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Abstract

We design and implement a parallel version of the multi-resolution approximation
(MRA) and analyze its computational performance for large geospatial datasets. Our
parallelization extends to calculating the prior distribution, posterior distribution, and
spatial prediction. We provide an overview of the MRA model and our implementation.
A detailed description of our codebase and schematics are included for ease of reference.
In an effort to identify efficient model configurations for datasets of various sizes, we
perform timing and memory profiling studies including benchmarking against our serial
implementation. To test the scalability of our model, remote sensing data of Sea Surface
Temperature (SST) recorded by NASA’s AMSR-2 and MODIS satellite instruments on
the order of 2.4 million and 2.7 million observations, respectively, are used. We show
that there is a trade-off between memory consumption and runtime for both smaller and
larger datasets. Often utilizing more workers will reduce runtimes in exchange for larger
memory requirements associated with parallel computations. These findings highlight
the necessity for carefully selecting the model and parallel set-up configurations as a
function of the data size and the computational infrastructure.
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1 Introduction

Gaussian Processes (GPs) are ubiquitous in spatial statistics for analyzing spatial data,
estimating parameters, and making spatial predictions at unobserved locations. GPs are
defined by the property that any finite combination of observations have a multivariate
normal (MVN) distribution. The MVN distribution has many convenient features such as
being completely determined by its mean and covariance, remaining MVN under operations
such as conditioning, and being a good approximation for other distributions.

Directly evaluating the probability density function of a MVN random vector incurs
O(n2) memory and O(n3) floating-point operations (flops), and thus becomes too com-
putationally burdensome when the number of observations, n, is on the order of 104 or
more. Automation, improvements in sensors, and other factors have significantly increased
the amount of collected data. As such, implementation of GPs becomes a substantial
computational bottleneck when dealing with big data. Consequently, simplifying assump-
tions and/or approximations are necessary to model such data. Numerous examples of
approaches to approximate GPs in computationally efficient manners are found through-
out the literature (see, for example Heaton et al., 2018 [1]). In this technical report we
evaluate one such strategy: the Multi-resolution approximation (MRA).

Originally presented in Katzfuss, 2016 [2], we implement the MRA with MATLAB R©

and test it to scale to large geospatial datasets. Of particular interest is the implementation
of the MRA in parallel on the NCAR supercomputer Cheyenne. We test the MRA on both
a relatively small dataset on the order of n = 150, 000 and larger datasets on the order of
n = 2.4 million and n = 2.7 million. We seek to find choices for implementing the MRA
for variously sized data across computational environments.

In Section 2 we provide a brief overview of the MRA described in Katzfuss, 2016 [2]. In
Section 3 we describe our MRA implementation, its fundamental modeling assumptions,
and some imposed restrictions. Section 4 describes the datasets used in model testing.
Section 5 is a timing study of our implementation to assess variability in run-times and
memory burdens. Section 6 finalizes with a discussion.

2 MRA Model

The MRA presented in Katzfuss, 2016 [2] is the theoretical foundation for the associated
codebase of this paper. The study performed in Heaton et al., 2018 [1] showed the MRA to
be both computationally efficient and accurate. Following is a brief overview of the MRA
(see [2] for a comprehensive description of the model).

The spatial field of interest is modeled via basis function representation of a GP. The
true spatial field is denoted {y0(s) : s ∈ D}, or y0(·), on a continuous domain D ⊂ Rd, d ∈
N+. Assumed is that y0(·) ∼ GP (0, C0) is a zero-mean Gaussian process with covariance
function C0, that is known up to a vector of parameters θ.
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Once data has been observed at n spatial locations, by the GP assumption, the data
follows a n-dimensional MVN distribution. Directly evaluating this distribution results in
the computationally burdensome task of inverting and calculating the determinant of an n×
n matrix. To facilitate computationally feasible approximations of the MVN distribution,
the following simplifying assumptions are introduced to define the MRA.

To begin with, the MRA defines a recursive partitioning of the spatial domain D, in
which each of the J regions is further divided into J smaller regions, and this process is
repeated M times. Let Dj1,...,jm−1 be a region at level m − 1. We can write Dj1,...,jm−1 as
a union of regions at one resolution finer (level m) as follows:

Dj1,...,jm−1 =
⋃

jm=1,...,J

Dj1,...,jm , j1, ..., jm = 1, ..., J ; m = 1, ...,M.

In the MRA, for the GP y0(·), [y0(·)][m] is defined as a “block-independent” version of
y0(·) between regions at resolution m. That is, [C0][m](s1, s2) = C0(s1, s2) if s1, s2 are in
the same region Dj1,...,jm and [C0][m](s1, s2) = 0 otherwise, where C0(·, ·) is the covariance
function. The recursive partitioning of the domain along with the block-independence
assumption leads to a natural interpretation of domain partitioning inheriting a parent-
child hierarchical structure. In explicit, at each level m = 1, ...,M − 1, we can view each
region Dj1,...,jm as the parent of the J subregions Dj1,...,jm+1 at level m+1 contained within
Dj1,...,jm . Further, by block-independence, at each level the GP within each region Dj1,...,jm

is only assumed statistically dependent on its parental hierarchy (i.e., all regions at coarser
resolutions containing Dj1,...,jm).

Also defined are a set of r knots (with r << n) at each resolution that all lie within a
particular subregionDj1,...,jm . The knots are the locations at which the basis function attain
their maximum. At the finest resolution, M , we define the knots to be the observations
within that region. By placing knots within each subregion, instead of working with n× n
matrices, we can reasonably well approximate y0(·) by working mostly with r× r matrices
in a computationally feasible manner. To model the spatial field as a GP, the MRA
iteratively approximates y0(·) and covariance function C0(·, ·) at resolutions m = 1, ...,M
dependent on the knots and partitions. At coarser resolutions, the MRA captures large-
distance spatial trends in y0(·). By increasing number of levels used in the approximation,
the MRA captures shorter range variability as well.

3 Model Implementation

Our implementation of the MRA was programmed in MATLAB R© to take advantage of the
Parallel-Computing Toolbox and fast matrix manipulations. The required toolboxes are
the Statistical Computing Toolbox and the Parallel-Computing Toolbox. The codebase
was adopted from the MRA model implemented by Dorit Hammerling in Heaton, et al.
2018 [1], and optimized to run in parallel. The original MRA codebase executed the
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algorithm effectively, however we sought to apply the MRA to larger datasets and improve
computational efficiency. Since the MRA at each level assumes block-independence between
partitions, this results in computational processes at each level that are embarrassingly
parallel in nature. The MRA algorithm as a whole, however, does not constitute an
embarrassingly parallel process.

Throughout, notation from Katzfuss, 2016 [2] will be used interchangeably with their
equivalent variables names in the codebase. However, an import difference between our
notation and the notation used in Katzfuss, 2016 [2] is that in our implementation we denote
the levels as m = 1, ...,M where as Katzfuss denotes the levels going from m = 0, ...,M .
That is, what is originally presented as M in [2] corresponds to M + 1 in our model. This
is as a consequence of programming the model in MATLAB R© where array indices start at
1, which is reflected in the codebase. Table 1 contains some commonly used notation in
Katzfuss, 2016 [2] and their associated codebase variable names.

Table 1: Frequently referenced MRA variables, their associated codebase variable names,
and a short description.

Literature Notation Codebase Notation Description

M NUM LEVELS M Maximum number of levels to partition D.
J NUM PARTITIONS J Number of partitions for each region.
r NUM KNOTS r Number of knots in each region for levels m = 1, ...,M − 1.
θ theta Vector of parameters for covariance function C.

