
National Center for 
Atmospheric Research 

P. O. Box 3000 
Boulder, Colorado 

80307-3000 
www.ucar.edu 

NCAR Technical Notes 
NCAR/TN-525+IA 

Lecture Notes on 
The Planetary 
Boundary Layer 

Chin-Hoh Moeng 

NCAR IS SPONSORED BY THE NSF 



NCAR TECHNICAL NOTES 
http://library.ucar.edu/research/publish-technote 

The Technical Notes series provides an outlet for a variety of NCAR 
Manuscripts that contribute in specialized ways to the body of scientific 
knowledge but that are not yet at a point of a formal journal, monograph or 
book publication.  Reports in this series are issued by the NCAR scientific 
divisions, serviced by OpenSky and operated through the NCAR Library.  
Designation symbols for the series include: 

EDD – Engineering, Design, or Development Reports 
Equipment descriptions, test results, instrumentation, 
and operating and maintenance manuals. 

IA – Instructional Aids 
Instruction manuals, bibliographies, film supplements, 
and other research or instructional aids. 

PPR – Program Progress Reports 
Field program reports, interim and working reports, 
survey reports, and plans for experiments. 

PROC – Proceedings 
Documentation or symposia, colloquia, conferences,  
workshops, and lectures. (Distribution maybe limited to 

   attendees). 

STR – Scientific and Technical Reports 
Data compilations, theoretical and numerical 
investigations, and experimental results. 

The National Center for Atmospheric Research (NCAR) is operated by the 
nonprofit University Corporation for Atmospheric Research (UCAR) under the 
sponsorship of the National Science Foundation.  Any opinions, findings, 
conclusions, or recommendations expressed in this publication are those of 
the author(s) and do not necessarily reflect the views of the National Science 
Foundation. 

National Center for Atmospheric Research 
P. O. Box 3000 

Boulder, Colorado   80307-3000 

http://library.ucar.edu/research/publish-technote


 NCAR/TN-525+IA     
NCAR Technical Note 

______________________________________________ 

2016 - June 

Lecture Notes On The Planetary Boundary Layer 

Chin-Hoh Moeng
Mesoscale & Microscale Meteorology Lab, National Center for 
Atmospheric Research, Boulder, CO  

Mesoscale & Microscale Meteorology Lab 
Boundary Layer & Turbulence Section 

______________________________________________________ 
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH 

P. O. Box 3000 
BOULDER, COLORADO 80307-3000 

ISSN Print Edition 2153-2397 
ISSN Electronic Edition 2153-2400



This set of lecture notes introduces the dynamics, statistics, clouds, and models of the planetary 
boundary layer (PBL).  The author prepared the notes for graduate classes while on sabbatical leave 
at the Department of Atmospheric Science at Colorado State University in 1994 and 1998 and the 
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, in 2006. The 
notes evolved over those years. These lecture notes cover the basic concepts of PBL turbulence and 
describe different PBL types including clear convective, neutral and stable regimes, as well as 
boundary-layer clouds.  The last chapter introduces various PBL parameterization schemes developed 
for weather and climate models. 
 



LECTURE NOTES ON THE Planetary Boundary Layer

Chin-Hoh Moeng

prepared for lectures given at the Department of Atmospheric Science, CSU in 1994 & 1998
and at the Department of Atmospheric and Oceanic Sciences, UCLA in 2006

1. INTRODUCTION

1.1 The nature of turbulence (see Appendix)

1.2 Averaging: statistics vs. instantaneous flow field

1.3 Governing equations

1.3.1 Navier-Stokes equation

1.3.2 Reynolds equation (or ensemble-mean equation)

1.4 Commonly-used terminology

1.4.1 Energy-containing eddies and Kolmogorov microscale

1.4.2 Reynolds number and Reynolds-number-independent regime

1.4.3 Homogeneous and isotropic turbulence

1.4.4 Quasi-steady state; large-eddy turnover time

1.4.5 Inertial subrange and Kolmogorov theory

1.5 Research tools: field measurements, lab, LES, PBL modeling

1.5.1 Understanding turbulent motions

1.5.2 Modeling ensemble-mean statistics

2. THE SURFACE LAYER

2.1 Eddy structures

2.2 Monin-Obukhov similarity theory

1



3. THE CLEAR CONVECTIVE PBL

3.1 Thermal or plume structures

3.2 Scaling parameters and typical statistics profiles—for the CBL

3.3 Scaling parameters and typical statistics profiles—for weakly convective near-neutral

PBL

3.4 Spectra

3.5 Scalar transport

3.5.1 Countergradient transport

3.5.2 Transport asymmetry

3.5.3 Dispersion property

4. THE NEUTRAL AND STABLE PBLs

4.1 The neutral PBL

4.2 The weakly stable PBL

4.3 The very stable PBL

4.4 Physical phenomena in the stable PBL

5. BOUNDARY-LAYER CLOUDS

5.1 Stratocumulus clouds

5.1.1 Physical processes

5.1.2 Decoupling

5.1.3 Diurnal cycle

5.1.4 Cloud-top entrainment instability (CTEI)

5.1.5 Vertical distributions of turbulence statistics

2



5.1.6 Climate-related issues

5.2 Shallow cumulus

5.2.1 Interaction between cloud and subcloud layers

5.2.2 Subcloud-layer spectra and statistics

5.2.3 Climate impact

6. PBL MODELS (PARAMETERIZATIONS)

6.1 Higher-order closure model (or single-point closure)

6.1.1 Higher-moment equations and closure problems

6.1.2 The Mellor-Yamada model

6.1.3 Realizability issue

6.1.4 Applications to cloud-free PBLs

6.1.5 Applications to stratocumulus-topped PBLs

6.1.6 Examination of closure assumptions and constants

6.2 Richardson-number-dependent K model

6.3 K-profile model

6.4 The mixed-layer (bulk) modeling

6.4.1 Model framework

6.4.2 Entrainment closure based on the TKE budget of the whole PBL

6.4.3 Entrainment closure based on the TKE budget in the entrainment zone

6.4.4 Entrainment closure for the stratocumulus-topped PBL

6.5 Transilient turbulence theory/integral closure model

6.6 Mass flux model

6.7 Hybrid modeling approach

3



1 INTRODUCTION

1.1 The nature of turbulence

No one describes the nature of turbulence better than Tennekes and Lumley. In their classic

book (A First Course in Turbulence, 1972), Tennekes and J. L. Lumley list seven important

characteristics of turbulent flows: irregularity, diffusivity, large Reynolds number, three-

dimensional vorticity fluctuations, dissipation, continuum, and turbulent flows are flows. An

excerpt that describes these characteristics from their pages 1-4 is given in the Appendix for

your reference.

1.2 Averaging: statistics vs. instantaneous flow field

Because the details of the randomly-distributed turbulent field don’t mean much, turbu-

lence is often described by its averaged properties. Averaged properties are called statistics,

including mean (expected) values (1st moments), fluxes and variances (2nd moments), skew-

ness (3rd moment), probability density distribution, power spectrum, etc. To derive these

statistics, we decompose a turbulent quantity to mean and fluctuating parts as u = u + u′

where u is defined by an averaging procedure (filtering procedure). Statistics, such as vari-

ance, are then computed as u′u′. Every time you look at a statistical measure, it is useful

to know the type of averaging behind the measure.

The most traditional description of turbulence uses “ensemble averaging”—over a large

samples of flow realizations—such that all random turbulent motions can be removed by the

average. Ensemble mean represents the expected outcome (or value) of the event. However,

true ensemble average of geophysical turbulence is difficult to obtain because a turbulent

event never repeats itself. In practice, we approximate ensemble averaging with spatial

averaging (of, e.g., aircraft measurements) or time averaging (of, e.g., tower data). A time

averaging of the turbulent plume of a smokestack downstream of a point source in a wind

tunnel can be viewed from a long-time exposure camera, shown in Fig. 1.1. The top figure

is the random instantaneous flow field of the event and the bottom is an time-averaged (or

filtered) field.

4



Figure 1.1 (SOURCE: EPA Fluid Modeling Facility)

If a turbulent flow field is horizontally homogeneous and quasi-steady, as we often assume

for the PBL over uniform surface, then a horizontal averaging over a long distance or a

large horizontal domain may represent an ensemble average. How time and spatial averages

converge to ensemble average is a sampling problem. The flight length of an aircraft dataset

or the time record of tower data has to be long enough so the statistics using a line (or

time) averaging can approach ensemble-mean statistics. But the sample length cannot be

too long to violate the horizontally homogeneous (or quasi-steady) assumption. As discussed

in “Lectures on the Planetary Boundary Layer” by John Wyngaard in the book Mesoscale

Meteorology–Theories, Observations and Models, edited by Lilly and Gal-Chen, NATO ASI

Series, the averaging time period (or length) is proportional to the integral scale and the

intensity of the turbulent flow field.
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1.3 Governing equations

The before and after averaging of a turbulent flow field mentioned above can be described by

its corresponding governing equations: Navier-Stokes equation and the Reynolds equation,

as described below.

1.3.1 Navier-Stokes equation—governing the whole turbulent motion

The Navier-Stokes equation is the most fundamental dynamical equation of a viscous incom-

pressible fluid. The flow field of a fluid at any time, t, and space, xi, is governed by

∂ui
∂t

+ uj
∂ui
∂xj

= Xi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

, (1)

where Xi is the i-component of external forces, p pressure fluctuations, and ν the kinematic

viscosity of the fluid. Along with the continuity eq.,

∂ui
∂xi

= 0, (2)

the set of equation is complete; there are four equations for four unknowns u, v, w and p.

Notice the molecular term appears in the Navier-Stokes equation and the solution ui(x, y, z, t)

includes all scales of motions, down to dissipation scales.

When the non-linear interaction term (i.e., uj∂ui/∂xj) is much larger than the molecular

viscous term (i.e., ν ∂
2ui
∂x2j

), the solution of (1) is a fully developed turbulent motion. The

ratio of these two terms is called Reynolds number, which will be described in next section.

The non-linear term includes vortex stretching and scrambling and energy cascading in 3D

turbulence.

1.3.2 Reynolds equation (or ensemble-mean equation)

Reynolds equation is the ensemble average of the Navier-Stokes equation. Reynolds equation

is what we solve in GCMs or mesoscale models, not the Navier-Stokes equation. The solution

of Reynolds equation does not explicitly contain turbulent motions because the chaotic

turbulent component of the flow is filtered out, as you can see from the following derivation

of the Reynolds equation.
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To derive the Reynolds equation, we decompose a variable, s, into a Reynolds (or en-

semble) mean component (denoted by overbar), s, and its fluctuation (or random turbulent)

component (by prime), s′, i.e.,

s = s+ s′. (3)

The Reynolds averaging obeys the following rules:

s′ = 0, ws = w s+ w′s′, w + s = w + s, as = as, (4)

where a is a constant, and w is another variable. With this averaging, the cross terms ws′

and w′s are exactly zero. These rules imply that there is a spectral gap between the mean

motion and the filtered out turbulent motions.

By expanding Eq. (1) over a reference atmosphere state (denoted by the subscript 0)

and decomposing it into the Reynolds mean and fluctuations, we have

(
∂ui
∂t

+
∂u′i
∂t

)+(uj
∂ui
∂xj

+uj
∂ui
′

∂xj
+uj

′ ∂ui
∂xj

+uj
′∂ui

′

∂xj
) =

gi
T0

(θ+θ′)− 1

ρ0

∂p

∂xi
− 1

ρ0

∂p′

∂xi
+ν

∂2ui
∂x2

j

+ν
∂2ui

′

∂x2
j

.

(5)

The only external force we consider here is the buoyancy force, i.e., Xi = gi/T0θ. Using

the averaging rules (4) in (5) yields

∂ui
∂t

+ uj
∂ui
∂xj

= +
gi
T0

θ − 1

ρ0

∂p

∂xi
−
∂u′iu

′
j

∂xj
+ ν

∂2ui
∂x2

j

, (6)

where the u′iu
′
j term is the so-called “Reynolds stress” term. For geophysical flows, the

molecular term in (6) is several orders of magnitude smaller than the Reynolds stress term

and can be neglected. Geophysical turbulence is often referred to as high Reynolds number

flow. Thus, the Reynolds equation we solve in GCM or mesoscale models is

∂ui
∂t

+ uj
∂ui
∂xj

= +
gi
T0

θ − 1

ρ0

∂p

∂xi
−
∂u′iu

′
j

∂xj
, (7)

where the Reynolds stress term represents the net effect of all filtered-out turbulent motions;

none of the turbulent motion is explicitly included in the resolved field ui. The solution of

(7) (i.e., ui) is the ensemble mean of that of (1) (i.e., ui).

To solve (7) the Reynolds stress term needs to be parameterized, i.e., the stress term

needs to be expressed in terms of the solvable variables. This is a closure problem, to close
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the system of the governing equation. The simplest way to handle the closure problem is

to assume that turbulent motions behave like molecular motions. This yields the constant

eddy viscosity assumption where the stress term

−
∂u′iu

′
j

∂xj
= K

∂2ui
∂x2

j

, (8)

and then (7) would look just like (1, with X = gi
T0
θ) except that turbulent eddy viscosity

K now replaces the molecular viscosity ν. But of course turbulence does not behave like

molecular motions and that’s why constant eddy viscosity cannot work.

Some turbulence models close the (7) system by carrying yet more prognostic equations

for the Reynolds stress, an approach referred to as higher-order closure modeling approach.

We will learn about various types of PBL models in Section 6. For now, it is useful to know

how the governing equations (or budgets) of higher-moment statistics (such as Reynolds

stress or turbulent kinetic energy) look like. Equations for higher-moment statistics can be

formally derived based on the eqs. of velocity (and of course temperature and moisture)

fluctuations [see ref.: C. du. P. Donaldson, 1973: Construction of a Dynamic Model of

the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutions,

Workshop on Micrometeorology, published by the AMS], which are obtained by subtracting

the mean, (6), from the total, (5),

∂ui
′

∂t
+ uj

∂ui
′

∂xj
+ uj

′ ∂ui
∂xj

+ uj
′∂ui

′

∂xj
− u′j

∂u′i
∂xj

= +
gi
T0

θ′ − 1

ρ0

∂p′

∂xi
+ ν

∂2ui
′

∂x2
j

. (9)

For example, the equations for the Reynolds stress u′iu
′
j can be obtained by (a) multiplying

(9) by u′j, (b) multiplying (9) for u′j by u′i, (c) summing them up, and (d) applying Reynolds

averaging. This yields a set of equations for u′iu
′
j.

The ensemble-mean and fluctuating equations for scalars can be derived the same way.

In deriving these equations, we further assume horizontal homogeneity, i.e., ∂Φ/∂x =

∂Φ/∂y = 0, where Φ is a statistical quantity. This assumption is referred to as the “PBL

assumption”. Under this assumption, none of the horizontal fluxes shows up in the moment

equations; there are only vertical derivatives of the vertical turbulent fluxes. But be cautious:

This doesn’t mean that the horizontal turbulence fluxes are zero; the horizontal fluxes can be

as large as the vertical fluxes in the PBL. Because of the horizontal homogeneous assumption
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(more in next section), horizontal convergence/divergence of the horizontal fluxes is assumed

to be zero.

Homework 1:

A. Normalize the Navier-Stokes equation (assuming no external forcing) using a velocity

scale U and a length scale L and show that the dimensionless equation contains only

one dimensionless parameter. What is it?

B. Derive the Poisson’s equation for pressure from (1) and (2) and describe each term based

on where it comes from.

C. Derive the Reynolds-averaged turbulent-kinetic-energy (TKE) equation from (9), using

the PBL assumption, and the describe the physics of each terms.

1.4 Commonly-used terminology

1.4.1 Energy-containing eddies and Kolmogorov microscale

The largest eddies in a turbulent flow are generated directly from shear or buoyancy instabil-

ity of the mean field. They contain most of the turbulent kinetic energy and thus are called

“energy-containing eddies”. Their turbulence dynamics depend on their environmental con-

ditions such as flow geometry and driving force and their sizes are limited by flow geometry

or other environmental conditions. In a convective daytime PBL, for example, the capping

inversion limits the largest turbulent eddies to be on the order of 1 kilometer.

The smallest eddies in turbulence are called “Kolmogorov microscale” η, which are the

largest viscous eddies responsible for dissipating energy. Their characteristics thus depend on

the dissipation rate ε (which has a dimension of L2/T 3) and the viscosity of that particular

fluid ν (which has a dimension of L2/T ). From dimensional arguments this means their

length scale is on the order of (ν3/ε)1/4. Since the amount of turbulent energy that dissipates

in small scales must equal the amount of energy inputs from energy-containing scales, the

dissipation rate can be expressed in terms of the characteristics of energy-containing eddies,

i.e., ε ∼ U3/L, where U and L are velocity and length scales of energy-containing eddies. In
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convective PBL, U ∼ w∗ ∼1 m/s and L ∼ zi ∼ 103m, thus ε ∼ 10−3 m2/s3. For air, ν= 1.5

× 10−5 m2/s, thus the smallest turbulent eddies are on the order of η ∼ 10−3m.

In between the energy-containing eddies and dissipative eddies, there is an inertial sub-

range, which will be described in section 1.4.5.

1.4.2 Reynolds number and Reynolds-number-independent regime

Reynolds number Re is defined as the ratio of the inertia force [i.e., nonlinear scrambling, the

second term on the left-hand side of (1), which is on the order of ∼ U2/L] to the viscous force

[i.e., the third term on the right-hand side of (1), which is on the order of ∼ νU/L2]. Here

again U and L are velocity and length scales of energy-containing eddies. Thus, Re = UL/ν.

When the nonlinear scrambling effect dominates the viscous effect, i.e., the Reynolds number

is large enough, the flow becomes turbulent. The critical Re for transition to turbulence in

a pipe flow is about 2000. For a convection water tank, the critical Re is about 100.

Higher Re implies a broader scale range of turbulent eddies. The convection turbulence

in the Deardorff-Willis water tank [Deardorff and Willis, 1985; Bound-Layer Meteorol., 32,

205–236] has L ∼ zi ∼ 20 cm, U ∼ w∗ ≡ [ g
T0
wT 0zi]

1/3 ∼ 0.8 cm/s, and νwater ∼ 1.5 × 10−6

m2/s, thus it has Re ∼ 103, so turbulent eddies range from millimeters (Kolmogorov scale)

to few tens centimeters (the size of the tank). In a typical convective PBL, U ∼ w∗ ∼
1 m/s, L ∼ 1 km, and νair ∼ 1.5 × 10−5 m2/s, thus Re ∼ 108 (w∗ and zi defined later),

so eddies range from millimeters (again the Kolmogorov scale) to a few kilometers (the

height of the capping inversion). With such a high Re, PBL turbulence is considered “fully

developed turbulence”, way beyond the transition-to-turbulence regime. Turbulence in the

PBL is usually well maintained by vertical wind shear at night and buoyancy in the day

time, except in windless nights.

If two different fluids with the same geometry have the same Reynolds number, i.e.,

UaLa/νa = UbLb/νb, their turbulent motions are “dynamically similar”. It is easier to un-

derstand this similarity property from the Navier-Stokes equations. Normalizing (1) using

a velocity scale U , a length scale L, a time scale L/U , and a pressure scale ρ0U
2 (for in-

compressible flows) leads to the dimensionless Navier-Stokes equations that contain only one

parameter, Re = UL/ν. Thus, for a given geometry of the flow and initial condition, the

solutions of (1) depend only on Re.
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Most statistical properties of turbulence and large-eddy structure become independent

of the Reynolds number when Re is sufficiently large. This is called the “Reynolds-number-

independent regime”. Deardorff-Willis’ water-tank turbulence is probably well within this

range, so turbulence properties we learn from their tank experiments can apply to the clear

convective PBL even though the latter has a much larger Re. However, fine-scale structure

may be quite different in two Reynolds-number-similar flow fields even though their large

eddy structure is similar. Thus we should be cautious when applying laboratory results to

PBL phenomena that depend strongly on fine-scale structure.

1.4.3 Homogeneous and isotropic turbulence

“Homogeneous turbulence” doesn’t mean the spatial structure of the flow is uniform in the

horizontal plane; it means its statistical properties are independent of position. Likewise,

“isotropic turbulence” means its statistical properties do not change by a coordinate rotation

or translation. Thus, in homogeneous turbulence, spatial derivatives of all turbulent statistics

are zero, and in isotropic turbulence, u2 = v2 = w2 and all fluxes are zero since it does not

have any prefer direction.

PBL turbulence is often treated as horizontally homogeneous because the scale of hor-

izontal variations of large-scale environments is typically much larger than the PBL scale,

i.e., >>1 km. Thus, the horizontal derivatives of PBL turbulent statistics are assumed to

be zero (i.e., the ‘PBL assumption’ mentioned in section 1.3.2). However, PBL turbulence

cannot be isotropic; otherwise, all of the fluxes of momentum, heat and other scalars would

vanish. Those turbulent fluxes are crucial to weather and climate.

Nevertheless, smaller eddies within the inertial subrange (see section 1.4.5) may be close

to homogeneity and isotropy because they are generated through energy cascade (i.e., non-

linear scrambling) from larger eddies and are not significantly influenced by anisotropy and

inhomogeneity of the mean field or flow geometry. These small eddies are assumed to be

“locally homogeneous and isotropic”. This assumption is used to derive the well-known Kol-

mogorov theory (1.4.5). But in the PBL even small eddies within the inertial subrange carry

some amount of fluxes, albeit small.
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1.4.4 Quasi-steady state and large-eddy turnover time

PBL turbulence is often in a state of local equilibrium with its large-scale environment—

“quasi-steady state”, because synoptic or mesoscale motions often vary much slower than the

turbulent large-eddy turnover time. Large-eddy turnover time is defined as the ratio of the

length to velocity scales of energy-containing eddies, τ = L/U , which is few tens minutes

in a typical convective PBL (CBL). In quasi-steady state, the statistical properties (such as

fluxes and variances) remain unchanged—if they are properly scaled (I will explain scaling

laws later). A quasi-steady state is not an exactly steady state; the mean wind can vary due

to Coriolis inertial oscillation and the mean temperature can change due to surface heating

or cooling. A quasi-steady state implies that the vertical shapes of the mean fields remain

unchanged.

The PBL can quickly adjust to its slowly changing environments (such as diurnal vari-

ations) to reach individual quasi-steady states. This property provides the basis for pa-

rameterizing the PBL turbulence in large-scale meteorological models. In parameterizations

the net turbulent effect is assumed to be functions of a given mean state. We cannot pa-

rameterize the PBL statistics if they keep changing in a given mean state. Also, because

of the existence of quasi-steady states, we can categorize PBLs into different regimes (i.e.,

different quasi-steady states) and study them separately. For example, the clear convective

PBL regime is a quasi-steady regime that is driven by surface heating, while the stable PBL

is another regime that is driven by vertical wind shear in a stably stratified environment.

In this course, we will first study the clear convective PBL regime, i.e., daytime PBL over

heated surface. It is the simplest and most understood regime. In section 4, we will study

the stable PBL (nighttime PBL over land) in which shear and buoyancy act against each

other. In section 5, we will study more complicated PBL regimes that involve clouds: PBLs

with stratocumulus and shallow cumulus.

1.4.5 Inertial subrange and Kolmogorov theory

In a sufficiently high Re turbulent flow, there exists a wide range of energy spectrum that

has a –5/3 spectral slope (Fig. 1.2); they lie in between energy-containing eddies and viscous

eddies. This intermediate range is called the “inertial subrange”.
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Figure 1.2

Eddies in this subrange are generated from nonlinear interactions of energy-containing

eddies. They are smaller than the energy-containing eddies, but much larger than the vis-

cous eddies. Eddies in this subrange are not generated from the mean field and also they are

not dissipative. They merely pass along the energy from energy-containing scale to viscous

scale at an equilibrium rate ε. Kolmogorov theory was derived in 1941 based on the follow-

ing dimensional argument: Assuming that the characteristics of inertial-subrange turbulence

depend only on one dimensional parameter, the energy dissipation rate ε, which has a dimen-

sion of L2/T 3, where T ∼ L/U is the time scale. The energy spectrum F (κ) has a dimension

of dE/dκ ∼ [L2/T 2]/L−1 = L3/T 2, where κ is the wave number. If the energy spectrum

depends only on ε, it can be written as F (κ) ∝ εmκn. From dimensional arguments, we have

m = 2/3 and n = −5/3, i.e., F (κ) = αε2/3κ−5/3, where α is the proportionality constant.

This is the well-known “Kolmogorov theory” and α is the “Kolmogorov constant”.

1.5 Research tools

1.5.1 Understanding turbulent motions

Data from field measurements (e.g., aircrafts or radars) and laboratory experiments (e.g.,

tank experiments), as well as numerical simulation solutions (e.g., DNS and LES), consist of

detailed turbulent motions, not just the ensemble-averaged quantities. They can be used as
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database to gain better understanding of the PBL turbulent motions—their flow structure

and evolution.

The advantages of field measurements are that the data are “real”, and some of them

(like aircraft) can measure very fine-scale turbulent motion. However, field data are often

contaminated with mesoscale variations, which are hard to analyze for studies of just turbu-

lence. Also, in-situ aircraft measurements provide data only in one direction along the flight

path, so these data are difficult to use to construct multi-dimensional views of turbulent co-

herent structure. (Sometimes we want to know how turbulence transports heat or moisture

by looking at its coherent structure. Also, to better understand entrainment mechanisms, it

would be helpful to be able to visualize how large eddies impinge onto the capping inversion

and ‘bring’ inversion air into the PBL.) Doppler radar or lidar may provide a better alter-

native in observing flow structure. Some important turbulent quantities, such as pressure

fluctuations, are also difficult to measure in the field.

Laboratory experiments also provide “real” turbulent flow fields, but those flows are low

Re. Many existing laboratory flows (Wyngaard called them “tea cup” turbulence) may not

have a Re that is large enough to be in the Reynolds-number-independent regime to represent

PBL turbulence. Pressure fluctuations are also difficult to measure in the laboratory.

With the increasing computer power, numerical simulations are becoming a popular

research tool for studying turbulence and generating database. Since the fundamental equa-

tions that govern turbulent motions are known (i.e., the Navier-Stokes equations), their nu-

merical representation could in principle provide us with a full turbulence solution. Today’s

computers are able to perform up to ∼ (1000)3 grid-point simulations. Thus, a medium

Re turbulent flow, which has eddies ranging from millimeters (Kolmogorov scale) to few

centimeters (e.g., Deardorff-Willis tank turbulence), can be “exactly” simulated; this exact

simulation of full range of turbulence is called “direct numerical simulation (DNS)”.

