own. Since version 2.0, however, extRemes
contains only command-line functions drawing on functionality from various EVA
packages in R (see Gilleland et al., 2013, for a review of many of the existing
packages in R for performing EVA). The present package, in2extRemes, replaces
the windows into ismev with windows into extRemes > 2.0 (Gilleland and Katz,
2014). For the most part, users familiar with extRemes < 2.0 will not find it
difficult to switch to the new GUI's. Many of them are identical to those used
previously. Output from some of the functions will look different; especially many

!Much uncertainty is associated with EVA. Initial estimates were that the Boulder Creek
flooding was a 100-year event, and such an event cannot be ruled out (within the associated
uncertainty). Later estimates put the flooding at a 50-year event. On the other hand, flooding
in nearby Longmont, Colorado was at the 500-year level.



of the plots. Section 4 provides all of the information required to install and open
in2extRemes.

3 Crash Course on Extreme Value Analysis

The fundamental results of EVT come from a basic property associated with the
maximum value of a sequence of sample observations. Suppose, for example, that
we have a sample x1, ..., z90. If we divide this sequence into two subsequences by
splitting it in the middle (i.e., 1, ..., z100 and x101, ..., T200), then the maximum
value of the original sequence can be obtained, indirectly, as the maximum of the
maximum of the two series. That is,

max{xy,..., T} = max{max{xy,...,T100}, max{xip1, ..., T200}}

Consequently, an approximate distribution for the maximum must have a dis-
tribution function (df) F that satisfies F?(z) = F(az +b), where a > 0 and b are
scaling and centering parameters, respectively, that arise because the maximum
value of a sequence increases as the length of the sequence increases. Such a df is
called max stable.

The only max-stable df’s are in the form of the generalized extreme value
(GEV) family. This family can be written in a simple form involving three para-
meters: location (denoted, here, as p), scale (¢ > 0) and shape (). Different
authors parametrize the GEV df differently. In this document, as in the extRemes
package, we parametrize the GEV df so that a positive shape parameter implies
a heavy tail df (i.e., the upper tail decays polynomially) and a negative shape
parameter implies a bounded upper tail. A zero-valued shape parameter, defined
by continuity, yields the light-tailed (tail decays exponentially) df. Figure 6 shows
an example of how the sign of the shape parameter affects the GEV probability
density function.

If interest is in the minima of sequences, the same techniques can be easily
applied once we realize that min{z,...,z,} = —max{—z,...,—x,}. That is,
we can simply take the negative transformation of our sample of interest, apply
the methods for maxima, and remember to transform back in the final analysis.

Of course, simply looking at the maximum (or minimum) of a sequence is not
the only approach for analyzing extremes. We may wish to analyze values that
exceed some high threshold (typically in terms of the excesses over the threshold).
For simplicity, we begin with the exponential df, which has an important property
of being memory-less. That is, Pr{X > z+u|X > u} = Pr{X > z} for any x > 0
and u > 0.

In order to approximate the upper tail of any df, the memory-less property
must be weakened to peak over threshold (POT) stability. A POT stable df has

3



Figure 6: Example of generalized extreme value (GEV) probability density func-
tions for each of the three types of tail behavior. Scale parameter varies to magnify
differences in the tail behavior. Dashed vertical line shows upper bound of the (re-
verse) Weibull distribution. Location parameter is fixed at 0, and different values
of this parameter would simply shift the densities shown left or right.

0.6

1 —— Weibull (shape < 0)
Gumbel (shape = 0)
—— Frechet (shape > 0)

0.5

0.4

density
0.3
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0.1
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a shape that remains the same, but may otherwise be rescaled as the threshold
is increased. The generalized Pareto (GP) df is POT stable meaning that the
rescaled excess over the high threshold, w,

Y(u)= ()
has the same df as u increases. The notation o(u) > 0 emphasizes that the scale
factor is a function of the threshold. In particular, o(u) = o + &(u — p), where
o and pu correspond to the scale and location parameters of the equivalent GEV
df characterizing the df for the maximum taken from the same original series (the
shape parameter ¢ is the same for both df’s).

As one might anticipate, the POT-stability of the GP df is consistent with the
max-stability of the GEV df. Moreover, the GP df also consists of three types
of df’s, and again, different authors parametrize the shape parameter differently.
Analogously as for the GEV df, we parametrize the GP df so that a positive shape
parameter implies a heavy upper tail and negative shape implies a bounded upper
tail. Regardless of parametrization, a zero-valued shape parameter, defined by
continuity, again yields a df with a light upper tail; which, in this case, is the
aforementioned memory-less exponential df. The threshold for the GP df takes
the place of a location parameter, so that there are effectively only two parameters
for the GP df. If the GEV approximation (with a given shape parameter) holds
for the maximum of a random variable, then the GP df provides an approximation
for the upper tail and with precisely the same shape parameter. Figure 7 shows an
example of how the GP probability density function varies according to the sign
of the shape parameter.

When interest is in simply the frequency of occurrence of an event (e.g., a
variable’s exceeding a high threshold), and the probability of the event is low,
then the Poisson distribution provides a good approximation. In fact, a two-
dimensional point process (PP) can be employed whereby both the frequency and
intensity are analyzed simultaneously. Such a model is sometimes referred to as
a marked point process whereby, in this case, a one-dimensional Poisson process
for the frequency component is employed and the marks (threshold excesses) are
modeled by the GP df. Such a model can be easily parametrized as a GEV df, with
the block length usually taken to be annual. This model is sometimes referred to as
a Poisson-GP model, and the parameters are estimated orthogonally. However, it
can also be modeled as a PP, which has the advantage of being able to fit both the
frequency and GP parameters simultaneously so that account of the uncertainty
in the parameter estimates is properly taken.

A natural question to consider before analyzing extreme values of a data set
concerns which of the above general approaches (block maxima vs POT) to take.
Figure 8 is an example demonstrating the pros and cons of each approach. The



Figure 7: Example of generalized Pareto (GP) probability density functions for
each of the three types of tail behavior. Scale parameter varies to magnify dif-
ferences in the tail behavior. Dashed vertical line shows upper bound of beta
distribution.
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raw data are shown in the upper left panel. In the upper right panel, blocks are
marked by vertical dashed lines and the maximum in each block is indicated by
a large orange number. Finally, values that exceed a high threshold are shown as
black squares in the lower left panel of the figure.

The POT approach typically utilizes more of the available data than the block
maxima approach, which can be vital given that extremes are rare so that they are
associated with a paucity of data. However, it can be common for threshold ex-
cesses to cluster above a high threshold; especially with atmospheric data. While
not important in terms of fitting EVD’s to data, subsequent uncertainty analysis
will be questionable (e.g., return level confidence intervals will be too narrow be-
cause effectively fewer data points are available than were used to fit the model).

Other idiosyncrasies to note from Figure 8 are that the block maxima approach
may include points that are not very extreme (e.g., maxima number 1 in the figure),
while in some cases it might miss extreme values simply because a larger value
occurred somewhere else in the block (e.g., the second, or third, point that exceeds
the threshold). On the other hand, the block maxima approach typically satisfies
the independence assumption to a good approximation, and is easily interpretable
in terms of return values.

When analyzing extremes of atmospheric phenomena, one often encounters
non-stationarity in the data. That is, the df is not constant over time so that
the df for the extremes may have a gradual trend or shift over time; even abrupt
changes have been known to occur (e.g. Gilleland and Katz, 2011). The usual
method for analyzing such data is to fit an EVD with parameters that vary as a
function of a covariate (e.g., time is often used).

For reference, the exact form of the EVD’s are given in the appendix along with
tables showing some of their properties. Different methods for parameter estima-
tion exist, and the most popular one is arguably maximum likelihood estimation
(MLE), which easily allows for inclusion of covariate terms. MLE requires optim-
izing the likelihood function, which for EVD’s does not have a closed form analytic
solution. Therefore, numerical optimization is required.

The package extRemes has a few other choices for parameter estimation, in-
cluding Bayesian. However, in2extRemes currently only supports the MLE option.

4 Getting Started

4.1 R Basics

Installing R Installing R depends on your specific system, and may occasionally
change with new versions of R. Therefore, the reader is referred to the R web page
(http://www.r-project.org) for up-to-date instructions. Be sure to include the



Figure 8: Example data (upper left panel) showing block maxima (numbered in
upper right panel where vertical dashed lines represent the start of a new block)
and where points exceed a threshold (lower left panel; horizontal line shows the
threshold and values exceeding the threshold are marked with a black square).
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Tel/Tk tools, which generally are not included with the base R distribution. It
may be necessary to load these tools separately, so read the instructions provided
on the R web site carefully. One of the most frequently asked questions concerns
having installed R, and getting an error message about the tcltk package not
available when trying to run in2extRemes.

Once R has been installed (with the Tcl/Tk tools, and subsequently also the
tcltk package, which is separate from the Tcl/Tk tools), then you will need to
install the in2extRemes package (all other required packages, such as extRemes,
will be automatically installed). The installation can easily be done from within
your R session.

Starting an R session To begin an R session, simply double click on the R
icon (Mac GUI and Windows) or type R from the command prompt (linux, unix
and Mac Xterm or Terminal users). Note that when an R session is opened, a file
called .RData is created. This file will be located in the same directory as where
R was opened (linux, unix, Mac Xterm/Terminal). Windows and Mac GUI users
can type getwd() from the R command prompt to see where it exists on their
systems. To see how to change this directory (primarily Windows and Mac GUI
users, linux/unix users can just open R in a different folder), type help(setwd)
from the R command prompt.

Installing an R package To install in2extRemes, type:
install.packages("in2extRemes")

You will be asked to select a CRAN mirror. Select one near to your location and
click on the OK button. Once you have installed in2extRemes successfully, then
you will not need to use the above command again. To be sure to have the most
recent version of all your packages, you can use update.packages(), which will
update all installed packages.

Loading a package Once you have installed in2extRemes, and every time you
begin a new R session, you will need to load the package in order to use it. To do
so, use the following command.

library(in2extRemes)

This command will also load extRemes and other required packages; namely,
Lmoments (Karvanen, 2011), distillery (Gilleland, 2013), and car (Fox and



Weisberg, 2011). Note that when installing a package, quotation marks are used
(e.g., "in2extRemes"), but when loading a package, they are not used.

R functions and help The R project web site has good introductory manuals
for using R, so the reader is referred there. However, just to understand some basic
syntax, a few brief remarks are made here. You may have noticed that functions are
called by their name with arguments listed in parentheses, and when no arguments
are used, the parentheses are still required. If the parentheses are not used, then
the function’s source code is listed out (unless the function is invisible). Every
function has an associated help file, which can be seen using the help command,
or using a ? symbol before the function name. For special commands like matrix
multiplication (i.e., %*%) quotation marks are used (e.g., ?"%*%"). Sometimes
packages have help files (e.g., type 7extRemes after loading the package) to give
an overview of the package. Many packages that have example data sets will also
have help files for those data sets. The package extRemes, for example, contains
several example data sets, which are named in the help file for the package. Often
in this document, the reader will be referred to a help file in R. When this is the
case, the notation used will be simply ?function.name.

As you begin to get familiar with R and EVA, some potentially useful help
functions from extRemes include:

?7fevd

?devd
?pextRemes
?decluster
7extremalindex
?lr.test
7threshrange.plot
?mrlplot

7atdf

?taildep
?taildep.test

Starting in2extRemes To begin using the GUI windows, type the following
command.

in2extRemes ()
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in2extRemes.log File Whenever a command is executed from an in2extRemes
GUI window, the command is copied to a file called in2extRemes.log, which is
a simple ASCII text file that shows the entire history of commands invoked by
the windows. This file can be very useful for learning how to perform EVA from
the command line in R, which will eventually allow you to accomplish many more
tasks than just those available from the windows. This file is written to the same
directory as your current R workspace (use getwd () to find the path where that
is).