Restrictions are imposed in our MRA implementation for computational efficiency,
mathematical benefit, and desired applicability that are not necessary in the formal deriva-
tion of the model. To begin with, we assume that the domain of interest is two-dimensional
(i.e., D ⊂ R2). For simplicity’s sake, we make the restriction that the number of sub-
partitions, NUM PARTITIONS J, be either 2 or 4. By doing so, we preserve spatial dependence
between them at as many levels as possible. By construction of the MRA, for s1, s2 ∈ D,
the quality of the covariance approximation depends on the smallest partition that contains
the two observations, beyond which they are assumed to be statistically independent. If
J were quite large at levels m = 2, ...,M , s1 and s2 could lie in different sub-partitions at
a much coarser resolution, and by the block-independence assumption, too much spatial
dependence between locations would be lost. That is, locations would share dependence at
a fewer number of levels than is desirable resulting in any dependence between them being
poorly approximated. See Katzfuss, 2016 [2] Section 2.4 for further details.

3.1 Preliminaries

A stand-alone function, find num levels suggested, is included within the codebase.
This function takes as inputs the number of data points for a given dataset (n), the number

6



of knots desired at each level (r), and the number of partitions desired within each sub-
partitioning of the domain (J), and calculates the number of levels recommended (M). The
idea behind this function is to work backwards from the finest resolution level, making the
average number of observations per region similar to the number of knots. For example,
for a dataset with n = 1, 000, 000 observations, r = 64 knots, and J = 2 partitions at each
level, find num levels suggested outputs that M = 14 levels are recommended. This
function is a guideline for the number of levels to test. For a given dataset, number of
knots, and number of partitions, experimenting with the level will be needed in order to
assess best practices. We will study this behavior in Section 5.

Another important function to note is evaluate covariance. This is a generic co-
variance function. For testing purposes, we employ an exponential model. If a different
covariance function is preferable for an application, editing this function will be required.

3.2 Implementation Overview

3.2.1 Computational Modes

Our MRA implementation consists of three computational modes: likelihood, optimize,
and prediction. The likelihood routine calculates the log-likelihood for a given set of
parameters. The optimize routine uses the built-in fmincon function to optimize over
the parameter space defined by upper and lower bounds given for θ. The prediction

routine conducts prediction over a given prediction grid for a given set of parameters. The
optimize mode can be thought of as a repeated implementation of the likelihood mode
over the parameter space and then, once a local minimum has been found, executing the
prediction mode. The likelihood and prediction modes are two different operations.

3.2.2 Building the Structure

In order to meet the MRA working assumption of a zero-mean GP, prior to conducting any
of these modes, a spatial linear model is fit to the data. Having centered the data at zero,
the model then utilizes build structure to build the hierarchical structure of partitioning
and sub-partitioning the domain as well as placing the knots within each region. At each
level, build structure partitions the domain along the longest side of each subregion. In
our implementation, we build the hierarchical structure storing all relevant information
for a particular subregion in cell arrays which are indexed by a continuous index for each
subregion. As a result, these cell arrays are of size JM − 1. Storing these arrays presents
a computational limitation. Once the structured domain has been produced, we can move
forward to the MRA analysis.
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3.2.3 Creating the Prior Distribution and Posterior Inference

The MRA algorithm itself can be thought of as consisting of two major components:
creating the prior distribution and computing the posterior inference. In creating the prior
distribution, the algorithm works from coarsest to finest resolution (starting at m = 1, and
going until m = M) calculating the prior quantities given by Equation 5 and Equation
6 in Katzfuss, 2016 [2] (implemented within MRA.m by the create prior function). Of
particular interest is computing the covariance of the knots within a subregion and the
knots of the parental hierarchy (that is, all subregions at coarser resolutions containing that
subregion). Recall that the MRA assumes block independence across partitions at a given
level. So in creating the prior distribution, we are only concerned with partitions at coarser
levels that contain a given partition at a finer level, and then computing the covariance
between those knots at different resolutions. In our implementation, this procedure is
parallelized. See Katzfuss, 2016 [2] Section 3.1 for more details.

Once the MRA algorithm has reached the finest resolution of the prior distribution (level
M), the observations enter the algorithm; specifically, the knots within each subregion at
the finest level are set to be equal to the observation locations within that subregion. With
the knots at the finest resolution, M , set to the data, the MRA algorithm now works from
second-finest resolution to coarsest resolution (that is, from m = M−1 to m = 1), weighting
the structure (i.e., calculating the conditional posterior distributions of the weight vectors
for the basis functions) and covariance matrices by means of the posterior inference

function. This is computed by means of Equations 7, 8, 9, 10, and 11 in Section 3.2 of
Katzfuss, 2016 [2]. After the MRA algorithm has worked from coarsest resolution to finest
resolution to create the priors, and then from finest to coarsest resolution to compute the
posteriors, the approximation of the spatial field y0(·) is fully determined and the analysis
is complete.

3.2.4 Outputs

Different structures and plots are returned depending on the computational mode. For
the prediction and optimize modes, the output is a .mat file with the MRA spatial
prediction results. Moreover, if the boolean variable plotting is set to 1, three plots are
also produced corresponding to the ground truth, predicted values, and the prediction
variance. If computing on a remote server without a GUI, saving these images produced in
main.m will be needed. Saving the plots produced can be accomplished by uncommenting
the saveas() command underneath each figure within main.m. If saving large plots using
this method still fails, slicing into the desired vectors and plotting only a subset of the data
may be required. When computing the likelihood mode, the log-likelihood for a given
set of parameters is calculated and printed in the command window.

A significant benefit of the MRA is that it lends itself to execution in a distributed
computing environment. For this reason, the creation of the prior, posterior inference, and
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spatial prediction in this codebase were designed to run in parallel. A serial implementation
of the MRA was also developed and used as a comparison throughout.

3.3 Codebase Structure

Figure 1 is a visual representation of the codebase and how functions therein relate to
each other. The software implementation has three modules. The main.m script runs these
modules in the appropriate order. Within main.m, the three modules have responsibilities
of loading the data from the data source, building the recursive partitioning structure
of the model, and performing the MRA analysis. All three computational modes (i.e.,
likelihood, optimize, and prediction) utilize the data loading and structure building
modules. Then, depending on the computational mode being executed, a switch clause
within main.m determines which mode to execute. Within each of these modes variable
inputs are given to the MRA function specific to that mode. For instance the prediction

mode requires the prediction locations in order to execute whereas the likelihood routine
does not. The likelihood and prediction modes further differ in the MRA module in
that the likelihood mode does not execute the predict function. See Appendix A for a
description of MRA functions and Appendix B for a description of the codebase objects.

Figure 1: MRA codebase flowchart. From left-to-right are function layers, indicated by
various colors. Functions are called by their parent in order from top to bottom. Heuristic
descriptions are given in brackets on the right.
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3.4 User Input

3.4.1 Required Inputs

Most of the user input can be specified within main.m. To begin with, the dataSource

is set with a string. For the two datasets included with this codebase, the options for
dataSource are satellite and simulated. These correspond to cases in the switch

clause within load data.m. Specification of the calculationMode is also done within
main.m. The three types of computation modes, given by calculationMode, that our
MRA implementation can execute are prediction, optimize, and likelihood.

Next, within main.m, the user must specify a boolean variable, plotting, to indicate
whether the MRA should produce plots when conducting the prediction or optimize rou-
tines. The user must also specify the total number of levels: NUM LEVELS M, the number of
partitions in a subregion: NUM PARTITIONS J, number of knots per partition: NUM KNOTS r,
and an edge buffer: offsetPercentage.

As an aside, the computational speed and accuracy of the MRA model depends in large
part on the parameter NUM KNOTS r. In fact, most of the inference is done by working with
r × r matrices and therefore adjusting NUM KNOTS r has a large influence on performance.
Knot placement has been well studied in spatial statistics. In this codebase, knots are
placed rather simply, as a grid within each subregion. Calculation of the number of knots
in both the x and y directions takes place within build structure.m and creation of the
knots takes place within create knots.m within a subregion. For example, setting the
NUM KNOTS r to 64, forms a 8 × 8 grid of knot locations within each subregion. Letting
r take values that are not a square number results in a knot grid which is

⌈√
r
⌉
×
⌈√

r
⌉
,

where d·e is the ceiling function.