For high Re, such as PBL turbulence which covers eddies from millimeters to kilometers,

we need ∼ 1018 grid points to resolve all eddies. This is clearly impossible. But the following

properties of the PBL turbulence make it possible for an alternative approach called “Large

Eddy Simulation (LES)”. First, the energy-containing eddies are the ones that carry most

of the turbulent fluxes (and variances), which are the most important PBL parameters for

meteorological applications. Second, we know the properties of the inertial-subrange eddies
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from Kolmogorov’s theory. So, if we have a three-dimensional computer code that has a

grid size much smaller than the energy-containing eddies (i.e., within the inertial subrange),

we can numerically integrate the governing equations to solve for the spatial and time evo-

lution of energy-containing eddies while the net effect of small subgrid eddies can be quite

reasonably parameterized based on Kolmogorov theory (ref. Moeng and Wyngaard 1988,

JAS, 23, 3573–3587). Such simulation solutions could in principle be used as a surrogate

for the PBL turbulence. The LES approach was first proposed by Deardorff in the early

1970s, and is now widely used in the PBL community (summarized in Moeng and Sullivan,

2015, Large-Eddy Simulation. Editors: G.R. North, J.Pyle and F. Zhang. Encyclopedia of

Atmospheric Sciences, 2nd edition, ISBN: 9780123822253). But numerical solutions are not

real flows. Some of the simulated flow properties may depend significantly on numerics or

subgrid-scale models. Therefore, LES should be used with great caution. It should be used

only to study phenomena or statistics that depend mainly on the energy-containing (i.e.,

well resolved) eddies.

1.5.2 Modeling ensemble-mean statistics

In meteorological forecast models, the grid mesh is typically much larger than the energy-

containing eddies of the PBL. Therefore, it is necessary to model (i.e., parameterize) the net

effect of all turbulent motions within the PBL. This type of models is called PBL modeling in

which the ensemble-averaged statistics are parameterized as functions of the mean field. In

conventional PBL models, all turbulent eddies are parameterized; none explicitly resolved.

Over the years many different types of ensemble-mean turbulence models were developed

specifically for PBL applications. We will learn these models in Section 6—after we have

learned some important aspects of the PBL turbulence and its structure. This way we would

learn better how each PBL model was built and know how to interpret results from each

PBL model. As you will learn, all PBL models require first setting up a framework (or

a theory) to express turbulent fluxes in terms of mean fields, and then provide some sort

of closure assumptions to complete the set of equations (i.e., closure problems). How to

make proper closure assumptions is the most essential issue for PBL modeling. Many of the

existing closure assumptions were made based on laboratory data, field data, or large eddy

simulation results.
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2 THE SURFACE LAYER

Figure 2.1 is a sketch showing the diurnal cycle of the PBL over land under clear skies. The

lowest layer that are strongly affected by surface properties is the surface layer. The depth

of the surface layer in a typical convective PBL is about 10% of the depth of the whole

PBL, and hence about 100 m for a daytime PBL of about 1 km deep. The surface layer is

sometimes called “inertial sublayer” because it lies between the viscous layer (which is a few

millimeters above the surface) and the energy-containing layer (i.e., the mixed layer).

Figure 2.1 (SOURCE: Stull’s 1998 textbook)

The surface layer is usually referred to as the constant flux layer. However, you should

know that fluxes within the surface layer are not more “constant” than those above this layer.

The reason we call it the “constant flux” layer is described below: Within the boundary layer,

there is an approximate balance among the three major forces in the horizontal components

of the Reynolds equations: the pressure gradient force, the Coriolis force, and the Reynolds

stress term (i.e., friction force). This so-called Ekman balance is written as:

f~k × (~VH − ~Vg) =
1

ρ0

∂~τH
∂z

, (10)

where f is the Coriolis parameter, ~VH the vector of horizontal wind speed, ~Vg the vector

of geostrophic wind, and ~τH ≡< u′w′, v′w′ > is the vector of Reynolds stresses. Here we

assume that ∂/∂x = ∂/∂y = 0 for horizontally homogeneous PBL. Vertically integrating

(10) over a thin layer from the surface to the top of the surface layer, δz, we get

16



ρ0f~k × (~VH − ~Vg)δz = ~τH(δz)− ~τH(0). (11)

If the surface layer is thin, δz → 0, ~τH(δz) ∼ ~τH(0), so the stress can be considered approxi-

mately ‘constant’ across this thin layer. But remember that ∂~τH/∂z within the surface layer

is usually as large as that above the surface layer.

2.1 Eddy structures

Before we get into the statistical description of the surface layer, let’s see what eddies look

like within the surface layer.

Data from in-situ measurements are typically one dimensional in space or time, and

therefore are difficult to extrapolate to a planform pattern. Wilczak and Tillman (1980,

JAS, 37, 2424–2443) set up an array of 16 temperature sensors, covering a 100 m x 40 m

area at a height of 4 m, next to the BAO (Boulder Atmospheric Observatory) tower, and was

able to provide us with a “look” of observed three-dimensional structure of eddies within the

surface layer. In a near-neutral surface layer, they observed plume structures that are mostly

elongated along the mean wind direction (Fig. 2.2a); typical dimensions are several hundreds

of meters along the wind and several tens of meters across the wind. In a strongly convective

surface layer, they found that the plumes tend to elongate in the crosswind direction (Fig.

2.2b), with a typical alongwind length of about 10 to 75 m. Wilczak (1984, JAS, 41, 3537–

3550) also constructed ensemble vertical cross sections of velocity and temperature fields

associated with large eddies (Fig. 2.2c) in the convective surface layer.

In purely buoyancy-driven turbulence (i.e., free convection), convection tank experiments

(e.g., Willis and Deardorff 1979, JGR, 84, 295–302) showed that near the wall, convergence

takes place “along irregular lines which intersect in a pattern suggestive of cellular structures

having ascending motions at their peripheries and descending motions in their interior.”

These irregular cellular patterns are also observed from fine-resolution LES (e.g., Schmidt

and Schumann 1989, JFM, 200, 511–562) as shown in Fig. 2.3. The horizontal dimension

of this near-wall pattern is about the depth of the whole PBL. Vigorous updrafts that

extend all the way up to the mixed-layer top are found to originate at the intersections

of the near-surface convergence lines. Those features are consistent with the parallel-plate
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Figure 2.2 (SOURCES: Wilczak and Tillman, 1980; Wilczak 1984)
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contours of constant absolute temperature. A t  the sides of these penetrations, at  
times when the velocity has already become negative, tongues of warm air, called 
‘wisps’ by Stull (1973), which are best seen from the isothermals of temperature 
fluctuations, are torn downwards. Such wisps are clearly visible in radar and sodar 
soundings reported by Rowland & Arnold (1975). Above the inversion there are still 

Figure 2.3 (SOURCE: Schmidt and Schumann 1989)

The above described large-eddy features are often called coherent structure; they are long

lasting (on the order of a large-eddy-turnover time, i.e., few minutes) compared to the small

random eddies. These coherent eddies are responsible for most of the turbulent transport

of momentum, heat and other scalars (e.g., Wilczak 1984, JAS, 41, 3537–3550; Mahrt and

Gibson 1992, JAS, 60, 143–168). It is easy to see from Fig. 2.2c and Fig. 2.3, where most

updraft eddies (w′′ > 0) are well correlated with warmer parcels (i.e., thermals, which have

θ′′ > 0). This positive correlation results in net upward transport of heat (through convective

turbulence) in the convective PBL.

There are ongoing research trying to characterize these coherent structures, to determine
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how much of the total fluxes is carried by these structures, and to find relationships between

structure and flux. In some complicated PBL regimes (e.g., over complex terrain) where

ensemble statistics are difficult to define, one may need to rely on the characteristics of their

coherent structure to determine their turbulent statistics.

2.2 Monin-Obukhov similarity theory

The most commonly-used statistical method in describing the surface-layer turbulence is

Monin-Obukhov similarity theory. It is an extension of the well known logarithmic ‘law of

the wall’ in engineering term, to include the temperature stratification effect.

Let me first describe similarity theory (or similarity hypothesis) using a pure shear-driven

turbulent surface layer as an example. Within a neutrally stratified surface layer, no buoy-

ancy force is involved. And since the molecular viscosity is negligible, the only relevant

velocity parameter is the surface friction velocity u∗ = (u′w′
2
0 + v′w′

2
0)1/4, which can be con-

sidered ”constant” within the ”thin” surface layer. The only length scale is z, the distance

from the wall. Thus, it is hypothesized that the vertical shear of the mean wind ∂U/∂z

depends only on u∗ and z. The only combination of these two parameters that gives the

dimension of wind shear is u∗/z. Therefore,

∂U

∂z
=

1

κ

u∗
z
, (12)

where κ is the proportionality constant, which is called von Karman constant because von

Karman derived (12) in 1930. This constant is not given by theory, but can be measured

in laboratories or the field. Laboratory results gave κ ∼ 0.4. Field measurements showed a

great scatter (Table 2.1, taken from Cai’s Ph.D. thesis, 1993). In general, this value falls in

the range of 0.35 to 0.43.

So, similarity theory is to use dimensional analysis to incorporate all relevant governing

parameters (such as velocity, length, or time scales) into a formula (or a theory). The most

difficult task in developing a similarity theory is to come up with all of the relevant governing

parameters. After dimensional rearrangement, one then needs to empirically determine the

proportionality constants (or universal functions) involved.

Vertically integrating (12)—from the height where the extrapolated mean wind becomes
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Table 2.1 (SOURCE: Cai’s Ph.D. thesis, 1993)

zero (denoted as z0) to a reference height z—yields the following mean wind profile,

U(z) =
u∗
k

ln
z

z0

. (13)

It shows that the mean wind profile is logarithmic in height within the surface layer. This

is the well-known “law of the wall” in engineering term.

In deriving (13), we learn that the roughness height z0 is defined as the height where the

mean wind becomes zero if we extrapolate the logarithmic profile all the way down (Fig.

2.4). The roughness height z0 is not a physical height where the mean wind actually goes to

zero, because there exists a viscous layer (below the inertial sublayer) where the wind profile

is not logarithmic.

In 1954, Monin and Obukhov applied the similarity-theory concept to stratified atmo-

spheric surface layer. They assumed that with stratification relevant parameters should

include not only u∗ and z but also buoyancy parameters g
T0

and the surface temperature flux
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Figure 2.4

w′θ′0. The only combination of including all these parameters to form a non-dimensional

parameter is z/L, where L = −u3
∗/[k

g
T0
w′θ′0] is called Monin-Obukhov length.

Therefore, the non-dimensional vertical gradient of mean wind is written as a function

of the non-dimensional parameter z/L:

kz

u∗

∂U

∂z
= φm(

z

L
), (14)

where φm is a universal function. Formula (14) relates the mean wind shear to all of the

relevant parameters in a stratified surface layer. Again the universal function cannot be

determined by theory; it can only be estimated from measurements. There existed many field

studies that were designed to find this stability function φm. Some of these measurements and

their results for φm are listed in Table 2.2 (again taken from Cai’s thesis). Each measurement

came up with its own empirically-fitted formula, but these formulae are really not very

different from each other, as shown in Fig. 2.5a.

Similarly, the non-dimensional vertical gradient of the mean temperature can be written

as

kz

θ∗

∂Θ

∂z
= φh(

z

L
), (15)

where θ∗ = −w′θ′0/u∗. Again φh is another universal function to be determined empirically.

Since (14) and (15) relate the flux parameters u∗ and θ∗ to the vertical gradients of the
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Table 2.2 (SOURCE: Cai’s Ph.D. thesis, 1993)

Figure 2.5a
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mean field, they are also referred to as flux-gradient relationships.

If you choose to use the Businger’s formulae (see Businger et al 1971, JAS, 28, 181-189),

shown in Fig. 2.5b, then vertically integrating (14) and (15) (Paulson 1970; JAM, 9,857–861)

yields the mean wind profile within the surface layer:

U

u∗
=

1

k
(ln

z

z0

−Ψ1) for unstable case, (16)

U

u∗
=

1

k
(ln

z

z0

+ 4.7
z

L
) for stable case, (17)

and the mean temperature profile,

Θ−Θ0

θ∗
=

0.74

k
(ln

z

z0

−Ψ2) for unstable case, (18)

Θ−Θ0

θ∗
=

0.74

k
(ln

z

z0

) +
4.7

k

z

L
for stable case, (19)

where Θ0 is the extrapolated temperature at z0, which is not necessarily the actual surface

temperature. Here Ψ1 = 2 ln[(1 + x)/2] + ln[(1 + x2)/2] − 2tan−1(x) + π/2 with x =

(1− 15z/L)1/4, and Ψ2 = 2 ln[(1 + y)/2] with y = (1− 9z/L)1/2. (See Businger, J. A., 1973:

Turbulent Transfer in the Atmospheric Surface Layer, in Workshop on Micrometeorology,

Ed. D.A. Haugen, AMS.)

Formulae (16, 17) and (18, 19) can be used in two ways: Given the air temperature at

z0 and the wind and temperature at any height within the surface layer, we can determine

u∗ and θ∗, which then give the surface fluxes of momentum and temperature. On the

other hand, given the surface fluxes we can use these formulae to find the mean wind and

temperature profiles within the surface layer. From these formulae, we can also determine the

drag coefficients CD and CH used in the bulk aerodynamic method: u′w′0 = −CD|~V |U and

w′θ′0 = −CH |~V |(Θ−Θ0). It is important to remember that in order to use the flux-gradient

relationships, the reference level z has to be within the surface layer because ”constant flux”

is assumed in their derivations.

The physical meaning of the Monin-Obukhov length is clear if you look at the Reynolds

average TKE equation, which you derived in Homework 1C. The shear production term is

on the order of u3
∗, whereas the buoyancy production is g

T0
w′θ′. So z ∼ L is the height
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Figure 2.5b (SOURCE: Businger et al 1971)
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where these two TKE productions are about equal; below L, shear production dominates,

and above L, buoyancy production dominates.

The TKE budget in the unstable surface layer measured in the field is summarized in Fig.

2.6 by Hogstrom (1990; JAS, 47, 1949–1972) and Wyngaard (1992; Annu. Rev. Fluid Mech.

24, 205–233). Normalized by u3
∗/κz, the TKE budget can be expressed in terms of the M-O

parameter z/L. First, the normalized shear production term (S ≡ −κz
u3∗
uw∂U/∂z where U is

the along-wind component) is simply φm and the buoyancy production term (B ≡ κz
u3∗
gwθ/T0)

is −z/L. So these two terms can be expressed as functions of z/L exactly (shown as the

two solid curves in Fig. 2.6). The normalized turbulent transport (T ≡ −κz
u3∗
∂wE/∂z) and

dissipation term (κz
u3∗
ε) can be measured in the field; they are both negative. The normalized

pressure transport term (P ≡ −κz
u3∗

1
ρ0
∂wp/∂z) cannot be measured accurately in the field and

is therefore taken as the imbalance of the above four terms. (In quasi-steady states, ∂E/∂t

is assumed to be zero.) Even with all the data scattering, it is still clear that the pressure

transport term is a large gain in the unstable surface layer, first found from the Kansas

experiment. This means that the pressure flux, which is zero at the ground, is negative and

decreases with height in the surface layer.

In the limit of free convection, i.e., U = 0, the above M-O formulae no longer apply.

Under this condition, there can still be some amount of u∗ that is due to the local horizontal

motion induced by thermal convection. This local wind generates local turbulence and

local momentum fluxes, and hence u∗ 6= 0. Businger (1973 BLM, 4, 323–326) proposed u∗

proportional to the 1/3 power of the surface heat flux in free convection. Further studies on

this topic can be found in Schumann (1988, BLM, 44, 311–326), Sykes et al. (1993, QJRMS,

119, 409–421) and Stull (1994, JAS, 51, 3–22).

For surface fluxes over the ocean, the most used surface-layer formula is from Liu et al.

(1979, JAS, 36, 1722–1735) and its update: Fairall et al. (1996, JGR, 101, 3747-3765). Large

and Pond (1982, J Phy Ocean, 12, 464–482) also present an extensive set of sensible and

latent heat flux measurements over the ocean.

Homework 2:

A. Use (14), along with Businger’s φm formula for the unstable surface layer, to plot (nu-

merically) the drag coefficient CD = u2
∗/U

2
10 as a function of z/L for z0 = 10−4 m. Here
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U10 is the wind speed at z = 10 m.

B. Plot u2
∗/U

2
10 against z/L using the analytical formula (16), and compare this result with

the first plot.

Figure 2.6 (SOURCE: Hogstrom 1990)
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3 THE CLEAR CONVECTIVE PBL

When the sun warms up the ground, warm (lighter) air parcels (in the form of thermals or

plumes) tend to rise. This is how convection can effectively generate turbulence on sunny

days. The intensity of convectively driven turbulence is often very strong so it can quickly

mix all conserved variables within the bulk of the PBL. Hence the clear convective PBL

(CBL) is also called the mixed layer. (The term ”mixed layer” is sometimes confused with

uniformity. Turbulence does not mix spatial structure of flows such as local wind or local

temperature to make them uniformly distributed in space or time. As described in section

1.4.3, the well-mixed quantities are the statistical properties, such as horizontally averaged

mean wind and potential temperature.)

A typical sounding after the sun rises is shown in Fig. 3.1. The CBL grows in time

via entrainment (to be explained later) and the mean potential temperature and moisture

mixing ratio are well (or nearly) mixed within the bulk of the CBL. Notice also that the

vertical profiles of heat flux are linear with height.

A typical CBL consists of three layers. The lowest 5-10% is the surface layer where

small eddies dominate and the temperature lapse rate is superadiabatic (unstable surface

layer). The middle 80-90% of the PBL is the well mixed layer where the temperature

lapse rate is almost adiabatic. The top 5-10% is the entrainment zone, which is a layer

consists of the undulation of the interface between the turbulent PBL and the overlying

(often warmer) free atmosphere. The (local) interface, which can be sharp, moves up and

down in space and time due to turbulent motion, so after averaging (either spatial or time

or ensemble), the undulation forms a layer of finite thickness. The entrainment zone of

the CBL is often characterized by temperature inversion, penetrating thermals, intermittent

turbulence, internal gravity waves, and entrainment events.

3.1 Thermal or plume structures

There is increasing evidence that coherent structures (such as thermals, plumes, or roll

vortices) carry most of the turbulent fluxes of momentum, heat, and other scalars. There-

fore, many studies are aimed at understanding these structures. Some researchers hope

to use coherent structures to describe turbulence properties, instead of using the traditional
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Figure 3.1 (SOURCE: Stull’s textbook)
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Figure 3.2 (SOURCE: Garratt’s textbook 1992)

ensemble-mean statistics, which bury all the details of turbulent motions within the averages.

Within the CBL, thermals with a size of the PBL depth are the dominant structure.

To “see” the whole picture of these structures, we rely mainly on radar or LES. Figure 3.2

displays radar return echoes near the PBL top, which shows thermals penetrating into the

capping inversion. Based on observations, convection tank experiments and LESs, we form

the following picture of turbulence structure in the CBL: Near the heated surface, warm air

tends to converge at the narrow edges of irregular polygons (see Fig. 2.3), which are also

where positive vertical-velocity fluctuations locate (but not always because of the nature of

turbulence). Warm air parcels that exist at the intersects of polygons are likely to become

strong updrafts and travel all the way up to the inversion. These form large-eddy thermals (or

plumes). When thermals impinge onto the inversion, the stratification prevents them from

going further up so they return back to the turbulent layer. Upon returning, they engulf (or

push) some inversion air into the turbulent layer (Fig. 3.3 taken from Sullivan et al. 1998,

55, 3042–3064, JAS). We believe that these large-eddy impinging and engulfing processes,

rather than small-scale mixing at the interface, are responsible for most of the entrainment of

inversion air into the clear convective PBL. Small-scale mixing (of the turbulent and laminar

flows) across the interface also occurs but it is likely to contribute only a small portion of

the net entrainment in the CBL.

Downdrafts must fill in space between rising thermals (updrafts) because of mass conti-

nuity. These downdrafts are compensating motion and hence must be weaker than updrafts.

This means the vertical velocity field is positively skewed. Since the mean vertical motion

of turbulence is zero, the area covered by stronger updrafts (σu) then must be smaller than

that covered by weaker downdrafts (σd), i.e., wuσu + wdσd = 0 and hence wu/|wd| = σd/σu.
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Figure 3.3 (SOURCE: Sullivan et al. 1998)
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The skewed vertical velocity field has a strong impact on plume dispersion, as we will learn

in section 3.5.

Thus, instead of transporting momentum and heat (and other scalars) locally like molecu-

lar diffusion, most of the transport is through large thermals. This feature results in nonlocal

transport because large thermals can quickly carry fluxes all the way to the PBL top without

much mixing with their surrounding downdrafts. Recognizing this highly efficient transport

process, many PBL models include nonlocal transport effects for the CBL.

Another type of coherent structure in the CBL is convective rolls (or referred to as roll

vortices), which was first observed in the field by Kuttner (1959, Tellus, 11, 267–294). These

are quasi two-dimensional horizontal vortices. With sufficient moisture, they form cloud

streets which are visually recognizable. Cloud streets exist in many different large-scale

environments. They exist over the subtropical ocean where the mean wind is sufficiently

strong and the surface sensible heat flux not very large (i.e., in the small −zi/L regime;

e.g.,LeMone 1973; JAS, 30,1077-1091). Cloud streets also exist in cold air outbreak over

warm water where the surface sensible heat flux is large (e.g., Chou and Ferguson; 1991,

BLM, 55, 255–282). The cloud streets observed in these two regimes may have similar

dynamical circulations, but they are likely to form from different instability mechanisms.

Horizontal rolls also exist in cloudless convective PBLs, which are observed from Dual-

Doppler-Radar (e.g., Kropfli and Kohn 1978; JPM, 17,669–676). The aspect ratio (defined

as the ratio of the wavelength of the roll circulations to their vertical extent) of the observed

convective rolls ranges from 2 to 15, as summarized by Etling and Brown (1993; BLM, 65,

215–248).

3.2 Scaling parameters and typical statistics profiles—for the CBL

Turbulence statistics in their dimensional form differ case by case because of different surface

forcing, geostrophic wind, or different sounding. But with proper scaling, most turbulent

statistics of the CBL collapse onto some universal curves, even though data are taken from

different cases. This is another application of the so-called similarity or scaling argument. In

other words, if we can come up with proper scaling parameters, turbulent statistics obtained

from a wide range of meteorological conditions can be normalized in such a way that their

non-dimensional statistics are similar. We should thank Deardorff for finding such a proper
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scaling for the CBL.

Before Deardorff’s early LES study in 1972, the only known scaling parameters to PBL

researchers were friction velocity (u∗) and the Ekman PBL depth (which is proportional to

u∗/f). As we know now, these two parameters are relevant only for shear-driven PBL and

only without a capping inversion (i.e., the classical Ekman PBL). In that case, the wind

stress is the only turbulent energy source and the Ekman layer depth (u∗/f) is the only

length scale. However, this hypothetical neutral PBL does not exist in nature. For the CBL,

surface heat flux dominates the wind stress in driving turbulence and a capping inversion

(which is usually much shallower than u∗/f) limits the growth of the CBL.

Using a rather coarse resolution (by today’s standard) in his LES, Deardorff (1972; JAS,

29, 91–115) generated several LESs spanning a range of shear and buoyancy regimes. From

those numerical data, he found that the parameters u∗ and u∗/f became irrelevant when

buoyancy dominates (i.e., −zi/L > 4, where zi/L will be defined later), but when he used

w∗[≡ ( g
T0
wθ0zi)

1/3 where g
T0
wθ0 is the surface buoyancy flux] and zi instead, he was able to

collapse all of his LES solutions for larger −zi/L into one curve, as shown in Fig. 3.4. The

parameter w∗ is called the convective velocity scale. Deardorff also proposed a temperature

scale for the CBL as T∗ ≡ wθ0/w∗. This set of parameters is now known as the “mixed-layer

scaling”. (From now on, I will neglect the prime symbol for turbulent fluctuations.) The

ratio of w∗ and u∗ is related to the mixed-layer stability parameter as: w∗/u∗ = (−zi/L)1/3,

and is an indication of relative importance of surface buoyancy vs. surface shear effects in

driving turbulence.

Figure 3.5 classifies the PBL into five regimes using the parameter zi/L: the strong

convective forcing CBL, mix of shear and buoyancy driven PBL, neutral PBL, weakly stable

PBL, and strongly stable PBL. The above mixed-layer scaling only works for the CBL regime.

[The mixed-layer scaling is different from the surface-layer scaling. The length and ve-

locity scales for the mixed layer are zi and w∗, while those for the surface layer are z and u∗.

The stability parameter for the mixed layer is zi/L, vs. z/L for the surface layer.]

First studies that used the mixed-layer scaling to analyze field data were made by

Lenschow (1974; JAS, 31, 465–474) and Lenschow et al. (1980, JAS, 37, 1313–1324), on

aircraft data over the entire CBL. The data used in the latter study were from the well-

known AMTEX (Air Mass Transformation Experiment) experiment. That study showed
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Figure 3.4 (SOURCE: Deardorff 1972)

Figure 3.5
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Figure 3.6 (SOURCE: Lenschow et al 1980)

the vertical distributions of many second- and third-moment statistics—scaled with the

above mixed layer parameters—within the CBL. Here I show some of them: the normalized

velocity variances in Fig. 3.6, heat flux in Fig. 3.7, vertical fluxes of velocity variances (3rd

moment statistics) in Fig. 3.8. The overall distribution of normalized TKE budgets (taken

from Stull’s book) is shown in Fig. 3.9.

Some of the above profiles are now considered “typical” in the CBL. They have the

following features:

(1) The two components of the horizontal-velocity variances within the CBL are about the

same, indicating horizontal isotropy. These variances have two local maxima: one at

the wall and the other at the capping inversion.

(2) The vertical-velocity variance peaks at about 0.4zi with a maximum of about 0.4w2
∗.