Main object types in R The main object types that you will likely deal with
in R include: data frames, lists, vectors, matrices and arrays. A data frame is
generally what you get after reading a data set into R. It is a matrix-like object
in that it has the same number of rows for each column. Unlike a matrix, its
columns are necessarily named (default names if none are present are V1, V2, etc.)
and can be accessed by name. For example, suppose x is a data frame object in
R with columns: "height" and "weight". The weight column can be accessed
by x[["weight"]] or by x$weight. The latter option requires less typing, but
cannot be used by the in2extremes windows. Therefore, when looking in the
in2extRemes. log file, you will only see the former, long-hand, approach.

Although a data frame object must have the same number of rows for each
column, each column may have wildly different data types. For example, it is
possible to have a column of date objects giving a date (and perhaps time) stamp
for each data entry, another column giving a character or flag of sorts, while other
columns may be numeric, integer, etc.

A list object is essentially a collection of components that may be very different
from one another. For example, you might have a component that is a function,
another that is a list, another that is a vector of length 10, another that is a vector
of length 3, and another that is a matrix or data frame. A data frame object
is a type of list object. Matrices, vectors and arrays are fairly self explanatory,
but every component must have the same type (i.e., character, numeric, etc.).
However, it is possible to change types on the fly (unlike, for example, in C).

Missing Values Missing values are denoted as NA in R. The logical function
is.na can be useful for determining whether or not any missing values exist.
Similarly, infinite values may be represented by Inf or -Inf. Division by zero
results in NaN (not a number). Each may at times be handled similarly or differently
depending on a specific function. Generally, missing values will result in NA when
functions are applied (e.g., 1 + NA results in NA).
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Citing R and R Packages Because of the amount of work involved in writing
software, and the need for funding, it is highly recommended to cite your use of
software in research articles, etc. To see how to cite the R programming language
in research articles, type the following command from the R prompt, which will
show how to cite the software in both I¥IpXand regular text formats.

citation()

To see how to cite R packages in research articles, the same command is
used, but the package name is given in quotes. So, for example, when citing
in2extRemes, you should also cite extRemes. The references to cite may change
with new versions, so you should always use the following commands in order to
cite the correct reference for the specific version of the software that you are using.

citation("in2extRemes")
citation("extRemes")

Saving the workspace and quitting R As objects are assigned in R, they
exist in the .RData file and are not saved until explicitly saved either by the
command save.image() or upon exiting the R session when selecting “yes" as
prompted after entering the command q(). It is also possible to quit R and
save the workspace with the command q("yes"), or quit R without saving the
workspace with q("no").

5 Data

Reading data into R can be performed in a number of ways (e.g., read.data).
However, in order for the data to be “seen" by the in2extRemes windows, it must
be of a particular type. One way to ensure that it is in the correct form is to load
the data from a file using the in2extRemes windows (i.e., File > Read Data;
cf. section 5.1). Alternatively, data frame objects already in your R workspace
may be converted to the correct format using as.in2extRemesDataObject (cf.
section 5.2).
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Table 2: United States total economic damage (in billions of US dollars, USD)
caused by floods (USDMG) by hydrologic year from 1932-1997. Also gives damage
per capita (DMGPC) and damage per unit wealth (LOSSPW). See Pielke and
Downton (2000), Katz et al. (2002) and ?Flood for more information about these
data. The full data set can be loaded, via the extRemes package, into the R
workspace using data(Flood).

OBS HYEAR USDMG DMGPC LOSSPW

1932 0.1212 0.9708 36.73
1933 0.4387 3.4934 143.26
1934 0.1168 0.9242 39.04
1935 1.4177 11.1411 461.27

= N

64 1995 5.1108 19.4504 235.34
65 1996 5.9774 22.5410 269.62
66 1997 8.3576 31.2275 367.34

5.1 Loading Data into in2extRemes

There are two general types of datasets that can be read in using in2extRemes.
One type is referred to, here, as common and the other, R source. Common
data can take many forms as long as any headers do not exceed one line, and
the rows represent the observations and the columns the variables. For example,
Table 2 represents a typical common dataset; in this case data representing U.S.
flood damage. See Pielke and Downton (2000) or Katz et al. (2002) for more
information on these data.

R source data refer to data that have been dumped from R. These typically
have a .R or .r extension. That is, it is written in R source code from within R
itself. Normally, these are not the types of files that a user would need to load.
As an R source file, the same dataset in Table 2 would look like the following.

"Flood"

structure(1ist(0BS = c(1, 2, 3, 4, ..., 64, 65, 66),
HYEAR = c(1932, 1933, 1934, 1935, ..., 1995, 1996, 1997),
USDMG = c(0.1212, 0.4387, 0.1168, 1.4177, ..., 5.1108, 5.9774, 8.3576),
DMGPC = c(0.9708, 3.4934, 0.9242, 11.1411, ..., 19.4504, 22.541,
31.2275),
LOSSPW = c(36.73, 143.26, 39.04, 461.27, ..., 235.34, 269.62, 367.34)),
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.Names = c("OBS", "HYEAR", "USDMG", "DMGPC", "LOSSPW"),
class = "data.frame", row.names = c("1", "2", "3", "4" . ., "64",
|l65ll’ l166l|))

To read in a data set from a file anywhere on your computer for use with
in2extRemes, do the following.

File > Read Data

Browse for your data using the window that opens, and double click on it (or single
click > Open).

Select:

One of the Common or R source radio buttons depending on the file type.
Enter a delimiter (common type only) if other than spaces (e.g., enter a comma if
it is comma delimited).

If there is a one-line header naming the columns of the data, then click the Header
check button.

Enter a name in Save As (in R) > OK.

Note that any header information must contain only column names. Any other
header text prior to the data should be removed before reading into in2extRemes.
Alternatively, the data can be read into R and converted to the correct type (see
section 5.2). Figure 9 shows an example of the window that appears after I browse
and select the file you want to open. In this case, I have chosen an R source file
that contains the flood damage data partially shown in Table 2, and I have chosen
to call it FloodDamage. When I click OK, summary information is displayed in
my R session along with a message about having saved the workspace.

5.2 Loading Data from the R Workspace

In some cases, it may be beneficial to first read data into R (or simulate data in
a way not covered by the limited approaches availabel with in2extRemes). In or-
der to make such data visible to the in2extremes windows, they must be converted
into a certain format. This can be accomplished using the as. in2extRemesDataObject
command. For example, we will make use of several example data sets available
with the package, extRemes. The following commands will load and convert each
data set into a format that is readable by in2extRemes windows. Note that the
name to the left of the arrows (<-) is the name that will show up in the Data
Object list boxes. See their help files for more information on any of them (e.g.,

14



Figure 9: Example of the dialogue window that opens after File > Read Data
> selecting a dataset from the browsing window. In this case, an R source file
containing the flood damage data has been selected, which is partially displayed
in Table 2.

X| Read File
File Type |Delimiter:| Header”Save As (in R) 0K

 Common || [FloodDamage p—
ance

* R source

15



?Tphap).

# US flood damage data.
data(Flood)
FloodDamage <- as.in2extRemesDataObject(Flood)

# Fort Collins precipitation data.
data(Fort)
FortCollinsPrecip <- as.in2extRemesDataObject(Fort)

# Phoenix airport temperature data.
data(Tphap)
Phx <- as.in2extRemesDataObject (Tphap)

# Hurricane damage.
data(damage)
HurricaneDamage <- as.in2extRemesDatalbject(damage)

# Port Jervis winter temperature data.
data(PORTw)
PORTwinter <- as.in2extRemesDataObject(PORTw)

# Number of Hurricanes per year from 1925 to 1995.
data(Rsum)
NumberOfHurricanes <- as.in2extRemesDataObject (Rsum)

5.3 Example Data sets from extRemes

In section 5.2, several example data sets are loaded and set up so that they can
be seen by in2extRemes windows. The data can be plotted as in the example in
section 4, but appendix C shows the command-line R code for making the plots
in this section, which are more sophisticated than what can be managed through
the in2extRemes interface. For reference, we show plots for some of these datasets
here.

Figure 10 plots Fort Collins precipitation data against month (top left panel),
year (top right panel) and day (lower left panel). It is clear that the data vary
seasonally, but there is no clear trend over time.

Phoenix minimum temperature (deg F') at Sky Harbor airport is shown against
year in Figure 11 (top left panel). A clear upward trend over time is evident. In
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Figure 10: Daily precipitation at a rain gauge in Fort Collins, Colorado, U.S.A.
from 1900 to 1999. Panels show precipitation against month (top left), year (top
right) and day (bottom left).
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the upper right corner of the figure is estimated economic damage in billions of US
dollars. No clear trend is present, but an extreme value, much larger than any other
in this example, at the very beginning of the record is apparent.? Finally, total
economic damage (billions USD) from floods is displayed in the lower left panel.
The plot demonstrates increased variability with time, as well as larger extremes.
Also shown are the number of hurricanes per year (lower right). Note that some
years have no hurricanes, while the number otherwise varies from year-to-year.

Figure 12 shows the maximum winter temperature data example from the data
object we assigned to PORTwinter in section 5.2. No obvious trend through time
is apparent (left panel), but at least a weak positive association with the Atlantic
Oscillation (AO) index is suggested (right panel).

5.4 Simulating Data

It is also possible to simulate data from a GEV or GP df from the in2extRemes
windows (see also ?revd). To simulate an iid sample from the GEV df, do the
following.

File > Simulate Data > Generalized Extreme Value (GEV)
Enter parameter values as desired (see section 3 and Figure 6 for information about
these parameters).
Enter a name for the simulated data > Generate

Figure 13 demonstrates simulating GEV distributed data using the default
values and assigning the results to an object called gevsiml. Once data have been
simulated, a plot of the simulated data will appear, and the assigned data will be
available for use in the Data Object list boxes.

Simple linear trends may also be incorporated into the location (GEV df) or
scale (GP df) parameters by entering a number other than zero (default) in the
Trend entry box.

6 Analyzing Block Maxima

In section 5.2, daily precipitation (inches) data for Fort Collins, Colorado, U.S.A.
was loaded and converted to an object readable by in2extremes, and given the
name FortCollinsPrecip. See Katz et al. (2002) and ?Fort for more information
on these data.

In order to fit the GEV df to these data, we first need to find their annual
maxima (we could choose blocks other than annual blocks, but we want them to

2This value is the (third) 1926 hurricane (The blow that broke the boom).
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Figure 11: Phoenix summer (July-August) minimum temperature (deg F) 1948 to
1990 at Sky Harbor airport (top left). Economic damage from hurricanes (billions
USD, top right). Total economic damage from floods (billions USD, lower left).
Number of hurricanes per year (lower right).
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Figure 12: Winter maximum temperature (deg. C) at Port Jervis, New York 1927
to 1995. Plotted against year (left panel) and AO index (right panel).
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Figure 13: Example of the window that appears after File > Simulate Data >
Generalized Extreme Value (GEV) and entering gevsiml in the Save As
entry box.

X| Simulate GEV Data

Save As
GEV parameters

'gevsiml
Location parameter (mu): 0  Trend: 0
Scale parameter (sigma): 1
Shape parameter (xi) : 0.2

Generate

Sample Size: |50

Cancel Help

20



Figure 14: Example of finding block maxima using in2extRemes.

\ Block Maxima
Data Object

FloodDamage 1
FortCollinsPrecip
HurricaneDamage J
PORTwinter

Phx i

Find block maxima of ... Blocks
obs “|[lobs

month obs
day J month

ear day
Prec /| year

Save As (in R) bmFtPrec

ﬂ Cancel

be long enough so that the assumptions for using the GEV will be sure to be met).
The following instructions show how to find the block maxima for these data (see
also Figure 14).

File > Block Maxima

Select:

Data Object > FortCollinsPrecip
Find block maxima of ... > Prec
Blocks > year

Save As (in R) > bmFtPrec

OK

We are now ready to begin analyzing these data using the GEV df.