3.4.2 The Parallel Pool

The parallel pool (collection of workers) is started at the beginning of the main.m script
with the parpool command. This command will launch a parallel pool based on the default
preference settings. A specific number of workers is set by the call parpool(nWorkers)
where nWorkers is a positive integer (e.g., parpool(8)). For further reference please see
https://www.mathworks.com/help/distcomp/run-code-on-parallel-pools.html. In
most cases, parallel computation is desirable for large datasets where there is sufficient
memory.

3.4.3 Prediction Grid

The prediction mode allows users to make predictions of y0(·) at spatial locations within
the domain. The MRA selects only those locations where there are observations for the
analysis, and then predicts over the prediction grid. The set of prediction locations, SP ,
can be given to the MRA by specifying the number of grid points in the x and y directions
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using nXGrid and nYGrid in main.m. The prediction mode will then make predictions
over the spatial grid determined by those values.

Alternatively, the user can supply custom prediction locations to the MRA by declaring
the predictionVector in load data.m to be a supplied object. The variable predictionVector
takes two vectors as arguments which correspond to the x locations and y locations for
prediction. Each row of predictionVector is a tuple consisting of two-dimensional coor-
dinates of the locations at which to predict.

3.4.4 Inputting Data

When applying the MRA to a user supplied data set the user must specify the type of data
being used and the file path in load data.m. Relative file paths are used for the two data
sets provided with the codebase. User supplied data in other folder locations can be loaded
using absolute file paths. In order to use a different data set, a new case within the switch

clause must be added with the case given as a string, a file path to the data set within the
load function. Additionally, for a user supplied data set, appropriate values for theta and
varEps (the parameters for the covariance function and the measurement error variance)
should be declared if they are known. If these values are not known, they can be given
lower and upper bounds within the switch clause of main.m and then estimated using
the optimize routine. To load a user-supplied data set, the switch clause case string
must match the string given to dataSource in main.m. The rest of load data.m assumes
that the dataset is in matrix format and has columns corresponding to latitude, longitude,
observations. If errors for a particular dataset are not known, they can be dropped and
rather a constant variance across observations, given by varEps, can be used instead. Data
stored in other formats, such as a table, can be handled but must be coerced into the data

matrix in load data.m.

4 Datasets

4.1 Small Data Tested in Heaton et al.

Two smaller data sets are included with the codebase namely the “Small Satellite Data”
and the “Small Simulated Data” which each contain about 150,000 data points of daytime
land surface temperatures. Both datasets will be referred to by their aforementioned names
throughout. These data sets were originally used for the comparison study in Heaton, et
al. 2018 [1] and retained here for timing comparisons on smaller datasets. Both the Small
Satellite Data and the Small Simulated Data have latitudes ranging from 34.30 to 37.07
and longitudes ranging from -95.91 to -91.28. Within this domain, the mean observation
for the Small Satellite data is 44.54 degrees Celsius with a sample standard deviation of
3.97. The mean observation for the Small Simulated Data is 43.48 degreed Celsius with
a standard deviation of 3.30. See Heaton et al., 2018 [1] Section 3 for a more complete
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description of these datasets. For the purposes of testing the MRA, only the Small Satellite
Data was used in the timing study.

4.2 NASA Sea Surface Temperature Data

To test the scalability of the MATLAB R© implementation of the MRA to large geospatial
datasets, data from NASA’s Physical Oceanography Distributed Active Archival Center
(PODAAC) is used (https://podaac.jpl.nasa.gov/). These datasets contain the re-
trieval of Sea Surface Temperature (SST) from the AMSR-2 instrument with a 25km reso-
lution and the MODIS instrument with 1km resolution. We considered the data available
for one day: October 15, 2014. Since the satellites complete two orbits within this time
frame, the files contains both nighttime and daytime SST, however for simplicity’s sake,
we only considered the data corresponding to daytime observations. The daytime October
14, 2105 AMSR data has n = 2, 441, 405 observations with latitudes ranging from -66.15 to
82.78 and longitudes ranging from -179.00 to 180. The mean SST is 289.50 degrees Kelvin
with a sample standard deviation of 9.91 degrees. This data will be referenced as AMSR
throughout this paper. The MODIS data has n = 47, 567, 759 observations with latitudes
ranging from -67.26 to 83.84 and longitudes ranging from -180 to 180. The mean SST over
this domain is 292.96 degrees Kelvin with a sample standard deviation of 9.47 degrees.
This data will be referenced as MODIS throughout. Both datasets contain eight columns
labeled ‘bias’, ‘error’, ‘lats’, ‘lons’, ‘night’, ‘quality’, ‘sst’, and ‘utc’. Table 2 contains de-
scriptions and notes for both the AMSR and MODIS data variables. Figures 2 and 3 are
plots of the AMSR and MODIS observations.

The data are obtained in binary format. A Python script transfers the binary files
into Python objects and then exports them as a .csv file. Once in .csv format, it is con-
verted into a MATLAB R© table to be more efficiently stored. The tables are then parsed in
MATLAB R© to a subtable corresponding to day and night measurements. Finally, redun-
dant data-points (i.e., those with duplicate latitude and longitude values) are removed.

12
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Table 2: AMSR and MODIS data variables and their descriptions.

Dataset Variable Description Notes

‘bias’ Amount of error that can be at-
tributed to systematic error.

Additive for each measure-
ment/retrieval. Estimated by
comparing data to buoys.

‘error’ Square root of the measurement
error associated with each data
point

Estimated by comparing data to
buoys.

‘lats’ Observation latitudes.

‘lons’ Observation longitudes.

‘night’ Flag set to either 0 or 1. Indicates whether the measure-
ments were taken at nighttime or
daytime.

‘quality’ Flag ranging from 1 to 5. This flag indicates the quality of
the measurement. Observations
with lower quality flags could be
the result of cloud-cover or other
factors interfering with measure-
ment.

‘sst’ Column of Sea Surface Tempera-
ture (SST) observations.

Measured in degrees Kelvin.

‘utc’ Coordinated Universal Time of
the measurement.

UTC for October 15, 2014 ranges
from 1413331200 to 1413417599.
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Figure 2: AMSR Satellite SST data for October 15, 2014 daytime.

Figure 3: MODIS Satellite SST data for October 15, 2014 daytime. Plot contains every
10th entry from the entire MODIS dataset.
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5 Timing Studies

We study how changing both usable memory and number of commissioned cores across
computational platforms affect execution time. Moreover, we wish to develop a framework
for optimal MRA execution for datasets of various sizes. Presented are experimental results
for our MRA implementations with different data sets on computing systems with different
amounts of available memory and processing speed. For a particular computational routine
and given number of workers, the model is run multiple times in order to assess runtime
variability. Throughout, an exclusive node (that is, a node with no other jobs running on
it) is used in order to ensure that the entire resources of a given node are available. By
doing so, we obtain runtimes that are not affected by competing computational tasks.

5.1 Parallel Processing Environments

We desire to evaluate MRA performance across computing systems ranging from personal
computers to high-performance computer (HPC) systems. To do so, we test on three
different computing systems and associated parallel processing environments: a personal
computer, Cheyenne HPC regular memory nodes, and Cheyenne HPC large memory nodes.

On a 2012 Apple MacBook Pro personal computer with a 2.3 GHz Intel Core i7 pro-
cessor and 8GB of RAM, the parallel processing environment consists of four workers, one
for each available core. Given these hardware limitations, only the Small Satellite Data is
tested with MATLAB R© 2018a.

We are particularly interested in scaling our MRA to larger datasets and make use
of NCAR’s Cheyenne HPC. Cheyenne is a 5.34-petaflops HPC platform built by Silicon
Graphics International Corporation (SGI) and funded by the National Science Foundations
located in the NCAR-Wyoming Supercomputing Center (NWSC). Cheyenne consists of
145,152 2.3-GHz Intel Xeon E5-2697V4 (Broadwell) processors (16 flops per clock) in 4,032
dual socket nodes with 36 cores per node and a combined 313TB memory. The main system
consists of 3,186 “regular” nodes with 64 GB memory, and 864 “large memory” nodes each
with 128GB memory (https://www2.cisl.ucar.edu/resources/resources-overview).