(3) For clear convective PBL, the buoyancy flux (Fig. 3.7), or the buoyancy production

(BP-curve in Fig. 3.9), almost always linearly decreases with height. This is because

that the vertical shape of the mean temperature remains unchanged in a horizontally-

homogeneous, quasi-steady state, i.e.,

∂

∂t

∂Θv

∂z
∼ 0 ∼ − ∂2

∂z2
wθv. (20)
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Figure 3.7 (SOURCE: Lenschow et al 1980)

Figure 3.8 (SOURCE: Lenschow et al 1980)
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Figure 3.9 (SOURCE: Stull’s textbook)
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Thus, the curvature of the buoyancy flux should be zero within bulk of the mixed

layer. This linearity is true for all conservative scalars, such as the moisture flux. The

normalized buoyancy flux is 1 at the surface and about –0.2 at the PBL top. And

hence the relationship wθzi ∼ −0.2wθ0 is often used to determine the entrainment

rate of the CBL. The reason that the ratio of the entrainment buoyancy flux to the

surface flux is around –0.2 in the CBL has something to do with the fact that some

amount of buoyancy production has to go to dissipation and some converts to potential

energy through entrainment. But, the exact mechanism for this ratio is not fully

understood. The entrainment fluxes of other scalars (such as moisture and ozone),

however, vary greatly from case to case, depending on the vertical distributions of

their mean concentration (such as vertical gradient across the CBL top). There is no

-0.2 rule for other scalars.

(4) The vertical flux of vertical-velocity variance, w3, which peaks at mid-PBL, is much

larger than wu2 and wv2. Using w2 and w3 shown in Figs. 3.6 and 3.8, we can calculate

the vertical velocity skewness, defined as w3/w23/2
; it is about 1 ∼ 2 throughout the

whole CBL, a large positively skewed w-field.

(5) Unlike shear-driven turbulence, the transport term due to TKE-flux and pressure are

also large in the CBL. However, the two transport terms tend to cancel each other

(which we don’t know why), and the net effect is a smaller transport. The net effect

of the two transport terms is a vertical redistribution of the TKE from the lower

CBL to the upper CBL. The major contributor to the turbulent transport term is the

large w3, shown in Fig. 3.8. A large positive w3 is associated with a large skewed w-

field. Thus, the larger the w-skewness (such as in the cumulus-cloud layer), the more

important the turbulent transport term becomes in the TKE budget. This makes

the prediction of TKE budget in a large skewed condition more difficult, because

the turbulent transport term involves third moment statistics which requires closure

assumptions. Note that the vertical integration of the net transport over the whole

PBL is zero, since
∫ zi

0 [∂wE + wp/∂z]dz equals to the difference of the fluxes wE + wp

at (or just above) the top and the bottom of the PBL, which are zero in most cases.

So these two transport terms cannot generate or consume TKE; they just redistribute
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the TKE vertically.

(6) The dissipation term is nearly constant in the bulk of CBL (although Fig. 3.9 shows

its magnitude decreases with height, LESs show this term to be nearly constant in

the middle of the CBL). Its magnitude can be estimated as follows: When the shear

production is negligibly small, the buoyancy flux at the PBL top is roughly –0.2 of the

surface flux. By layer integrating the TKE budget from the surface to the PBL top,

the two transport terms drop out, we obtain the layer integrated dissipation rate as:

−
∫ zi

0
εdz ∼ 0.4

g

T0

wθv0 = 0.4
w3
∗
zi
. (21)

The statistics of the CBL regime obtained from LESs (e.g., shown in Fig. 3.10b) compare

well with those shown in Figs. 3.6–3.9, except that the simulated dissipation term are more

constant in height. The convection tank results from Deardorff and Willis (1985, BLM, 32,

205–236) also show similar statistical profiles as those observed, implying that the medium-

Re tank convection is in the Re-independent regime.

3.3 Scaling parameters and typical statistics profiles—for weakly
convective near-neutral PBL

When the PBL is only weakly convective and the wind is strong, both buoyancy and shear

become dominant sources in generating TKE. Then the above mixed layer scaling (which

works only for buoyancy dominant CBL) no longer applies. The mixed shear-buoyancy

driven PBL (0 < −zi/L < 4) exists mostly over the ocean. It rarely exists over land because

the land heats up after sunrise and cools down after sunset very quickly.

We don’t have “typical” statistics profiles for this mix shear-buoyancy PBL regime. The

reasons are: (1) the shear-also-dominant CBL exists mainly over ocean where observations

are difficult to carry out; (2) they are often associated with clouds, which complicate the

statistics; and (3) we don’t have a proper scaling law (likely with various combinations of

convective velocity w∗ and friction velocity u∗) to normalize the data.

Moeng and Sullivan (1994; JAS, 51, 999–1022) performed two LESs of this PBL regime

(for −zi/L ∼1.4 and 1.6) shown in Fig. 3.11. The simulated TKE budget from SB1 is
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Figure 3.10 (SOURCE: Moeng and Sullivan 1994)

given in Fig. 3.10c, to compare to those of pure shear driven PBL (Fig. 3.10a) and the

CBL (Fig. 3.10b). Both shear and buoyancy productions are significant in the TKE budget.

Below I summarize the difference between the mix shear-buoyancy CBL regime from the

buoyancy-only CBL:

(1) With increasing shear, statistics of the along-geostrophic-wind component becomes

increasingly dominant, such as u2 and wu2, comparing to those of the vertical compo-

nent. Statistics of the cross-wind component increasingly differ from their along-wind-

component counterparts, i.e., an increasing in horizontal anisotropy.

(2) The vertical velocity variance w2 becomes smaller compared to the horizontal velocity

variances and more uniform with height. It no longer shows a significant peak in the

mid-PBL.

(3) The ratio of entrainment-to-surface buoyancy flux is now larger in magnitude (Fig.

3.11) compared to the CBL. The two mixed shear-buoyancy driven PBLs simulated

by Moeng and Sullivan show an entrainment buoyancy flux that is about –0.5 of the

surface buoyancy flux. This change of the entrainment/surface flux ratio, from ∼ –0.2

to ∼ −0.5, is clearly due to the increasing surface-stress (or perhaps shear across the

entrainment zone) effect. When the entrainment buoyancy flux formula is generalized

to include the u∗ effect as wm = (w3
∗+5u3

∗)
1/3 based on their LES solutions, Moeng and

Sullivan show −wθi ∼ 0.2w3
m/zi. This gives a ratio of entrainment-to-surface buoyancy

fluxes that is larger than 0.2 in magnitude.
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Figure 3.11 (SOURCE: Moeng and Sullivan 1994)

3.4 Spectra

We have learned in section 1.4.5 that Kolmogorov theory predicts the velocity spectrum in

the inertial subrange as

S(k) ∝ ε2/3k−5/3, (22)

which is expressed in the wavenumber space (spatial fluctuations). To analyze data in time

series (time fluctuations), such as tower or balloon measurements, we use Taylor hypothesis

to approximate wavenumber by frequency (n) as k = n/U . After multiplying both sides by

n, we can express the spectrum in frequency space as:

nS(n) ∝ ε2/3 n−2/3. (23)

Using the mixed-layer scaling law, i.e., normalizing n S(n) by w2
∗, dissipation rate by

w3
∗/zi, and the wavelength by zi, the dimensionless form of (23) becomes:

nS(n)

w2
∗
∝ ψ2/3f

−2/3
i , (24)

where ψ ≡ εzi/w
3
∗ is dimensionless dissipation rate and fi ≡ nzi/U dimensionless frequency.

Kaimal et al. (1976; JAS, 33, 2152–2169) analyzed the Minnesota balloon data of the

CBL (−zi/L > 30) using the above mixed-layer scaling. They presented (Fig. 3.12a) the

1-D spectra of u, v, and w along the wind direction at different heights within the CBL. For
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isotropic turbulence, 1D spectra can be shown theoretically to have the same power law—

also -5/3—as the 3-D spectra but with a different proportionality constant (ref: p. 253-254,

Tennekes and Lumley). As far as I know, there is no theory that shows that 2D spectra of

wind or temperature in the PBL also obey the -5/3 power law.

Figure 3.12b plots the peak wavelength of these spectra and also of the temperature

spectrum. What Fig. 3.12 tells us are:

(1) Spectra of all three velocity components in the CBL can be generalized with the mixed-

layer scaling because the inertial subrange spectra all collapse into one representative

curve.

(2) The peak value of dimensionless longitudinal spectrum [which is defined as the spectrum

of the velocity component that is parallel to the wavenumber direction, e.g., Su(kx)

is longitudinal spectrum] is about 0.15, whereas the peak of lateral spectrum [defined

as the spectrum of the velocity component that is perpendicular to the wavenumber

direction, e.g., Sv(kx) or Sw(kx) is lateral spectrum] is about 0.2. Longitudinal and

lateral spectra are different. For isotropic turbulence, the lateral spectrum can be

shown theoretically to be 4/3 of the longitudinal spectrum (ref: page 254 in Tennekes

and Lumley’s book).

(3) The characteristic wavelength, λm, where the spectrum peaks, is about 1.5zi for u and

v fields throughout the whole CBL.

(4) The characteristic wavelength for w increases linearly from z/zi=0.01 to z/zi=0.1,

increases more gradually between z/zi=0.1 and z/zi=0.2, and then remains nearly

constant above 0.2zi at λm ∼ 1.5zi.

LeMone (1980; p. 182–246, Workshop on the Planetary Boundary Layer, edited by J.

Wyngaard, AMS publication) analyzed the aircraft measurements obtained from GATE and

found a somewhat larger λm, as shown in Fig. 3.13. The characteristic wavelength within

the mixed layer is about 2-3 times larger than that observed by Kaimal et al. (which is

shown as the solid curve in Fig. 3.13). This difference may be due to: (1) difference between

PBLs over ocean (GATE) and over land (Minnesota data); (2) difference in spatial (aircraft
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Figure 3.12 (SOURCE: Kaimal et al 1976)
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Figure 3.13 (SOURCE: LeMone 1980)

measurements) and time fluctuations (balloon measurements); or (3) existence of roll vortices

(these rolls have a typical size of 2-3 zi) in the GATE area.

Unlike the velocity spectra, the temperature and moisture spectra cannot be general-

ized within the framework of mixed-layer scaling, due to strong influence by entrainment.

Remember the mixed-layer scaling does not include entrainment effects.

3.5 Scalar transport

Transporting the scalar fields (e.g., temperature, moisture or chemical species) is one of the

important roles of PBL turbulence. Scalar transport by turbulence is crucial for studying

air pollution and biogeochemical effects on climate change. In this section we will learn

three special properties of scalar transport in the CBL, properties that are not observed in

shear-driven turbulence (i.e., not in the neutral and stable PBLs).

3.5.1 Countergradient transport

Back in 1966, Deardorff (1966; JAS, 23, 503–506) observed that heat flux within the CBL was

often countergradient, i.e., the flux direction is against the decreasing-of-the-mean direction.

In other words, heat does not diffuse downgradient in the CBL. He then developed a theory
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in 1972 (Deardorff 1972; JGR, 77, 5900–5904) to model this countergradient transport. His

theory was based on the heat-flux budget as described in the following. The heat-flux

equation
∂wθ

∂t
= −∂w

2θ

∂z
− w2

∂Θ

∂z
+

g

T0

θ2 − 1

ρ0

θ∂p

∂z
(25)

consists of turbulent transport term (1st term on the RHS), mean-gradient production term

(2nd), buoyancy production (3rd), and pressure covariance term (4th). (Again, I am going to

ignore all the prime notations for all turbulent fluctuating quantities, e.g., w′θ′ is simplified

as wθ.) The effect of pressure fluctuations is to “return” the turbulent motion to an isotropic

state, i.e., it reduces the flux which has a preferred direction. Thus, the pressure term is a

major sink in any flux budget, and is typically modeled as

− 1

ρ0

θ∂p

∂z
= −wθ/τ, (26)

where τ is called return-to-isotropy time scale by pressure.

Deardorff assumed that the turbulent transport term (a third moment term) in (25) is

negligibly small. Then under quasi-steady states, Eq. (25) becomes

0 ∼ −w2
∂Θ

∂z
+

g

T0

θ2 − 1

τ
wθ. (27)

This leads to an expression for the heat flux, as

wθ ∼ −w2 τ [
∂Θ

∂z
− g

T0

θ2

w2
]. (28)

Deardorff then set Kh = w2 τ and γ = g
T0

θ2

w2
in eq. (28) and obtained

wθ ∼ −Kh[
∂Θ

∂z
− γ]. (29)

The first term is the usual downgradient eddy diffusion term, while the second is a coun-

tergradient term. (Kh and γ so defined are always positive.) The reason that γ is called

countergradient is because if the mean potential temperature gradient becomes positive, the

first term then contributes to a negative flux, but the γ term can keep the flux positive if

it dominates the first term. This is particularly true withinin the well mixed layer, where

the mean potential temperature gradient is usually negligibly small (due to strong turbulent

mixing). But the heat flux remains positive in the bulk part of the mixed layer. Therefore,

45



the traditional eddy diffusivity approach, wθ = −K∂Θ/∂z, would yield an ill-defined K.

Adding the countergradient term then guarantees a positive potential temperature flux in

the mixed layer where ∂Θ/∂z ∼ 0.

Based on Deardorff’s derivation, the countergradient effect comes from the buoyancy

term g
T0
θ2 of the heat flux budget, as seen from (28). This is because he derived the equation

by assuming that the 3rd moment term in (25) is zero. But now we know (from LESs) that

the turbulent transport term is not small and should not be neglected. Other ways to derive

the countergradient term were given by Holtslag and Moeng (1991, JAS, 48, 1690–1698) and

by Wyngaard and Weil (1991, Phy of Fluid, A3, 155–162), which gave a different physical

interpretation to the countergradient term.

3.5.2 Transport asymmetry

In conventional K-models, the same (ad hoc) form of eddy diffusivity K has been applied

to describe the diffusion process of all scalar species in the PBL; for example K for heat is

also applied to K for moisture. This conventional usage was challenged by Wyngaard and

Brost (1984; JAS, 41, 102–112) who argued that eddy diffusivity could be quite different for

different scalars, even those scalars are within the same turbulent flow field. They introduced

the so-called “top-down and bottom-up” concept, in which a passive scalar is hypothetically

decomposed into two components (according to its flux): top-down and bottom-up. Top-

down scalar consists of the part of scalar that is “driven” only by its entrainment flux at the

PBL top and has a zero flux at the surface, and bottom-up scalar consists of the part of the

scalar that is “driven” only by its surface flux and has a zero flux at the PBL top, as shown

in the following sketch, Fig. 3.14.

This linear decomposition is made possible because the governing equation for a passive

scalar is a linear equation in a given turbulent flow field. Pure top-down and pure bottom-up

diffusion may never be found in nature, but there exist some scalars that are close to these

two hypothetical scalar components. For example, ozone is often seen as a top-down scalar

since its surface flux is much smaller than its entrainment flux. This decomposition is a

useful tool to generalize all scalar fields, as we will demonstrate next.

The top-down, bottom-up concept can be mathematically described as the following: The

mean concentration of any passive scalar, C, can be split into the top-down and bottom-up
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Figure 3.14

components,

C = Ct + Cb, (30)

and thus its mean gradient can be written as

∂C

∂z
=
∂Ct
∂z

+
∂Cb
∂z

= −[
wc1

w∗zi
]gt − [

wc0

w∗zi
]gb, (31)

where wc1 and wc0 are the scalar fluxes at the PBL top and at the surface, respectively; and

gt and gb are the dimensionless mean gradients for top-down and bottom-up components,

and are assumed to be universal functions that depend only on z/zi. In a quasi-steady state,

the total flux is linear with height, so its top-down and bottom-up component fluxes are also

linear with height, i.e., wct = wc1z/zi and wcb = wc0(1− z/zi).
Applying this decomposition to their LES data, Wyngaard and Brost (1984) and later

Moeng and Wyngaard (1984; JAS, 41, 3161–3169) showed that the top-down and bottom-up

gradient functions are NOT symmetric about the mid-PBL for the buoyancy-driven PBL,

as illustrated in Fig. 3.15b, which is different from those of a shear-driven PBL shown in

Fig. 3.15a. For a shear-driven PBL where the w-skewness is nearly zero, these two functions

are rather symmetric about the mid-PBL. Thus, if we use eddy diffusivity to express the

top-down and bottom-up fluxes as wct = −Kt∂Ct/∂z and wcb = −Kb∂Cb/∂z, since wct and

wcb are symmetric about the mid-PBL, Kt and Kb can be very different, as shown in Fig.
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Figure 3.15 (SOURCE: Moeng and Wyngaard 1984)

3.16b. [Again, for comparison, I have also plotted Kt and Kb in a shear-driven PBL in Fig.

3.16a.] This implies that within the same CBL, any two scalars that have different surface

and entrainment fluxes can have different eddy diffusivities, even though their background

turbulent motions are the same.

Using the top-down and bottom-up decomposition, eddy diffusivity Kc for any scalar c

can be generalized (see Holtslag and Moeng 1991 for derivation). The generalized form of

Kc depends on the ratio of entrainment-to-surface-fluxes, wc1/wc0, which can vary among

scalars, e.g., ozone and moisture.

3.5.3 Dispersion property

Another unique feature of the CBL is the dispersion property. Figure 3.17 shows this property

from Willis and Deardorff’s convective tank experiments (1976, QJRMS, 102, 427–445; 1978,

Atmos. Environ, 12, 1305–1312; 1981, Atmos. Environ., 15, 109–117) where particles were

released from three different heights (0.07zi, 0.24zi, and 0.49zi) into the convective turbulent

layer with a depth zi. They showed that for the near-surface release the plume centerline

(the maximum crosswind-integrated concentration) rise shortly after release, but for the more

elevated sources (such as very tall chimneys) the centerline descends first until it intercepts

the ground at some distance downstream before it rises. This peculiar feature of elevated
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Figure 3.16 (SOURCE: Moeng and Wyngaard 1984)

release in the CBL was also found from an early LES study (Fig. 3.18) by Lamb (1978,

Atmos. Environ., 12, 1297–1304) at about the same time as the tank experiment (notice the

publication year and page numbers compared to Willis and Deardorff’s 1978 paper).

The descent of the elevated plume maximum is due to the greater areal coverage of down-

drafts, as a result of positively skewed vertical velocity field. As we showed in section 3.1, on

average, updrafts are stronger than downdrafts in the CBL and hence the area covered by

updrafts is smaller than that by downdrafts. Therefore, particles released from an elevated

source have a greater probability to get into downdrafts than updrafts. Thus more particles

are transported downward than upward. This finding has an important implication for air

pollution modeling; i.e., the prediction of the location and magnitude of the maximum con-

centration measured near the surface downstream from emissions depends strongly on the

w-skewness of the turbulent field. It provided the basis for the revision of short-range disper-

sion models in the 1980s (see Turbulent Diffusion Article 441, Encyclopedia of Atmospheric

Sciences, 2001, eds. by J. Holton, J. Pyle, and J. Curry, Academic Press).
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Figure 3.17 (SOURCE: Willis and Deardorff 1976)

Figure 3.18 (SOURCE: Lamb 1978)
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4 THE NEUTRAL AND STABLE PBLs

4.1 The neutral PBL

The neutral PBL is defined when the surface buoyancy flux is exactly zero (i.e., no

buoyancy forcing for turbulence). This condition rarely occurs outdoors particularly over

land. After sunset, the ground becomes colder than the air above it, the surface buoyancy

flux becomes negative and the PBL becomes “stable”. (Note: The definition of stable or

unstable clear PBL is determined by the sign of the surface buoyancy flux, not by the

potential temperature gradient within the PBL. A well mixed layer where ∂Θ/∂z ∼ 0 is

usually NOT a neutral PBL because such a well-mixed layer is likely to be maintained by

strong surface heating.) During the transition from unstable to stable PBL (late afternoon

over land) or vice versa (early morning over land), there may be an instant when the surface

heat flux becomes exactly zero, but that period never lasts long enough to reach a quasi-

steady neutral PBL.

This PBL regime is more likely to occur over the ocean (i.e., marine boundary layer),

where the air-sea temperature difference is often small. The oceanic mixed layer (the thin

turbulent layer BELOW the ocean surface) is mostly driven by surface wind stress, and

hence its statistical behavior is often similar to the neutral PBL. (Note: Oceanographers

like to use the term ‘oceanic mixed layer’. It doesn’t mean that the oceanic boundary layer

turbulence is buoyancy-driven like the CBL in the atmosphere. Surface wind stress is still

the dominant source for turbulence in most oceanic mixed layers.)

The structure and statistics of the neutral PBL is briefly summarized below. The neutral

PBL is a pure shear-driven turbulent layer and has been studied mostly by the engineering

community, in wind tunnels (e.g., Robinson, 1991, Ann. Rev. Fluid Mech, 23, 601–639) and

numerical simulations (e.g., Moin and Kim, 1982, JFM, 118, 341–377). It was also examined

by many PBL-LES groups (e.g., Andren et al. 1994, QJRMS, 120, 1457–1484). A distinct

flow pattern of shear-driven turbulence is persistent streaky structures near the wall, roughly

along the mean wind direction. In the TKE budget, the shear production nearly balances

the molecular dissipation; the turbulent and pressure transport terms are negligibly small.

The mean wind is not well mixed with height as the CBL; rather, it turns with height as

described by the classical Ekman Spiral (Fig. 4.1; from Stull’s textbook). The statistics can
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Figure 4.1 (SOURCE: Stull’s textbook)

be scaled with surface friction velocity u∗ and the PBL depth zi. The largest component

of velocity variances is along the mean wind (i.e., streamwise component). The maxima of

u2/u2
∗, v

2/u2
∗, and w2/u2

∗ occur near the wall with a magnitude of about 5-8, 3, and 1-2,

respectively.

4.2 The weakly stable PBL

After sunset, the surface buoyancy forcing for turbulence disappears and the turbulence

within the CBL quickly dissipates. Only wind shear can maintain the turbulence. Unlike

buoyancy-driven turbulence, shear-driven turbulence is weaker, its transport is more local,

and hence produces a shallower PBL. A typical stable PBL height is a few hundred meters

or less. Thus, the PBL top drops abruptly after sunset. The previous mixed layer, however,

remains up there although it is no longer a turbulent layer. This is called the residual layer.

The pollutant that was transported up into the residual layer from previous CBL remains

in that layer until large-scale motion advects it away.

The stable PBL is associated with a downward buoyancy flux at the surface. Buoyancy

now works against the mean shear in suppressing turbulence. Turbulence can be maintained
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Figure 4.2 (SOURCE: Wyngaard 1992)

only when shear production is larger than buoyancy consumption. In the weakly stable PBL

turbulence is maintained and remains continuous in space and time by wind shear. This

situation happens when the wind is strong or the surface buoyancy flux is only slightly

negative.

Because only largest eddies are directly influenced by the sign change of buoyancy, it

is the large eddies that are directly suppressed by the negative buoyancy. Also, it is the

vertical component of the flow field, w′, that is directly suppressed by negative buoyancy.

Thus, energy-containing eddies are squashed by stratification; their vertical-to-horizontal

size ratio is about 0.1 in strong stratification and about 0.5 in weak stratification. A sketch

(Fig. 4.2) by Wyngaard (1992; Annu, Rev. Fluid Mech., 24, 205–233) shows how large

eddies that exist in the CBL are suppressed in the stable PBL.

Observational studies have demonstrated some success in generalizing the structure of the

weakly stable PBL. The most successful method of generalization is local similarity scaling

proposed by Nieuwstadt (1984; JAS, 41, 2202–2216), in which the statistics are scaled by

the local momentum and heat fluxes τ(z) = [uw(z)2 + vw(z)2]1/2 and wθ(z), rather than by

the surface fluxes u2
∗ and wθ0. According to this local scaling law, the normalized standard

deviations of velocity and temperature are all constant, i.e., σu/τ
1/2 ∝ σv/τ

1/2 ∝ σw/τ
1/2 ∝

constant and σθ/[−wθ/|τ |1/2] ∝ constant. For example, Fig. 4.3 (from Nieuwstadt 1984)

shows that all data points lie around the σw/τ
1/2 ∼ 1.4 curve, independent of the stability

factor z/Λ, where Λ ≡ − τ3/2

k(g/T0)wθ
is a local Monin-Obukhov length. Observations also show

that σθ/[−wθ/|τ |1/2] ∼ 3.

To apply the local scaling law one needs to know the profiles of the heat and momentum
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Figure 4.3 (SOURCE: Nieuwstadt 1984)

fluxes first. Some observations (e.g., Nieuwstadt, 1984) found that the heat flux within

weakly stable PBLs is nearly linear with height, as shown in Fig. 4.4; i.e.,

wθ/wθ0 ∼ 1− z/h, (32)

which is consistent with the quasi-steady state condition for a conserved variable with no

heat source or sink like radiation. But many other field studies found the heat flux is slightly

curved (e.g., Caughey et al. 1979, JAS, 36, 1041–1052; Lenschow et al. 1988; BLM, 42,

95–121; Smedman 1991; JAS, 48, 856–868). The cross symbols in Fig. 4.4 are data from

Caughey et al. which clearly show a curved heat flux profile. Figure 4.5 taken from Lenschow

et al (1988) also indicates that the heat flux profile is not linear with height. Lenschow et

al. (1988) provided the following interpretation: If longwave radiative cooling (in the air)

plays a direct role in the heat budget, then

∂Θ

∂t
= −∂wθ

∂z
+ (

∂Θ

∂t
)rad. (33)

Thus, for a quasi-steady state,

−∂
2wθ

∂z2
+

∂

∂z
(
∂Θ

∂t
)rad = 0. (34)
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Figure 4.4 (SOURCE: Nieuwstadt 1984)

It is apparent that the radiation term in (34) can result in a non-linear heat flux profile, as

evidenced from the SESAME data (Fig. 4.5). Lenschow et al (1988) fits the curve as:

wθ/wθ0 ∼ (1− z/h)1.5. (35)

To derive the momentum flux profile requires some closure assumptions. Based on his

field data, Nieuwstadt (1984) found that the gradient and flux Richardson numbers are

nearly constant with height, which is consistent with his local scaling law. In other words,

Ri ≡
g

T0

∂Θ/∂z

|∂U/∂z|2
= constant (36)

and

Rif ≡ −
g

T0

wθ

uw∂U/∂z
= constant (37)

where U is the streamwise velocity. Nieuwstadt then used (36) and (37) as closures to ana-

lytically solve for the mean fields and also the heat and momentum flux profiles. Neglecting

the radiative cooling effect in the heat equation, his analytical solution for heat flux is (32)

and solution for uw is:
uw

u2
∗

= (1− z/h)1.5. (38)
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Figure 4.5 (SOURCE: Lenschow et al 1988)

Such an analytical prediction is shown to agree well with his observations (Fig. 4.6).