6.1 Fitting the GEV df to Data

We fit the GEV df to block maxima data where the blocks are sufficiently long
that the assumptions for using this distribution are met; typically block lengths
are on a yearly time frame. In this section we will fit the GEV df to two data sets
that were set up in section 5.2; one of which was converted to annual maximum
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data above.
We begin by fitting to annual maximum precipitation data from Fort Collins,
called bmFtPrec in our Data Object list boxes.

Analyze > Extreme Value Distributions

Select:

Data Object > bmFtPrec

Response® > Prec

Model Type > Generalized Extreme Value (GEV)
Plot diagnostics > check

Response Units* > inches
OK

Figure 15 shows the window with the selections from above.

The resulting diagnostic plots are made and summary information about the fit
is printed to the R session window. Figure 16 shows the plots that are produced.
The upper left panel shows a qqg-plot of the empirical data quantiles against those
derived from the fitted GEV df. The plot is reasonably straight indicating that
the assumptions for using the GEV df are met at least to a good approximation.
The apparent departure from the straight line for the most extreme values is
of a fairly typical magnitude when performing extreme value analysis, and it is
important to remember that considerable uncertainty exists for these values so
that such deviations at the extreme end are not necessarily indicative of ill-met
assumptions.

The qg-plot in the upper right panel is similar to the qg-plot in the upper left
panel. It shows the qg-plot for randomly generated data from the fitted GEV df
against the empirical data quantiles along with 95% confidence bands, a 1-1 line
and a fitted regression line. Note that this plot may appear slightly different from
the one you obtain, and indeed, from each subsequent time it is plotted because
the data are randomly generated anew.

The density plot in the lower left panel shows good agreement between the
empirical density (solid black line) and that of the fitted GEV df (dashed dark
blue line). Finally, the return level plot (lower right panel) is on the log scale so
that the heavy-tail case is concave, the bounded-tail case convex, and the light-tail
case linear. The empirical return levels match well with those from the fitted df.
For the GEV df, the return levels are the same as the quantiles so that this plot is

3The response is simply the data vector to which the GEV df will be fit. In this case, Prec,
the annual maximum precipitation in Fort Collins, Colorado.

4The units entry box is optional, but entering the units will allow them to appear on certain
plots.
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Figure 15: Window showing the options selected for fitting the GEV df to the
annual maximum Fort Collins precipitation as described in the text.
00O y X! Fit EV Model

Options

|
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similar to the qqg-plot in the upper left panel, but where the two sets of quantiles
are plotted against the return period (on a log scale) instead of each other. The
apparent concave shape shape of the return level plot is indicative of a heavy-tail
GEV df?

It is possible to plot the diagnostic plots in Figure 16 without re-fitting the
GEV df to the data in the following way.

Plot > Fit Diagnostics
Select:

Data Object > bmFtPrec
Select a fit > fit1

From above, we see that the fitted object is available from bmFitPrec under the
name fitl. Each time a new fit is made, a new item called fitX where X is
the number of the fitted object. If you lose track of which object is which, you
can always use: Analyze > Fit Summary, then select the data object and fit
number, then OK. The summary of the fit will display in the R session window,
which will include information about the fitted object.

Having verified that the diagnostic plots support the assumptions for using the
GEV df, we can now look at the summary results. The summary is printed in
the R session window automatically upon executing the fit, but you can always
conjure it up again as in the paragraph above. The summary shows the actual
function call used to implement the fit.

The summary shows the estimated parameters as p ~ 1.35, ¢ ~ 0.53 and
€ ~ 0.17. Also shown are the negative log-likelihood value (= 104.96), estimated
parameter standard errors, parameter covariance matrix, as well as the AIC and
BIC for the optimized fit. We will see how to obtain confidence intervals for the
parameter estimates and return levels in section 6.2.

Another data example that was set up for use with in2extRemes in section 5.2
and assigned the name PORTwinter already gives annual maxima (see Thompson

5 Although the return level plot’s abscissa is labelled Return Period, it is actually an (asymp-
totic) approximation that is not very accurate at lower values; e.g., empirical return levels shown
to be below one year are common. It is easy to plot the exact return periods, but at the expense
of losing the exact linearity when the shape parameter is identically zero, which is arguably more
important. It is common practice to label the axis as Return Period (personal communication,
Alec G. Stephenson, 2013). Indeed, such short return periods are not generally of interest for
EVA.

6Tt is possible to verify in the log file that the call listed at the beginning of the summary is
the final function call. Note that the data argument is always xdat. In the log file, you will see
the commands dd <- get( "bmFtPrec") and xdat <- dd[["data"]], which verifies that xdat
is the correct data frame.
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Figure 16: Diagnostic plots from fitting the GEV df to annual maximum precipit-
ation (inches) data in Fort Collins, Colorado. Plots are qq-plot of empirical data
quantiles against fitted GEV df quantiles (top left panel), qq-plot of randomly gen-
erated data from the fitted GEV df against the empirical data quantiles with 95%
confidence bands (top right panel), empirical density of observed annual maxima
(solid black line) with fitted GEV df density (dashed dark blue line) superimposed

(lower left panel), and return level plot (log scale) with 95% normal approximation

point-wise confidence intervals.
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and Wallace (1998), Wettstein and Mearns (2002) and ?PORTw for more details
about these data). Therefore, we do not need to obtain the annual maxima as we
did for the precipitation data. To fit the GV df to these data:

Analyze > Extreme Value Distributions

Select:

Data Object > PORTwinter

Response > TMX1

Model Type > Generalized Extreme Value (GEV)
Plot diagnostics > check

Response Units > deg C

OK

Diagnostic plots from fitting the GEV df to these maximum winter temperature
data are shown in Figure 17. The assumptions appear reasonable, although some
curvature in the qg-plot (upper left panel) is evident. Notice that unlike the
previous fit (Figure 16), the return level plot is convex because of the fitted model’s
being the upper bounded-tail case (§ ~ —0.22).

6.2 Confidence Intervals for GEV Parameters and Return
Levels

To obtain normal approximation confidence intervals for the parameter estimates
and the 100-year return level” for the GEV df fit to the annual maximum Fort
Collins precipitation data, do the following.

Analyze > Parameter Confidence Intervals
Select:

Data Object > bmFtPrec

Select a fit > fit18

OK

Similar to the fit summary displayed in section 6.1, the original function call
is displayed, followed by a matrix showing the parameter estimates and their 95%
confidence intervals, as well as a message indicating that they were obtained via

"Any return level can be found by entering the desired return period into the return period
entry box, but for brevity, here, we simply use the default value of 100.

8Here, it is assumed that the fitted object is called fit1, but select the appropriate name for
your model object.
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Figure 17: Diagnostic plots from fitting the GEV df to maximum winter temper-

ature (deg C) at Port Jervis, New York (1927-1995).
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Table 3: 95% confidence intervals based on the normal approximation for the GEV
df fit to annual maximum precipitation (inches) in Fort Collins, Colorado (values
rounded to two decimal places).

95% lower CI Estimate 95% upper CI

location 1.23 1.35 1.47
scale 0.44 0.53 0.63
shape -0.01 0.17 0.35
100-year 3.35 5.10 6.84

return level

the normal approximation. Following these is the estimated 100-year return level
along with its normal approximation 95% confidence interval. The printed output
is reproduced in Table 3 as a check. Note that zero falls within the 95% confidence
interval for the shape parameter. Therefore, the null hypothesis that the data
follow a Gumbel df cannot be rejected. Because £ = 0 is a single point in a con-
tinuous parameter space, there is zero probability of estimating a shape parameter
that is exactly zero. It is possible to test the hypothesis that ¢ = 0 against the
alternatives (e.g., by checking if zero falls within the confidence limits), but it is
arguably preferable to always allow the shape parameter to be nonzero even if a
test supports retaining the null hypothesis that & = 0.

Although situated about 80 km south of Fort Collins, Boulder, Colorado, which
has a very similar climate, received over 9 inches of rainfall in 24 hours in early
September 2013, which is well above the 100-year return level upper confidence
bound shown in Table 3. The event was part of a wide-spread heavy precipitation
event that reached as far north as Fort Collins and as far south as Colorado Springs,
Colorado (which lies approximately 80 km south of Boulder).

The confidence intervals obtained in Table 3 were calculated using the normal
approximation method, which is fast and easy to compute. However, return level
estimates with longer ranges (and sometimes those for the shape parameter) often
have a more skewed distribution, making these intervals less accurate in general.
Two other methods for finding confidence intervals are available with extRemes
and in2extremes for MLE’s: parametric bootstrap and profile likelihood.”

If parametric bootstrap is selected from the Method list box, then the

9These methods are not available for the models with covariates in the parameter estimates
discussed in sections 6.3, 8.4 and 9.3, except for parameter confidence intervals in the case of the
profile-likelihood method.

28



number of bootstrap replicates can be changed as desired. Both the bootstrap
and profile-likelihood methods are iterative, and may take time to run. First, we
demonstrate the parametric bootstrap method.

Analyze > Parameter Confidence Intervals
Select:

Data Object > bmFtPrec

Select a fit > fitl

Method > parametric bootstrap

OK

Results will vary some because the method is based on repeatedly drawing
random samples from the fitted df, but should not vary too widely and for one
instance, 95% bootstrap confidence interval for the 100-year return level was es-
timated to be about (3.77, 7.13). Notice that the MLE is not in the exact center of
the interval and that both bounds are shifted towards higher values as compared
to those based on the normal approximation. For details about the parametric
bootstrap, see appendix B.0.4.

The following example demonstrates how to use the profile-likelihood approach
for the 100-year return level. For this approach, it is generally advisable to plot
the profile likelihood to make sure that the resulting confidence intervals are reas-
onable. The approach can be used for either return levels or parameters, but note
that in2extRemes only allows for changing the search limits for return levels (for
which this approach is arguably more necessary) and not individual parameter
estimates. The software will attempt to find an appropriate search range, but
will not always succeed; leading to intervals that are clearly incorrect (e.g., the
estimated parameter does not fall inside the limits). In such a case, the search
range can be changed in the command-line code of extRemes, but not from the
in2extRemes window.
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Analyze > Parameter Confidence Intervals
Select:

Data Object > bmFtPrec

Select a fit > fitl

Method > profile likelihood

Parameter > uncheck

OK

The resulting limits are estimated to be (3.94, 7.11). It is difficult to obtain a
graph for the profile likelihood for this particular fit, but clearly the three vertical
dashed lines are present, which is most important. Narrowing the plotting limits
(Lower Limit and Upper Limit entry boxes) as well as changing the Number
of points at which to calculate the profile likelihood value can refine the
approximation, but for these data, it does not drastically change the limits. The
limits obtained by the profile-likelihood method are in better agreement with those
obtained from the parametric bootstrap than those from the normal approxima-
tion, which is less appropriate for such a long return period. In order to provide
an example that yields a more legible graph for the profile likelihood, we turn to
the Port Jervis maximum winter temperature example.

Figure 18 shows the profile likelihood for the 100-year return level from the
GEV df fit to the Port Jervis maximum winter temperature example, which is
much easier to visualize than that for the Fort Collins precipitation example. The
horizontal line in the figure is at the maximum profile likelihood value minus
one half of the 0.95 quantile of the x? df. Per the interval given by Eq (13) in
appendix B.0.3, all parameter values associated with likelihoods that differ from
the maximum likelihood for the parameter in question by less than one half of
the x7_, s—; quantile are within the 1 — o confidence region. Therefore, all return
levels associated with profile likelihood values above the lower horizontal line in
the figure are contained in the 95% confidence region, and all the return values
with profile likelihood values below the line are outside the 95% region. Thus,
the approximate confidence intervals are obtained by finding where the profile
likelihood crosses this horizontal line, and the blue vertical dashed lines show
where the estimated confidence intervals were found. The black dashed line in the
middle shows the MLE, in this case ~ 23.79 degrees centigrade for the 100-year
return level of annual maximum winter temperature.