On Cheyenne, for the purposes of comparison, we make use of both types of nodes.
On each type of node, various number of workers are commissioned. Tests are replicated
five times in order to assess run-time variability. The parallel processing environment
on Cheyenne consists of a single node using the MATLAB R© Parallel-Computing Toolbox
(PCT) license. The PCT allows parallel processing on multiple CPUs or GPUs on one
machine with one instance of MATLAB R© running. On Cheyenne, the MRA is run using
MATLAB R© 2018a and we investigate how the number of cores used affects performance.

As will be shown, it is not necessarily advantageous to utilize all workers requested
on a node. Utilizing more workers on a node requires portioning memory to each worker
regardless of whether they are allocated computations to perform. If the computations
are memory constrained, workers must also compete with each other for memory as it
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becomes available, resulting in runtime spent on communication between the client and
workers and some workers being unable to perform computations efficiently due to lack of
available memory. The effect of the number of workers commissioned on memory utilization
is studied in Section 5.4.

5.2 Small Satellite Data Timing Study

In this portion of the timing study we set J = 2, r = 64, and M = 9. Tests were performed
in serial as a baseline for runtimes and then in parallel for comparison. We test both
our serial and parallel MRA implementations on computational platforms with increasing
numbers of workers and different Cheyenne node types. Where running the prediction

mode, the prediction grid is set to be a 200× 200 grid. Table 3 summarizes the results for
both the serial and parallel implementations.

Table 3: Summary of the timing results for the serial and parallel MRA using the Small
Satellite Data on both a personal computer and the Cheyenne supercomputer. The names
of the MRA modes are given in bold. Each mode was run five times in serial and for a
given number of workers (denoted by w). The mean runtime for each mode is given in
seconds and its sample standard deviation in parenthesis.

Likelihood Optimize Prediction

Personal Computer
Serial 8.62 (0.24) 686.94 (5.24) 13.34 (0.24)
w = 4 12.64 (0.26) 655.57 (4.48) 17.61 (1.85)

Regular Cheyenne Node
Serial 6.75 (0.20) 474.91 (2.08) 9.88 (0.23)
w = 4 6.16 (0.18) 398.06 (7.53) 7.81 (0.05)
w = 12 4.81 (0.04) 228.67 (2.17) 5.59 (0.06)
w = 24 5.00 (0.09) 213.80 (2.15) 5.77 (0.06)
w = 36 5.48 (0.05) 223.98 (2.28) 6.18 (0.06)

Large Memory Cheyenne Node
Serial 6.64 (0.15) 468.32 (2.29) 9.79 (0.34)
w = 4 6.08 (0.04) 392.07 (6.74) 7.81 (0.10)
w = 12 4.74 (0.05) 223.50 (2.18) 5.57 (0.07)
w = 24 4.98 (0.06) 206.76 (2.74) 5.59 (0.08)
w = 36 5.36 (0.04) 214.16 (1.96) 6.05 (0.06)

As can be seen in Table 3, for the serial implementation, increasing processor speed
significantly decreases run-times across MRA modes where as increasing available memory
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facilitates only a small decrease in runtime. This is evident from the differences between
the personal computer and Cheyenne timings. The relatively small difference in timings
between the regular memory node and the large memory node is to be expected, since
the execution is not memory-limited. Interestingly, although the likelihood mode shows
shorter execution times in serial than in parallel with w = 4 workers, the optimize mode
consistently executes faster in parallel than in serial.

For the parallel implementation, runtimes between the regular and large memory nodes
are effectively the same within each MRA mode with execution times on the large memory
nodes being slightly shorter. That is, increasing the amount of memory available to all
the workers does not have a significant effect on runtime performance, which is to be
expected as there is no change in processing power between the two types of nodes and
the computation is not memory limited. On the other hand, increasing the number of
workers available in the parallel inference did decrease the run time, indicating that for
smaller datasets, increasing the number of workers can benefit runtimes until a certain
threshold is reached. In this case test, employing w = 24 workers consistently has the
shortest runtimes. This suggests that at least for smaller datasets, there is little benefit
gained by increasing the number of workers past a certain threshold. Further experiments
to investigate this hypothesis can be found in Section 5.4.

When profiling the MRA on a local machine over the small datasets, we find that the
most computationally intensive functions are the parfor-loops used for the creation of the
prior and posterior inference found in MRA.m and create prior.m. The expense associated
with the parfor-loops is a result of the parallel implementation and the expense associated
with calling the evaluate covariance function is due to evaluating the exponential func-
tion repeatedly. Further profiling reveals most of this computational expense is a result
of “self-time” (calling built-in MATLAB R© functions, communication overhead between
the client and workers, etc.), which indicates that they are running about as efficiently as
possible.

5.3 NASA Sea Surface Temperature Data Timing Studies

Due to the large size of the AMSR and MODIS data, a timing study can only be performed
on Cheyenne. We study how changing the number of workers available affected MRA
runtime performance.

We begin by testing the serial and parallel implementations of the MRA over both
datasets (or subsets thereof) for daytime October 15, 2014 with the likelihood and
prediction modes. The serial implementation (denoted “Serial” in Table 4) and the
parallel implementation (denoted by the number of workers used, w) of the MRA are
tested. The likelihood and prediction modes are run on both the large memory and
regular Cheyenne nodes using the PCT. The optimize mode is not tested as it is essen-
tially repeated application of the likelihood routine and runtimes are largely dependent
on the upper and lower bounds defined for the parameter space search.
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We choose to run the MRA over subsets of the AMSR and MODIS data in order to
evaluate runtimes at increasing data sizes. The entire AMSR daytime dataset consists of
n = 2, 441, 405 observations on a 25km scale where as the entire MODIS dataset consists
of n = 47, 567, 759 observations on a 1km scale. To create a subset of the data of propor-
tion 1/n, every nth data point is selected. For example, in MATLAB R© , observations =

observations(1:2:end); would create a 1/2 subset of the data. By doing so, the domains
between datasets remain fairly consistent, while the density of observations between them
varies. Throughout we set theta = [2.117,1]; and varEps = 0.001 as determined by
running the optimize routine over the 1/10 AMSR data. Where the prediction mode is
tested, the prediction grid is set to be a 200× 200 grid.

5.3.1 1/2 Subset AMSR Data Timing Study

Table 4 summarizes results of running the MRA over a 1/2 subset of the AMSR data in
serial on both the regular memory and large memory Cheyenne nodes. For these tests, we
set J = 2, r = 64, and M = 13.

Table 4: Summary of the results for the MRA using 1/2 the AMSR data (n = 1, 220, 703).
Tests run in serial are labeled “Serial” whereas parallel tests are labeled by the number of
workers commissioned (denoted by w). Where the MRA execution was possible, each test
was run five times. The mean run time for each mode is given in seconds and its sample
standard deviation in parenthesis.

Likelihood Prediction

Regular Cheyenne Node
Serial 155.67 (2.49) 178.70 (1.60)
w = 12 Insufficient Memory Insufficient Memory
w = 24 Insufficient Memory Insufficient Memory
w = 36 Insufficient Memory Insufficient Memory

Large Memory Cheyenne Node
Serial 153.99 (2.76) 178.75 (1.91)
w = 12 89.13 (0.51) 105.04 (0.94)
w = 24 88.99 (0.50) 105.48 (0.99)
w = 36 88.91 (0.38) 102.30 (0.71)

From the tests performed on half the AMSR data, it appears that for the specified
parameters (M = 13, J = 2, and r = 64), our parallel implementation’s memory require-
ments result in fatal executions of the regular memory nodes. On the large memory nodes
there is little-to-no benefit gained by increasing the number of workers from w = 12 to
w = 36. This is likely because as the number of workers increases, portions of available
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memory must be allocated to the workers regardless of whether they are assigned compu-
tations. Additionally, workers must compete with each other for memory as it becomes
available resulting in diminished benefit due to inefficient resource allocation.

An important question is to determine the effect of how the number of levels, M , and
the number of knots, r, affect runtime. In order to investigate the runtime behavior of the
MRA about the runtime minimums observed, we test various settings for M and r over
half the AMSR data with 36 workers. Each test is run five times. Results are summarized
in Table 5.