Because σw/τ
1/2 ∼ 1.4, (38) then gives

σw
u∗
∼ 1.4(1− z/h)3/4, (39)

or
σ2
w

u2
∗
∼ 1.96(1− z/h)1.5. (40)

On the other hand, Lenschow et al. (1988) showed that if radiative cooling plays a role

in the heat budget and the heat-flux profile (35) is used instead, then the corresponding

momentum-flux profile is:
uw

u2
∗
∼ (1− z/h)1.75, (41)

which is supported by SESAME data shown in Fig. 4.7. Using (41), the local similarity

law predicts that all velocity variances scaled by the square of surface friction velocity u2
∗

[i.e., σ2
w/u

2
∗ ∼ (σ2

w/τ)(τ/u2
∗) ∝ τ/u2

∗] also have the same vertical distribution as (1− z/h)1.75.

Again, SESAME data (Fig. 4.8) support this similarity prediction.

For the standard deviation of the temperature variance, the theory predicts σθ/[wθ(z)/τ(z)1/2] ∼
constant, hence σθ/θ∗ ∝ ( wθ

u∗θ∗
)/( τ

1/2

u∗
) ∝ (1− z/h)3/2/(1− z/h)7/8 ∝ (1− z/h)5/8, which is a

reasonable prediction compared to the field data (Fig. 4.9).

Lenschow et al. (1988) also performed a TKE budget analysis. Figure 4.10 shows that

the shear production nearly balances the dissipation, just like the neutral PBL. The analysis
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Figure 4.6 (SOURCE: Nieuwstadt 1984)

Figure 4.7 (SOURCE: Lenschow et al 1988)
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Figure 4.8 (SOURCE: Lenschow et al 1988)

Figure 4.9 (SOURCE: Lenschow et al 1988)
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Figure 4.10 (SOURCE: Lenschow et al 1988)

indicates that the third-moment turbulence and pressure transport terms within the stable

PBL are small, a feature that is similar to the neutral PBL but very different from the CBL.

This implies that modeling the weakly stable PBL is easier than modeling the CBL because

one can neglect the 3rd-order moment terms which are difficult to estimate.

4.3 The very stable PBL

The very stable PBL occurs when the wind at night is calm and/or the ground temper-

ature is very cold. In this PBL regime, turbulence is so weak that it becomes intermittent

or sparse, as shown in Fig. 4.11, from Caughey (1982, Atmospheric Turbulence and Air

Pollution Modeling, edited by F.T.M. Nieuwstadt and H. van Dop, Reidel Publishing Co.,

page 142). In this case, shear production and buoyancy consumption have about the same

magnitude. The ratio of the wind shear and buoyancy forces is called flux Richardson num-

ber Rf = g/T0wθv
[uw∂U/∂z+vw∂V/∂z]

. By approximating the fluxes through K-theory (and assuming

that eddy viscosity equals eddy diffusivity), this ratio becomes gradient Richardson number

Ri = g/T0∂Θ/∂z
[(∂U/∂z)2+(∂V/∂z)2]

. When the buoyancy dominates the shear effect, i.e., when Rf or Ri

is larger than a critical number (somewhere between 0.2 and 1), turbulence ceases. Some-

times, turbulence exists locally at different heights where local Richardson number is below
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Figure 4.11 (SOURCE: Caughey 1982)

the critical value, shown as the shaded areas in Fig. 4.12 (Andre and Mahrt 1982; JAS, 39,

864–878).

So far, there is no proper theory (including the well-established M-O theory) that can

describe the statistics in the very stable PBL. However, the very stable PBL is probably

the most important regime for air dispersion. Pollution cannot be diffused or dispersed in a

region where turbulence is weak or ceases to exist. This PBL regime is also important for

agriculture and military applications, like frost formation. Surface sensible and latent heat

fluxes are major budget terms in the time-rate-of-change of ground temperature, and hence

may determine the onset of frost on cold nights.

Fortunately, turbulent eddies in this PBL regime are relatively small and they trans-

port/diffuse things more like molecular, downgradient and local. Thus, the eddy diffusivity

K approach, which is local and downgradient diffusion, works much better in the stable PBL

than in the CBL.

4.4 Physical phenomena in the stable PBL

The following features further complicate the description of the stable PBL, particularly

the very stable PBL:
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Figure 4.12 (SOURCE: Andre and Mahrt 1982)

(A) Turbulence often occurs intermittently, and its energy level can be very low to measure

or simulate.

- Negative buoyancy forcing directly reduces the size of the largest turbulent eddies

and weakens the turbulent kinetic energy. This makes field measurement more difficult

because weaker TKE requires more sensitive instruments.

- Difficulties in analyzing and characterizing the very stable PBL (Mahrt 1985, JAS,

42, 2333-2349) also make it hard to generalize the statistical behavior. Mahrt showed

that the observed very stable PBL cases may be too variable to describe.

- It’s also difficult to simulate the very stable PBL with the LES technique because

sporadic turbulent events are in transition stages between laminar and turbulence.

Transition flows are difficult to simulate.

(B) Gravity waves coexist with turbulent motion.

There are plenty of gravity waves observed within the stable PBL, as shown in Fig.

4.13, taken from Stull’s book (page 527). Gravity waves can be excited locally within

a stratified layer by, e.g., turbulent motion. They can also be generated from shear

instability aloft (e.g., nocturnal jet) and propagate downward into the stable PBL.

61



Figure 4.13 (SOURCE: Stull’s textbook)

Many researchers have tried to separate gravity waves from turbulent motions, but

it is not a trivial task. Gravity waves in the stable PBL can have more than one wave-

length; those excited locally have a time period of 2π/N , where N = (g/T0∂Θ/∂z)1/2

is the Brunt-Vaisala frequency. For a typical stratification within the stable PBL, the

period is about 30–300 seconds. This is about the same as the characteristic time

scale of turbulent eddies. So, the spectra of gravity waves and turbulent motion often

overlap and are difficult to separate.

Gravity waves can interact with turbulence and sometimes break and become tur-

bulence, which further complicates the stable PBL.

(C) The structure of the stable PBL is very sensitive to sloping terrain.

With a sloping surface, the gravitational effect modifies not only the vertical wind

but also the horizontal wind as,

∂U

∂t
= −∂uw

∂z
+ f(V − Vg) +

g

T0

∆Θsinα, (42)
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Figure 4.14

where α is the angle of terrain slope and ∆Θ is the temperature difference between the

surface and the air above (Fig. 4.14).

This buoyancy effect accelerates the horizontal wind downslope, which leads to

drainage wind or katabatic flow. For a typical stable PBL, uw ∼ 0.01m2/s2, thus the

turbulence term −∂uw/∂z in (42) is on the order of u2
∗/h ∼ 10−4 m/s2, where h ∼ 100

m is the typical depth of the stable PBL. If ∆Θ ∼ 3K, it would take just a 0.1-degree

slope angle to make this downslope acceleration effect as large as the turbulence term.

Since the downslope acceleration term is quite sensitive to the terrain slope, it can

be quite different from site to site. Thus to generalize statistics collected from different

sites can be difficult.

(D) Nocturnal jet exists at the top of the stable PBL and it is changing with time.

Within the stable PBL, the horizontal wind speed has a maximum near the PBL top.

This nocturnal jet can form due to inertial oscillation acting on a sudden decrease of

turbulence after sunset. We can derive this supergeostrophic wind from the horizontal

mean-wind budget (assuming Vg = 0 for simple argument):

∂U

∂t
= −∂uw

∂z
+ fV, (43)
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Figure 4.15

∂V

∂t
= −∂vw

∂z
− f(U − Ug). (44)

Before sunset, there is a balance (i.e., Ekman balance) among the three major forces:

turbulence frictional force, Coriolis force, and pressure gradient force. In other words,

the time-rate-of-change terms in (43) and (44) are negligible compared to the other

terms within the CBL. Thus, before sunset, fV ∼ u2
∗/zi and ∂vw/∂z ∼ −f(U − Ug)

in the CBL. After sunset, turbulence decays quickly in the residual layer. Consider

the level just above the stable PBL where the previously (before sunset) established

turbulent fluxes (uw and vw) suddenly drop to zero. Then, (43) and (44) now become

∂U
∂t
∼ fV and ∂V

∂t
∼ −f(U − Ug) at this level. The time-rate-of-change term in (43)

now has to balance the fV term, which is on the order of u2
∗/zi ∼ 2 × 10−4 m/s2.

That means the U−wind is accelerated by fV at a rate of ∼0.7m/s per hour. This

acceleration slows down only when the V decreases. That can happen only when the

U -wind becomes supergeostrophic, i.e., when ∂V/∂t = −f(U − Ug) < 0. Figure 4.15

shows a nocturnal jet in a stable PBL (though it is taken from an LES, nocturnal jet

is often observed in the field).

It is clear from this argument that other meteorological factors that can change the

mean-wind budgets in (43) and (44), such as horizontal advection, flow-over-mountains,

64



and baroclinicity can also modify the nocturnal jet. The evolving nocturnal jet changes

the mean wind shear, which in turn changes the properties of turbulence in the stable

PBL.

(E) There may not be a well-defined PBL top.

Unlike the CBL, which typically has a capping inversion to mark its top, the stable

PBL is growing into a neutrally stratified layer, i.e., the pre-existing well-mixed layer

(the residual layer). Thus, it is harder to define the stable PBL top. Methods to define

the PBL top include a) where the TKE decreases to, say, 5% of its surface value, b)

where the magnitude of the momentum flux decreases to, say, 5% of its surface flux,

c) where the temperature gradient becomes zero, and d) where the mean wind has

a maximum (i.e., where the nocturnal jet is). Different methods may give different

answers, an example shown in Fig. 4.12. This makes the scaling of statistics difficult.

(F) The mean temperature gradient is changing with time due to surface longwave radiation

cooling.

Longwave radiation (IR) cooling produces a surface inversion (i.e., the ground is

colder than the air above it), and the surface inversion results in a negative buoyancy

flux, and the negative buoyancy flux suppresses turbulence. Therefore, a stronger IR

surface cooling leads to a weaker turbulence. Weaker turbulence results in less diffusion

of cold air upward into the PBL and this further enhances the surface inversion. Thus,

the surface temperature inversion (i.e., the ground-air temperature difference) increases

in time at a windless night where turbulent transport is weak and surface longwave

cooling dominates.

This feedback mechanism is different from the CBL. In the CBL, the stronger the

surface heating, the stronger the turbulence and transport, and hence the smaller the

ground-air temperature difference.

Because of drainage flow, surface IR cooling, and evolving nocturnal jet, the vertical

gradients of both mean temperature and mean wind in the stable PBL are changing with

time. The characteristic time scale of these changes is on the order of a few hours and is

SHORTER than the time for turbulence in the upper part of the stable PBL to feel the
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changes of the surface cooling, which may take several hours. We can show this by using

a diffusion argument, i.e., in terms of K ∂2Θ
∂z2

. (Note: As we learned before the K-approach

works well for the stable PBL because small eddies which dominate the stable PBL transport

like like molecular diffusion, local and downgradient.) The time scale for temperature or

moisture to diffuse up to the top of the PBL is on the order of h2/Kh, where Kh is the

eddy diffusivity, which is on the order of 0.3 m2/s in the stable PBL. For a typical depth of

100 m, the time required to diffuse temperature or moisture from the surface up to 100m is

∼ (100)2m2

0.3m2/s
∼ 33333s ∼ 9∼10 hours. Remember that in the CBL it takes only zi/w∗ ∼ 10

minutes to transport temperature or moisture from the surface to the top of the CBL.

Thus, the statistical profiles in the stable PBL are unlikely to be scaled by the surface-

flux scaling (such as u∗ and w∗), as it does for the CBL. Individual turbulent eddies within

the stable PBL are more in local equilibrium with their local mean condition, and this forms

the basis for the local similarity scaling described in section 4.2.
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5 BOUNDARY-LAYER CLOUDS

We often classify cloudy PBLs into two regimes: the stratocumulus-topped PBL (STBL) and

the shallow cumulus PBL. The STBL consists of a nearly uniform stratocumulus layer which

exists inside the well mixed layer, while cumulus cloud occurs above the mixed layer. In

other words, the lifiting condensation level (LCL) is below the top of the mixed layer in the

STBL, while it is above the mixed layer in the shallow cumulus PBL. But that doesn’t mean

there is no turbulence in the cumulus cloud layer; scattered cumulus clouds are randomly

distributed in space and time, behaving just like large turbulent eddies (or thermals) inside

the CBL. However, the air in between clouds is either laminar or at the dissipating stage of

a previous turbulent cloud.

Both cloud regimes are observed over the subtropical oceans west of major continents and

they are more persistent during the Northern Hemisphere summer (Fig. 5.1a). The STBL

regime appears near the coasts, with an extension of several thousands of miles into the

subtropical ocean. This cloud regime is associated with large-scale subsidence (high pressure

system), cold sea surface temperature, and a strong capping inversion. The strong capping

inversion, a temperature jump of more than 10 degrees over a very thin layer of just sev-

eral tens of meters, is resulted from the persistent large-scale subsidence, which adiabatically

warms the lower troposphere above the STBL. With such strong capping inversion the STBL

is usually shallow (400m–800m) and the cloud top is rather flat (Fig. 5.1b). Further down-

stream where the sea surface temperature becomes warmer and the inversion weaker, the

STBL gives way to scatter shallow cumulus. The transition between the two cloud regimes

is important for the Earth’s radiation budget due to the abrupt change in cloud cover.

These boundary-layer cloud regimes also occur over cold-air outbreak regions: Great

Lakes (Lenschow 1973; JAS, 568–581) or South China Sea (Agee and Hart 1990). But the

cold-air-outbreak clouds are strongly affected by large surface heating and also by horizontal

advection and wind shear, which differ from the subtropical marine PBL clouds. STBL also

occurs over the North Sea (e.g., Nicholls and his colleagues, 1989, QJRMS, 115, 487-511) and

summer Arctic Basin (see a summary of STBL by Randall et al 1998, BAMS, 79, 197-219).

An unique feature of the Arctic stratus cloud is its multiple cloud layering structure and

mixed-phase (water and ice) microphysics, which makes it difficult to study. In this notes, I
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will focus only on the subtropical marine cloud types.

5.1 Stratocumulus clouds

Stratocumulus-topped PBL (STBL) turbulence is mainly buoyancy driven, by longwave

radiation cooling at the cloud top. [Some STBLs were found to be mainly shear driven

(Brost et al. 1982; JAS, 39, 800–836), but they are rare.] The stratocumulus-topped PBL

is much more complicated than the clear convective PBL (CBL), even though both are

buoyantly driven. First, there are many more physical processes involved in the STBL, as

shown in Fig. 5.2.

The major complication comes from the fact that the buoyancy source for turbulence lo-

cates where entrainment takes place. Downdrafts that are cooled by cloud-top radiation are

modified by entrainment before they travel downward and begin to buoyantly drive turbu-

lence. Just how entrainment affects this turbulence-generation process is poorly understood

because very little is known about the entrainment process itself.

Mathematically, there are more thermodynamic variables to deal with in the STBL.

The buoyancy-related quantities, which are needed in, say, the TKE budget, are no longer

conserved thermodynamic variables. Their fluxes need to be related to the fluxes of the

conserved variables like liquid potential temperature, θl, and total water mixing ratio, qT .

These relationships are different in cloudy and clear regions, and are difficult to determine

in partly cloudy regions as discussed by Randall (1987; JAS, 44, 850–858). Commonly-used

definitions or relationships among the thermodynamic variables are (in linearlized forms):

θv ∼ θ(1 + 0.609qv − ql) ∼ θ + 0.609θ0qv − θ0ql, (45)

θe ∼ θ +
L

cp
qv, (46)

θl ∼ θ − L

cp
ql, (47)

where qv and ql are water vapor and liquid water mixing ratios. θv is the virtual poten-

tial temperature (a buoyancy measurement) while θe and θl are (approximately) conserved

variables in the moist adiabatic process.

68



Figure 5.1a

Figure 5.1b
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Figure 5.2

In the following, I will describe physical processes and observed phenomena within the

STBL, discuss some possible mechanisms that dissipate clouds, and show some typical sta-

tistical profiles.

5.1.1 Physical processes

The most fundamental physical processes are longwave radiation, turbulence, entrainment,

and condensation/evaporation. They exist in all stratocumulus-topped PBLs. In addition,

solar radiation can play some role in the daytime, and drizzle is often observed and may also

be important in maintaining/dissipating the cloud layer.

• Longwave radiation cooling at the cloud top

Longwave radiation cooling at cloud top exists due to the different radiative properties

of water vapor and droplets. In the longwave radiation spectrum, there is a “window

region” where water vapor cannot absorb or emit. But liquid water can absorb or

emit at all longwave frequencies. Thus, the downward longwave flux above the cloud
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Figure 5.3

top, which comes from the water-vapor line emission of the overlying water vapor, is

smaller than the flux within the cloud layer, which comes from the black-body emission

of droplets, as shown in Fig. 5.3a. As a result, the magnitude of the downward flux

sharply decreases upward across the cloud top. The upward flux, however, remains

quite uniform with height, as shown in Fig. 5.3b, with only a slight change at the

cloud base due to the slight difference in temperature at the surface and at the cloud

base. The net flux thus has a sharp increase right at the cloud top, and hence strong

cooling (∼ several degrees per hour) occurs over a very thin layer (∼ 50m) at the cloud

top. (Note that the clear-air longwave radiation cooling is only about 1∼2 degrees

per day, which is two orders of magnitude smaller than cloud-top longwave radiative

cooling.)
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Figure 5.4 (SOURCE: Shen and Moeng 1989)

When a layer is cooled at the top, downdrafts that carry cooled air parcels are nega-

tively buoyant and hence are accelerated downward. These downdrafts drive turbulence

just like updrafts that carry the surface-heated air parcels in the clear CBL case. If

the cloud top is a rigid lid, then cooling-from-top should generate turbulence exactly

the same as heating-from-bottom CBL case. But the cloud top is a free interface

that separates turbulent from non-turbulent air and hence entrainment occurs there.

Nevertheless, some similar features were observed between the cooling-from-above and

heating-from-below PBLs. For example, Nicholls (1989; QJRMS, 115, 487–511) ob-

served cellular patterns near the cloud tops, with broad updrafts in the centers and

narrow downdrafts around the edges. Shen and Moeng (1993; BLM, 65, 29–53) also

showed irregular cellular patterns near the cloud tops from their large-eddy simulations,

as shown in Fig. 5.4.

Turbulent circulations in the cooling-from-top case may not reach all the way to the
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Figure 5.5

surface. For example, in many of Nicholls’ North Sea cases, circulations reach only to

the cloud base, because of the decoupling phenomenon which we will study in section

5.1.2. [Notice that the cooling-from-above and heating-from-below concept is different

from the top-down and bottom-up diffusion concept that we talked about in section

3. Cooling-from-above or heating-from-below provides the buoyancy force that affects

turbulence dynamics. Top-down and bottom-up diffusion in principle applies only to

passive scalars that cannot change the dynamics; the top-down/bottom-up diffusion

occurs within the same turbulent flow field.]

• Entrainment

Entrainment brings warm and dry air from above into the turbulent layer, and conse-

quently modifies the near-cloud-top cloudy air parcels that are being cooled radiatively.

Thus, before those radiatively cooled air parcels go down and buoyantly “disturb or

drive” the flow field, they are modified by entrainment, as sketched in Fig. 5.5. This

means that, unlike the CBL, we must know entrainment first in order to know how effi-

ciently cloud-top radiation cooling generates buoyancy and hence turbulence. Because

there exists no quantitative understanding of the entrainment processes, modeling the

entrainment rate of the STBL remains a problem.

Our qualitative understanding of entrainment is the following: Entrainment process

depends on turbulence intensity, as well as the inversion strength. The stronger the
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turbulence, the larger the entrainment rate. The stronger the capping inversion, the

harder it takes for inversion air to be entrained. The above description may apply well

to clear PBLs, but doesn’t give the whole picture in determining the entrainment rate

in the STBL. This is because cloud-top radiative cooling and entrainment processes

interact strongly: More entrainment brings in more warm inversion air, which reduces

the efficiency of longwave cooling in driving turbulence; weaker turbulence then in turn

weakens entrainment. This is only true if we neglect the condensation/evaporation

effect (e.g., a dust or smoke cloud case). With microphysics, the dry air entrained

from above can result in another type of cloud-top cooling due to evaporation, as

described below.

• Condensation/evaporation

Condensation/evaporation process further complicates the STBL. Condensation occurs

in the cloud layer so there typically exists a sharp increase of the buoyancy flux at the

cloud base, as we will see in section 5.1.5. Near the cloud top, entrainment keeps bring-

ing in dry inversion air, and this yields cooling due to evaporation of cloud droplets.

When the inversion air is very dry but not very warm, the evaporative cooling effect

dominates the entrainment warming effect, then entrainment can result in net cooling

of the near cloud-top air. Under this condition, stronger entrainment gives stronger

turbulence, which in turn enhances entrainment. This positive feedback is the so-called

“cloud-top entrainment instability (CTEI)”. We will talk about this instability in more

detail in section 5.1.4. Notice that in the above CTEI argument, we have ignored the

radiation cooling mechanism.

• Solar radiation and drizzle

Other processes like solar radiation and drizzle can also play important roles in the

stratocumulus-topped PBL, although these processes do not exist all the time. For

stratocumulus over the ocean, the influence of solar radiation is from the solar ab-

sorption inside the cloud layer, rather than from surface heating and surface fluxes.

Unlike longwave radiation, solar heating inside the cloud is more uniformly distributed

throughout the cloud layer. The part of heating near the cloud top can offset longwave
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radiation cooling in generating turbulence, while the part throughout the cloud layer

directly increases the temperature of the cloudy air. These two effects together can

result in a diurnal cycle (which will be mentioned in section 5.1.3) of marine stra-

tocumulus clouds even though the ocean surface temperature remains nearly constant.

Furthermore, when the whole cloud layer is warmed by the internal solar heating, the

cloud layer may eventually become warmer than the subcloud layer and a thin stably

stratified layer may occur at the cloud base. This is one of the mechanisms that is

believed to decouple the cloud layer from the influence of the surface. We will talk

about decoupling phenomenon next.

5.1.2 Decoupling

Decoupling phenomenon may result from the internal heating of solar radiation in the cloud

layer as mentioned above. It can also be due to drizzle. When droplets fall out of the

cloud layer, evaporation occurs in the subcloud layer and subsequently cools the subcloud

air. When the subcloud air becomes colder than the air in the cloud layer, a thin stably

stratified layer may occur somewhere in the subcloud layer, and hence decoupling forms.

This drizzle effect has been observed in the field (e.g., Brost et al. 1982, JAS, 39, 818–836;

Nicholls 1984, QJRMS, 110, 783–820) and in 1-D closure models (Wang and Wang 1994,

JAS, 51, 1559–1576).

Some researchers believe that decoupling is a mechanism that can dissipate clouds. When

the cloud layer is decoupled from its underlying surface influence, moisture supply from

below is suppressed, and the cloud dissipates. Decoupling phenomenon was first reported by

Brost et al. (1982) and Nicholls (1984). Based on aircraft data taken from the North Sea,

Nicholls found that the conserved thermodynamic variables, such as equivalent potential

temperature or total water mixing ratio, “tend to display small discontinuities near cloud

base” and that the observed buoyancy and total water flux profiles show negative values near

the cloud base. Nicholls’ 1984 paper described many interesting phenomena later observed

during FIRE and ASTEX, such as decoupling reported by Betts (1990; Tellus, 42A, 302–304)

and drizzle or cumulus cloud forming under the stratiform cloud layer reported by Paluch

and Lenschow (1991; JAS, 48, 2141–2158). On the effects of drizzle, Nicholls stated that

“The inclusion of precipitation can significantly alter the net transfer of water substance
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Figure 5.6 (SOURCE: Betts 1990)

and evaporation below cloud can have a significant stabilizing influence on mixing between

the cloud and lower layers.” On the decoupling phenomenon, he observed that “The cloud

and sub-cloud layers are found to be decoupled, i.e., they appear as two separated mixed

layers.” After decoupling occurs, he found that “If the thermodynamic state of the sub-cloud

layer subsequently evolves in a manner which enables condensation to occur within it, the

resulting cumulus convection may again link the cloud and surface layers. Cumulus rising

into stratocumulus is a very common phenomenon...”

This cumulus-under-stratocumulus phenomenon is illustrated in Fig. 5.6, taken from

Betts (1990; Tellus). When stratocumulus cloud is decoupled from the surface influence,

cumulus cloud can occur in the lower LCL, beneath the upper LCL where the stratocumulus

cloud base is. Since cumulus-under-stratocumulus was a commonly observed phenomenon

during the ASTEX field experiment, this phenomenon is believed to be part of the stratus-

to-cumulus transition process (e.g., Krueger et al. 1995, JAS, 52, 2839–2850).
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5.1.3 Diurnal cycle

Marine stratocumulus cloud undergoes a diurnal cycle even though the underlying ocean

surface temperature remains about the same. The diurnal cycle was observed in the 1940’s

and modeled by Oliver et al. (1978; JAS, 35, 301–316), and it has gained more attention

recently. The cloud layer becomes thinner and its liquid water content becomes smaller in

the daytime when the sun heats the cloud layer directly. In addition, the solar heating at

the cloud top offsets the longwave radiation cooling there, weakens the buoyancy force that

drives turbulence, and hence decreases the moisture supply from the surface to the cloud

layer. Sometimes the cloud layer may disappear all together during the day, and reforms at

night.

The diurnal cycle of stratocumulus over land can be quite different from that over ocean.

Over land, the ground can heat up quickly after sunrise due to the part of solar radiation

that penetrates through the cloud layer. When the ground heats up, the surface buoyancy

flux increases, and the surface sensible heating enhances turbulent transport. If the ground

is moist, this enhanced transport can supply more moisture into the cloud layer and therefore

helps to maintain the cloud. But if the ground is dry, this enhanced turbulent motion brings

warmer air up into the cloud layer, which increases the temperature (and the saturation

mixing ratio) of the cloudy air. Thus the change in surface fluxes over land can either thin

or dissipate the cloud.

5.1.4 Cloud Top Entrainment Instability (CTEI)

Cloud-Top Entrainment Instability (CTEI) is believed to be a mechanism that breaks up

the PBL stratocumulus. This mechanism was first suggested by Lilly in 1968 (QJRMS, 94,

292–309). That classical paper has two very important contributions: It presented the first

mixed-layer modeling of the stratocumulus PBL and it is also the first paper proposing CTEI

for stratocumulus. I will talk about CTEI next and discuss mixed-layer modeling in section

6.