6.3 Fitting a Non-Stationary GEV df to Data

In section 6.1, the GEV df was fit to winter temperature maxima at Port Jervis,
New York. It is believed, however, that this series should vary with the Atlantic
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Figure 18: Example of profile likelihood graph for the 100-year return level for the
GEV df fit to annual maximum winter temperatures at Port Jervis, New York,
U.S.A.

fevd(x = TMX1, data = xdat, location.fun = ~1, scale.fun = ~1,
shape.fun = ~1, use.phi = FALSE, type = "GEV", units = "deg C",
na.action = na.fail)
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Oscillation (e.g. Thompson and Wallace, 1998). We can analyze whether or not
such non-stationarity exists for the extremes by fitting a GEV model with the
Atlantic Oscillation (AO) index as a covariate in one or more of its parameters.
We can then perform the likelihood-ratio test on this model against the model we
fit in section 6.1 without covariates. First, we try to fit the GEV df with AO index
(given in the example data set as ADindex) as a linear covariate in the location
parameter.

Analyze > Extreme Value Distributions

Data Object > PORTwinter

Response > TMX1

Location parameter function = > Replace 1 with AOindex
Model Type > Generalized Extreme Value (GEV)

Plot diagnostics > check

Response Units > deg C

OK

Figure 19 shows the resulting diagnostic plots. Notice that the plots shown
are similar to those for the non-stationary GEV df fits from section 6.1. However,
important differences exist. For example, the qq-plot in the upper left panel and
the density plot in the lower left panel are for data that have been transformed to
the Gumbel scale, which results in a stationary df. The second qg-plot (upper right
panel) is effectively the same as before except now the data have been simulated
from a non-stationary GEV df. The most striking difference comes from the return
level plot, which is now a plot of the block maxima with effective return levels that
show how the GEV df varies with the AO index. Note that the 2-year return level
corresponds to the median of the GEV df. Generally, these diagnostic plots suggest
that the assumptions for the model are reasonable, however, some curvature is still
apparent in the qg-plots.

To perform the likelihood-ratio test to determine if inclusion of the AO index
in the location parameter is statistically significant, we use the following.

Analyze > Likelihood-ratio test
Data Object > PORTwinter

Select base fit (MO0) > fit1

Select comparison fit (M1) > fit2

The test gives a deviance statistic (likelihood-ratio statistic) of 11.89, which is
larger than the associated x? 0.95 quantile of 3.84, and the associated p-value is
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Figure 19: Diagnostic plots for non-stationary GEV df fit to Port Jervis, New York
maximum winter temperature (deg C) data example.
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less than 0.001. Therefore, these results provide strong support for including the
AQ index as a covariate in the location parameter.

One may want to also check if the scale parameter should also vary with AO
index.

Analyze > Extreme Value Distributions

Data Object > PORTwinter

Response > TMX1

Location parameter function = > Replace 1 with A0index
Scale parameter function = > Replace 1 with A0index
log-link for scale parameter > check

Model Type > Generalized Extreme Value (GEV)

Plot diagnostics > check

Response Units > deg C

OK

The above fits the model with a location parameter that varies linearly with
AOQ index and a scale parameter that varies exponentially with it. Performing the
likelihood-ratio test of this model against the model without covariates gives a
statistically significant result, but when comparing the model to that with a linear
covariate in the location parameter only is not significant. Therefore, one can
conclude that there is not strong support for varying the parameters as a function
of the AO index.

As another example of the use of covariates, it is checked if the location para-
meter should depend not only on the AO index, but on the year as well.

Analyze > Extreme Value Distributions

Data Object > PORTwinter

Response > TMX1

Location parameter function = > Replace 1 with AOindex + Year
Model Type > Generalized Extreme Value (GEV)

Plot diagnostics > check

Response Units > deg C

OK

Note that various R formulas can be utilized in the parameter function ~
entry boxes. See 7formula for details about how R formulas work.

Applying the likelihood-ratio test to compare the fit with both AO index and
year in the model against that with only AO index shows that the p-value is about

34



0.25, so we fail to reject the null hypothesis that only AO index should be included
as a covariate for the location parameter. The AIC and BIC (appendix B.0.2) cri-
terion are also both larger for the model with both AO index and year; supporting
the conclusion of the likelihood-ratio test.

7 Frequency of Extremes

Often it is of interest to look at the frequency of extreme event occurrences. As
the event becomes more rare, the occurrence of events should approach a Poisson
process, so that the relative frequency of event occurrence over a given time interval
approaches a Poisson distribution. For fitting the Poisson distribution to extreme
event occurrences with covariates, in2extRemes calls upon the glm function from
the stats package, which is automatically available with R (R Core Team, 2013)
(without any need to separately install or load the package). Otherwise, without
covariates, there is only one parameter to estimate (the rate parameter or mean),
the MLE of which is simply the average number of events over the entire record.

In section 5.2 an example data set was loaded that gives the numbers of hur-
ricanes per year and called NumberOfHurricanes (Figure 11 lower right panel).
The simple, no covariate, fit is performed by the following.

Analyze > Poisson Distribution
Select:

Data Object > NumberOfHurricanes
Response > Ct

OK

The main result from the above is that the estimated rate parameter, 5\, is ap-
proximately 1.82, indicating that, on average, nearly two hurricanes caused damage
per year from 1925 to 1995. A property of the Poisson distribution is that the mean
and variance are the same and are equal to the rate parameter. As per Katz (2002),
the estimated variance is shown to be 1.752, which is only slightly less than that of
the estimated mean (1.817). The chi-square statistic (with 70 degrees of freedom)
is shown to be 67.49 with associated p-value of 0.563 indicating that there is no
significant difference in the mean and variance. Similar to the GEV distribution,
it is often of interest to incorporate a covariate into the Poisson distribution. For
example, it is of interest with these data to incorporate ENSO state as a covariate.

Analyze > Poisson Distribution
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Figure 20: Diagnostics for GEV df fit to Port Jervis, New York winter maximum
temperatures with AO index and year as covariates in the location parameter.
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Select:

Data Object > NumberOfHurricanes
Response > Ct

Covariate (log link) > EN

Plot diagnostics > check

OK

The column EN for this data frame represents the ENSO state (-1 for La Nina
events, 1 for for El Nifio events, and 0 otherwise). A plot of the residuals is
created if the plot diagnostics check button is checked, and can also be performed
later using Plot > Fit Diagnostics. The fitted model is found to be In\ ~
0.56 — 0.25 - EN. For fitting a Poisson regression model to data, a likelihood-ratio
statistic is given in the main toolkit dialog, where the ratio is the null model (of
no trend in the data) to the model with a trend (in this case, ENSO). Here the
addition of ENSO as a covariate is significant at the 5% level (p-value ~ 0.03)
indicating that the inclusion of the ENSO term as a covariate is reasonable.

8 Analyzing Threshold Excesses

In this section, the extent by which a value z exceeds a high threshold, u, is
modeled. That is, interest lies in the random variable ¥ = X — u, given that
X >wu. We call Y a threshold excess, or simply excess. EVT provides justification
for fitting the GP df to excesses.

8.1 Threshold Selection

When fitting the GEV df to block maxima, it is important to choose blocks suffi-
ciently long that the GEV provides a good approximation. However, they must be
short enough that enough data remains to be modeled in order to avoid excesses
variability in the parameter estimates. In the case of block maxima, it is common
to take blocks to be a year or a season in length. Provided a sufficient number of
years worth of data are available, determining an appropriate block length is not
generally an issue.

For POT models, an analogous bias-variance trade-off is required, but the
choice is usually of greater concern than for block maxima. In this case, a threshold,
u should be chosen high enough for the EVD to provide a reasonable approxima-
tion. On the other hand, it should be low enough so that the estimated parameter
variances are sufficiently small.

Many approaches to threshold selection have been proposed with two methods
for diagnosing an appropriate threshold available with in2extremes. The first is
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to fit the GP df to the excesses for a range of thresholds, and then choose the
lowest value of u such that the parameter estimates for fits with adjacent higher
values of u being reasonably stable.!® The second, often called the mean residual
life plot (or mean excess plot), uses a result that the mean of the excesses over
a high threshold should vary linearly with the threshold once a sufficiently high
threshold is attained. We will demonstrate this approach for the GP df using the
Fort Collins, Colorado daily precipitation example.

Plot > Fit POT model to a range of thresholds
Select:

Data Object > FortCollinsPrecip

Select Variable > Prec

Minimum Threshold > 0.2

Maximum Threshold > 2.5

Number of thresholds > 30

OK

The above may take several moments as many fits, in this case 30, must be per-
formed. The minimum and maximum threshold values, as well as the number of
thresholds, are somewhat arbitrary decisions that should be made with the data
in mind. If very little data were above 2.5 inches, then it would not be useful to
try anything larger. Figure 21 shows the results for the above example. Because
the parameter estimates do not appear to vary considerably for even the smal-
lest values, we might choose a relatively low value (e.g., 0.395 inches) for now,
although we will revisit this choice later when we fit the PP model to these data.
The estimates begin to vary for the much higher thresholds, but the estimated
values at lower thresholds easily fall within the 95% confidence intervals (vertical
line segments).!!

Next, we make the mean residual life plot for these same data. Plot > Mean
Residual Life Plot
Select:
Data Object > FortCollinsPrecip
Select Variable > Prec

10Recall that the scale parameter for the GP df is a function of the threshold. Therefore, a
transformed scale parameter is plotted so that it should be independent of the threshold.

HSimilar plots created by ismev and used by extRemes versions < 2.0 show uncertainty
using 1.6 times the estimated parameter standard error rather than 95% confidence intervals.
Therefore, results may differ slightly.
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Figure 21: GP df fit using a range of thresholds to the daily precipitation in
Fort Collins data. Vertical line segments display the 95% normal approximation
confidence intervals for each parameter estimate.

threshrange.plot(x = var.val, r = ¢(0.2, 2.5), type = "GP", nint = 30,
na.action = na.fail)
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OK

The resulting plot from the above instructions is shown in Figure 22. It is not
always easy to diagnose a good threshold choice from these plots, but the idea is to
find the lowest threshold whereby a straight line could be drawn from that point
to higher values and be within the uncertainty bounds (dashed gray lines).

Next, we will fit the PP model to a range of thresholds.

Plot > Fit POT model to a range of thresholds
Select:

Data Object > FortCollinsPrecip

Select Variable > Prec

Minimum Threshold > 0.3

Maximum Threshold > 2

Type of POT model > PP

Number of thresholds > 20

OK

The resulting plots are shown in Figure 23. Once again, it appears that 0.395
inches will suffice as the threshold.

8.2 Fitting the Generalized Pareto df to Data

Figure 24 shows the GP df fit over a range of thresholds to the hurricane damage
data (Figure 11, upper right panel). From these plots, it appears that a threshold
of 6 billion USD will be a good choice. One issue for fitting the GP df to these data
is that there are different numbers of hurricanes each year, and some years may
not have a hurricane. Therefore, we need to estimate the number of hurricanes
per year. It is not important as far estimating the parameters, but it will be
important in terms of estimating return levels appropriately. Because there are
144 hurricanes that occurred over the 70-year span, one reasonable choice is to use
144/70, which is about 2.06 per year. This information is entered into the Time
Units entry box in the form 2.06/year.!?