Table 5: MRA likelihood mode runtime performance for different values of M and r over
1/2 AMSR data on a large memory node with 36 workers. Where execution is nonfatal,
each test is run five times. Execution time means are given in seconds and its sample
standard deviation in parenthesis.

r \ M M = 12 M = 13 M = 14

r = 49 45.19 (0.41) 57.57 (0.69) 109.52 (1.57)
r = 64 56.69 (0.41) 87.52 (1.11) 185.42 (5.90)
r = 81 75.38 (0.70) 133.54 (1.37) Insufficient Memory

In only one configuration (setting M = 14 and r = 81) was computation not possible
over the 1/2 AMSR dataset. Table 5 demonstrates that increasing either M or r generally
increases runtime, however increasing M has a more significant increase on runtime than
increasing r. The more significant runtime increase associated with increasing M is a result
of the number of partitions at each level growing as a power of J . For instance, in this test
with J = 2, when M = 13, there are JM−1 = 212 = 4, 096 partitions at the finest level. By
holding J constant and increasing M to M = 14, there are JM−1 = 213 = 8, 192 partitions
at the finest level, resulting in nearly a double in execution time where evaluation was
possible.

Recall that most of the MRA inference depends on calculations with r × r matrices.
Increasing r consequently increases the size of the matrices calculations are performed
with. Results from Table 5 show that while increasing r does increase runtime, it does
so less significantly because adjustments of r occur on a finer scale. That is, while small
adjustments in M increase the total number of partitions as a power of J , r takes on
square integer values. As to be expected, holding M constant, roughly doubling r results
in roughly doubling the runtime, as consequently calculations are performed with matrices
that are roughly four times as large.
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5.3.2 Entire AMSR Data Timing Study

Here we test our parallel MRA implementation over the entire AMSR data set with n =
2, 441, 405 observations. For these tests we set M = 14, J = 2, and r = 49. We run the
likelihood mode over the entire AMSR data in serial and in parallel on a large memory
Cheyenne node. Table 6 summarizes the results. Each test is run five times.

Table 6: Summary of the MRA timing results using the AMSR data (n = 2, 441, 405).
Tests run in serial are labeled “Serial” whereas parallel tests are labeled by the number of
workers commissioned (denoted by w). Each test is run five times. The mean run time for
each routine is given in seconds and its sample standard deviation in parenthesis.

Likelihood Prediction

Large Memory Cheyenne Node
Serial 321.22 (4.12) 363.28 (4.34)
w = 12 135.75 (0.85) 160.99 (2.67)
w = 24 136.67 (2.91) 160.47 (3.70)
w = 36 143.52 (3.00) 169.10 (5.20)

Again, we see that the parallel MRA has lower execution times where it is possible to
execute the MRA in parallel given the available memory. Here, using fewer knots reduces
the memory usage sufficiently to allow successful execution, but also approximates the
spatial field with fewer basis functions. Interestingly, increasing the number of workers
deployed increases runtime, in contrast to previous results from the Small Satellite Data.
This is likely due to encountering memory constraints in execution. It is known that
employing more workers increases memory overhead. Tests in Table 6 demonstrate that
employing more workers can increase runtimes when computation is memory-limited. We
test the limits of this observation in the following timing study.

5.3.3 1/17 Subset MODIS Data Timing Study

Here we test the MRA over a 1/17 subset of the MODIS data with n = 2, 798, 104 observa-
tions using the likelihood and prediction modes. We hold M = 14, J = 2, and r = 49
constant. Table 7 summarizes the results. Each test is run five times.
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Table 7: Summary of MRA timing results using 1/17 MODIS data (n = 2, 798, 104). Tests
run in serial are labeled “Serial” whereas parallel tests are labeled by the number of workers
commissioned (denoted by w). Where execution is nonfatal, each test is run five times.
The mean run time is given in seconds and its sample standard deviation in parenthesis.

Likelihood Prediction

Large Memory Cheyenne Node
Serial 463.67 (8.37) 513.71 (7.28)
w = 12 191.92 (2.96) 218.16 (7.61)
w = 24 171.17 (2.72) Insufficient Memory
w = 36 Insufficient Memory Insufficient Memory

As can be seen in Table 7, the parallel MRA hastens the likelihood runtime with
w = 12 and w = 24 workers. Alternatively, employing w = 36 workers results in fatal
execution for n = 2, 798, 104 observations on a large memory node. Utilizing w = 12
workers hastens prediction runtimes in comparison to the serial implementation, however
there is insufficient memory available to execute in parallel with w = 24 and w = 36
workers. It appears we have found the limit of parallel computation in this processing
environment. As a side remark, successful parallel MRA execution of the likelihood and
prediction modes using the 1/17 MODIS dataset was possible on a Dell personal desktop
with 32GB memory, two Intel Xeon processors at 2.33 GHz, running Windows 10. This
indicates that memory swapping may facilitate similarly sized computations on smaller
machines where there is disk space. We examine the effect of increasing the number of
workers on memory consumption and runtime in the following section.

5.4 Memory Profiling Tests

The timing studies described in sections 5.1 - 5.3 involved measurements of a single metric
(total execution time) over multiple replicates of various datasets/model configurations,
in order to gain insight into the total processing burden required by the code in these
configurations. These studies, however, do not investigate other aspects of computational
expense which may also be of interest (e.g. memory use), nor can they identify which
phases of the codebase execution (i.e. which part of the overall algorithm) may be the
most costly, in either time or memory.

Profiling the memory use over the execution of the algorithm (that is, tracking how
memory use changes during execution, rather than simply logging terminal memory use)
can be useful when attempting to identify portions of the code that should be examined
for potential improvement. Additionally, the ability to see the actual memory use during
execution of a particular configuration is helpful when considering the feasibility of similar
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executions on other computational platforms (e.g. profiling studies performed on a high
performance computing platform can inform decisions about whether a similar volume of
data and model configuration should be attempted on a personal laptop). To investigate
this aspect of computational expense, a series of memory profiling tests were performed
on the MRA codebase in various computing environments, processing modes, and data
volumes.

It is worth noting that these profiling tests are more labor intensive to perform than
the base timing studies, requiring generation, reconciliation, and analysis of two lengthy
data streams (specifically, a memory use time series and a timestamped program process
log) for each profile run. In contrast, a base timing study generates only a single value
(total duration of execution) for any particular trial. This is the chief reason why the
profiles described in this section are not run on as full and varied a set of datasets/model
configurations as the base timing studies described earlier.

5.4.1 Standard Cheyenne Node Memory Use Study, 64 Knots

A profiling study was performed on an individual Cheyenne standard computing node on
serial and parallel executions (in the single-node Parallel Computing Toolbox schema).
The tests followed the following process:

1. An interactive session on a single compute node was initiated (via the request
qsub -I -l select=1:ncpus=36:mpiprocs=36 -l walltime=03:00:00 -q regular

-A project code ).

2. An additional connection to the interactive session was established in a second ter-
minal via ssh.

3. A time-stamped memory logging bash script (based on the free command) was
started in one terminal, with output piped to a text file.

4. The MRA code to be tested was executed (in likelihood computation mode) in the
other terminal (the code was modified to include timestamp outputs at important
process milestones).

5. When the MRA code was complete, a log of the terminal output from the MRA
terminal (with the process milestone timestamps) was exported, and the memory
logging script from the other terminal was killed.

6. The memory logs were imported into a spreadsheet program, reconciled with the
milestone logs, and used to create plots, which were then annotated.