Lilly (1968) argued that when the air above the cloud layer has a smaller equivalent

potential temperature than the cloudy air, i.e., ∆Θe = Θe(B
+) − Θe(B

−) < 0, where B+

and B− are levels just above and below the cloud top, then any mixture of air from above
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and air inside the cloud will remain colder than the cloudy air. So the mixture can accelerate

downward, i.e., becomes negatively buoyant downdrafts, and sink deeper into the cloud layer.

This is the so-called CTEI.

Randall (1980; JAS, 37, 125–130) and Deardorff (1980; JAS, 37, 131–147) revised this

CTEI criterion by considering the effects of liquid water on the buoyancy. From the virtual

potential temperature formula shown in (45), we know that ql can modify the buoyancy

variable θv. Based on this definition and other relationships between different thermodynamic

variables, Deardorff constructed a buoyancy mixing diagram and used it to demonstrate the

CTEI mechanism. Randall, on the other hand, used the flux relationship between buoyancy

and conserved variables to demonstrate CTEI. These two different methods ended up with

the same conclusion that ∆Θe has to be much smaller than 0 in order for CTEI to occur.

I will use Randall’s derivation for illustration. Assuming that after mixing the mixture

becomes saturated, then qv = q∗, where q∗ is the saturation mixing ratio. Since q∗(T, P ) ∼
q∗(T0, P ) + (∂q∗

∂T
)p(T − T0), q′v ∼ (∂q∗

∂T
)θ′ ∼ cpγ

L
θ′, where γ ≡ L

cp
(∂q∗
∂T

)p. Using the virtual

and equivalent potential temperature formulae given in (45) and (46), we can show that the

buoyancy flux can be related to the fluxes of the equivalent potential temperature and total

water mixing ratio as

wθv(B
−) = awθe(B

−)− bwqT (B−), (48)

where a and b are thermodynamic coefficients for saturated air. Using the jump condition,

wθe(B
−) = −we∆Θe and wqT (B−) = −we∆QT , where we is the entrainment rate, then (48)

becomes

wθv(B
−) = we[−a∆Θe + b∆QT ]. (49)

For the instability to take place, downdrafts (w′ < 0) have to be negatively buoyant (θ′v < 0)

such that buoyancy flux near the cloud top remains positive, i.e., wθv(B
−) > 0. Thus, the

right-hand side of (49) has to be positive in order for downdrafts to accelerate downward,

i.e.,

∆Θe <
b

a
∆QT . (50)

The right-hand side of (50) is almost always negative and is about –1 ∼ –3K. If we neglect

the liquid water term in the θv formula (45), the coefficient b in (48) becomes zero and (50)

becomes Lilly’s criterion.
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Figure 5.7 (SOURCE: Kuo and Schubert 1988)

The above CTEI criterion was challenged by observations, however, which often found

solid stratocumulus cloud deck under conditions that satisfy the instability criterion (50).

The most cited evidence is shown Fig. 5.7, taken from Kuo and Schubert (1988; QJRMS,

114, 887–916); it clearly shows that stratocumulus can still exist when ∆Θe < 0 (Lilly’s

CTEI condition) and ∆Θe < κ L
cp

∆QT (Randall-Deardorff’s CTEI condition). Here κ =

(b/a)(cp/L). (However, I would like to remind you that in practice it is difficult to define

the jump conditions ∆Θe and ∆QT because in nature there is often no well-defined mixed

layer. Also, soundings often show large variations in these thermodynamic fields just above

the cloud top.)

Because of the controversy, many studies (e.g., Kuo and Schubert 1988; Siems et al.,

1990; QJRMS, 116, 705–739) began to look into more details at the entrainment mixing and

evaporation processes involved in the CTEI theory. They used the following thermodynam-

ical analysis to show that not all cloud-top air parcels become saturated after entrainment
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and mixing. Consider a mixture that consists of χ mass units of warm air that is entrained

from above and (1-χ) mass units of cool moist air within the cloud layer. The equivalent

potential temperature and total mixing ratio of the mixture are (ignore the radiation effect):

θe = χθea + (1− χ)θeb, (51)

qT = χqTa + (1− χ)qTb, (52)

where the subscript a represents the above-cloud air and b represents the cloudy air. Using

the definitions of θe (Eq. 46), θv (Eq. 45), and

ql = qT − q∗ when qT > q∗, (53)

ql = 0 when qT < q∗, (54)

one can then iteratively solve for θv as a function of χ for given θea, θeb, qTa, and qTb.

Figure 5.8 shows examples of four different θea, θeb, qTa, and qTb, with the y-axis showing

the buoyancy difference between the mixture air and its unmixed cloudy environment. These

four cases have the jump conditions located at points A, B, C, and D, respectively, in Fig.

5.7. The kinks in these four curves at χ = χ∗ indicate the amount of mixing fraction for the

mixture to become saturated. Mixtures with χ < χ∗ are saturated and those with χ > χ∗

are unsaturated.
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Figure 5.8 (SOURCE: Kuo and Schubert 1988)

Figure 5.8 shows that when the jump condition is on the stable side of the Lilly-Deardorff-

Randall curve, such as curve A, all mixtures, with any χ amount, remain warmer than the

cloudy (unmixed) environment; none becomes negatively buoyant. When the jump con-

dition satisfies the Lilly-Deardorff-Randall’s criterion, curves B, C, and D, some of their

mixtures indeed become colder their unmixed cloudy environment, and thus become nega-

tively buoyant (i.e., accelerate downward). However, not all of the mixtures are negatively

buoyant; those with larger χ (larger than about 0.15) are still warmer than the unmixed

cloudy air. Thus, Kuo and Schubert concluded that the CTEI criterion proposed by Dear-

dorff and Randall is only a necessary, not sufficient, condition for cloud breakup. They also

suggested, based on their two-dimensional numerical simulation, that “surface evaporation

and upward transport processes can apparently provide enough water vapor to compensate

for the evaporative effects associated with the weak evaporative instability”.

Siems et al. (1990) provided a similar interpretation by using the buoyancy reversal

concept; buoyancy reversal is a process that after mixing parcels become denser than either

of the unmixed fluids, and cannot return to their original place. Parcels experience buoyancy

reversal are those having θv − θvb smaller than zero in Fig. 5.8. Siems et al. defined a D
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value that is the ratio of θv − θvb at χ∗ (i.e., the most negatively buoyant mixture) and the

buoyancy difference between the two unmixed layers, i.e.,

D =
θv(χ∗)− θvb
θvb − θva

. (55)

Using this definition, Randall-Deardorff’s instability criterion is D > 0. (Note that the

denominator is negative.) Siems et al. argued that the D value has to be much larger

than 0 in order for sustained vigorous mixing (i.e., instability) to occur based on Shy and

Breidenthal’s (1990; JFM, 214, 1–15) laboratory experiments in a convective tank.

The Shy-Breidenthal lab tank consists of two layers of fluids, initially separated by a

plate. The lower fluid is denser than the upper one. After a sudden removal of the plate,

these two fluids mix nonlinearly and produce mixtures that are denser than either of the

two initial fluids. This mixing phenomenon is similar to the mixing of clear and cloudy air;

after clear air is entrained into the cloud layer, evaporation occurs, and the mixtures can

become denser than either of the unmixed clear or cloudy air. The laboratory results showed

that when the buoyancy reversal is relatively large, D > 1.3, the whole system experiences

“explosive entrainment” and becomes unstable, in the sense that “the perturbed interface

did not relax back to horizontal, but developed a strong tilt.” Because of the explosive

entrainment, the depth of the lower fluid, ∆h, increases significantly when D > 1.3, as

shown in Fig. 5.9, taken from Shy and Breidenthal.
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Figure 5.9 (SOURCE: Shy and Breidenthal 1990)

Siems et al. also used a two-dimensional numerical model to simulate the laboratory

flow; the numerical results confirmed the laboratory results, as indicated in Fig. 5.10. The

entrainment rate of their numerical flows increases significantly only when D > 1.3. For

applications, Siems et al. concluded that this large D value is unlikely to occur “in the range

of hydrodynamic parameters characteristic of mixing at the inversion capping a subtropical

stratocumulus cloud layer. Thus it appears unlikely that C(T)EI triggers stratocumulus

breakup.” However, Siems et al. also recognized the difficulty in defining D or mixing

fraction amount from atmospheric sounding, “because neither the boundary layer nor the

upper-level environment are perfectly well-defined mixed layers” as is flow in the laboratory

or simulations.

Homework 3:

A. Derive (48) and show the expressions for a and b. Also estimate the value of κ =

(b/a)(cp/L) for typical values of a and b.

B. Show that if the ql term in (45) is neglected, then b = 0. [Hint: Use the Clausius-

Clapeyron equation Tdq∗/dT = Lq∗/RT , where cp ∼ 1000J kg−1 K−1, L ∼ 2.45× 106

J kg−1, and R ∼ 461 J kg−1 K−1.]

C. Using the definition of θv and the equations (51)-(54), plot θv − θvb as a function of χ
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for θea=319.4K, θeb=316K, qTa=4.5g/kg, and qTb=10.5g/kg and show your result in a

plot like Fig. 5.8.

Figure 5.10 (SOURCE: Siems et al. 1990)

5.1.5 Vertical distributions of turbulence statistics

Before I show you some “typical” profiles of statistics in the stratocumulus-topped PBL, let’s

see which flux profiles should be linear with height in a horizontally homogeneous, quasi-

steady state. As in the CBL, we expect the fluxes of conserved thermodynamic quantities to

be linear with height under a quasi-steady state. We will use the liquid potential temperature

(θl) as an example. Total water mixing ratio is also a conserved variable when there is no

drizzle. The governing equations for their means are

∂Θl

∂t
= −∂wθl

∂z
− 1

ρcp

∂Frad
∂z

, (56)

and
∂QT

∂t
= −∂wqT

∂z
, (57)

where Frad is the radiative flux. Taking the z-derivative of (56) and (57) leads to

∂(∂Θl/∂z)

∂t
= −∂

2wθl
∂z2

− 1

ρcp

∂2Frad
∂z2

, (58)

and
∂(∂QT/∂z)

∂t
= −∂

2wqT
∂z2

, (59)
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which should be nearly zero under a quasi-steady state. Therefore the total heat flux, H ≡
wθl + 1

ρcp
Frad, and the total water flux, wqT , should remain linear with height if turbulence

reaches a quasi-steady state. Since Frad the longwave radiative flux (or longwave plus solar

radiative flux in daytime) is not linear with height, the liquid-potential-temperature flux wθl

alone is not linear with height either.

When decoupling occurs, turbulence is split to two separate layers and the above argu-

ment no longer applies. In this condition turbulent mixing does not extend throughout the

whole PBL, H and wqT may have two linear curves representing the two separate mixed

layers, as suggested by Nicholls.

Profiles of statistics within the stratocumulus-topped PBL vary from case to case, de-

pending on the type of forcing that generates/consumes turbulence. Statistics are differ-

ent between buoyancy and shear driven PBLs, and also different between cloud-top-cooling

driven and surface-heating driven PBLs.

• When turbulence is driven mainly by cloud-top radiation cooling

This type of STBL has been studied the most, observationally and numerically.

Typical structure for this type of STBL was reported by Nicholls (1989; QJRMS, 115,

487–511) based on aircraft data taken over the North Sea over solid and horizontally

uniform stratocumulus cases, even though most of these cases were decoupled from

the surface. The statistics shown in that paper were plotted only for the upper well-

mixed layer, i.e., from the cloud top (z′/h = 0) down to the bottom of the upper

well-mixed layer (z′/h = 1) where the cloud-top radiative cooling effect can reach.

Thus h here denotes the depth of the upper well-mixed layer, not the whole PBL

depth. Nicholls used the following scaling parameters to normalize the statistics: w∗ =

[2.5(g/T0)h B]1/3, T∗ = 2.5B/w∗, and qT∗ = (wqT )zi/w∗, where B is the layer-averaged

buoyancy flux over the mixed layer h and (wqT )zi is the maximum total water flux

near the cloud top.

Figure 5.11a shows the expected linear trend of the total water flux, although

the data are quite scattered. Figure 5.11b shows that the maximum buoyancy flux

exists at some distance below the cloud top, i.e., at z′ ∼ 0.1h. At z′/h = 1 where the

decoupling occurred, the buoyancy flux at that level became negative.
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490 S .  NICHOLLS 

1.0 

Because of the coarse vertical spacing of the measurement levels and the relatively large 
vertical gradients anticipated, the integral in Eq. (1) was derived from results obtained 
with a diagnostic mixehlayer model, as described in NL. This was found to work well 
in that paper. Values of each of these scaling parameters are listed in Table 1. 

The total water fluxes (wq + Wq,) and buoyancy fluxes measured on each run are 
shown scaled in this way in Fig. 2. The maximum buoyancy flux is observed in the upper 
part of the cloud layer in every case, implying that cloud top cooling was the dominant 
buoyancy production mechanism (see also section 3(c)) .  At lower levels, the buoyancy 
fluxes decrease downwards to small or slightly negative values in the bottom part of the 
mixed layer. The scatter observed in the data serves as a reminder not only of the 
difficulty of making these measurements, but also that the precise forms of these buoyancy 
flux profiles are expected to differ from case to case as conditions vary (see NL). Only 
the gross characteristics are similar. However, case 624 is an exception. Here, the mixed 
layer extended down to the sea surface and there were significant - heat and water vapour 
fluxes across the lower boundary (see Fig. 2). Consequently, wTv increases downwards 
in the lower half of the mixed layer, although this difference is somewhat concealed in 
this form of plot by the scatter in the other data. Substantial contributions to the total 
buoyancy production were made both at the surface and by latent heat release at 
cloud base. Some differences in the observed small-scale structure might therefore be 
anticipated in this case. 

The largest values of total water flux were usually found near cloud top (see Fig. 2), 
so qT* was defined in these terms. While this does not take account of any other sources 
of q T  fluctuations, for example fluxes across the lower mixed layer boundary, Fig. 2 shows 
that the fluxes generally decreased downwards and were significantly smaller than w*qT* 
in the lower part of the mixed layer in all cases except 624, where they were comparable 
owing to the aforementioned surface transfers (NB. an instrument failure led to the loss 
of all q data in cloud on flight 624. A value of qT* was therefore obtained by assuming 
that w4 could be related to in cloud using the saturation condition, as described in 
NL, which also showed this to be a reasonable - assumption on the other flights. The same 
assumption was also used when calculating wTv , although the water vapour term is small 
in this case.) 
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Figure 2. Scaled total water and virtual temperature fluxes v .  z'/h. The plotting symbol for each flight is 
given in Table 1. 

Figure 5.11 (SOURCE: Nicholls 1989)

The velocity variances shown in Fig. 5.12 are all on the order magnitude of 0.5w2
∗

with a peak at about 0.8h, close to the cloud top.

Nicholls compared his TKE budgets (Fig. 5.13a) with the upside down budgets

of a clear CBL (Fig. 5.13b; from Lenschow et al 1980; JAS, 37, 1313-1326) and those

of an LES of STBL (Fig. 5.13c; from Moeng 1986; JAS, 43, 2886–2900). From Fig.

5.13a and b, Nicholls concluded that the STBL is similar to the upside down version

of surface-heated CBL. Unlike the Nicholls’s observed case, the LES shown in Fig.

5.13c does not have the decoupling phenomenon, and hence turbulent mixing takes

place throughout the whole PBL. Thus, in Fig. 5.13c z′/h = 1 is the Earth’s surface,

whereas in Fig. 5.13a it is a cloud-base level. Because of this difference we may compare

them only above z = 0.5h. As pointed out by Nicholls, the overall features between

model and observations above 0.5h are similar except the turbulence transport term,

T = −∂wE/∂z. Near the cloud top, observations show large negative, but LES shows

a nearly zero T . Between 0.2h < z′ < 0.5h, T is positive in the observations, but

negative in the simulation.

The coarse resolution of the LES was first suspected to be the reason for the

discrepancy between the observed and simulated T term. But from a much finer
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Figure 3. Scaled velocity variances and TKE, E, u. z'/h. Symbols as Fig. 2. 

(c )  General characteristics: measured variances 
The variances measured on each of the selected runs, scaled with the quantities 

listed above, are shown in Figs. 3 and 4. For conformity with the conditionally sampled 
data presented in the next section, low frequency variations in all time series have been 
reduced by removing a 30s (3 km) running mean. 

The vertical velocity variance reaches a maximum of about 0 . 4 ~ :  in the upper part 
of the mixed layer, around Z' = 0.2h. Above this, the proximity of the inversion causes 
a strong decrease. Values above cloud are about an order of magnitude smaller. Significant 
internal wave activity above cloud top was detected only on flight 511 and the variance 
is correspondingly higher for this reason. The decrease observed below z' = 0.2h and 
through the rest of the mixed layer is more scattered, reflecting differences in the TKE 
balance between cases in this region. Case 624 shows no significant variation of with 
height. A similar plot of the same data in NL showed fair agreement with the results of 
Lenschow et al. (1980), obtained in surface-heated convective boundary layers, although 
the data here are s&htly smaller owing to the low frequency filtering. 

and u'* data are very similar and have approximately the same values as 
w ' ~  throughout most of the mixed layer. However, an increase is often observed close 
to cloud top, in the region 0 < z' < 0-2h, where the inhibiting influence of the inversion 
on vertical motion and the requirements of continuity cause the local horizontal com- 
ponents to increase. The values outside the mixed layers do not generally show the same 
degree of reduction as since horizontal motions are not constrained to the same 
extent by the stable stratification. 

The 

Figure 5.12 (SOURCE: Nicholls 1989)
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All four terms are roughly equivalent in size in the interval 0-25 < z'/h < 0.5. 
Although B decreases, transport of TKE (from the layer above) also becomes a major 
source term. This implies that P changes sign. This general behaviour is observed in 
every case, as can be deduced from the data plotted in Fig. 16, and is related to the 
observation that downdraughts are decelerating through this region (see Fig. 10). 

When z' > 0.5h, all the terms are considerably smaller on average, making inter- 
pretation less reliable, and there are considerable differences between cases. The balance 
here is clearly sensitive to residual transport from above and to fairly small variations in 
B. 

On two occasions (511 and 526) B is negative (for reasons discussed in NL) and the 
transport term remains small. These are also the cases with the smallest dissipation. 
However, either P or S must provide a source term or Q must be negative. As the values 
needed for balance are relatively small, it is not possible to discriminate between these 
alternatives using the observations. If the imbalance was entirely accounted for by E 
decreasing with time (i.e. assuming P = S = 0) then Q = -0.5. Since (hE/w:) - 500s ,  
Eq. (1 1) shows that such a situation would imply large reductions in E occurring in only 
a few tens of minutes. This is essentially the mechanism envisaged by Nicholls (1984) 
which ultimately results in the decoupling or shallowing of the original mixed layer. 

Conversely, in case 528, which NL characterized as a turbulent layer deepening by 
entrainment at both the upper and lower boundaries, both B and T are significantly 
larger where they were measured below z' = 0.5h. Although D is also correspondingly 
greater at these levels, there does appear to be a slight excess of production over 
dissipation in this region in this case, which could support entrainment at the lower 
boundary. 

Unfortunately, there are no other observations currently available with which to 
compare these results. The closest relevant data are those from convective layers over 
heated surfaces (e.g. Lenschow et al. 1980) and large-eddy simulations (Moeng 1986), 
although they are not directly equivalent and only limited comparisons are possible. 
Lenschow et al. obtained their data in cold air outbreaks over a relatively warm ocean 
surface (plotted upside down in Fig. 17(b) for ease of comparison). The residual term, 
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Figure 17. (a) The composite TKE balance. The terms are described in the text (see Eq. (11)). (b) As (a), 
but from Lenschow el al. (1980) plotted upside down. Here, the thin full line represents S (see Eq. (11)). the 

shear generation. (c) As (a), but from Moeng (1986). As in (b), the thin full line represents S. 

Figure 5.13 (SOURCE: Nicholls 1989)

resolution LES (with 160 × 160 × 80 grid points covering the same domain such that

∆x = ∆y = ∆z = 12.5m), Fig. 5.14, we see that the discrepancy in T term is worse;

the fine-resolution LES shows that T is clearly positive near the cloud top. (Compared

between the two LESs, the fine-resolution LES has a slightly larger surface heating.)

It is clear that the discrepancy in T -term between Nicholls’ observations and the

LES came from the different distributions of w3. The observed w3 is negative in the

cloud layer and increases to zero at the cloud top: This yields a negative TKE flux

wE (Fig. 5.15b) throughout the cloud layer for most of the five flight cases. The LES

flow, on the other hand, shows a positive w3 in the cloud layer, which decreases to zero

at the cloud top, and a negative w3 in the lower PBL. The w3 dominates wE, which

is then positive in the upper and negative in the lower PBL (Fig. 5.15a; results were

from the fine-resolution LES).

An explanation for the simulated distribution of w3 shown in Fig. 5.15a was

given in Moeng and Rotunno (1990; JAS, 47, 1149–1162) based on a direct-numerical-

simulation (DNS) study. If there is only surface heating, w3 and hence the w-skewness
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Figure 5.14 (SOURCE: Shen and Moeng 1993)

Figure 5.15 (SOURCE: Shen and Moeng 1993)
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[≡ w3/(w2)3/2] are positive throughout the whole PBL (just like in the CBL, Fig. 3.9b)

because surface-generated updrafts are stronger than downdrafts. Since only few of

these strong updrafts can reach to the cloud top, the area coverage by strong updrafts

decreases with height. Thus, the largest positive w skewness is likely to occur near

the PBL top. Now consider just the effect of cloud-top cooling. Cloud-top cooling

generates strong downdrafts, with a few of them reaching all the way to the surface

(but only if there is no decoupling). Hence the most negative skewness is likely to

be near the surface. Combining the cloud-top cooling and surface heating effects,

positive w-skewness occurs in the upper PBL due to surface heating, and negative

w-skewness in the lower layer due to cloud-top cooling, just like what we see in Fig.

5.15a. In the observational cases, however, the upper mixed layer was decoupled from

its surface influence, so the only buoyancy source that drives turbulence here was

cloud-top cooling. Therefore, throughout the whole mixed layer w3 and hence wE are

negative.

To see if turbulence statistics generated from LES depend sensitively on its

numerics, SGS parameterizations, SGS condensation, and/or longwave radiation rep-

resentations, the GCSS Boundary Layer Cloud Working Group performed its first

intercomparison study in 1994. The group got together to discuss their results during

the 1994 NCAR/GCSS Boundary Layer Cloud Workshop, and the result is summa-

rized in Moeng et al (1996, BAMS, 77, 261–278). An idealized STBL—horizontally

homogeneous, nearly solid cloud deck, no solar heating, no decoupling, no drizzle,

plus negligibly amounts of surface heating and wind shear—was chosen to be the first

intercomparison case. Ten LES groups participated in this intercomparison study. Al-

though the results vary in magnitude, mainly because the cloud-top radiative cooling

amount is different among the LESs as shown later, the vertical distributions of fluxes

(Fig. 5.16), velocity variances (Fig. 5.17), and TKE budget (Fig. 5.18 shows the three

major terms) calculated from the ten LES codes are quite similar in shape.

Figure 5.18a shows that the magnitudes of the buoyancy production vary among

the LESs. Comparing Figs. 5.17a and 5.18a, we see that the LESs that have the

largest buoyancy production term (e.g., UW) yield the strongest turbulence intensity.
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Figure 5.16 (SOURCE: Moeng et al 1996)

Figure 5.17 (SOURCE: Moeng et al 1996)
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Figure 5.18 (SOURCE: Moeng et al 1996)

(Note: the UKMO’s total TKE is suspiciously large, because both of their horizontal

and vertical velocity variances are smaller than those of the UW.) The difference in

the buoyancy production term is apparently due to the different amount of cloud-top

cooling, which is the main source of buoyancy (and hence turbulence) in this case. The

cloud-top cooling rate is an internally determined quantity in LES, calculated from

a longwave radiation scheme; different LES codes used different longwave radiation

schemes and hence obtained different cloud-top cooling rates (Fig. 5.19). As you can

see, the cloud-top cooling rates predicted by the KNMI (diamond-solid line) and UW

(open circle-dashed dotted curve) LESs are larger than 4K/hour. Consequently, their

buoyancy flux (Fig. 5.16c) and hence the velocity variances (Fig. 5.17; KNMI result

is not shown here) are the largest among all LESs.

• When surface heating also dominates

Moyer and Young (1993; JAS, 50, 2759–2771) analyzed ten FIRE flights, and

showed that the buoyancy forcing within the STBL ranged from purely surface forcing

to purely cloud-top forcing. Figure 5.20, taken from their paper, shows the variation

of the surface heat flux during those ten flights, from slightly negative to significantly

positive.

• When wind shear dominates

One of the documented STBLs that were driven by shear was reported by Brost

et al. (Part I and II 1982; JAS, 39, 800–817 and 818–836). They suggested that the
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Figure 5.19 (SOURCE: Moeng et al 1996)

Figure 5.20 (SOURCE: Moyer and Young 1993)
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Figure 5.21 (SOURCE: Brost et al 1982)

longwave radiative cooling near the cloud top was balanced by entrainment of warm

inversion air, and thus produced no impact on mixed-layer turbulence for the cases they

analyzed. The mean wind was however very strong, ∼ 12–20 m/s, and the turbulence

was driven mainly by shear. In those cases, the liquid water content near the cloud

top was very low, ∼ 0.1 g/kg.

This type of PBLs has a very different structure comparing to buoyancy-driven

stratocumulus PBLs. As pointed out by Brost et al., the structure is more like the

neutral PBL, where the velocity fluxes and variances scaled well with the friction

velocity u∗, as shown Figs. 5.21 and 5.22.

The temperature and moisture fluxes (Fig. 5.23) obtained by Brost et al. were
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Figure 5.22 (SOURCE: Brost et al 1982)

quite complicated. In most cases the total water mixing ratio flux was not linear with

height because drizzle occurred. The TKE budget (Fig. 5.24) showed a near balance

between the shear production and dissipation, at least in their cases 13-2 and 17-2,

which is a feature of neutral, shear-driven PBL.

From the above examples (observed and simulated), you can see that the vertical

distributions of statistics (such as the buoyancy flux profile) in the STBL vary from case to

case; the distributions depend strongly on where and what the dominant turbulence sources

(e.g., surface heating, cloud-top cooling and wind shear) are. Therefore, it is unlikely that

we can scale the statistics into universal profiles, like we do for the CBL.