Analyze > Extreme Value Distributions
Select:
Data Object > HurricaneDamage

12The original data ranged from 1925 to 1995 with no events in 1925. Therefore, Katz (2002)
treats the data as having a 71-year span.
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Figure 22: Mean residual life plot for daily Fort Collins precipitation data. Dashed
gray lines show the 95% confidence intervals.
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Figure 23: Parameter values from fitting the PP model using a range of thresholds
to the daily Fort Collins precipitation data.

threshrange.plot(x = var.val, r = ¢(0.35, 2), type = "PP", nint = 20,
na.action = na.fail)
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Figure 24: GP df fit for a range of thresholds to the hurricane damage (billions
USD) data example.

threshrange.plot(x = var.val, r = c¢(5, 13), type = "GP", nint = 20,
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Figure 25: Diagnostic plots for the GP df fit to the hurricane damage (billions
USD) data example with a threshold of 6 billion USD.
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Response > Dam

Model Type > Generalized Pareto (GP)
Plot diagnostics > check

Threshold > Value(s) /function > 6
Response Units > billion USD

Time Units > 2.06/year

OK

Resulting diagnostic plots from the above fit are shown in Figure 25, and the
assumptions appear to be reasonable.
In section 8, it was decided that a threshold of 0.395 inches is appropriate for
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the precipitation data from Fort Collins. Because these values occur daily for the
entire year, we can use the default time units of 365.25 days per year (Time Units
> days). Therefore, we are ready to fit the GP df to these data.

Analyze > Extreme Value Distributions
Select:

Data Object > FortCollinsPrecip
Response > Prec

Model Type > Generalized Pareto (GP)
Plot diagnostics > check

Threshold > Value(s)/function > 0.395
Response Units > inches

OK

Diagnostic plots from the above fit are shown in Figure 26, and the assumptions
for fitting the GP df to the data appear to be reasonable.

Figure 27 shows diagnostic plots from fitting the GP df to the flood damage
data; in particular, the variable named USDMG from the Flood data example avail-
able from extRemes and loaded into in2extRemes in section 5.2 as FloodDamage.
We leave it for the reader to: (i) plot the data, (ii) verify that the 5 billion USD
threshold used to fit the model is appropriate and (iii) reproduce Figure 27.13

8.3 Confidence Intervals for GP Parameters and Return
Levels

Confidence intervals for GP df parameters and return levels can be obtained ana-
logously as for the GEV df. For example, the following obtains normal approxim-
ation 95% confidence intervals for the parameters of the GP df fit to the hurricane
damage data.

Analyze > Parameter Confidence Intervals
Select:

Data Object > HurricaneDamage

Select a fit > fitl

Method > normal approximation

Results from the above instructions are displayed in Table 4. Notice that
the lower return level bound for the 100-year return level is negative, implying

I3Hint: how many floods are there each year in these data?
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Figure 26: Diagnostics for GP df fit to daily Fort Collins precipitation (inches)
using a threshold of 0.395 inches.
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Figure 27: Diagnostic plots from fitting the GP df to US flood damage (billions
USD) data with a threshold of 5 billion USD.
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Table 4: 95% normal approximation confidence intervals for the parameters and
100-year return level from the GP df fit to hurricane damage data (billions USD).
Values rounded to two decimal places.

95% lower CI Estimate 95% upper CI

scale 1.03 4.59 8.15
shape -0.15 0.51 1.18
100-year -0.21 44.71 89.62

return level

that the 100-year event could give money back. Naturally, this is not the correct
interpretation. In fact, there is nothing to prevent the normal approximation
interval from taking on irrelevant values. However, recall from section 6.2 that the
normal approximation is generally not appropriate for return levels associated with
such a long period. The profile-likelihood and parametric bootstrap methods are
better suited to the task. Indeed, intervals obtained from the parametric bootstrap
have the property that they will preserve the natural range of the data giving more
realistic bounds; in this case, using the default replicate sample size of 502, the
interval is about (17.72, 120.85) billion USD.' The parametric bootstrap should
be run again with larger replicate sample sizes to make sure it is large enough; a
second run with replicate sample sizes of 1000 gave a very similar interval.

Analyze > Parameter Confidence Intervals

Select:

Data Object > HurricaneDamage

Select a fit > fit1

Method > profile likelihood

Parameter > uncheck

Lower Limit > 16

Upper Limit > 400

Number of points at which to calculate profile likelihood > 75
OK

The values for the lower and upper limits, as well as the number of points at
which to calculate the profile likelihood, were all determined by trial-and-error.
The final result is shown in Figure 28, and the estimated confidence interval is

14 Again, results for the parametric bootstrap will vary, but should not vary substantially.
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found to be about (25.00, 363.83). Note the large skewness in the profile likelihood
for these data leading to a very wide interval with the maximum likelihood estimate
close to the lower bound. This last interval is perhaps the most accurate of three,
and it emphasizes the difficulty in providing risk guidance for long return period
events. We can say that our best guess for the 100-year return period of hurricane
damage is about 44 billion USD, but we cannot rule out much larger amounts.!®

8.4 Fitting a non-stationary GP df to Data

Figure 11 (top left) clearly shows an apparent increasing trend in the Phoenix
Sky Harbor summer minimum temperature (deg F) series. In order to properly
fit the GP df to these data, therefore, it is necessary to account for this trend.
In doing so, we will allow for both a non-constant threshold, as well as a varying
scale parameter. We vary the threshold linearly by (recall that we are interested
in extremes of minimum temperature, so we will be fitting to the negative summer
minimum temperature)

u(t) = —68 —7-t,te0,1] (1)

In Eq (1), t represents (re-scaled) time in years.'6 In order to vary the threshold,
we will need to create a numeric vector, which we will assign the name u, using
commands on the R prompt as follows.

u <- -68 - 7 * (Tphap$Year - 48)/42

Next, we will need to transform the Year column of the in2extRemes data
object Phx.

File > Transform Data > Affine Transformation
Select:

Data Object > Phx

Variables to Transform > Year

(X -c>48

)/b > 42

15The flood damage data have been adjusted for inflation and changes in vulnerability (i.e.,
population and wealth) over time.

161t is recommended that the covariates within the parameter models are (at least approxim-
ately) centered and scaled. For this particular example, it makes a big difference in terms of
being able to fit the model.
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Figure 28: Profile likelihood for the 100-year return level from the GP df fit to the
hurricane damage data with a threshold of 6 billion USD.
fevd(x = Dam, data = xdat, threshold = 6, threshold.fun = ~1,
location.fun = ~1, scale.fun = ~1, shape.fun = ~1, use.phi = FALSE,
type = "GP", units = "billions USD", time.units = "2.09/year",
na.action = na.fail)
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OK

A message is printed to the R session window that a new column has been
added to our Phx data called Year.c48b42.!" Next, we need to take the negative
transformation of the MinT column and assign it to a new column.

File > Transform Data > Negative
Select:

Data Object > Phx

Variables to Transform > MinT
OK

A message is printed to the R session window that says the negative transform-
ation has been taken and assigned the name MinT.neg. Now, we are ready to fit
the model; recalling that we have 62 data points per year (summer only).

Analyze > Extreme Value Distributions
Select:

Data Object > Phx

Response > MinT.neg

log-link for scale parameter > check!®
Scale parameter function™ > Year.c48b42
Model Type > Generalized Pareto (GP)
Plot diagnostics > check

Threshold > vector > select

Threshold > Value(s)/function > u
Response Units > deg F

Time Units > 62/year

OK

Fit diagnostics from the above procedure are displayed in Figure 29. The
assumptions for fitting the GP df appear to be reasonable for these data. The
effective return level plot shows the data plotted (as lines) by observation entry,
which is not necessarily appropriate for these data. Moreover, because the GP

1"The new column will always be named by the name of the old column followed by .cXbY
where X is the number subtracted from the previous column, and Y the number by which it is
divided.

18To ensure that the scale parameter will be positive everywhere, we use the log-link, which
also forces it to be a non-linear function of year.
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Figure 29: Fit diagnostics for GP df fit to Phoenix Shy Harbor Airport (negative)
summer minimum temperature (deg F) data with varying threshold according to
Eq (1) and scale parameter varying non-linearly by (re-scaled) year.
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does not directly model the frequency (only the intensity) of threshold excesses, it
can be more useful to analyze these data using the PP model, where it is possible
to simultaneously model non-stationarity in all of these parameters.

9 Point Process Model

Continuing with the examples from section 8.2 to which the GP was fitted to these
data, we will now fit the PP model, which allows for modeling both the frequency
and intensity of values that exceed a high threshold simultaneously. Because of
the nature of the hurricane damage data set, whereby the dates of occurrence of
hurricanes is not included, it is possible for multiple hurricanes to occur in a given
year, thus violating the Poisson process assumption. Therefore, this data set is
not further analyzed here.

9.1 Fitting the PP model to Data

We continue analyzing the Fort Collins, Colorado precipitation data, using the
threshold of 0.395 inches found to be a reasonable choice in section 8.1 (Figure 23).

Analyze > Extreme Value Distributions
Select:

Data Object > FortCollinsPrecip
Response > Prec

Model Type > Point Process (PP)

Plot diagnostics > check

Threshold > Value(s)/function > 0.395
Response Units > inches

OK

Figure 30 displays the resulting diagnostic plots from the above fit. Once
again, the plots are nearly identical to those from the GP df fit to the same data
(Figure 26). However, the Z plot appears problematic. Clear curvature exists that
extends well beyond the 95% confidence bands. Although the assumptions for
fitting the GP df to the excesses appear to be met, those for fitting the Poisson
to the frequency of exceeding the threshold apparently are not met. Figure 31
shows the diagnostic plots from fitting the PP model to these data, but with a
higher threshold of 0.75 inches. Now, all of the qqg-plots appear to show that
the assumptions are reasonable, although the Z plot still shows some curvature,
which may be a result of not incorporating seasonality into the model. Note that
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Figure 30: Diagnostic plots from fitting a PP model to the Fort Collins, Colorado
precipitation (inches) data using a threshold of 0.395 inches.
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a substantially higher threshold of 2 inches was also applied, and while all of the
diagnostics appeared to show a reasonable model, the estimated shape parameter
(~ —0.6) differs considerably from those obtained from lower thresholds and with
the block maxima approach. Therefore, such a high threshold does not appear to
be reasonable for fitting the PP to these data.

9.2 Confidence Intervals for PP Parameters and Return
Levels

Confidence intervals for PP parameters and return levels can be attained analog-
ously as in sections 6.2 and 8.3. For example, to obtain normal approximation
limits for the PP model fit to the hurricane damage data in section 9.1, we can
use the following.

Analyze > Parameter Confidence Intervals
Select:

Data Object > HurricaneDamage

Select a fit > fit2

Method > normal approximation

Table 5 shows the results of the above instructions. It is useful to compare
this table with Table 4 where the 95% normal approximation limits are provided
for the parameter estimates and 100-year return level from fitting the GP df to
these same data. Indeed, results are nearly identical for the 100-year return level
and shape parameter. In addition to having a lower bound for the 100-year return
level that is below zero (i.e., outside the natural range of the variable), that for
the scale parameter is also negative. Again, this issue is an artifact of the normal
approximation method, and perhaps better return level confidence intervals can
be found from another method, such as the profile likelihood method.

9.3 Fitting a non-stationary PP model to Data

In section 8.4, a non-stationary GP df is fit to Phoenix summer (negative) min-
imum temperature (deg F) data with a linearly varying threshold by year and an
annually varying scale parameter. A difficulty in interpreting the results concerns
the inability to coherently model the frequency of exceeding the event. In this
section, this obstacle is removed by fitting a non-stationary PP model to the data.
In this case, we will allow the location parameter, as well as the threshold, to
vary. Recall that we assigned the R object u in section 8.4 in order to allow the
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Figure 31: Diagnostic plots from fitting a PP model to the Fort Collins, Colorado
precipitation (inches) data using a threshold of 0.75 inches.
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Table 5: Parameter estimates and 95% normal approximation confidence intervals
(rounded to two decimal places) for the PP model fit to hurricane damage data in
section 9.1 (cf. Table 4).