The testing scenarios used subsets of the AMSR dataset, with the resolution deter-
mined by the find num levels suggested function, given the subset size and a fixed knot
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Table 7.1: Standard Compute Node Memory Profile Study Test Configurations

Test Environment Workers AMSR Fraction Sample Size (n) Resolution (M)

Serial NA 1/10 244,141 12
Serial NA 1/5 488,281 13
Serial NA 1/4 610,353 14
Serial* NA 1/2 1,220,705 15

Parallel 2 1/10 244,141 12
Parallel 3 1/10 244,141 12
Parallel 4 1/10 244,141 12
Parallel 8 1/10 244,141 12
Parallel 12 1/10 244,141 12
Parallel 24 1/10 244,141 12
Parallel 36 1/10 244,141 12

Parallel 2 1/5 488,281 13
Parallel 3 1/5 488,281 13
Parallel 4 1/5 488,281 13
Parallel 8 1/5 488,281 13
Parallel 12 1/5 488,281 13
Parallel 24 1/5 488,281 13
Parallel 36 1/5 488,281 13

Parallel* 2 1/4 610,353 14

and partitioning schema (r = 64, J = 2). The various scenarios and configurations are
summarized in Table 7.1.

Testing scenarios marked with * in Table 7.1 did not successfully run to completion
(due to memory overruns during the computation of the finest level prior).

5.4.2 Serial Tests

An example plot of memory use over time, annotated with program progress, is provided
below for the serial execution over the 1/4 subset (Figure 4). This particular profile (taken
over a relatively large sample of the AMSR data, with an associated high resolution level)
clearly illustrates the changes in memory allocation rate that occur during the prior cal-
culations. The other serial executions are shown as reference profiles in the Parallel Tests
portion (5.4.3).

The memory usage pattern shown in Figure 4 is similar to the patterns shown in the
other serial executions; a small bump in memory use during the data import phase, followed
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Figure 4: 1/4 Subset Serial MRA Runtime Profile

by relatively stable use (due to preallocation) during the build structure phase, followed by
linear increase during the prior calculation phases (though at potentially different slopes
during different prior levels), with more modest increases mixed with plateaus during the
posterior calculation phases, finally followed by memory release in the seconds following
completion (and termination of the MATLAB R© session).

5.4.3 Parallel Tests

Focusing on the 1/10 subset (n = 244, 141, r = 64, J = 2, M = 12), the codebase was
profiled during parallel execution (in likelihood computation mode) with w = 2, w = 3,
w = 4, w = 8, w = 12, w = 24, and w = 36 workers. The profiles of these executions are
shown in Figure 5, along with the associated serial execution profile for comparison. In this
particular test, note that execution times for parallel cases are only faster than the serial
case once the worker count hits four, but that execution times cease to improve significantly
once the worker count hits eight. Additionally, peak memory use for all parallel cases is
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substantially higher than for the serial case. Of particular interest are the profiles for the
parallel cases w = 8, w = 12, w = 24, and w = 36; these show scaling in memory use with
no corresponding improvement in execution time, suggesting a bottleneck in parallelization.

Figure 5: 1/10 Subset MRA Parallel Runtime Profiles

Shifting focus to the 1/5 subset (n = 488, 281, r = 64, J = 2, M = 13), the codebase
was again profiled during parallel execution with w = 2, w = 3, w = 4, w = 8, w = 12,
w = 24, and w = 36 workers. The profiles of these executions are shown in Figure 6, along
with the associated serial execution profile for comparison. In this scenario (with twice as
many observations and a unit increase in resolution level, relative to the 1/10 subset tests),
the serial execution is surpassed by the parallel execution at a lower worker count, with
only the parallel execution over two workers exhibiting a longer execute time than the serial
case. Additionally, these profiles display the same lack of improvement with worker count
increase seen in the 1/10 subset tests, the bottleneck again showing up at eight workers.
In contrast with the 1/10 subset tests, the memory limits of the standard Cheyenne node
(64GB Total, 45GB Usable) begin to pose a concern for the parallel executions (though the
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serial execution completes quite comfortably, never exceeding even 50% use of the memory
available).

Figure 6: 1/5 Subset MRA Parallel Runtime Profiles

5.5 High Memory Cheyenne Node Memory Use Study, Varying Knots
and Levels

Further memory profiling studies were performed on a high-memory node of Cheyenne
(128GB Total, 109GB Usable). In this series of tests, half of the AMSR data was im-
ported (n = 1, 220, 705) and the codebase was executed (again, evaluating the likeli-
hood), over two knot counts (r = 64 and r = 144). In earlier studies, the function
find num levels suggested was employed to determine the resolution level that produced
an average number of observations per finest level subregion approximately equal to the
number of knots per subregion, this approach leading to matrix operations involving ma-
trices of approximately the same dimension at all levels (an attempt to keep computational
load consistent). In this series of tests, this suggested number of levels was disregarded,
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and instead, lower resolutions were employed, leading to fewer levels, but involving larger
dimension matrices at the finest level, in order to investigate the computational tradeoffs
involved. One immediate advantage of using fewer levels is reduced memory usage; this
volume of data could not be successfully analyzed at the recommended resolution for ei-
ther knot count even on high-memory nodes. For reference, find num levels suggested

suggests M = 15 for n = 1, 220, 705, r = 64, and J = 2. Instead, M = 12 and M = 13
were evaluated for both knot counts. Additionally, M = 14 was evaluated for r = 64.

5.5.1 Serial Studies

The memory profiles of the serial tests run are shown in Figure 7. For each of these profiles,
the long term linear increase in memory usage corresponds to the computation of the finest
level prior, and the plateau in usage that follows corresponds to the computations of the
posteriors.

Figure 7: 1/2 Subset MRA Serial Runtime Profiles, High Memory Node

5.5.2 Parallel Studies

With the serial executions available as baselines, some parallel executions were profiled
with r = 64 knots (an attempt to profile a parallel execution with r = 144 knots resulted
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in a memory overage even when constrained to w = 2 workers over M = 12 levels). These
executions were over M = 12,M = 13, and M = 14, and with worker pools of w = 2
and w = 12. A sample annotated memory profile for a parallel execution with w = 12
workers over M = 14 levels is provided in Figure 8. Note that (just as in the serial case),
the largest increases in memory usage occur during the calculation of the the prior at the
finest resolution, which is also the most costly phase in terms of execution time (though
this phase does represent proportionately less of overall execution time in the parallel case
than in the serial). As one might expect, memory usage is much more uneven during the
parallel executions than in the serial executions, as individual workers acquire and release
memory as they obtain and complete their tasks; in this context, task sizes are unlikely
to be well-balanced unless the observed data are distributed over the spatial domain of
interest (and subregion division schemes and resolutions are selected) in such a fashion
that at the finest level, each subregion contains the same number of observations. It is
conceivable that in a remote-sensing context with observations taken over a regular grid,
and with an analysis configured by a careful user, this situation may indeed occur, but it
should not be expected in general. Thus, during parallel executions, it should be expected
that some workers will require larger memory allocations for longer periods than others.

Figure 8: 1/2 Subset Parallel Runtime Profile, High Memory Node

28



As an augmentation of Figure 7, a plot of all profiles (both serial and parallel) gathered
during this series of tests (aligned by starting time) is provided in Figure 9. Note that all of
the w = 12 worker executions complete in less time than the fastest serial execution (r = 64
knots, M = 13 levels), particularly impressive is the case of the parallel execution with
r = 64 knots, M = 14 levels, which theoretically would also outperform the aforementioned
serial execution in terms of approximation quality (due to the higher resolution employed).
Note that the memory usage log associated with the r = 64, M = 14 parallel case with
w = 2 workers was incomplete (cause unknown; perhaps execution of the free command
[the command that underpins the memory log script] may be slightly too costly when so
much memory is being accessed in such a volatile pattern), but that test did successfully
run to completion. Missing data from that log is represented with discontinuities in the
associated line plot.

Generally, in the current codebase implementation, likelihood computations can be
hastened significantly through parallelization, but this comes at the cost of increased mem-
ory use. Additionally, run speed improvement for a particular configuration as a function
of workers employed appears to plateau, at least over the testing configurations examined
in this series of tests.

Figure 9: 1/2 Subset MRA Runtime Profiles, High Memory Node
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5.6 MATLAB R© parallel.pool.Constant Tests

The MATLAB R© function parallel.pool.Constant() potentially presents one opportu-
nity for code improvement. From the MathWorks documentation:

“C = parallel.pool.Constant(X) copies the value X to each worker and returns a
parallel.pool.Constant object, C, which allows each worker to access the value X within a
parallel language construct (parfor, spmd, parfeval) using the property C.Value. This can
improve performance when you have multiple parfor-loops accessing the same constant set
of data, because X is transferred only once to the workers.”