5.1.6 Climate-related issues

PBL stratocumulus plays a major role in climate, and hence it is important to accurately

represent (parameterize) it in climate models. Randall et al. (1984; BAMS, 65, 1290-1301)

pointed out that a mere 4% increase in the area coverage of marine stratocumulus regime

could produce a 2-3 K cooling in the global mean temperature, based on a simple 1-D

radiative equilibrium calculation. Such cooling is more than enough to offset the global

warming due to doubling CO2. This sensitivity was also found by T. Slingo (1990; Nature,

343, 49–51) using a 3-D general circulation model. He showed that the net albedo depends
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Figure 5.23 (SOURCE: Brost et al 1982)

Figure 5.24 (SOURCE: Brost et al 1982)
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sensitively on not only the cloud amount but also the details of cloud microphysics near the

cloud top, such as the dropsize distribution. Not knowing how to accurately represent these

cloud properties of the marine stratocumulus poses a big challenge in predicting climate

changes.

To develop such a parameterization, we need to put our qualitative understanding of the

cloud regime (described in early subsections) into quantitative forms. This is a difficult task,

however, because as we have learned that there are many physical processes involved and

all of them can play an important role in determining the cloud properties. One way to

pursue this problem is to consider just a few dominant physical processes to see if we can

express the turbulent fluxes and the cloud properties as functions of large-scale forcing and

sounding. For such a study, we may ignore the solar radiation (and drizzle) and consider

just some basic physical processes like longwave radiation, entrainment, turbulent transport,

and condensation/evaporation.

But if one is interested in the direct impact of this cloud regime on climate, one needs to

include solar radiation because the direct impact of stratocumulus is due to its much larger

cloud albedo than the ocean surface’s.

Current GCMs use very simple cloud schemes to represent the marine stratocumulus.

The majority use an empirical cloud scheme developed by J. Slingo (1987, QJRMS, 113,

899–927), in which the cloud fraction depends on large-scale quantities like stability in the

lower atmosphere (i.e., the inversion strength) and the relative humidity in the PBL. The

scheme was developed based on climatology data and is purely empirical. One of the de-

ficiencies of such a scheme is that the cloud field is not directly linked to the turbulence

and radiation fields. In fact, most GCMs treat these three fields (turbulence, radiation and

cloud) separately by using three separately developed schemes; the only link among these

processes is through the large-scale mean field. As we have learned, these physical processes

are strongly coupled on turbulence time scale, so they should be treated as a whole system

in climate models. The only GCMs that directly link these processes are the ones that

use mixed-layer models, developed by Randall and his UCLA/CSU colleagues (Suarez et al.

1983, MWR, 111, 2224–2243; Randall et al 1985, JAS, 42, 641–676), but in that type of

modeling there are complicated closure problems (such as entrainment-rate closure) to deal

with.
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Finally, I would like to point out that most stratocumulus studies have been focused

on cloud breakup mechanisms, e.g., decoupling, CTEI, stratus-to-cumulus transition; very

few on formation processes. Before cloud forms, there is no cloud-top longwave cooling to

drive the boundary-layer turbulence. And since most cloud regime exists over cold ocean

surface, there is not much surface heat flux to generate turbulence either. How then is the

moisture being transported upward to form cloud? One possibility is that this cloud regime,

at the very upstream region, may form as fog, and then longwave radiative cooling occurs

at the fog top, which drives turbulence; with more turbulence and entrainment the fog then

evolves to an elevated cloud as it moves downstream. Another possibility is that the wind

shear is strong in this upstream region to driven enough turbulence to carry moisture up to

the lifting condensation level, then cloud forms. Without knowing what mechanism drives

turbulence to form cloud, it is difficult to come up with a parameterization scheme for cloud

formation.

5.2 Shallow cumulus

Shallow cumulus clouds occur often over the tropical and subtropical oceans. In the 70’s

when aircraft observationalists were searching for horizontally-homogeneous, quasi-steady

state PBLs, they naturally went out to the tropical oceans to collect such data. Among

those datasets were the Puerto Rico cases reported in e.g., LeMone and Pennell (1976;

MWR, 104, 524–539) and the GATE data analyzed by e.g., Nicholls and LeMone (1980;

JAS, 2051–2067).

A shallow-cumulus-topped PBL is often found to have a three-layer structure, as first

observed by Malkus (1958; Papers Phys. Oceanogr., 13, 47pp): subcloud mixed layer, cloud

layer, and the in-between transition layer, as sketched in Fig. 5.25. The transition layer is

defined as the upper part of the mixed layer where entrainment effect is significant. Note

that, unlike stratocumulus, cumulus clouds exist in a stably stratified environment, and their

surrounding air is not very turbulent.

5.2.1 Interaction between cloud and subcloud layers

Among the three Puerto Rico cases they analyzed, LeMone and Pennell (1976) characterized

two types of shallow cumulus clouds, that occurred in “suppressed” convective conditions,
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Figure 5.25

e.g., their Cases I and II, and that in more enhanced convection conditions, e.g., Case III. The

difference between “suppressed” and “active” cumulus clouds was shown in their schematic

diagram, Fig. 5.26.

In “suppressed” conditions, cumulus clouds formed at the tops of rising thermals from

the mixed layer that penetrate into the condensation level. In Puerto Rico Cases I and II

rising thermals were carried upward in the rising branches of 2-D roll vortices. This type of

cumulus clouds is passive, and is like those described as “forced” cumulus clouds in Stull’s

book. These clouds are more likely to organize in lines, in the form of roll vortices. They do

not dynamically alter subcloud layer.

For more enhanced cumulus convection, as in Case III, clouds were found to strongly

interact with subcloud layer. This type is described as “active” cumulus clouds by Stull.

These clouds are positively buoyant and the associated pressure fields may produce strong

updrafts near the cloud base to “suck up” mixed-layer air into cumulus clouds (LeMone et

al. 1988, MWR, 116, 2062–2068). These updrafts were traceable to at least 100m below

cloud base, according to LeMone and Pennell.

5.2.2 Subcloud-layer spectra and statistics

Figure 5.27, taken from LeMone and Pennell, shows the wavelengths of spectral peaks in

the u, v, and w wind fields, which represent the dominant eddy sizes, within the subcloud

layer. Roll scales were observed in Cases I (diamonds) and II (circles), as seen in the v
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Figure 5.26 (SOURCE: LeMone and Pennell 1976)
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(or u) spectrum, but less in the w spectrum since random turbulent motion dominates the

w-spectrum. Convective roll vortices were not observed in Case III (triangles). Dominant

turbulent eddies shown in the w spectrum increased nearly linearly with height to ∼ 0.5zi.

Figure 5.27 (SOURCE: LeMone and Pennell 1976)

The GATE aircraft data reported in Nicholls and LeMone (1980) were mostly under

“suppressed” convective conditions and had much weaker winds than the Puerto Rico cases.

2-D roll vortices were not common there. Figure 5.28 shows that the peak wavelengths in

the w-spectrum in the cumulus-topped mixed layer over the ocean had a similar distribution

to, but larger in size than, those of CBLs over land reported by Kaimal et al. (1976). (Note

that Kaimal et al. spectra were obtained from tethered balloon data, and hence should
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Figure 5.28 (SOURCE: Nicholls and LeMone 1980)

be compared with the alongwind aircraft data as shown in Fig. 5.28a.) In the moisture

spectrum, Fig. 5.29, no clear dominant eddy size was found; fluctuations of the order of 10

km in scale often occurred and even dominated the spectrum. However, these large-scale

bands carried very little moisture flux, as shown by the peaks in the w − q cospectra, Fig.

5.30, taken from Nicholls and LeMone.

The horizontal structure of these large-scale fluctuations were constructed by LeMone and

Meitin (1984; MWR, 112, 1985–1997), using several parallel flight legs at z =150m, shown in

Fig. 5.31. The cloud base height in these cases was about 600m. There were clearly mesoscale

band structures. LeMone and Meitin found that these bands were aligned with subcloud-
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Figure 5.29 (SOURCE: Nicholls and LeMone 1980)
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Figure 5.30 (SOURCE: Nicholls and LeMone 1980)
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Figure 5.31 (SOURCE: LeMone and Meitin 1984)

layer shear and traveled in a direction of the subcloud-layer wind. Thus, they concluded that

this 2-D structure is primarily subcloud-layer phenomena. The horizontal:vertical aspect

ratios of these mesoscale bands are on the order of 25–50, similar to 3-D mesoscale cellular

convection (i.e., open and close cells). These mesoscale organizations have a much larger

aspect ratio than the 2-D roll vortices or 3-D irregular hexagonal convections we mentioned

in section 3, which are scaled with zi, i.e., aspect ratio ∼ 1. What causes the large aspect

ratio, either in 2-D or 3-D form, remains an interesting research topic. One hypothesis is that

the structures resulted from modulation of the PBL by tropospheric gravity waves, which

themselves may have originated from clouds, as discussed by Clark, Hauf, and Kuettner

(1986; QJRMS, 112, 899-926). A numerical simulation by Balagi et al (1993; JAS, 50,

3571–3589) produced observed cloud structures, i.e., similar orientation and wavelengths.

The large eddy simulation method was used to simulate the Puerto Rico cases by Som-

meria and LeMone (1978; JAS, 25–39), and then recently by Cuijpers and Duynkerke (1993;

JAS, 50, 3894–3908) and a BOMEX case by Siebesma and Cuijpers (1995; JAS, 52, 650–666).

Most of the fluxes or variances obtained from those simulated fields agreed quite well with
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Figure 5.32 (SOURCE: Nicholls and LeMone 1980)

observations. The KNMI (Siebesma et al.) has been using their LES solutions as database

to develop mass-flux parameterizations of cumulus for GCMs.

I also show the GATE observations: mean fields in Fig. 5.32 moisture variance in Fig.

5.33, and the temperature and moisture fluxes in Fig. 5.34, taken from Nicholls and LeMone

(1980). The subcloud layer was well mixed. As indicated in the moisture variance profiles,

the upper part of the mixed layer was strongly affected by entrained dry air from above.

Figure 5.35 showed that wT and wq at the cloud base varied among different cases, while

wTv at the cloud base remained nearly zero. This led Nicholls and LeMone to conclude

that “the sensible and latent heat fluxes at the top of the mixed layer (and therefore the

distribution of heating and moistening in the boundary layer) are strongly affected by the

presence or absence of cumulus convection while the virtual heat flux remains unaffected.”

Another interesting study in the Nicholls and LeMone paper is on the convective mass

flux, which is a closure in mass-flux modeling as we will learn in section 6. In mass flux

modeling, the vertical flux of any scalar c is expressed as

wc = ωc(CU − CD), (60)
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Figure 5.33 (SOURCE: Nicholls and LeMone 1980)

Figure 5.34 (SOURCE: Nicholls and LeMone 1980)
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Figure 5.35 (SOURCE: Nicholls and LeMone 1980)

where ωc ≡ σ(1−σ)(wU−wD) is a convective mass flux; σ is the area covered by all updrafts;

wU and wD are averaged vertical-velocity speeds within updrafts and downdrafts, respec-

tively; and CU and CD are averaged concentrations of c within updrafts and downdrafts.

Another way to write (60) is

wc = ω∗(CU − C). (61)

C is the averaged concentration over the whole horizontal plane, i.e., over both updraft and

downdraft regions, defined as C = σCU + (1 − σ)CD. ω∗ ≡ σwU is also a convective mass

flux. Nicholls and LeMone used the GATE data, which gave the fluxes shown in Fig. 5.34

and the differences (qU − q), (TU − T ), and (TvU − Tv) shown in Fig. 5.35, to compute ω∗;

their results are shown in Fig. 5.36. Nicholls and LeMone noted that the mass flux at the

cloud base was only a small fraction of that in the middle of the mixed layer. Nevertheless,

this small amount of cloud-base mass flux (∼ 0.1ω∗/w∗) produced large fluxes of sensible

temperature and moisture there, because TU − T and qU − q were large at the cloud base.

Note that the vertical distribution of this mass flux was similar to the profile of standard

deviation of vertical velocity shown in Fig. 5.37, so we may assume that ω∗ ∝ σw; they are

both larger at the cloud-base level when clouds are present at the top of the mixed layer,

compared to the clear CBL. This provides important information for mass flux modeling, as

we will see in section 6.
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Figure 5.36 (SOURCE: Nicholls and LeMone 1980)

Figure 5.37 (SOURCE: Nicholls and LeMone 1980)
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5.2.3 Climate impact

Trade-wind cumulus plays an important role in transporting moisture from the ocean surface

to the lower troposphere, which is then advected to the ITCZ to supply the moisture to deep

convection. Recently, the KNMI research group (e.g., Siebesma and Cuijpers 1995; JAS 52,

650–666; Siebesma 1997; NATO ASI Series on Buoyant Convection in Geophysical Flows,

Kluwer Academic Publishers, 491pp) has been using LES as database to develop mass flux

parameterizations of trade cumulus for GCMs. For such a development, some basic questions

need to be answered first. For example: What determines the mass flux from the mixed layer

into cumulus clouds? How does the cumulus ensemble affect the mixed-layer turbulence?

How to parameterize the later mixing between the cumulus ensemble and its environment?
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6 PBL MODELS (PARAMETERIZATIONS)

PBL modeling (or called PBL parameterization) is an attempt to describe the statistical

behavior of PBL turbulence through simplified equations or modeling frameworks. We can

parameterize PBL turbulence in a climate or weather forecast model because its time scale

is much shorter than the time scale of large-scale variation. Thus we can assume that

turbulent flow responds to large-scale forcing almost instantaneously and that its statistics

remain at an equilibrium state for a given large-scale environment. A PBL model is usually

designed to provide the following statistical information to a large-scale model: the PBL

depth, surface stress, surface fluxes of heat, moisture and other species, vertical profiles of

these fluxes within the whole PBL, and cloud amount, if the large-scale condition favors

low-level clouds. The surface fluxes are needed to couple the atmosphere with the land

processes, the vertical profiles of fluxes determine the time-rate-of-changes of wind speed,

wind direction, temperature, and moisture, etc., and cloud amount determines the amount

of radiation in/out of the Earth’s surface. Therefore all meteorological forecast models need

a PBL model.

We may categorize all existing PBL models into six different frameworks: Higher-order

closure model, Richardson-number-dependent K approach, K-profile model, mixed-layer

(bulk) model, transilient theory/integral closure model, and mass flux model. As we will

learn next, some models are more elegant and sophisticated than others, but as John Wyn-

gaard stated, they don’t necessarily perform better than simple models. As John put it:

”The key to PBL model performance is not its framework, but calibration against data”.

It is also important to note that all schemes are just an attempt to describe complicated

turbulence processes with a simple set of equations or frameworks. We should never expect

any of them to work perfectly. As Lumley stated, these models at their best produce only

likenesses of turbulence, and work only in a limited range about their calibration state. Some

PBL models are developed for—or calibrated against—shear-driven turbulence, and others

are for buoyancy-driven turbulence.
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6.1 Higher-order closure model (or single-point closure)

6.1.1 Higher-moment equations and closure problems

Higher-order closure modeling began in the 1970s when researchers found that simple eddy

diffusivity (K) models failed to properly represent the PBL turbulence, especially the buoyancy-

driven turbulence, and also because computers became more powerful. This turbulence mod-

eling approach carries prognostic equations for higher-moment statistics. The idea behind

this approach is that “if a crude assumption for second moments predicts first moments

adequately, perhaps a crude assumption for third moments will predict second moments ad-

equately” (Lumley and Khajeh-Nouri 1974; Advances in Geophysics, 18A, 169–192). The

hypothesis is that if you solve higher moment equations where you make closure assump-

tions, you are likely to get a better mean (first-moment) field. There is no prove to this

hypothesis, however.

Higher-order closure modeling is sometimes referred to as single-point closure modeling

because the statistics it predicts are correlations at the same location, e.g., u′(xi)w′(xi).

All of the moments equations can be derived from the equations of fluctuations u′, v′,

and w′, Eq. (1-9). For example, equations for u2, v2 and w2 are:

∂u2

∂t
= −∂wu

2

∂z
− 2uw

∂U

∂z
− 2u

∂p

∂x
− εu, (62)

∂v2

∂t
= −∂wv

2

∂z
− 2vw

∂V

∂z
− 2v

∂p

∂y
− εv, (63)

∂w2

∂t
= −∂w

3

∂z
+ 2

g

Θ0

wθ − 2w
∂p

∂z
− εw, (64)

where on the right-hand sides are turbulent transport, mean shear (or buoyancy) production,

pressure effect, and molecular dissipation terms. Here we applied the PBL assumption so

the x and y derivatives of all statistics are set to zero. The sum of these three equations

yields the equation of the turbulent kinetic energy, E ≡ (u2 + v2 +w2)/2. Similarly, we can

derive all third moment equations, such as those for uiujuk or wE.

Higher-moment equations are formally derived from the fluctuation equations without

any assumptions; each terms in the budget have its physical meanings. This makes the
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higher-order closure approach very attractive and popular in the 70s and early 80s. It was

considered elegant and sophisticated.

However, through such derivations, the budget (right-hand side) of every higher-moment

equation always consists of one or more higher moment terms. For example, in the second-

moment equation for u2
i , a third-moment term wu2

i appears on the right-hand side. Thus, to

solve the second-moment equations, one has to (1) make closure assumptions that relate wu2
i

to lower moment (second or first) statistics, or (2) carry prognostic equations for wu2
i and

make closure assumptions on the 4th-moment terms. The first approach is called second-

order closure modeling, and the second approach is 3rd-order closure modeling. For 3rd-

order closure modeling, we can use a well-established turbulence theory, called quasi-normal

(or called quasi-Gaussian) approximation, to relate fourth moments to second moments as

abcd = ab cd + ac bd + ad bc, which is more accurate than the downgradient assumption

(described later) used in the second-order closure modeling. But a 3rd-order closure modeling

requires solving many more prognostic equations. For a cloudy PBL, Moeng and Randall’s

(1984; JAS, 41, 1588–1600) 3rd-order closure model carries 31 more prognostic equations

than a 2nd-order closure model.

If one stays with the second-order closure approach, as most PBL modelers do, then clo-

sure assumptions are needed for third-moment turbulent transport, pressure-related terms,

and molecular dissipation terms, e.g., 1st, 3rd, and 4th terms on the right-hand sides of (62),

(63), and (64).

The basis of making closure assumptions is well described in Donaldson (1973; Workshop

on Micrometeorology, Ed. D.A. Haugen, AMS, 313–392). Each closure formula has to a) be

invariant under both coordinate and Galilean transformations, b) have the right dimensional

properties on both sides of the formula, and c) satisfy all the conservation relationships

known to govern the variables in question. For example, a third moment term, uiujuk, can

be expressed as

uiujuk ∝
∂

∂xi
ujuk +

∂

∂xj
uiuk +

∂

∂xk
uiuj, (65)

in order to be invariant under coordinate transformation. To have the same dimensions on

both sides of the formula, we must have

uiujuk ∝ −λq[
∂

∂xi
ujuk +

∂

∂xj
uiuk +

∂

∂xk
uiuj], (66)
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where λ is a characteristic length scale and q is a characteristic velocity scale. The minus

sign is added to insure that turbulent energy is diffused down the gradient. This is the well-

known downgradient diffusion assumption. As we will see later, however, this assumption is

inappropriate for buoyancy-driven turbulence.

Molecular dissipation terms are typically written as a decay form, for example,

−εui = −ν ∂ui
∂xi

∂ui
∂xi
∼ −u

2
i

Λ
(67)

in the u2
i equations, where Λ is a dissipation length scale.

Pressure fluctuations act to “return” the turbulent motion to an isotropic state, which can

be understood from the following analysis: The pressure terms in (62)-(64) can be re-written

as

−ui
∂p

∂xi
= −∂uip

∂xi
+ p

∂ui
∂xi

, (68)

where the first term is a transport. The second term on the right-hand side of (68) drops

out of the TKE equation, since p∂ui/∂xi=0 for incompressible fluid. But each individual

component, p∂u/∂x, p∂v/∂y or p∂w/∂z is not zero. So such pressure-related terms do not

generate turbulent energy; they only redistribute energy among u2, v2, and w2 components.

For example, in buoyancy-driven turbulence, buoyancy [2nd term in (64)] produces w2 and

through the pressure effect w2 energy is redistributed to u2 and v2. In shear-driven turbu-

lence, the along-shear energy is gained directly from the shear production [2nd term in (62)

if U is the streamwise component], then pressure fluctuations redistribute it to v2 and w2.

Hence, this term generates the return-to-isotropy effect first discussed by Rotta in 1951.

Thus, in general the pressure terms −ui∂p/∂xj are often expressed as

−ui
∂p

∂xj
− uj

∂p

∂xi
= −1

τ
(uiuj −

2

3
δijE), (69)

where τ is the return-to-isotropic time scale. This pressure closure includes only the nonlinear

turbulence-turbulence interaction, which is referred to as the “slow” part of pressure effect.

To include the direct effects of mean shear and buoyancy, “rapid” parts should be added

to the closure formula (69); for example, the “rapid” part of pressure closures due to mean

shear takes the form of ∂Ui/∂xj and ∂Uj/∂xi (e.g., Launder, et al., 1975; J. Fluid Mech., 68,

537–566) and that due to buoyancy takes the form of g
Θ0
θc in the budget of wc (Moeng and
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Wyngaard 1986; JAS, 2499–2513). The contribution from the rapid part can be as large as

that from the slow part.

Under the PBL assumption, the transport term, first term in (68), is zero in the u2 and

v2 equations; the only pressure transport term shows up after summing up all three velocity-

variance components is −∂wp
∂z

, as shown in the TKE equation (derived in Homework 1C,

Section 1.3). This transport term is neglected under the closure assumption (69). But as we

showed in Fig. 3.10 this pressure transport term can be large in the buoyancy-driven PBL.

6.1.2 The Mellor-Yamada model

In early 70s, Mellor and Yamada realized that it was too computationally costly in a GCM or

mesoscale model to use a full set of second-order closure model. They developed a hierarchy

of models for the PBL where they systematically reduced the set of equations using a non-

dimensional measure of anisotropy, a ≡ ||aij||, where uiuj = (δij/3 + aij)u2
i (Mellor and

Yamada 1974; JAS, 31, 1791–1806). This hierarchy is summarized below.

Level 4 All second moment are solved with full equations

Let advection and turbulent transport=O(a) and neglect O(a2) terms ⇒

Level 3 Only TKE and θ2 are solved with full equations

Let advection and turbulent transport=O(a2) and neglect O(a2) terms ⇒

Level 2 All second moment equation are reduced to algebraic forms

Neglect all O(a) terms ⇒

Level 1 All second moment equation are reduced to algebraic forms

The so-called Level 4 model is a full second-order closure model, which solves for the

full set of prognostic equations of all second moments. Level 3 neglects all the time-rate-of-

change and turbulent transport terms except those in the equations of TKE and temperature

variance (θ2). Level 2 further neglects the time-rate-of-change and turbulent transport terms

in the TKE and the θ2 equations. Hence in Level 2, all second-moment equations reduces
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to a set of simplified diagnostic (algebraic) equations; one can analytically solve that set of

algebraic equations, which leads to the following flux-gradient relationships:

uw = −KM
∂U

∂z
, (70)

vw = −KM
∂V

∂z
, (71)

and

wθ = −KH
∂Θ

∂z
, (72)

where KM = `qSM(Ri) and KH = `qSH(Ri), where ` and q are length and velocity scales (to

be defined later) and Ri is the Richardson number. Thus, Level 2 looks like a Richardson-

number-dependent eddy diffusivity model (to be described next), except that their KM and

KH are formally derived from a set of moment equations, rather than determined empirically.

Level 1 has KM and KH similar to those in Level 2 but is seldom, if ever, used.

The most popular higher-order closure scheme used in GCMs or mesoscale models is

Level 2.5, which is an intermediate version between Level 2 and Level 3; it makes a further

simplification to the Level 3 model so that the only full prognostic equation retained is the

TKE equation. The Mellor-Yamada Level 2.5 model, also called TKE model or known to

the engineering community as a One-Equation Model, is described in Mellor and Yamada

(1982; Rev. Geophys. Space Phys., 20, 851–875) and briefly summarized below.

∂E

∂t
=

∂

∂z
[
5

3
qλ1

∂E

∂z
]− uw∂U

∂z
− vw∂V

∂z
+

g

Θ0

wθ − ε, (73)

where the first term on the right-hand-side comes from the downgradient assumption for the

sum of the turbulence and pressure transport terms. The length scale is empirically set to

λ1 ∼ 0.23`, where ` is a master length scale defined later. The fluxes uw, vw and wθ are

calculated from their algebraic equations. The molecular dissipation term is parameterized

as

ε = q3/Λ1, (74)

where the dissipation length scale is empirically set to Λ1 ∼ 15`.

The most difficult and uncertain part of the higher-order closure approach is in determin-

ing the characteristic scales of length and time (i.e., `, and τ) that appear in the above closure
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formulae. These scales are supposed to represent the net effect of all turbulent motions—

large and small eddies— and thus depend strongly on the type of turbulent flow fields. [For

comparison, the characteristic length scale in the subgrid-scale model in LES is supposed to

represent the local-equilibrium inertial subrange eddies, and thus can be more reasonably

and universally described by the effective grid size of LES.] In Mellor and Yamada’s hierar-

chy models, all length scales (such as Λ1 and λ1) are assumed to be proportional to a master

length scale, `. The early version of Mellor-Yamada models used a length scale proposed by

Blackadar (1962; J. Geophys. Res, 67, 3095–3102) as

` =
κz

1 + κz/`0

, (75)

where `0 is an asymptotic value given as

`0 = α

∫ zi
0 qzdz∫ zi
0 qdz

, (76)

where zi is the PBL height, q =
√

2E, α is a proportionality constant to be determined

(or calibrated) empirically. The newer version of Mellor-Yamada models uses an alternative

method for the master length scale (Mellor and Yamada 1982; Rev. Geophys. Space Phys.,

20, 851–875), in which a prognostic equation for q2` is solved; along with the equation for

the TKE, the master length scale ` can be retrieved. All time scales are then related to the

length and velocity scales as τ ∝ `/q.

In recent years, many turbulence researchers, particularly within the engineering com-

munity, have become critical to the second-order closure approach. They questioned the

accuracy of the second-order closure modeling and argued that it is no longer needed for the

development of second-order models because with the increase of computer power DNS and

LES can explicitly calculate the turbulent motion, which represents turbulence more accu-

rately. An interesting debate on this issue is given in Lumley (1990; Whither Turbulence?