95% lower CI Estimate 95% upper CI

location -3.23 1.54 6.32
scale -1.13 2.31 5.74
shape -0.16 0.51 1.18
100-year -1.49 44.58 90.64

return level

threshold to vary. We also transformed two columns of our data to obtain the two
new columns: Year.c48b42 and MinT.neg.

Analyze > Extreme Value Distributions
Select:

Data Object > Phx

Response > MinT.neg

Location parameter function™ > Year.c48b42
Model Type > Point Process (PP)

Plot diagnostics > check

Threshold > vector > select

Threshold > Value(s)/function > u
Response Units > deg F

Time Units > 62/year

OK

The diagnostic plots in Figure 32 indicate that the assumptions for fitting the
GP df to the excesses are met, but the Z plot once again shows that the frequency
of occurrence is far too rapid. We will revisit fitting the PP model to these data
in section 10.

To make plots that are perhaps more more appropriate than those shown, the
command-line functions need to be used. See ?return.level from extRemes to
learn how to obtain the return levels for plotting (see also Gilleland and Katz,
2014).

In section 9 it was determined that although a threshold of 0.395 inches was
sufficient as far as the excesses was concerned, the mean time between the events
of exceeding the threshold was not modeled fast enough. However, increasing
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Figure 32: Diagnostic plots from fitting a non-stationary PP model to (negative)

summer maximum temperature (deg F') at Phoenix Sky Harbor airport.
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the threshold to 0.75 inches resulted in a much improved Z plot. Therefore, we
continue this example using a threshold of 0.75 inches. We might also consider
allowing the threshold to vary, but we will not follow this path here. Recall that
from Figure 10, no obvious trend through time is apparent, but a clear seasonal
variation exists. The following may take a few moments to run.

Analyze > Extreme Value Distributions

Select:

Data Object > FortCollinsPrecip

Response > Prec

Location parameter function™ > cos(2 * pi * day / 365.25)
Model Type > Point Process (PP)

Plot diagnostics > check

Threshold > Value(s)/function > 0.75

Response Units > inches

OK

Diagnostic plots (Figure 33) suggest that the assumptions for fitting this model
to the data are met, although some curvature remains in the Z plot.

9.4 Relating the PP model with the Poisson-GP model

The parameters of the PP model can be expressed in terms of the parameters of
the GEV df, or, equivalently, through transformations specified in appendix B.2,
in terms of the parameters of a Poisson process and of the GPD (i.e., a Poisson-GP
model).

For example, when fitting the PP model to the Fort Collins precipitation data
with a threshold of 0.75 inches and 365.25 observations per year, the following
parameter estimates ji =~ 1.395, 6 ~ 0.530 and f ~ 0.179 are obtained. If we fit the
GP df to these data with a threshold of 0.75 inches, we get 6*(0.75 inches) ~ 0.414
and € ~ 0.179. The shape parameter should be identical for both models, but
variability in the optimization procedures will result in small differences. In this
case, they are the same within the uncertainty, indeed, they are the same within
five decimal places.

Using sum(Fort$Prec > 0.75) from the R session window prompt, we see that
395 values exceed the threshold of 0.75 inches out of a total of 36,524 observations.
Using Eq (15), we have that the (log) MLE for the Poisson rate parameter is

395
36, 524

In\~In (365.25 : ) ~ 1.373743.
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Figure 33: Diagnostic plots for the non-stationary PP model fit to Fort Collins,
Colorado precipitation (inches) data with a constant threshold of 0.75 inches and
seasonally varying location parameter.
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Plugging these values into Eq (17) and (18) gives
In 6 ~ In6*(0.75 inches)+€ In A = In(0.4140984) +0.1792041- (1.373743) ~ —0.635

so that ¢ ~ exp(—0.635) ~ 0.530 as was estimated from fitting the PP model
directly to the data.

10 Extremes of Dependent Sequences

As mentioned in section 3, uncertainty information will be affected by dependence,
if any exists, over a high threshold (e.g., confidence intervals will be too narrow),
and in2extRemes allows for using the runs declustering method to try to remove
any clustering above the threshold. In order to help diagnose whether or not
dependence above the threshold exists, the auto-tail dependence function can be
plotted (Reiss and Thomas, 2007).

Plot > Auto tail-dependence function
Select:

Data Object > FortCollinsPrecip
Select Variable > Prec

OK

The resulting plot from the above selections is shown in Figure 34. In the top
panel (labeled rho), the sample auto tail-dependence function based on p is pro-
duced (Reiss and Thomas, 2007, Eq (2.65) p. 76), which takes on values between
zero and one (inclusive). If the values over a high threshold are stochastically
independent, then the values of p should be close to 1 — u at each lag, where
u is the quantile threshold, which in the example above u = 0.8. Inspection of
the top panel in Figure 34 shows that all lags greater than one are fairly close
to 1 — 0.8 = 0.2, but that the lag-one term is about 0.4, so the assumption of
independence may or may not be reasonable for these data. Perfect dependence
will yield p = 1, which is why lag-zero has a value of 1.

The bottom panel in Figure 34 shows the sample auto tail-dependence function
based on p (Reiss and Thomas, 2007, Eq (13.28) p. 325), which takes values
between -1 and 1 (inclusive). Again, perfect dependence will have p = 1, which is
why lag-zero attains this value. If p = 0, then the variable is tail independent and p
gives the degree of dependence. For independent variables, p = 0 at each lag. The
sample auto tail-dependence function based on p for this example is close to zero
at all lags greater than one, but once again, the lag-one term appears to be greater
than zero, if small. Therefore, we have further evidence that the assumption of
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independence over a high threshold may not be valid, but the degree of dependence
is not very strong.

An additional entry field not used above is Quantile Threshold. This value
can be any number between zero and one, and should be high enough (close to
one) to reduce bias, but low enough to include enough data (lower variance).

Another tool available for diagnosing dependence above the threshold is the
extremal index. For independent data, the extremal index is one, although the
converse does not hold so that a value of one does not necessarily mean that
the data are independent. If it is less than one, however, then some dependence
(clustering) exists in the limit. Two estimators are available with extRemes and
in2extRemes: runs (Coles, 2001, sec. 5.3.2) and intervals (Ferro and Segers,
2003); both based on declustering algorithms..

Analyze > Extremal Index

Select:

Data Object > FortCollinsPrecip
Select Variable > Prec

Threshold > 0.75

OK

The intervals estimate performed from the above instructions can be greater
than one, which is not a valid parameter value. Therefore, if the estimate is
larger than one, then the function sets it to 1, and subsequently the value of
exactly 1 can be estimated despite its otherwise being a single point in a continuous
parameter space. The estimated extremal index using the intervals method is
about 0.788 for the daily Fort Collins precipitation data set with 95% confidence
interval based on the bootstrap procedure suggested by Ferro and Segers (2003)
of (0.701, 0.893), which concurs with our findings from the auto tail-dependence
function plots (Figure 34) that some (statistically significant) extremal dependence
exists in the tails.

The output from the above commands also yields an estimate for the number of
clusters and the run length. A cluster is a group of threshold exceeding values that
occur near one another in time, and a run length is the (average) length between
clusters. Again, the bootstrap procedure of Ferro and Segers (2003) provides
confidence intervals for both of these estimates.

Perhaps the simplest method for handling dependence in the tails is to decluster
the series. That is, first identify clusters of threshold excesses, and then use a single
value (usually the maximum of the values within a cluster). In doing so, it is gen-
erally best not to completely remove the other cluster members from the series
in order to preserve the frequency information. Therefore, in extRemes and sub-
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Figure 34: Auto tail-dependence function for daily Fort Collins, Colorado precip-
itation (inches) data example using a quantile threshold of 0.8 (default value).
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sequently in2extremes, the default is to set those values to the threshold. The
simplest method for declustering a series is the runs declustering method. In this
method, a cluster is identified as beginning with the first value that exceeds the
threshold, and ending once r values fall below the threshold, where 7 is the chosen
(or possibly estimated) run length.

We now return to the Phoenix (negative) minimum summer temperature ex-
ample. Recall that a distinct increasing trend in the summer minimum temper-
atures is evident (decreasing for the negative). Therefore, we use our varying
threshold created in section 8.4 and named u.'® The following will take longer to
run than for the hurricane damage example.

Analyze > Extremal Index
Select:

Data Object > Phx

Select Variable > MinT.neg
Threshold > u

OK

Table 6 displays the results from above. Clearly, dependence is an issue as the
extremal index is considerably less than one.

Because we have tail dependence in the Phoenix minimum temperature data,
we will decluster these data. From Table 6, the estimated run length we should
use is 5, but first, we will decluster with a run length of 1 for comparison (leaving
it to the reader to decluster with a run length of 5). Recall that for the Phoenix
temperature data, we have only 62 days per year (i.e., summer only). Therefore,
we do not want clusters to form across years because we have natural breaks.
Recall also that a distinct trend exists for the data and that in section 8.4 we
performed the negative transformation of our observed variable of interest, MinT
(minimum temperature), which is called MinT.neg.

File > Decluster

Select:

Data Object > Phx

Variable to Decluster > MinT.neg
Decluster by > Year
Threshold(s) > u

Plot data > check

9 Currently, the auto tail-dependence function in extRemes does not allow for a varying
threshold, so it is not clear that it would make sense to use it for the Phoenix temperature
data.

64



Table 6: Extremal index (values rounded to two decimal places), number of clusters
(rounded to nearest whole number) and run length for Phoenix (negative) min-
imum summer temperature data, as estimated by the intervals method.

95% lower CI Estimate 95% upper CI
extremal index 0.24 0.40 0.57
number of clusters 28 60 54
run length 1 ) 18

Declustered (run length = 1)

extremal index 0.55 0.78 1.00
number of clusters 31 65 58
run length 1 5t 16

Declustered (run length = 5)

extremal index 0.64 0.91 1.00
number of clusters 31 61 55
run length 1 6 16

The upper 95% CI for numbers of clusters is clearly incorrect as it is below the
estimated value, and should be ignored.
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OK

Figure 35 shows the plot that is produced. Both the original data (gray circles)
and the declustered data (black circles) are graphed on the same plot. Values that
used to be above the threshold, but were not the maximum of their cluster, are set
to the threshold value, which is the reason for the clustering along the threshold
line (dashed line in the figure).

A new column is added to the data set called MinT.neg.uurldcbyYear, where
the naming convention is to append .uXrYdc [by]Z to the original column’s name,
where X is the threshold (either a number or the name of a vector), Y is the run
length used, and if the data are grouped into natural clusters, then by is also
appended with Z the name of the column by which the data were grouped.?’

Information is also printed to the R session window, which includes the estim-
ated extremal index for the original data based on both the runs and intervals
estimates. Table 6 shows the estimated extremal index for the declustered series
using run lengths of both 1 and 5. Using a run length of 1, the data appear to
have less of a tail dependence issue, and for those declustered with a run length
of 5, the estimated extremal index is very nearly 1 indicating independence in the
limit. Figure 36 shows the diagnostic plots for the declustered series having used
a run length of 5. Comparing with Figure 32, we see that the Z plot is now very
nearly straight suggesting that the assumptions for fitting the PP model to the
declustered series are met.

Appendix
The information provided in this appendix is intended as a quick reference only,

not a complete guide to EVT/EVA. Brief, relevant information is given for some
of the fundamental components of in2extRemes.

A Extreme Value Distributions

The forms of the EVD’s and return levels are provided here along with some of
their basic properties.