A script to test this function in a context similar to that implemented in the MRA
codebase (that is, with a parfor loop nested inside a standard for loop) was written,
provided below:

%% Parallel Pool Constant Memory and Timing tests

% Req. R2015b or newer

%% Setup

clear all;

disp('Memory Use at Init');

[userview,systemview] = memory;

userview.MemUsedMATLAB

data = rand(1000);

disp('Memory Use after Rand Data Gen');

[userview,systemview] = memory;

userview.MemUsedMATLAB

parpool('local',4);

disp('Memory Use after Pool Startup');

[userview,systemview] = memory;

userview.MemUsedMATLAB

%% Index into data

disp('Memory Use After Each Parfor Worker Indexes Into Data');

tic

for ii = 1:10

parfor jj = 1:10

x(ii,jj) = data(ii,jj);

[userview,systemview] = memory;

disp(userview.MemUsedMATLAB);

end

end
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toc

clear x;

clear ii;

clear jj;

%% Pass as constant

disp('Memory Use After Each Parfor Worker Uses par pool const');

tic

c = parallel.pool.Constant(data);

for ii = 1:10

parfor jj = 1:10

y(ii,jj) = c.Value(ii,jj);

[userview,systemview] = memory;

disp(userview.MemUsedMATLAB);

end

end

toc

clear y;

clear ii;

clear jj;

clear c;

This script was executed as shown (creating an 8 MiB data array for passing), and also
with the dimensions of the data array both increased by a factor of ten (creating an 800
MiB array). Loop execution times are provided in Table 8.1.

Table 8.1: Loop Execution Times for parallel.pool.Constant tests

data Array Size Direct Indexing parallel.pool.Constant Object

8 MiB 1.21s 1.42s
800 MiB 1.60s 9.93s

In this instance, standard array indexing was faster; however, our interest is also in
memory use. A similar pattern appears in those data, with the memory use output by
each worker at each iteration of the nested loop shown in Figure 10 for the 8MiB case
(sorted chronologically), and in Figure 11 for the 800MiB case (sorted by .Constant use
ascending).

To control for potential order effects, the script was reversed, with the “pass as con-
stant” block executed before the “index in” block. Similar results were observed. Based
on these observations, the parallel.pool.Constant() approach is unlikely to provide
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Figure 10: Memory Use by MATLAB R© for parallel.pool.Constant Testing, 8MiB Case

an advantage in either runtimes or memory usage for the current implementation of the
parallel MRA codebase.
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Figure 11: Memory Use by MATLAB R© for parallel.pool.Constant Testing, 800MiB
Case

6 Discussion and Conclusions

Our parallel MRA implementation often provides faster runtimes in comparison to the
serial implementation where there is sufficient available memory. If memory is the primary
concern, or the dataset of interest is relatively small, serial execution may be preferable. In
analyzing the computational costs associated with the parallel MRA we observe a trade-off
between runtime and memory consumption. The incurred memory increase in exchange for
hastened runtimes was shown to be highly dependent on model parameters and the number
of workers employed. This work identified some useful rules-of-thumb when applying our
MRA implementations to datasets of various sizes.

We saw in Section 5.3.1 that adjusting values of M , J , and r can have significant
effects on runtime. Since the number of partitions at each level grows as a power of J ,
there are

∑M−1
m=0 Jm total partitions. Consequently, small changes in the value of M have

significant effects on runtimes. Assumed in the calculation of find num levels suggested

is that observations are spatially distributed uniformly across the domain. Often this
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assumption may not be valid as is the case with the AMSR and MODIS datasets. At
the finest resolution, inference is computed using matrices with dimensions determined by
the number of observations within each region. As a result, some workers will perform
calculations with fewer numbers of larger matrices than others, which may be preferable
to performing computations with many more matrices of the same size.

Additionally, the number of knots, r, plays a large role in runtime. Increasing r allows
the user to approximate the spatial field y0(·) with greater accuracy (i.e., with more basis
functions), however doing so will increase runtime, and in some cases can use too much
memory. Alternatively, decreasing r approximates y0(·) with less accuracy but can allow
for computations that would otherwise be infeasible for a given M and J . In Section 5.3.3
we saw that adjusting r allows a finer scale runtime adjustments than adjusting M , and
may be better for fine tuning model accuracy versus runtime.

Although each dataset must be considered on its own, we recommend first letting
J = 2, letting r = 64, and using the find num levels sugested function to determine an
estimate of M . Then, execute likelihood mode with estimates for the parameters theta
and varEps. Depending on the results of this execution, adjusting r and M appropriately
can be used to reduce the likelihood runtime. With M , J , and r chosen, upper and lower
bounds for the parameters can be set and estimated through the optimize mode. Once
the optimize mode has found a local minimum in the parameter space, the prediction

mode will execute specifying the MRA for y0(·).
Future work will likely attempt to avoid the memory overhead created by restructuring

the code to work across nodes. Given that our parallel implementation’s hardest current
limit is the amount of memory for a single node, by distributing the computation across
nodes we may be able to alleviate some of these issues and push the MRA to tackle even
larger problems efficiently.
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Appendix A MRA Functions

Table 10: Functions in the MRA model and their respective inputs and outputs.

Function Inputs Outputs

build structure.m NUM LEVELS M,
NUM PARTITIONS J,
NUM KNOTS r,
domainBoundaries,
offsetPercentage,
varargin

knots, partitions,

nRegions, outputData,

predictionLocations

evaluate covariance.m locs1, locs2, theta R

create partition.m xmin0, xmax0, ymin0,

ymax0, NUM PARTITIONS J

xmin, xmax, ymin, ymax

create prior.m theta, NUM LEVELS M,

knotsb, RpriorCholb,

KcBb, dataj, varargin

RpriorCholj, KcBc,

Atj, wtj, retlikpred

create knots.m xmin, xmax, nx,

ymin, ymax, ny,

offsetPercentage

X, Y

find ancestry.m index, nRegions,

NUM PARTITIONS J

i ancestry

find index.m level, tileNum,

nRegions

index

find parent.m index, nRegions,

NUM PARTITIONS J

l parent, t parent,

i parent

load data.m dataSource,

nXGrid, nYGrid,

offsetPercentage

data, regressionModel,

domainBoundaries,

predictionVector,

theta, varEps

MRA.m theta, data, knots,

NUM LEVELS M,

NUM PARTITIONS J,

nRegions,

isPredicting, varargin

sumLogLikelihood,

predictions

posterior inference.m RpriorCholj,

wtildeChildren,

AtildeChildren

wtildeCurrentj,

AtildeCurrentj,

LogLikelihoodj,

RposteriorCholj, Kcwj,

KcAj

predict.m posteriorMeanj,

posteriorVariancej,

Btildej,

RposteriorCholb, KcAb,

Kcwb

predictionsj
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Table 11: MRA function descriptions.

Function Description Functions Used

build structure.m Builds the nested partition-
ing structure as a function
of the levels.

create knots.m,

create partition.m,

find index.m,

find parent.m

evaluate covariance.m Generic covariance func-
tion. Presently set to an ex-
ponential.

∅

create partition.m Specifies child partitions. ∅
create prior.m Calculates prior quantities

for each region. Con-
tains optional input and
output arguments depend-
ing on whether at finest
level.

evaluate covariance.m

create knots.m Creates the knots for each
partition at each level.

∅

find ancestry.m Finds the level, tile number,
and continuous index of the
ancestry for a given region.

find parent.m

find index.m Finds the continuous in-
dex given the level and tile
number as inputs.

∅

find parent.m Finds the level, tile number,
and continuous index of the
parent for a given region.

∅

load data.m Data files are loaded and
given a variable name to be
referenced by dataType.

∅

MRA.m Performs the MRA. Be-
gins by calculating the prior
quantities and then calcu-
lates the posterior distribu-
tion.

find ancestry.m,

create prior.m,

posterior inference.m,

predict.m

posterior inference.m Performs the posterior in-
ference.