Turbulence at the Crossroads, Lecture Notes in Physics, vol. 37, Springer-Verlag). For the

meteorology community, however, LES remains too costly to substitute for ensemble-mean

closure model in representing the PBL in GCMs or mesoscale models.

6.1.3 Realizability issue

Solving moment equations with ad hoc closure assumptions for higher moment terms often

leads to undesirable realizability problems, such as generating negative variances or quantities
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not satisfying the Schwarz’s inequality. These problems were first discussed in Schumann

(1977, Phys. Fluids, 20, 721–725) and Lumley (1979, Adv. Appl. Mech., 18, 123-176).

The crudest way to handle realizability problems is by imposing the clipping approximation

as proposed by Andren et al (1976, JAS, 33, 476–481), where the predicted variances are

set to zero if they become negative and the Schwarz’ inequality is imposed for all predicted

quantities. There were more sophisticated methods to handle the realizability issue (e.g.,

Galperin et al. 1988, JAS, 45, 55–62), but it remains one of the critiques of the higher-order

closure modeling.

6.1.4 Applications to cloud-free PBLs

The Mellor-Yamada second-order closure models are well documented in the PBL literature,

and perhaps the most popularly used PBL schemes. Among the series of papers published

by Mellor and Yamada, Mellor (1973; JAS, 30, 1061–1069) showed that the second-order

closure modeling, when applied to the surface layer, was able to reproduce Monin-Obuhkov

similarity functions. Yamada and Mellor (1975; JAS, 32, 2309–2329) showed that this closure

model can properly produce the diurnal cycle of mean fields of the Wangara data, as shown

in Fig. 6.1. More applications are described in Mellor and Yamada (1982; Rev. Geophys.

Space Phys., 20, 851–875).

Although Mellor-Yamada models can produce well some mean fields of the PBL, the TKE

budget computed from their Level 4 model (top panel in Fig. 6.2) shows unrealistic features

compared to observations and LESs (bottom panel in Fig. 6.2, from Moeng and Wyngaard;

1989, JAS, 46, 2311-2330). The modeled entrainment flux of potential temperature (i.e.,

wθ at the PBL top) is nearly zero, instead of ∼–0.2 of its surface value. In fact, this model

underestimates the entrainment fluxes of all variables. Also, the third-moment turbulent and

pressure transport terms (labeled as “Diffusion” in Fig. 6.2) are greatly underestimated. In

Section 6.1.6, we will examine the closure assumptions used by Mellor-Yamada, which will

show why the TKE budget resulted from that model is unrealistic.

Because of its complexity, the second-order closure model developed by Lumley and his

colleagues was rarely used in the PBL community except some earlier works by Wyngaard

et al. (1974; Adv. Geophys. 18A, 193–212) and Zeman and Lumley (1976; JAS, 33, 1974-

1988). Their closure schemes include more physics and hence are a lot more complicated
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Figure 6.1 (SOURCE: Yamada and Mellor 1975)

and computationally expensive than the Mellor-Yamada’s. This model, however, is shown to

predict much reasonable entrainment fluxes, e.g., the entrainment flux of buoyancy as shown

in Fig. 6.3; that success will be explained in Section 6.1.6. Note that Zeman-Lumley’s

model also predicts a reasonable vertical distribution of the TKE flux, wE (Fig. 6.4) for

the buoyancy-driven PBL, and consequently a reasonable turbulent transport term (which

is −∂wE/∂z) in the TKE budget.

Second-order closure modeling has also been applied to the stably stratified PBL. In

Wyngaard (1975; BLM, 9, 441–460), a full second-order closure model was used to model a

stable PBL and the results agreed well with observations. Figure 6.5 compares the time evo-

lution of the calculated and observed (a) friction velocity (i.e., r.m.s. of surface momentum

fluxes), (b) surface heat flux, and (c) PBL height.

Brost and Wyngaard (1978; JAS, 35, 1427–1440) further simplified Wyngaard’s full

second-order closure model to a K-type model by neglecting the time-rate-of-change and

turbulent transport terms. (For stable or neutral PBLs, we have learned that the turbulent

transport terms are typically much smaller than the production and dissipation terms in the
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Figure 6.2
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Figure 6.3 (SOURCE: Zeman and Lumley 1976)

Figure 6.4 (SOURCE: Zeman and Lumley 1976)
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Figure 6.5 (SOURCE: Wyngaard 1975)

TKE budget.) Also, instead of solving a prognostic equation for the molecular-dissipation

rate, they parameterized the length scale as

` =
z

1 + z/`B
, (77)

where `B is given as

`2
B =

w2

g
T0

∂Θ
∂z

, (78)

which came from the assumed balance between inertial forces (∼ w2/`B) and buoyancy forces

[∼ (g/T0)(∂Θ/∂z)`B]. Thus, ` ∼ z near the surface, which is a well-known surface-layer

property, and ` ∼ `B in the upper part of the stable PBL. This much simplified second-order

closure scheme was shown to reproduce all turbulence results obtained in Wyngaard (1975).

This is perhaps not surprising because we showed that eddies within the stably stratified

PBL are small and turbulent mixing is more or less local. Thus, a simple K model with a

proper length scale as given in (77) and (78) can model the stable PBL well.
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6.1.5 Applications to stratocumulus-topped PBL

To apply the second-order closure approach to the stratocumulus-topped PBL, we need to

make some modifications: Instead of using θ (or θv) and its related moment statistics as

prognostic variables, we should use thermodynamic variables that are conserved under moist

adiabatic processes, e.g., θe (or θl) and its related statistics. Only conserved quantities

can become well mixed by turbulence. The buoyancy (or liquid water) statistics are then

computed from the predicted statistics through thermodynamic relationships, e.g., wθv =

awθe + bwqT , where the coefficients a and b differ for unsaturated and saturated air. In

partly cloudy region, which is often the case in a GCM grid, buoyancy statistics can no

longer be easily related to the conserved thermodynamic statistics (see Randall 1987; JAS,

44, 850–858). This remains a research problem.

For modeling the cloud-top PBL, we also need to add the radiation effect into the mean

equation of θe or θl, especially longwave radiation cooling at the cloud top because it provides

the major source in driving/maintaining the turbulent motion, as discussed in Section 5.

For cloudy PBLs, in addition to the vertical fluxes of momentum, heat, moisture or other

scalars, turbulence statistics, such as temperature and moisture variances and covariance

(θ2
e , q

2
T , and θeqT ) may also be important. According to Sommeria-Deardorff’s (Sommeria

and Deardorff 1977; JAS, 34, 344–355) subgrid-scale condensation scheme, these statistics

determine the cloud amount and cloud fraction within, say, a GCM grid. This becomes one

of the advantages of using higher-order closure modeling because other PBL models do not

attempt to model these thermodynamic statistics.

6.1.6 Examination of closure assumptions and constants

In the above-mentioned closure assumptions, many closure constants are left to be deter-

mined empirically. Traditionally, wind tunnel (i.e., pure shear-driven) turbulence data were

used to calibrate those constants. However, shear-driven turbulence is quite different from

buoyancy-driven turbulence, and hence any closure that was “tuned” to shear turbulence is

unlikely to work well for convective turbulence. An alternative is to use large-eddy simula-

tion flows as database to calibrate closure assumptions (or constants) for buoyancy-driven

PBLs. I will show some examples below.
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• Pressure-scalar covariance

A closure problem for the pressure-scalar covariance term, 1
ρ0
c∂p/∂z appears in the scalar-

flux equation:
∂wc

∂t
= −∂w

2c

∂z
− w2

∂C

∂z
+

g

T0

θc− 1

ρ0

c
∂p

∂z
, (79)

where c is a scalar. To examine such closure, Moeng and Wyngaard (1986; JAS, 43, 2499–

2513) divided the pressure fluctuations into five components, pT , pS, pB, pC , and PSG,

according to the four physical processes that appear on the right-hand side of the pressure

Poisson equation,

1

ρ0

∇2p = − ∂

∂xi
(~V ′′ · ∇u′′i )− 2(

∂U

∂z

∂w

∂x
+
∂V

∂z

∂w

∂y
) +

g

T0

∂θ

∂z
+ f(

∂u

∂x
− ∂v

∂y
) + SGS, (80)

plus the subgrid-scale contribution in LES. The five components are defined as:

1

ρ0

∇2pT = − ∂

∂xi
(~V ′′ · ∇u′′i ), (81)

1

ρ0

∇2pS = −2(
∂U

∂z

∂w

∂x
+
∂V

∂z

∂w

∂y
), (82)

1

ρ0

∇2pB =
g

T0

∂θ

∂z
, (83)

1

ρ0

∇2pC = f(
∂u

∂x
− ∂v

∂y
), (84)

1

ρ0

∇2pSG = − ∂2τij
∂xi∂xj

, (85)

where pT comes from the nonlinear turbulence-turbulence interaction, pS from mean shear,

pB from buoyancy, and pC from Coriolis term.

Separating the total pressure fluctuations into five components makes it easier to formu-

late closure hypothesis for each component, as we can see in the following. For example, for

the buoyancy effect, we Fourier-transform (83) to

−κ
2

ρ0

p̃B(κ) =
g

T0

(iκz)θ̃(κ), (86)

where i =
√
−1, and ˜ represents quantities in Fourier space. Dividing both sides by κ2, mul-

tiplying by iκz and the complex conjugate of c̃, and then Fourier transforming the equation

back to the physical space, we obtain

− 1

ρ0

c
∂pB
∂z

= − g

T0

∫
(
κ2
z

κ2
)θ̃(κ)c̃∗(κ)dκ, (87)
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which can then be written as

− 1

ρ0

c
∂pB
∂z

= A
g

T0

θc, (88)

where A is a constant depending on κz/κ. If the turbulence is isotropic, A = 1/3. However,

the convective PBL turbulence is hardly isotropic. Based on their LES results, Moeng and

Wyngaard found that A ∼ 1/2 for the highly convective PBL.

The LES results also indicated that in the highly convective PBL, only two components

dominate: pT and pB. We just showed that the latter component can be parameterized as

(88). The nonlinear interaction term, pT -component, represents the slow part of the pressure

effect, i.e., Rotta’s return-to-isotropy, thus can be written as

− 1

ρ0

c
∂pT
∂z

= −wc
τ
, (89)

where τ is a return-to-isotropy time scale. Moeng and Wyngaard’s LES included four scalar

fields, and hence the time scale τ (normalized by w∗/zi) can be calculated from these four

scalar fields separately. As shown in Fig. 6.6, time scales calculated from three nearly-

bottom-up scalars (cy, cb, and θ, which have a surface flux much larger than the entrainment

flux) have about the same shape, but that calculated from a top-down scalar, cr, has a

different distribution. This reflects an asymmetric property between top-down and bottom-

up statistics.

In summary, the pressure-scalar term in the scalar flux equation for the highly convective

PBL can be parameterized as

− 1

ρ0

c
∂p

∂z
∼ − 1

ρ0

c
∂pT
∂z
− 1

ρ0

c
∂pB
∂z
∼ −wc

τ
+

1

2

g

T0

θc. (90)

• Turbulent transport term

Next we will examine a commonly-used closure scheme for the turbulent transport term

in the TKE equation, as demonstrated by Moeng and Wyngaard (1989; JAS, 2311–2330).

The TKE equation is:

∂E

∂t
= −[uw

∂U

∂z
+ vw

∂V

∂z
] +

g

T0

wθv −
∂wE

∂z
− ∂wp

∂z
+ ε. (91)

The turbulent transport term −∂wE/∂z is commonly parameterized as downgradient diffu-

sion,
∂wE

∂z
= − ∂

∂z
(L1q

∂E

∂z
), (92)
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Figure 6.6 (SOURCE: Moeng and Wyngaard 1986)

where L1 is a length scale. To see how good this closure assumption is, we analyzed the

budget of wE,

∂wE

∂t
= −(uw2

∂U

∂z
+vw2

∂V

∂z
)−(uw

∂uw

∂z
+vw

∂vw

∂z
)−w2

∂E

∂z
−w2

∂w2

∂z
− g

T0

(θE+w2θ)+P+M,

(93)

where P and M terms are the pressure-related and molecular terms, and are the major sink

in this budget. They can be expressed as

P +M ∼ −wE
τ1

, (94)

where τ1 is another time scale. The downgradient diffusion assumption given in (92) implies

that the only term in (93) to balance the major sink of P + M is the third term on the

right-hand side of (93). In other words, if

w2
∂E

∂z
∼ −wE

τ1

, (95)

then

wE ∼ −w2τ1
∂E

∂z
. (96)
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Figure 6.7 (SOURCE: Moeng and Wyngaard 1989)

We computed each term on the right-hand side of (93) based on the LES solution and

plotted the dominant terms in Fig. 6.7. It is clear that the third term is not large; instead

the buoyancy term provides the dominant source to wE.

This explains why Mellor-Yamada’s scheme greatly underestimated the turbulent trans-

port term in the TKE budget for the CBL, as revealed in Fig. 6.2. Using the downgradient

diffusion assumption for wE gives a negligibly small amount of wE everywhere in the PBL,

hence a small turbulent transport term in the TKE budget (although they may argue that

the ‘diffusion’ term they parameterize with the downgradient assumption is the sum of the

turbulent and pressure transport terms, which is then much smaller than each transport term

alone). In Zeman and Lumley’s second-order closure scheme, the buoyancy effect in (93) was

included in parameterizing the turbulent transport, and hence the model produced a more

realistic wE distribution as shown in Fig. 6.4. A simple empirical modification to the down-

gradient diffusion assumption for TKE model was proposed by Therry and Lacarrere (1983;

BLM, 25, 63–88) based on the results from a 3rd-order closure model; their modification

provides a better TKE budget in the CBL.

The same analysis and arguments apply to other third-moment flux terms, such as w2c
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Figure 6.8 (SOURCE: Moeng and Wyngaard 1989)

and wc2.

• Molecular dissipation

Based on the inertial-range theory, the molecular dissipation rate depends on the amount

of TKE cascades down from large eddies. Thus, the dissipation rate depends on large-eddy

properties and is often expressed as

ε =
q3

L2

=
(2E)3/2

L2

, (97)

where q and L2 are characteristic velocity and length scales of large eddies. The closure

problem is determining the length scale L2.

Using LES flows, Moeng and Wyngaard (1989) computed ε and E in (97) to determine

L2. The result is given in Fig. 6.8, and compared to those from Mellor-Yamada (1974) and

Sun and Ogura (1980; JAS, 37, 1558–1572). Both second-order schemes use a length scale

that is a factor of 2-3 smaller than that predicted by the LES.

So what is the consequence of using a smaller length scale in the dissipation rate for-

mula (97)? By vertically integrating the TKE equation, we obtained a balance between the
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Figure 6.9 (SOURCE: Moeng and Wyngaard 1989)

vertically-integrated molecular dissipation and buoyancy production for the buoyancy-driven

PBL when shear is negligibly small [Section 3.2]. Thus, the layer-averaged dissipation rate is

fixed by the amount of buoyancy flux input from the surface. According to (97), if a closure

model uses an L2 that is too small by a factor of 3, it would produce an averaged TKE too

small by a factor of 2, for a given surface buoyancy flux. That is what we observed in Fig.

6.9 when we compared the normalized TKEs calculated from LES and from the results of

Yamada and Mellor (1975).

Homework 4:

Derive the formulae of eddy viscosity and eddy diffusivity in the Mellor-Yamada’s Level

2 model.
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6.2 Richardson-number-dependent K model

The K-model approach is sometimes called first-order closure modeling, in which the fluxes

of momentum, heat, and other scalars are related to the vertical gradients of the mean fields

with a prescribed eddy viscosity KM and eddy diffusivity KH :

uw = −KM
∂U

∂z
, (98)

vw = −KM
∂V

∂z
, (99)

wθ = −KH
∂Θ

∂z
. (100)

The simplest K-model sets KM and KH to constant, assuming that turbulent motions trans-

port or diffuse just like molecular motions. Of course this treatment of turbulence is naive

and should not be used at all.

A K model, which describes KM and KH as functions of the Richardson number, was de-

veloped by Louis (1979; BLM, 17, 187–202) for the ECMWF medium-range forecast model.

The scheme was based on an extension of surface-layer similarity, as described in the fol-

lowing. In Section 2 we learned that within the surface layer the mean wind speed and

temperature at any height z can be expressed as

|~V (z)| = u∗
κ

[ln
z

z0

−Ψ1(
z

L
)], (101)

Θ(z)−Θ0 =
0.74θ∗
κ

[ln
z

z0

−Ψ2(
z

L
)], (102)

for the unstable case, where Ψ1 and Ψ2 are stability functions, |~V (z)| =
√
U(z)2 + V (z)2,

and

L ≡ θ0

g

u2
∗

κθ∗
(103)

is the M-O length scale.

The stability (i.e., z/L) dependence in (101) and (102) can become Richardson-number

dependence by first substituting (101) and (102) into (103), which leads to a relationship

between z/L and RiB:

RiB = 0.74(
z

L
)

[ln(z/z0)−Ψ2(z/L)]

[ln(z/z0)−Ψ1(z/L)]2
, (104)
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where the bulk Richardson number of the surface layer is defined as

RiB ≡
g

θ0

z(Θ−Θ0)

|~V |2
. (105)

Using this relationship, (101) and (102) can be rewritten as

uw0 ≡ −u2
∗cosα0 = {CDNFm(

z

z0

, RiB)} |~V |U(z), (106)

vw0 ≡ −u2
∗sinα0 = {CDNFm(

z

z0

, RiB)} |~V |V (z), (107)

wθ0 ≡ −u∗θ∗ = {CDN
0.74

Fh(
z

z0

, RiB)} |~V |(Θ(z)−Θ0), (108)

where CDN [≡ κ2/(ln z
z0

)2] is the drag coefficient under neutral conditions, and the quantities

inside the brackets are the surface drag coefficients CD and CH , which are now Richardson-

number dependence. (α0 is the angle between the surface wind and the x axis.)

Using Businger’s empirical formulae for Ψ1 and Ψ2 and (101)–(108), Louis numerically

computed CDNFm and (CDN

0.74
)Fh in terms of RiB for several z/z0 as shown in Fig. 6.10 and

proposed the following formulae to fit the curves:

Fm,h = 1− bRiB

1 + c|RiB|1/2
for the unstable case, (109)

and

Fm,h =
1

(1 + b′RiB)2
for the stable case, (110)

where b = 2b′ = 9.4 and c = C∗CDNb(z/z0)1/2 with C∗ = 7.4 for momentum (for Fm) and

C∗ = 5.3 for scalar fluxes (for Fh). The above formulae are used in the surface layer to

compute the surface fluxes.

Above the surface layer, the flux-gradient relationships (98)–(100) apply, and the KM and

KH there are assumed to have the same Richardson-number-dependence as the surface-flux

relationship, i.e.,

KM = `2|∆
~V

∆z
|Fm(Ri), (111)

KH =
1

0.74
`2|∆

~V

∆z
|Fh(Ri). (112)
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Figure 6.10 (SOURCE: Louis 1979)

Here `2|∆~V /∆z| is added to give the right units for KM and KH , and |∆~V /∆z| is a discrete

form of |∂~V /∂z|. Above the surface layer, the Richardson number is given as

Ri =
g

Θ0

∆z∆Θ

(∆~V )2
, (113)

which is the gradient Richardson number in discrete form. The constant c in (109) now

becomes

c = C∗
`2b{[(z + ∆z)/z]1/3 − 1}3/2

z1/2∆z3/2
. (114)

The length scale ` in (111), (112) and (114) is computed from the Blackadar formula,

` =
κz

1 + κz
`0

, (115)

but here `0 is treated simply as an adjustable parameter. As it turns out, the Louis model are

very sensitive to the specification of `0, especially near the PBL top. Louis proposed `0 = 100

m in his 1979 paper, but later changed it to 150 m for momentum flux and 450 m for heat

flux (Louis et al. 1981; ECMWF Workshop on Planetary Boundary Layer Parameterization,

25–27 November).

6.3 K-profile model

The K-profile modeling approach differs from the Richardson-number-dependent K approach

in that the vertical distribution of KM (or KH) in the former is prescribed while in the latter

is internally determined—by the local wind and temperature gradients—as shown in (111)-

(113). The shape of K is often assumed to take the form of z(1− z/zi)p, which approaches
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zero at the surface and at the PBL top zi. This cubic shape of K profile was used by O’Brien

(1970; JAS, 27, 1213–1215). A more advanced K-profile model was developed by Troen and

Mahrt (1986; BLM, 37, 129–148), which was modified and implemented into the NCAR

climate model CCM3 by Holtslag and Boville (1993; J. Climate, 6, 1825–1842). The eddy

viscosity of Troen and Mahrt’s model is expressed as

KM = κ ws z (1− z/zi)2 (116)

where κ is the von Karman constant. Even though the shape of eddy viscosity is fixed just

like O’Brien’s K model, its magnitude depends on a velocity scale ws which depends on the

sources of the turbulence.

For the stable PBL, eddy viscosity depends mainly on the surface wind stress, thus Troen

and Mahrt wrote

ws = u∗/φm, (117)

following Brost and Wyngaard (1978), where φm = 1 + 4.7z/L from Businger et al. (1971).

This formula is consistent with surface-layer similarity because KM = u∗κz/φm for z << zi.

For the unstable PBL, eddy viscosity depends on both wind stress and surface buoyancy

flux, thus Troen and Mahrt proposed

ws = (u3
∗ + c1w

3
∗)

1/3, (118)

where c1 is set to 0.28 in Troen and Mahrt (1986) based on Businger’s empirical formula of

φm and w∗ is the convective velocity scale, which is a measure of surface buoyancy forcing.

To use the K formula (116), we need to know the PBL height zi. Troen and Mahrt

proposed the following formula for the PBL height:

zi = Ric
T0

g

|~V (zi)|2

Θv(zi)−Θs

, (119)

where ~V (zi) and Θv(zi) are the mean wind and virtual potential temperature at the PBL

top; the critical Richardson number Ric is set to 0.5 in their study; and Θs is the virtual

temperature near the surface, defined as

Θs = Θv(z1) for the stable PBL (120)
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Figure 6.11 (SOURCE: Troen and Mahrt 1986)

and

Θs = Θv(z1) + C
wθ0

ws
for the unstable PBL. (121)

Here C is a constant, set to 6.5, ws is given in (118), and Θv(z1) is the virtual potential

temperature at the first grid level z1 (which has to be inside the surface layer).

To show the physical aspect of how zi is defined, Troen and Mahrt rewrite (119) as

Θv(zi) = Θs +Ric
T0

g

|~V (zi)|2

zi
. (122)

This, along with Fig. 6.11, describes how the PBL top is obtained. For the unstable PBL,

the surface virtual temperature Θs is computed from (121), thus depends on the surface heat

flux wθ0. The PBL top is then where the virtual potential temperature equals to Θs [first

term in (122)], plus a modification due to the effect of wind at that height [second term in

(122)]. For the stable PBL, Θs = Θv(z1), hence zi is at the height where virtual potential

temperature exceeds Θv(z1) by Ric
T0
g
|~V (zi)|2

zi
amount. In other words, the stable PBL top is

where the bulk Richardson number Ri ≡ g
T0

zi(Θv(zi)−Θv(z1))

|~V (zi)|2
reaches its critical value Ric.

For scalar fluxes, Troen and Mahrt added a countergradient term to the K formula:

wc = −KH(
∂C

∂z
− γ), (123)
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where γ = Cwc0/(ziws) and C = 6.5. Note that this countergradient term does not reduce to

zero in neutral or stable conditions when the surface heating vanishes. Holtslag and Moeng

(1991) modified this term to γ ∝ w∗wc0/(w2zi) which reduces to zero when the surface

heating vanishes.

To relate KH to KM , Troen and Mahrt proposed the following formula for the eddy

Prandtl number

Pr ≡
KM

KH

=
φh
φm

+ κ
zr
zi
C, (124)

which is obtained by matching the surface fluxes computed from a) their K formulae and

from b) surface similarity theory at the top of the surface layer zr = 0.1 zi.

Based on the above K-profile model, Large at al. (1994, Rev. Geophys., 32, 363-403)

developed the KPP (K-Profile Parameterization) model for the ocean mixed layer, which is

used in the NCAR’s ocean GCM.

Homework 5:

Build a 1D PBL modeling code using the Louis’ K model, and later using the K-profile

model. The initial Θ profile is 300.+Γz, where the lapse rate Γ is assumed to be 3K/km and

set the surface buoyancy flux to be 0.2 K m/s. Assume no mean wind.

6.4 The mixed-layer (bulk) modeling

A mixed-layer model is also called a bulk model. This modeling framework is drastically

different from the multi-layer modeling approaches mentioned above. The PBL is treated

as a single bulk layer in GCMs or mesoscale models. The formulae in the bulk model solve

for the layer-averaged mean wind and mean potential temperature, Um, Vm, Θm—averaged

over the entire PBL (see below); a mixed-layer model provides no information on the vertical

distributions of the mean fields.

The basis of mixed-layer modeling is the following. In a buoyancy-driven PBL (i.e.,

Convective Boundary Layer, CBL), the mean wind speed and conserved scalar quantities are

often well mixed in height above the surface layer—as a result of strong turbulent mixing.

The mixed-layer approach assumes that turbulent mixing is so rigorous that all conserved

135



Figure 6.12

variables are always well mixed above the surface layer. This assumption is reasonable only

for the CBL (with or without clouds), but not for shear-driven PBLs.

In the mixed-layer framework, the whole PBL consists of three layers: the surface layer,

the well-mixed layer, and the entrainment zone, as sketched in Fig. 6.12. [Here we will

assume the top of the surface layer matches the bottom of the mixed layer, although Santoso

and Stull (1998, JAM, p545) showed some observational evidence that there exists a ‘radix

layer’ in between.] For simplicity, we will use the clear-air CBL as an example to describe

the framework of a mixed-layer model. For cloudy PBLs, radiation heating or cooling should

be included as heat source or sink in the thermodynamic budget.

6.4.1 Model framework

Vertically integrating the equations of the mean U , V , and Θ from the surface to zi yields

the equations for the PBL-averaged mean fields:

∂Um
∂t

=
1

zi
(uw0 − uwi) + f(Vm − Vgm), (125)

∂Vm
∂t

=
1

zi
(vw0 − vwi) + f(Ugm − Um), (126)

∂Θm

∂t
=

1

zi
(wθ0 − wθi), (127)

Here φm ≡ 1
zi

∫ zi
0 φdz where φ = U , V , or Θ; zi is the PBL depth; Ugm and Vgm are vertically-

averaged geostrophic winds; and fluxes with subscripts 0 and i are the surface fluxes and

entrainment fluxes, respectively. Note there is no height dependence in these equations.
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Since the surface layer is thin compared to the mixed layer, the mean value within the well-

mixed layer can be approximated as φm. Equations (125)-(127) can be solved if the fluxes

at the surface and at the top, as well as zi, are known.