20Because of this naming convention, in2extRemes will not allow the same declustering pro-
cedure to be performed more than once without first removing the new column from the data
set (e.g., by File > Scrubber).
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Figure 35: Plot showing the year breaks and declustered (run length = 1) negative
Phoenix minimum summer temperature data. Light gray circles are the original
data points, and black circles are the resulting data points after declustering.
Values above the threshold that have been “removed" by the declustering algorithm
are still included in the data set, but have been re-set to the threshold value.

decluster.runs(x =y, threshold = threshold, method = method,
r = 1, clusterfun = clusterfun, groups = groups)
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Figure 36: Diagnostic plots for the PP model fit to (negative) declustered (run

length = 5) Phoenix summer minimum temperature data.
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A.1 The Generalized Extreme Value Distribution

The three types of GEV df’s are better known as the Gumbel, Fréchet and (re-
verse) Weibull, respectively. Each has a location and scale parameter, and the
latter two have a nonzero shape parameter, which we denote as £&. The Gumbel
case corresponds to & = 0, which is defined by continuity. Jenkinson (1955), a
meteorologist, noted that the three types can be combined to be expressed as a

single parametric family, namely the GEV family (the result was originally found
by von Mises (1936)). The GEV df is defined as

o p ()] e

where y; = max{y,0}, 0 > 0 and —oo < p,& < co. From this representation, the
Gumbel type is obtained by taking the limit as £ — 0 giving

T N | I

The Weibull distribution has a bounded upper tail at z, = u— o /£ (a function
of the parameters), so that the probability of observing a value larger than z, is
zero. Note that the more common form of the Weibull df has a lower bound, and
the version that belongs to the GEV family is often referred to as the reverse (or
reflected) Weibull, and sometimes as the stretched exponential.

Some properties of the GEV df are shown in Table 7. Note that the k-th order
moment exists only when £ < 1/k, and consequently heavy tailed distributions
have rapidly vanishing moments. In particular, the variance is not finite when
¢ > 1/2, and, in such a case, inference based on the first two moments will be
invalid.

Often, return levels are of interest when analyzing extremes. To that end, let 2,
be the return level for the 7' = 1/p return period, 0 < p < 1. One interpretation of
zp is that it is the level expected to be exceeded on average once every 1" periods,
where one period is the block length over which the maxima are taken.

A return level is equivalent to the corresponding quantile of the distribution.
That is, we seek the value, z,, such that G(z,) = 1 —p. For the GEV df, we simply
invert Eq (2) and solve for z, to get

. :{u—g[l—{—lnu—p)}—f], for € # 0, n
: p—oln{—1In(1 —p)}, for £ =0.

The return level is linear in x4 and o, but nonlinear in &.
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Table 7: Some properties of the GEV df (2). Here, g, = I'(1 — k§), where I'(x)
is the gamma function.! The parameters are defined on: location —oco < p < 00,

scale 0 > 0, and shape —oo < £ < 0.

(cumulative) df

probability density
function

Mean
Variance
Median

Mode

,th

Probability Weighted
Moment (PWM)

L-moments

Support

F(x) = exp [— {1 +¢ (w;_u) };1/5]

fla) =11+ &z —p)/o) /T F(2)

EX)=p—0o(l—g)/ for { <1
Var(X) = 0?(g2 — g7) /€ for £ < 1/2
p—o(l—In2)7¢/¢

pto((L+€7—1)/Efor £ > —1

Br=p—oll = (r+1)T1-]/(Er+1))

>\1 = 507
>\2 = 261 - BO?
A3 =682 — 661 + Bo

—00 < x < 0o for £ =0 (type I Gumbel, cf.
Table 8),

x> p—o/€ for &€ >0 (type II Fréchet) and
r < p—o/€for £ <0 (type III Weibull).

f The Gamma function, I'(z), > 0 is defined to be [ ¢"~'e~'dt, which reduces

to (x — 1)! when x is a positive integer.
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Table 8: Some properties of the Gumbel df (3). The parameters are defined on:
location —oo < p < 0o and scale o > 0.
(cumulative) df F(z) = exp[—exp{—(z —p)/o}], — o0 <
r < 00

probability density f(x) = Lexp(E=4)F(x)

g

function

Mean E(X) = p + 7o, where v is the Euler-
Mascheroni constant!

Variance Var(X) = (n0)?/6

Median p— oln(In2)

Mode 1

fThe FEuler-Mascheroni constant is defined as the limiting difference

between the harmonic series and the natural logarithm. Specifically,
v = lim {Zl/k—ln(n)} = [°(1/|z] — 1/z)dz. Its numerical value is
~ 0.5772.
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A useful simplification of (4) is obtained by letting y, = —1/In(1 — p), giving

L u—l—%[yg—l}, for £ # 0, (5)
P w1+ olny,, for £ = 0.

If 2z, is plotted against Iny,, then the type of distribution determines the
curvature of the resulting line. Specifically, if & = 0 (Gumbel) this plot is a
straight line, if £ > 0 (Fréchet), the plot is concave with no finite upper bound,
and for & < 0 (Weibull) the curve is convex with an asymptotic upper limit as

p—0at u—o/k.

A.2 The Generalized Pareto Distribution
The GP df is given by

Flz)=1- {1 +¢ (u)} _1/6, (6)

o(u) /14

where = > u, scale parameter o(u) > 0, and shape parameter —oco < £ < co. To
obtain the exponential case (i.e., when £ = 0), the limit as & — 0 is taken from
the above expression to obtain

Fz)=1—¢ =W/, (7)

Note that for the exponential case o(u) = 0 + Ou = 0. Properties for the POT
df’s are given in Tables 9 and 10

The p-th quantile for the GP df is found by solving F(y,) = 1 — p for y, with
F as in Eq (6). Namely,

_[u=tE--p)f] £,
yp_{u—agln(l—p) £=0 (®)

For reporting return levels, however, it is convenient to convert the conditional
probability of excesses over a high threshold u exceeding a value, say x, into an
unconditional probability based on the original random variable, X (i.e., instead
of the excesses X — u). To do this, use the definition of conditional probability to
get

Pr{X >z} = Pr{X > z|X > u}Pr{X > u}

()] e
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Table 9: Some properties of the GP df (6). The parameters are defined on o(u) > 0
and —oo < £ < o0.

(cumulative) df F(z) =1~ [1 +¢ <%)} J—rl/ﬁ

—-1/6—1
probability density f(x) = ﬁ [1 + ¢ (%ﬂ

function

Mean E(X)=u+ T () ¢ for £ <1
Variance Var(X) = (15(2+2§ for £ < 1/2
Median u+ @(25 —1)

#th

Probability Weighted g, = o(u)/[(r + 1)(r + 1 — §)]
Moment (PWM)

L-moments A1 = Do
A2 =201 — fo
A3 =682 — 661 + fo

Support x > u for £ > 0 (Exponential (cf. Table 10)
and heavy-tailed Pareto)
u<z<u—o(u)/¢ for £ <0 (Beta)
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Table 10: Some properties of the exponential df (7). The scale parameter is defined
on g > 0.
(cumulative) df F(z) =1— e (@u/o

probability density f(x) = %e*(‘““)/ g

function

Mean E(X)=u+o
Variance Var(X) = o2
Median u+oln2
Support T >u

where ¢, = Pr{X > u}. Then, to find the value, x,, > u, that is exceeded on
average once every m observations, we solve Pr{X > z,,} = 1/m in Eq. (9) for
T, to get

g £ _

u + o ln(md,) £=0.

Note that Eq (10) differs from (8) only in that the form of 1 — p is changed to
reflect the frequency of exceeding u, and to be interpreted in terms of exceeding z,,
once every m observations (e.g., where m is usually on a time scale much shorter
than a year so that it is customarily converted into years).

As before, plotting x,, against In(m) results in the same qualitative features as
with the GEV return levels. That is, when & = 0 the plot is a straight line, £ > 0
results in a concave curve, and & < 0 a convex curve.

A.3 The Point Process Characterization for Extremes

Recall that a discrete random variable N follows a Poisson distribution if

A" exp(—\)

,form=20,1,2,...
m!

Pr(N =m) =

Here, ) is the intensity or rate parameter, which is also the mean and variance of
the distribution. For extremes, define the random variable N,, = Z?:l I, where I;
is 1if X; > wu, for a high threshold, u,, (the subscript n indicates that the threshold
will increase as the sample size increases). Because the X;’s are assumed to be
iid, N, is a Binomial random variable with mean nPr{X > wu,} = n(1 — F(uy,)).
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That is, the average number of times that the threshold is exceeded depends on
both the sample size and the probability of the event’s occurring. As the sample
size n increases, it is desired that the mean be stable. That is, the threshold must
be chosen so that lim, . n(1l — F(u,)) = A > 0. Under this condition, it turns
out that the counting variable N,, can be approximated by the Poisson variable N
with parameter \.

Now, consider the event N, = 0, or having no event occur in n trials. This
event is tantamount to saying that the maximum of the n sample values is less
than or equal to the threshold w,, so that Pr{max{X,,..., X,,;} <w,} =Pr{N, =
0} ~ e~ by the Poisson approximation for the binomial distribution.

The Poisson-GP model combines the Poisson process with a GP distribution
for excesses over the threshold. This model is a special case of a marked Poisson
process (e.g. Guttorp and Minin, 1995) with a mark (or excess) being associated
with each event of exceeding the threshold.

A process {N(t),Y1,...,YNw,t > 0} is Poisson-GP if

1. {N(t), t > 0} is a one-dimensional, homogeneous Poisson process with rate
parameter A,

2. Conditional on N(t) =k > 1, the excesses (or marks) Yi,..., Y} are iid GP
with parameters o(u) and €.

The two-dimensional Poisson process developed for EVA by Smith (1989), is a
further extension of these ideas (see also Leadbetter et al., 1983; Resnick, 1987).
In this context, the times when the values of a random sequence X exceeds a
high threshold and the associated excess values are treated as a two-dimensional
point process, so that if the process is stationary, then the limiting form is a non-
homogeneous Poisson process with intensity measure, A, on a two-dimensional set
of the form A = (t1,t2) x (x,00) given by

A(A) = (ts — 1) - {1 + et - “Lw ,

where the parameters p, 0 > 0 and £ are the same parameters as the GEV df.

A common way to deal with non-stationarity for extreme values is to allow the
parameters to vary. For example, one might consider a linear trend through time
in the location parameter of the GEV df, giving

/L(t):,uo—i—,ult,tzl,Z,

For the scale parameter, care should be taken to ensure that it is positive
everywhere. Therefore, when incorporating non-stationarity into this parameter
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estimate, the log link function is often used. For example, a linear trend through
time could be modeled in the scale parameter as

o(t)y=00+01-t, t=1,2,....

The above parametrization may be useful provided it is positive for all values of ¢
under consideration. Using the log-link, the model is no longer linear, rather

th'(t) = ¢<t> = ¢0+¢1(t>,t: 1,2,....

The above model yields o(t) = exp(¢o + ¢1 - t). It is also possible to model non-
stationarity in the shape parameter in a similar way. For POT models, it can be
useful to allow the threshold to vary as well, but generally this procedure should
only be necessary when one or more of the parameters varies as well.

The interpretation of return levels for such non-stationary models becomes
difficult. One method for describing the models is to look at effective return
levels (e.g. Gilleland and Katz, 2011). An effective return level is simply the return
level you would have for a specific value(s) of the covariate(s) (i.e., a time varying
quantile). For example, if a linear trend is modeled in the location parameter, the
effective return level for time ¢ = 5 would be found by first finding 1(5) = pg+p1-5,
and then estimating the return level using 1(5) as the location parameter. Such
an approach can be applied for numerous values of the covariate(s) so that one
can observe how the df changes with the covariate(s).

B Confidence Intervals and Hypothesis Testing

A result from statistical theory says that MLE’s follow a normal df (e.g., Coles,
2001, Chapter 2), which provides a way of making inferences about EVD para-
meters, as well as their associated return levels. For a parameter estimate, say 0
of 0, the (1 — a) - 100% confidence intervals based on a normal approximation are
simply

0+ Za/gse(é),

where se(é) is the standard error of 0, which generally needs to be estimated in
practice.