∅

predict.m Calculates the posterior
predictive distribution.

∅
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Appendix B Codebase Object Descriptions

Table 12: Objects in the codebase and their descriptions.

A Cell array of the Ak,m
j1,...,jm

’s for a given level.

AtildeCurrent Cell array containing current Ak,m
j1,...,jm

for a particular subregion.

AtildeCurrentj AtildeCurrent for a particular subregion.

AtildeFinerLevel Cell array containing subset of AtildePrevious for one level
finer.

AtildePrevious Cell array containing the Ãk,l
ji,...,jm

’s. See [2] Equation 10.

Btilde Cell array containing the B̃k,l
ji,...,jm

’s. See [2] Equation 13.

Btildej Btilde for a particular subregion.

calculationMode String set to either likelihood, optimize, or prediction

cumulativeRegions Vector of the cumulative sum for number of tiles up until a given
each level.

data Data matrix created for entries with observations.

dataSource String indicating from which source to load the data. This
string must have a corresponding case in the switch clause of
load data.m

domainBoundaries Vector containing xMin0, xMax0, yMin0, and yMax0.

dummyIndexVec Vector containing index values for current level.

finestKnotLevel Finest knot level in build structure.

iLevel Counter variable in the for-loop over the levels.

index Continuous index of each tile.

indexAncestry Vector containing the continuous index of the hierarchical ances-
try for a particular subregion.
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Table 13: Codebase objects and their descriptions.

indexBeginningThisLevel The beginning continuous index for the level.

indexCurrent Continous index for the current tile within the inner most
loop of build structure().

indexParent Continuous index for the parent of a given tile.

indexSmaller Beginning index for one resolution coarser.

isPredicting Boolean to determine if MRA is predicting.

jDummyIndex Counter variable in for-loop over nRegionsAtThisLevel.
Used to extract thisDummyIndex from dummyIndexVec.

jRegion Counter variable used in the parfor-loop used to call
create prior.

jTile Counter variable in the for-loop over the tiles at each
level.

k Counter variable used in for-loop of
posterior inference.

KcB Cell array containing the lower Cholesky factor of Kj1,...,jm

times Bl
j1,...,jM

. See [2] Equation 6.

KcBContainer Cell array used to preallocate space for and store KcB for
all levels. Construct used for parallelization.

KcholA Cell array containing lower Cholesky factor of K̃j1,...,jm

times Ak,m
j1,...,jm

. See [2] Equation 10.

Kcholw Cell array containing lower Cholesky factor of K̃j1,...,jm

times ωm
j1,...,jm

. See [2] Equation 10.

Kcwj K̃m
j1,...,jm

ωm
j1,...,jm

for a particular subregions. Precomputed
in posterior inference for later solves.

KcAj Cell array similar to KcholA, but for a particular level.

knots Cell array containing all the knots for all levels.

knotsX Vector of the x locations for the knots for a given partition.

knotsY Vector of the y locations for the knots for a given partition.

kPartition Counter variable over the number of partitions across each
tile in build strcuture.

levelParent Level for the parent of a particular subregion.
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Table 14: Codebase objects and their descriptions.

logicalInd Vector that contains 1 where the observation is a number and
0 where the observation is NaN. A particular method to select
only the entries from lat, lon, and obs that have have data.
May not be appropriate for other datasets.

logLikelihood Cell array containing the log-likelihoods for each subregion.

logLikelihoodj logLikelihood for a particular subregion.

mLevels Vector from 0 to M − 1

nRegionsAtThisLevel Number of regions at a given level.

nRegions Vector of the number of regions at each level.

nTilesFinestLevel Number of tiles at the finest level.

numVarArgs Number of optional input arguments.

NUM KNOTS r Number of knots in each partition for levels m = 1, ...,M − 1.

NUM LEVELS M Maximum number of levels at which the MRA partitions and
sub-partitions the domain.

NUM PARTITIONS J Number of partitions for each region.

nKnotsX Number of knots in x-direction.

nKnotsY Number of knots in y-direction.

nXGrid Number of points in the x-direction for the prediction grid.

nYGrid Number of points in the y-direction for the prediction grid.

nKnotsX0 Number of knots in x-direction at coarsest resolution.

nKnotsY0 Number of knots in y-direction at coarsest resolution.

offsetPercentage How much (in percentage) to offset the structure from the edge
of each region as to avoid edge-effects and overlap of observa-
tions between partitions.

outputData Cell array of the data contained within a given region.

partitions Cell array of the partitions (x and y locations) of the domain
for each tile.

plotting Boolean. Set to 1 to produce plot, 0 to not produce plots. Plots
can only be produced by running the prediction routine.
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Table 15: Codebase objects and their descriptions.

posteriorPredictionMean Cell array containing posterior means.

posteriorPredictionVariance Cell array containing the posterior variances.

posteriorMeanj posteriorPredictionMean for a particular subre-
gion.

posteriorVariancej posteriorPredictionVariance for a particular sub-
region.

predictionIndex Index within predictionVector of the prediction lo-
cations within a given tile.

predictionLocations Vector containing the prediction locations.

predictionLocationsj Predictions locations for given tile.

predictions Cell array containing posteriorPredictionMean

and posteriorPredictionVariance.

predictionVector Vector containing xPred and yPred

regressionModel Regression model using fitlm() fit to detrend the
data.

residuals Residuals found in the regression model. Stored as
third column in data.

RposteriorChol Cell array containing the lower Cholesky factor of the
posterior covariance matrices.

RposteriorCholb RposteriorChol for a particular subregion.

RpriorChol Cell array containing the lower Cholesky factor of the
prior covariance matrices.

RpriorCholj RpriorChol for a particular subregion.

RpriorCholContainer Cell array used to preallocate space for and store
RpriorChol for all levels. Construct used for par-
allelization.

temp Temporary variable used to calculate w{iLevel}.

theta Vector of parameters for the evaluate covariance

function.

thisAtj Atj for a particular subregion.

thisDummyIndex Dummy continuous index for a given tile.
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Table 16: Codebase objects and their descriptions.

thisIndexAncestry Vector containing the ancestry for a given index.
Output of find ancestry.

thisLevelKcBContainer Cell array containing subset of KcBContainer

needed for this iLevel.

thisLevelKnotsContainer Cell array containing subset of knotsContainer

needed for this iLevel.

thisKcholBchol KcB for a particular subregion.

thisRetLikPred retLikelihoodPred for a particular tile.

thisRpriorChol RpriorChol entry for a particular subregion.

thisLevelRpriorCholContainer Cell array containing subset of
RpriorCholContainer needed for this iLevel.

thiswtj wtj for a particular subregion.

varpEps Measurement error variance. Nugget term added to
the diagonal of RpriorCholj in create prior.m

w Cell array of the ωm
j1,...,jm

’s for a given level.

wtildeCurrent Cell array containing current ωm
j1,...,jm

for a particu-
lar subregion.

wtildeCurrentj wtildCurrent for a particular subregion.

wtildePrevious Cell array containing the ω̃k,l
ji,...,jm

’s. See [2] Equa-
tion 10.

xMax Maximal x location for a given tile.

xMaxTemp Temporary variable for the maximumx location for
a given tile in build structure.

xMax0 Maximum x value in the loaded data / maximum
longitude of the spatial domain.

xMin Minimal x location for a given tile.

xMinTemp Temporary variable for the minimum x location for
a given tile in build structure.

xMin0 Minimum x value in the loaded data / minimum
longitude of the spatial domain.

yMax Maximal y location for a given tile.
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Table 17: Codebase objects and their descriptions.

yMaxTemp Temporary variable for the maximum y location for a given tile in
build structure.

yMax0 Maximum y value in the loaded data / maximum latitude of the spatial
domain.

yMin Minimal y location for a given tile.

yMinTemp Temporary variable for the minimum y location for a given tile in
build structure.

yMin0 Minimum y value in the loaded data / minimum latitude of the spatial
domain.
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