The surface fluxes are typically calculated based on surface-layer M-O similarity (again

assuming the top of the surface layer matches the bottom of the mixed layer):

uw0 = −CD|~Vm|Um, (128)

wθ0 = −CH |~Vm|(Θm −Θ0), (129)

where CD and CH can be computed from the stability functions, given in Section 2.

With a zero-order jump condition—where the entrainment zone is assumed to be in-

finitesimally thin—the fluxes at the PBL top can be expressed as

wφi ∼ −we∆φ, (130)

where ∆φ ≡ φ+ − φm is the jump across the PBL top, φ+ is the mean value just above the

PBL top and we the entrainment rate. Eq. (130) is called the zero-order jump condition

derived by vertically integrating the equation of φ over a infinitesimally thin layer across the

PBL top, i.e., from the top of the mixed layer to a level just above zi where turbulence fluxes

vanish (e.g., Lilly 1968; QJRMS, 94, 292–309).

However, in the time or spatial average sense, the entrainment zone is not infinitesimally

thin. The local interface, which is usually quite abrupt, undulates in time and space due

to turbulent motions. If a time or spatial averaging is used to define the overbar in (128)-

(130), the entrainment zone should also be a layer averaged in the same way. Then the

entrainment zone is the thickness of undulations of the PBL tops. If the capping inversion

is weak and turbulence is rigorous, the undulations can be large, and so is the entrainment

zone. Re-deriving (130) with a finite thickness of the entrainment zone would give more

terms in (130) (including the heat budgets inside the zone), which leads to 1st-order jump

condition. For example, for a clear-air CBL, the time-rate-of-change of the mean potential

temperature within the entrainment zone appears on the right-hand-side of (130). Based on

their LESs of weak inversion case, Sullivan et al. (1998; JAS, 55, 3042–3064) showed that

this term is as large as the −we∆Θ term. For the stratocumulus-topped PBL, radiation

heating or cooling inside the entrainment zone should also be included in (130).
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Niewstadt and Businger (1984, QJRMS, 110, 1073-1078) and Lilly (2002, JAS, 59, 3340–

3361) argued that ‘ensemble average’ can be seen as an average along a height coordinate

based on the deformed local mixed layer height, z(x, y, t)/ztop(x, y, t). With this definition

the entrainment zone remains as abrupt as the local interface, and the zero-order jump

condition (130) can still apply. But it is difficult, if not impossible, to use this hypothetical

coordinate in analyzing the field data or LES flow fields.

Entrainment is not the only mechanism that determines the time change of the PBL

depth. The large-scale vertical motion (lifting or subsiding) can also result in deepening or

shallowing of the PBL. Thus, the time-rate-of-change of the PBL height is governed by

dzi
dt

= we +WLS(zi) (131)

where we is the entrainment rate and WLS(zi) is the large-scale (synoptic or mesoscale)

vertical motion at zi. If deep convection occurs, the mass flux into the cloud should also be

included in (131).

You may wonder why anyone would use a PBL model that assumes no vertical structure

of the mean fields. There are actually many pros of this approach for climate modeling

purposes. First, it can maintain a distinct PBL with a sharp jump across the PBL top.

This sharp jump condition is an important feature of the stratocumulus-topped PBL and

affects the interaction of cloud-top processes such as entrainment, IR cooling, and evaporative

cooling. Second, the entrainment rate is explicitly calculated from a formula, not implicitly

incorporated through eddy diffusivity or TKE prediction. Third, the cloud-top radiative

cooling effect, which is confined to a very thin layer at the cloud top, can be included in

a more precise way in the mixed-layer modeling framework. Fourth, it is computationally

cheap for climate models because it requires only one GCM layer. This scheme has been used

(and only used) in the UCLA GCM and its descending versions. It is a lot more complicated

in the implementation of this scheme in a GCM with a multi-layer framework.

The set of Eqs. (125)–(131) can be solved if the entrainment rate we is known. Therefore,

an important closure problem for the mixed-layer approach is the so-called entrainment clo-

sure. (For modeling the stratocumulus-topped PBL, there involves more closure problems,

such as that for cloud fraction.) Over the years, various entrainment closure assumptions

have been proposed, some based on the PBL-averaged turbulent-kinetic-energy (TKE) bud-

138



Figure 6.13

get, some based on the TKE budget in the entrainment zone, and some are purely empirical.

Approaches based on the TKE budgets will be described in the next subsections.

6.4.2 Entrainment closure based on the TKE budget of the whole PBL

This type of entrainment closure approach was first proposed by Ball (1960; QJRMS, 86,

483–494) who hypothesized that the rate of TKE destruction by buoyancy forces associated

with entrainment (N) balances the rate of TKE generated by surface heating (P ) such that

the vertically integrated buoyancy production term (B = P − N) is zero, as illustrated in

Fig. 6.13.

That is, P = N , where

P =
g

Θ0

∫ zi

0
wθ(where wθ > 0)dz, (132)

and

N = − g

Θ0

∫ zi

0
wθ(where wθ < 0)dz. (133)

Thus, if P = N is assumed, then

wθi = −wθ0. (134)

and
we
w∗

= R−1
i∗ , (135)

where Ri∗(≡ g
Θ0

zi∆Θ
w2

∗
) is called an “overall buoyancy Richardson number (e.g., Deardorff

1980; BLM, 18, 495–527). Eqs. (134) and (135) are only true if P = N .
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But we know that P 6= N in the CBL. Lilly (1968) argued that the above assumption

leads to the maximum entrainment rate because it neglects the TKE destruction due to

molecular dissipation. If molecular dissipation is included, the TKE budget becomes B−ε =

P − N − ε = 0. Assuming the molecular dissipation rate is proportional to the buoyancy

production P as ε = (1 − A)P leads to N = AP , where the entrainment constant A is

between 0 and 1, and the entrainment-rate formula becomes

we
w∗

= AR−1
i∗ . (136)

The constant A is a parameter to be determined empirically. Observations of cloud-free,

strongly convective PBLs have suggested that the entrainment buoyancy flux is about –0.2

of the surface buoyancy flux. Hence, A ∼ 0.2 (Stull, 1976; JAS, 33, 1260–1267) and

we
w∗
∼ 0.2R−1

i∗ . (137)

It is important to note that the entrainment constant A is “tuned” to fit observations

of the CBL regime, and hence the entrainment-rate formula (137) is expected to predict

the growth of the cloud-free CBL height reasonably well. This formula has shown, not

surprisingly, unsatisfactory when applied to other PBL regimes, such as the stratocumulus-

topped PBL, e.g., Lilly (1968;QJRMS, 94, 292–309), Schubert (1976; JAS, 33, 436–446),

Kraus and Schaller (1978; Tellus, 30, 84–88), and Randall (1984; JAS, 41, 402–413).

Another method in separating P and N was given by Stage and Businger (1981; JAS,

38, 2230–2242) based on physical processes. There, P is buoyancy production due to sur-

face heating, which equals the surface buoyancy flux at the surface and linearly decreases to

zero at the PBL top; while N represents buoyancy consumption due to entrainment, whose

magnitude equals the entrainment buoyancy flux at zi and decreases to zero at the surface.

Randall (1984) compared the Stage-Businger’s ”Process Partitioning” to the “Eulerian Par-

titioning” given in (132) and (133), and showed that the two methods are the same for the

clear-air CBL, but differ for the stratocumulus-topped PBL.
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6.4.3 Entrainment closure based on the TKE budget in the entrainment zone

This type of entrainment closure is summarized in Tennekes and Driendonks (1981; BLM,

20, 515–531). The governing equation of the TKE in the entrainment zone, Ei, is

∂Ei
∂t

=
g

Θ0

wθi − [uwi
∆U

d
+ vwi

∆V

d
]− [

∂

∂z
(wE +

pw

ρ0

)i]− εi, (138)

where d is an effective depth of the entrainment zone. The first term on the right hand

side is buoyant production, second the shear production terms, followed by turbulent and

pressure transport terms, and finally dissipation. In order to solve this equation, each term

in (138) needs to be parameterized in terms of mixed layer parameters.

Although simpler parameterizations for the mixed layer height can be arrived at by setting

the left hand side of (138) to zero, Zilitinkevich (1975) argued that when the mixed layer

grows rapidly, this term cannot be neglected, and thus proposed

∂Ei
∂t

= CT
w2
t

zi

dzi
dt
, (139)

where the turbulent velocity scale wt is an interpolation between the friction velocity and

the convective velocity,

wt = (w3
∗ + 8.0u3

∗)
1/3 for the unstable PBL, (140)

and

wt = 2.0u∗ for the neutral PBL, (141)

after Zeman and Tennekes (1977; JAS, 34, 111–123).

Using (130) and a scaling argument that ∆U
d
∝ ∆U

zi
, the shear production in (138) can be

written as (assuming WLS = 0),

−[uwi
∆U

d
+ vwi

∆V

d
] = CM

(∆U)2 + (∆V )2

zi

dzi
dt
, (142)

and after Tennekes (1973; JAS, 30, 558–567), the turbulent and pressure transport terms

are parameterized as,

− ∂

∂z
(wE +

wp

ρ0

)i = CF
w3
t

zi
. (143)
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Although Tennekes and Driedonks (1981) point out that there is a substantial degree of

arbitrariness in the choice of forms for the dissipation term, they choose,

εi = CDw
2
tN, (144)

where N is the bouyancy frequency of the air just above the PBL,

N2 =
g

Θ

∂Θ+

∂z
. (145)

Substituting (139), (142), (143), and (144) into (138) yields the following entrainment-

rate formula,

dzi
dt

=
g
Θ
wθi + CF

w3
t

zi
− CDw2

tN

CT
w2

t

zi
− CM ∆U2+∆V 2

zi

, (146)

where CF , CT , CD and CM are constants set to 0.6, 4.3, 0.03 and 0.7, respectively.

6.4.4 Entrainment closure for the stratocumulus-topped PBL

To apply the entrainment rate formulae (137) and (146) to the stratocumulus-topped PBL

requires proper modifications to take into account the cloud-top radiative and evaporative

cooling effects. For example, Deardorff (1980; BLM, 18, 495–527) modified (137), based on

his LES, to include the cloud-top radiative cooling effect, as

we
σw(zi)

− 0.2
(FR)2 − (FR)1

σw(zi)∆Θ
= f(Riσw), (147)

where (FR)2 − (FR)1 is the jump of radiative flux across the PBL top, σw(zi) is the stan-

dard deviation of the vertical velocity at the zi level, and Riσw = g
Θ0

zi∆Θ
σw(zi)

2 is a modified

Richardson number. Turton and Nicholls (1987, QJRMS, 113, 969–1009) considered the

cloud-top evaporative cooling effect (i.e., buoyancy reversal effect) and suggested that the

entrainment-rate formula (137) should also depend on ∆m/∆Θv, a measure of the potential

for evaporative cooling due to entrainment mixing at the interface, i.e.,

we
w∗

= f(Ri∗; ∆m/∆Θv). (148)

In addition to the above two entrainment-rate formulae, others have also been proposed

(e.g., Lewellen and Lewellen, 1998, JAS, 55, 2645-2665; Lock, 1998, QJRMS, 124, 2729–2753;
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Moeng, 2000, JAS, 57, 3627–3643), but the entrainment rate closure for the stratocumulus-

topped PBL remains an unsolved problem (Stevens, et al. 2003, QJRMS, 129, 3469-3493).

Homework 6:

Re-derive the jump condition shown in (130) but without assuming that the entrainment

zone is infinitesimally thin. Use Leibniz’s rule.

6.5 Transilient Turbulence Theory/Integral Closure Model

Transilience theory was developed by Stull (1984; JAS, 41, 3351–3367), where transilience

means “jump over” in Latin to represent the nonlocal mixing process of turbulent motion.

Transilience theory is based on the fact that turbulent motion transports air mass through

advection process, rather than diffusion process. The Reynolds stress term in the Reynolds

equations (see derivation of the Reynolds equation in Section 1) is originated from the

advection of fluctuative motions. This effect is evident in large-eddy simulations (more

later) where air parcels are advected by large turbulent motions and this “advection” by

large eddies accounts for most of the turbulent transport.

The framework of transilience theory is the following: The mean concentration of any

scalar S at height i and time t can be modified by mixing with air parcels originating from

any other levels within the PBL, j, which carry Sj amount of concentration. After mixing

for a time period of ∆t, S at level i becomes

Si(t+ ∆t) = Σj=N
j=1 cij(t,∆t)Sj(t), (149)

where cij is called the transilience matrix. This nonlocal mixing process is illustrated in

Fig. 6.14 using a five-vertical-grid configuration as an example. The transilience matrix cij

represents the fraction of air mixing into the i grid from a source located at j grid. For

example, the element c51 represents the fraction of air that is mixed into the i = 5th grid

from the j = 1st level; this element thus represents a jump-over (nonlocal mixing) process.

The element c21 represents mixing between the neighboring grid levels, i.e., from level 1 to

level 2, and hence represents local mixing. Thus, for traditional local K models, only the

tridiagonal elements in cij (where i and j are adjacent numbers) are non-zero. The diagonal
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Figure 6.14 (SOURCE: Stull 1993)

elements of the matrix represent the fraction of air that is not from other levels. To satisfy

conservation of air mass, each row and each column of cij must sum to 1, and each element

lies between 0 and 1.

The most crucial closure problem of transilience theory is determining the transilience

matrix cij. Stull and Driedonks (1987, BLM, 40, 209–239) proposed using the discretized

form of the TKE budget to construct the matrix, while Ebert et al. (1989; JAS, 46, 2178–

2207) used LES solutions to empirically determine the matrix. For the latter study, different

tracers were released at all grid levels within a fully-developed turbulent LES flow (Fig.

6.15a), and after a finite time the amount of tracers exchanged between grid levels was

measured to determine the transilience matrix, as described in Fig. 6.15b. For those who

are interested in transilient turbulence theory, read Stull (1993; BLM, 62, 21–96), which

provides a detailed review of the theory and the applications to weather forecast models and

air pollution dispersion models.

The integral closure model developed by Fiedler (1984; JAS, 41, 674–680) and Fiedler

and Moeng (1985; JAS, 42, 359–363), in its discrete form, is essentially the same as Stull’s

transilience theory.

The Blackadar scheme (Zhang and Anthes, 1982; JAM, 21, 1594–1609) used in the

NCAR/Penn-State Mesoscale Model (MM5) is a simplified version of transilience theory.

The Blackadar’s model allows for any scalar originated from the surface to directly transport
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Figure 6.15 (SOURCE: Stull 1993)

to any levels above and scalar from the PBL top to directly transport to any levels below, as

sketched in Fig. 6.16a. In terms of the transilience matrix, the Blackadar model has non-zero

elements only for ci1 [where j = 1 stands for the surface layer and hence ci1 represents mixing

from the surface up to each level i within the PBL] and c1j [representing mixing from each

level j down to the surface]. The model assumes that the upward mixing from the surface

is symmetrical to the downward mixing from the PBL top.

This symmetrical mixing is not realized in the CBL, as we have learned about the top-

down and bottom-up asymmetric diffusion. This deficiency was removed in the Asymmetrical

Convective Model developed by Pleim and Chang (1992, Atmos. Environ., 26A, 965–981),

which is probably used in the EPA air pollution model. This scheme assumes that downward

mixing occurs only locally (i.e., from level i to level i − 1) while keeping upward mixing as

nonlocal as the Blackadar model, as shown in Fig. 6.16b. It is a more physically based

model.

The above schemes may be classified to a class of multi-stream exchange models; they
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Figure 6.16 (SOURCE: Pleim and Chang 1992)

allows for non-local mixing (or exchange) of species between any two grid levels.

6.6 Mass flux model

Convective mass flux modeling is based on the hypotheses that a) large eddies are responsible

for most of the turbulent transport, and b) these large turbulent motions (e.g., thermals)

can be represented by two branches of motion—updrafts and downdrafts. Under the mass

flux representation, the total turbulent fluxes is related to the difference between the mean

quantities of these two branches, as

wc = ωc(CU − CD), (150)

where ωc = σ(1−σ)(wU−wD) is the mass flux, σ is the fractional area covered by updrafts, wU

and wD are the mean vertical velocities averaged over updrafts and downdrafts, respectively,

and CU and CD are the mean values of c averaged over updrafts and downdrafts. The mean

concentration of c is

C = σCU + (1− σ)CD. (151)

To use the mass-flux modeling require (1) determining the mass flux ωc and (2) solving

the budget equations of CU and CD separately.

Derivation of the budget equations for CU and CD and methods to solve these eqs. can

be found in Wang and Albrecht (1990, JAS, 47, 126–138) or Siebesma and Holtslag (1996,
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JAS, 53, 2354-2364). These eqs include lateral mixing (entrainment/detrainment) between

the two branches, which is difficult to determine (Schumann and Moeng 1991, JAS, 48,

1758-1770).

On the other hand, Randall et al. (1992; JAS, 49, 1903–1923) analytically solved for

the flux wc based on the variance budget (i.e., ∂c2/∂t eq.), which has a lower and a upper

boundary conditions that match the fluxes at the surface and at the PBL top, respectively.

This flux is then used to estimate CU and CD from (150) and (151).

For the vertical distribution of the mass flux ωc, Wang and Albrecht (1990) assumed that

the mass flux is related to the convective velocity scale w∗ as ωc = aσw∗, where σ (the area

covered by updrafts) is assumed to be constant (between 0.15-0.45) with height and a is a

proportionality constant (ranging from 0.3 ∼ 2.0). In their model, the profile of mass flux is

uniform in height but the magnitude varies with the convective velocity scale w∗. Randall

et al. (1992), on the other hand, determine the mass flux using the layer-averaged TKE, the

entrainment mass flux, and the flux from the top of the surface layer as inputs.

Another way to determine the mass flux was proposed by Businger and Oncley (1990,

JAOT, 7, 349–352), which assumes that the mass flux is proportional to the root-mean-square

of vertical velocity, σw:

ωc = bσw, (152)

which peaks at around 0.4zi and decreases towards zero at the surface and the PBL top. The

closure constant b is to be determined empirically. This ωc − σw relationship was observed

by Nicholls and LeMone’s (1980) from the GATE data of PBLs underlying shallow cumulus

clouds (see Section 5.2.2). Field measurements within the surface layer by Businger and

Oncley, and the LES results from Wyngaard and Moeng (1992, BLM, 60, 1–13) and Moeng

et al. (1992, JAS, 49, 2384–2401) suggested that the proportionality constant b in (152)

is about 0.6 for almost all types of PBL, including clear convective PBL, stable PBL and

stratocumulus-topped PBL.

Wyngaard and Moeng (1992) showed that the constant b in (152) can be analytically

determined from the joint probability density of vertical velocity and scalar, β(w, c). By

definition,

wc =
∫ ∞
−∞

∫ ∞
−∞

wcβ(w, c)dwdc, (153)
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w2 =
∫ ∞
−∞

∫ ∞
−∞

w2β(w, c)dwdc, (154)

CU =

∫∞
0

∫∞
0 Cβ(w,C)dwdC∫∞

0

∫∞
0 β(w,C)dwdC

, (155)

CD =

∫∞
0

∫ 0
−∞Cβ(w,C)dwdC∫∞

0

∫ 0
−∞ β(w,C)dwdC

. (156)

If the joint probability density is jointly Gaussian, we can show from (150), (152), (153),

(154), (155) and (156) that

b =

√
2π

4
= 0.627. (157)

The mass-flux concept was invented for use in a cumulus parameterization by Arakawa

in late 1960s, and is the basic framework for the Arakawa-Schubert scheme. The mass-flux

modeling is also used to parameterize shallow cumulus in many GCMs (Tiedtke 1989, MRW,

117, 1779–1800). When the mass-flux framework is used as cumulus parameterization, the

ωc-σw relationship in (152) no longer applies, Typically, a mass conservation eq is used to

solve for the convective mass flux.

6.7 Hybrid modeling approach

More and more modelers are combining two or three PBL modeling approaches into a hybrid

model, hoping to use an unified framework for all PBL regimes. Recall that different PBL

models function differently; for example, eddy-viscosity or higher-order closure models work

better for shear-driven PBLs, mixed-layer models were designed specifically for the CBL and

stratocumulus-topped PBLs, and mass-flux models seem to work well for shallow-cumulus-

topped PBL. Thus, combining the best of each approaches may provide the best modeling

framework.

Randall et al. (1992, JAS, 49, 1903–1923) combined the mass-flux and higher-order

closure approaches into a bulk model framework in their Second-Order Bulk (SOB) model.

Figure 6.17 summaries the framework and its relationship to cumulus parameterization. It

is a rather complicated model. Students who like to challenge themselves are encouraged to

read this paper.
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Figure 6.17 (SOURCE: Randall et al. 1992)

Recently, Siebesma et al (2007, JAS, 64, 1230-1248) combined the eddy diffusivity ap-

proach with the mass-flux approach for the CBL. The flux of a scalar is written as

wc = −K∂C

∂z
+M(CU − C), (158)

where M is the mass flux defined as M ≡ σ(wU − w, again σ is the fractional area covered

by updrafts. This definition of M is the same as that defined in Section 6.6, i.e., ωc =

σ(1 − σ)(wU − wD), because w = σwU + (1 − σ)wD. Siebesma et al developed an updraft

model to solve for wU , ΘU and QU .
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APPENDIX: The Nature of Turbulence

Excerpt from pages 1-4 of H. Tennekes and J.L. Lumley: A First Course in Turbulence,

1972

“Everyone who, at one time or another, has observed the efflux from a smoke-stack has

some idea about the nature of turbulent flow. However, it is very difficult to give a precise

definition of turbulence. All one can do is list some of the characteristics of turbulent flows.

Irregularity One characteristic is the irregularity, or randomness, of all turbulent flows.

This makes a deterministic approach to turbulence problems impossible; instead, one relies

on statistical methods.

Diffusivity The diffusivity of turbulence, which causes rapid mixing and increased rates

of momentum, heat, and mass transfer, is another important feature of all turbulent flows.

If a flow pattern looks random but does not exhibit spreading of velocity fluctuations through

the surrounding fluid , it is surely not turbulent. The contrails of a jet aircraft are a case

in point: excluding the turbulent region just behind the aircraft, the contrails have a very

nearly constant diameter for several miles. Such a flow is not turbulent, even though it was

turbulent when it was generated. The diffusivity of turbulence is the single most important

feature as far as applications are concerned: it prevents boundary-layer separation on airfoils

at large (but not too large) angles of attack, it increases heat transfer rates in machinery of

all kinds, it is the source of the resistance of flow in pipelines, and it increases momentum

transfer between winds and ocean currents.

Large Reynolds numbers Turbulent flows always occur at high Reynolds numbers.

Turbulence often originates as an instability of laminar flows if the Reynolds number becomes

too large. The instabilities are related to the interaction of viscous terms and nonlinear in-

ertia terms in the equations of motion. This interaction is very complex: the mathematics

of nonlinear partial differential equations has not been developed to a point where general

solutions can be given. Randomness and nonlinearity combine to make the equations of tur-

bulence nearly intractable; turbulence theory suffers from the absence of sufficiently powerful

mathematical methods. This lack of tools makes all theoretical approaches to problems in
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turbulence trial-and-error affairs. Nonlinear concepts and mathematical tools have to be de-

veloped along the way; one cannot rely on the equations alone to obtain answers to problems.

This situation makes turbulence research both frustrating and challenging: it is one of the

principal unsolved problems in physics today.

Three-dimensional vorticity fluctuations Turbulence is rotational and three dimen-

sional. Turbulence is characterized by high levels of fluctuating vorticity. For this reason,

vorticity dynamics plays an essential role in the description of turbulent flows. The random

vorticity fluctuations that characterize turbulence could not maintain themselves if the veloc-

ity fluctuations were two dimensional, since an important vorticity-maintenance mechanism

known as vortex stretching is absent in two-dimensional flow. Flows that are substantially

two dimensional, such as the cyclones in the atmosphere which determine the weather, are

not turbulence themselves, even though their characteristics may be influenced strongly by

small-scale turbulence (generated somewhere by shear or buoyancy), which interacts with the

large-scale flow. In summary, turbulent flows always exhibit high levels of fluctuating vortic-

ity. For example, random waves on the surface of oceans are not in turbulent motion since

they are essentially irrotational.

Dissipation Turbulent flows are always dissipative. Viscous shear stresses perform de-

formation work which increases the internal energy of the fluid at the expense of kinetic

energy of the turbulence. Turbulence needs a continuous supply of energy to make up for

these viscous losses. If no energy is supplied, turbulence decays rapidly. Random motions,

such as gravity waves in planetary atmospheres and random sound waves (acoustic noise),

have insignificant viscous losses and, therefore, are not turbulent. In other words, the major

distinction between random waves and turbulence is that waves are essentially nondissipative

(though they often are dispersive), while turbulence is essentially dissipative.

Continuum Turbulence is a continuum phenomenon, governed by the equations of fluid

mechanics. Even the smallest scales occurring in a turbulent flow are ordinarily far larger

than any molecular length scale. We return to this point in Section 1.5.

Turbulent flows are flows Turbulence is not a feature of fluids but of fluid flows. Most

of the dynamics of turbulence is the same in all fluids, whether they are liquids or gases, if

the Reynolds number of the turbulence is large enough; the major characteristics of turbu-
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lent flows are not controlled by the molecular properties of the fluid in which the turbulence

occurs. Since the equations of motion are nonlinear, each individual flow pattern has certain

unique characteristics that are associated with its initial and boundary conditions. No gen-

eral solution to the Navier-Stokes equations is known; consequently, no general solutions to

problems in turbulent flow are available. Since every flow is different, it follows that every

turbulent flow is different, even though all turbulent flows have many characteristics in com-

mon. Students of turbulence, of course, disregard the uniqueness of any particular turbulent

flow and concentrate on the discovery and formulation of laws that describe entire classes or

families of turbulent flows.

The characteristics of turbulence depend on its environment. Because of this, turbulence

theory does not attempt to deal with all kinds and types of flows in a general way. Instead,

theoreticians concentrate on families of flows with fairly simple boundary conditions, like

boundary layers, jets, and wakes.”
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