Another well known result is that the MLE for any scalar function of a para-
meter, say ¢g(f) can be obtained by substituting the MLE for the parameter, 6,
into the function, g. That is, the MLE for n = ¢(0) is given by 1 = g(é) Suppose
0 is a d-dimensional parameter (e.g., 0 = (u, 0,&), the parameters of the GEV df),
then a further result says that if n = ¢(f) is a scalar function, the MLE for 7 is
approximately normally distributed with its variance given by a simple quadratic
matrix multiplication of the gradient of  and the inverse Hessian of the likelihood
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for 6. Specifically, the variance for n is given by V?He_ lvn. This last result is
known as the delta method, and provides a simple method for obtaining confidence
intervals for return levels from the extreme value df’s.

The gradient for the return levels of a GEV df is given by (cf Coles, 2001,
Chapter 3)

T Ozp 0zp Oz
VT, = [W B0 (11)
= |1, =& 1=y, %), o6 2(A -y, %) — o€y, CIny,)
where y, = —log(1 — p), and can be evaluated by substituting in the parameter

estimates. The gradient for the GP df return levels is similarly computed. An
approximate (1 — «)-100% confidence interval for the return level, x,, is given by

x, £ za/Q\/ngH—l < Tp.

The delta method confidence intervals are based on the assumption that the
MLE of interest is approximately normally distributed. However, for longer return
levels that are most likely to be of interest, this approximation is likely not very
accurate. The profile-likelihood can be used to find more accurate intervals, which
also produces confidence intervals that are more realistic in shape (i.e., not sym-
metric like the delta method intervals, but longer above the point estimate than
below).

B.0.1 Likelihood-Ratio Test

To test whether incorporation of a covariate in the parameter is statistically sig-
nificant, the likelihood-ratio test can be used. Including more parameters in the
model will necessarily increase the maximized likelihood function (cf. Coles, 2001,
Chapter 2), and this method tests whether or not the improvement is statistically
significant. The test compares two nested models so that one model, the base
model, must be contained within the model with more parameters (e.g., setting
one or more parameters in the more complicated model to zero would result in the
base model). Suppose ¢ is the log-likelihood value for the base model and ¢; that
for the model with more parameters. Then the test statistic, called the deviance
statistic,
D - 2(£1 - 60)

follows an approximate x? df with degrees of freedom, v, equal to the difference
in the number of parameters between the two models. The null hypothesis that
D = 0 is rejected if D exceeds the 1 — a quantile of the x? df.
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B.0.2 Information Criteria

Alternatives to the likelihood-ratio test for comparing the relative quality of a stat-
istical model include the Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC). Neither requires a model to be nested like the likelihood-
ratio test, but nor do they correspond to a formal statistical test. The AIC can
be defined as

AIC(p) = 2n, — 2¢,

where n, is the number of parameters in the p-th model, and ¢ its maximized
log-likelihood value. Similarly, for the p-th model fit to data with a sample size n,
the BIC is
BIC(p) = n,lnn — 2¢.

Both the AIC and BIC attempt to counteract the problem of over fitting a
model from adding more parameters by incorporating a penalty based on the
number of parameters. The BIC is more parsimonious than the AIC. Among the
candidate models, the one with a lower AIC/BIC is preferred.

B.0.3 Profile likelihood

The profile log-likelihood method can be used to obtain confidence intervals that
are usually more accurate than those based on the normality assumption (cf Coles,
2001, Chapter 2). Letting 6 be a d-dimensional parameter vector (e.g., 0 = (u, 0, &)
for the GEV df), the log-likelihood for 6 can be written as ¢(6;;60_;), where 6_;
indicates the parameter vector 6 excluding the i-th parameter. The profile log-
likelihood for 8; is defined as

In words, for each value of the parameter 6;, the profile log-likelihood for 6; is the
maximized value of the log-likelihood with respect to all the other components of
0.

In general, if 6 is partitioned into two components, (0,6,), with 6; a k-
dimensional parameter vector, and 0y a d — k-dimensional parameter vector, then
Eq (12) generalizes to

gp(‘91> = n})axﬁ(Gl, 92)
2

Approximate confidence regions can then be obtained using the deviance func-
tion, D,(6,) = 2{¢(0) — ¢,(01)}, as described in appendix B.0.1, which approx-
imately follows a X% distribution, leading to the 1 — a confidence region given
by

Ca = {011 Dy(61) < Xi_ax}- (13)
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This methodology can be extended for inference on combinations of parameters,
such as return level estimates (cf Coles, 2001, Chapter 3). This requires a re-
parameterization of the GEV df so that the return level is one of the parameters.
For example, for any specified return level z,, the following expression can be used

g
§

That is, p in the likelihood function is replaced with the above expression and
the parameter vector (z,,0,&) is estimated instead of (i, 0,&). A complication in
using the profile likelihood approach for confidence intervals for extreme value df’s
is that the likelihood must be optimized with numerical techniques. Therefore,
the process can be computationally expensive and difficult to automate.

1= {~In(1-p)}~*].

H=zp,+

B.0.4 Parametric Bootstrap

Another method for finding confidence intervals for MLE’s is the bootstrap method (see
e.g., Efron and Tibshirani, 1993; Lahiri, 2003; Gilleland, 2010). There are various
different types of bootstrap methods, and because extRemes has functions only

for the parametric bootstrap, we give some details for this approach here.?! The
approach can be summed up with the following steps. Suppose the data to which

we have fit an EVD has size n.

1. Draw a random sample of size n from the fitted parametric distribution (e.g.,

av).

2. Fit the EVD of interest to the random sample and record the parameter
and /or return level(s) estimate(s).

3. Repeat steps 1 and 2 R times to obtain a replicate sample of the parameter(s)
estimate(s) of interest.

4. From the replicate sample of parameter(s) /return level(s) in step 4, estimate
(1 — «) - 100% confidence intervals by finding the 1 — a quantiles for each
parameter /return level from the replicate sample.

21 Although the bootstrap procedure generally requires fewer assumptions about the distri-
bution of the statistic(s) of interest for inference than most other confidence interval methods,
assumptions do remain. These assumptions are generally not met for the usual iid resampling
procedure that is most well known. Because distributions for the extremes are already being
assumed, and the appropriateness of their assumptions checked, the parametric approach seems
to be a reasonable choice.
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The size, R, of the replicate samples can be determined by starting with a
relatively small value (faster computation) and increased for a second trial. If
the results are similar to those done previously, then the first value for R should
suffice.?? If not, increase R until the results are stable.

B.1 The Z plot

The Z plot is a diagnostic plot for checking an assumption for fitting the PP
model, with possibly time-varying parameters, to data. It was introduced by Smith
and Shively (1995). The one-dimensional PP for the event of exceeding a high
threshold u is a non-homogeneous Poisson process with rate parameter A(t) =

[1+ &) (u(t) — ut)/a®)] /¥, Denote Ty as the starting time of the record,

and let 17,75, ... be the successive times that u is exceeded, and consider the
variable
Ty,
Z = / M)t k> 1. (14)
Tk—1
For a non-homogeneous Poisson process, the variables Z, Zs,... should be

independent and exponentially distributed with mean one. One way to diagnose
whether or not this is the case is to make a qq-plot of Z, against the quantiles from
an exponential df with mean one; we call such a plot, the Z plot. In the above
notation, the parameters all written as functions of time ¢ to emphasize that this
plot is appropriate for models that depend on a covariate; however, it also applies
in the special case of a homogeneous Poisson process (i.e., parameters independent

of t).

B.2 Poisson-GP Model

The parameters of the point process model can be expressed in terms of those of
the GEV df or, equivalently, through transformations specified below, in terms
of the parameters of a one-dimensional Poisson process and the GP df (i.e., a
Poisson-GP model). Specifically, given a high threshold u, i, o and £ from the PP
model, we have the following equations (the shape parameter is unchanged):

ln)\:—%ln {1+§u_’“‘}, (15)

o
where A is the Poisson rate parameter and for GP scale parameter o*(u),

o*(u) =0+ &(u— p). (16)

22Technically, one should run several trials, but practice dictates that if similar results are
obtained, then there is no need to continue.
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Eq (15) and (16) can be used to solve for o and p simultaneously to obtain the
parameters of the associated PP model (Katz et al., 2002). Doing so yields the
following equations.

o= \o*(u) (17)
M:U—%(/\_s—l). (18)

The block maxima and POT approaches can involve a difference in time scales,
h. For example, if observations are daily (h =~ 1/365) and annual maxima are
modeled, then it is possible to convert the parameters of the GEV df for time scale
h to the corresponding GEV parameters for time scale i’ (see Katz et al., 2005)
by converting the rate parameter, A, to reflect the new time scale; namely,

h
)\/ - EA

C Examples of Command-Line Scatter Plots in R

In this section, the R code used to make Figures 10 to 12 is shown. For more
information about plotting in R, see ?plot and 7par. The data frames Fort,
were loaded from extRemes in section 5.2.

Figure 10 was created with the following commands.

par (mfrow = c(2,2))

plot(Prec™month, data = Fort, pch = 16, col="darkblue",
xlab="", ylab = "Daily Precipitation (inches)",
xaxt = "n"

axis(l, at = 1:12, labels = c("Jan", "Feb", "Mar", "Apr",
|lMayI| n Junll n Julll |lAugl| IISepH Iloct n IlNOVII IIDeCII) )

plot(Prec”year, data = Fort, pch = 16, col="darkblue",
xlab="", ylab = "Daily Precipitation (inches)")

plot(Prec”year, data = Fort, type = "1", col="darkblue",
xlab="day", ylab = "Daily Precipitation (inches)")
Figure 11 was created using the following commands.

par(mfrow = c(2,2), mar = c(4.1, 5.1, 2.1, 1.1))

plot (MinT~ Year, data = Tphap, pch = 16, col = "darkorange", xaxt = "n",

81



xlab = "", ylab = "Daily Minimum Temperature (deg F)")

axis(l, at = pretty(Tphap$Year),
labels = paste("19", pretty(Tphap$Year), sep = ""))
plot(Dam~Year, data = damage, pch = 16, col = "darkred",
xlab = "',
ylab = "Estimated Economic Damage\nfrom Hurricanes (billions USD)")

plot (USDMG™HYEAR, data = Flood, pch = 16, col = "darkred",
xlab = "", ylab = "Total Economic Damage\nfrom floods (billions USD)")

plot(Ct~Year, data = Rsum, type = "h", col = "darkgreen",
xlab = "", ylab = "Number of Hurricanes per year")

Finally, Figure 12 was made as follows.

par(mfrow = c(1, 2), mar = ¢c(5, 5, 7, 2))
plot (TMX1~Year, data = PORTw, pch = 16, col = "lightblue",
ylab = "Maximum winter temperature (deg C)\nPort Jervis, New York")

plot (TMX1~AOindex, data = PORTw, pch = 16, col = "lightblue",
ylab = ||||)
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Akaike Information Criterion
definition, 82
model selection, 38

Bayesian Information Criterion
definition, 82
model selection, 38

confidence interval
normal approximation, 81
delta method, 81
parametric bootstrap, 83
profile likelihood, 83

declustering
intervals, 66
runs, 66
distributions
Beta, 77
exponential, 77
Fréchet, 73
Generalized Extreme Value
definition, 73
fitting to data, 25, 26
notation, 16
generalized Pareto, 2
definition, 76
notation, 16
Gumbel, 73
definition, 73
Pareto, 77
stretched exponential, 73
Weibull, 73

effective return level, 36, 80
excess

definition, 41
extremal index

estimation, 66

Extreme Value Analysis, 1
notation, 16

Extreme Value Distribution, 1
notation, 16

Extreme Value Theory, 1
notation, 16

likelihood-ratio test, 81

max stable, 2
memory-less property, 2

point process, 3, 79
notation, 16

Poisson process
marked, 79

Poisson-GP model, 79

POT stable, 2

profile log-likelihood, 82

replicate sample, 83
return level
definition, 73
GEV df, 73
definition, 76
GP df
definition, 78
non-stationary, 80
return period, 73

Z plot
definition, 84
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