02632

MATERIAL STRENGTH PROPERTIES OF STARTEX SL 1883 FILM

A test program conducted for the National Center for Atmospheric Research by the Hauser Research and Engineering Company 2965 Peak Avenue, Boulder, Colorado

> Facilities Division National Center for Atmospheric Research Boulder, Colorado

> > NCAR Technical Note TN-9 1965

> > > H,

PREFACE

This report is one of a series prepared for the Materials Research Project of the NCAR Scientific Balloon Facility. The Materials Research Project is one of several related efforts undertaken by the National Center for Atmospheric Research (NCAR) to increase the reliability, and to extend the capabilities, of scientific ballooning.

The present report covers certain investigations performed by Hauser Research and Engineering Company, Boulder, Colorado, under subcontract with UCAR. Other reports published in this balloon materials research series include: FRB-1-64, <u>Tests of Balloon Materials</u>; FRB-2-64, <u>Standard</u> <u>Test Methods for Balloon Materials</u>; FRB-3-64, <u>Non-Standard Tests for Balloon</u> <u>Materials</u>; FRB-4, <u>Strength Characteristics of DuPont "Surlyn A" Film</u>; and NCAR Technical Note TN-5, <u>Material Strength Properties of Visqueen X-124 Film</u>.

SUMMARY AND CONCLUSION

A sample of 0.75-mil Startex SL 1883, a new film submitted by the Applied Science Division of Litton Industries, was tested to evaluate its mechanical properties. Its properties compare favorably with those of the new high-quality balloon films.

I. INTRODUCTION

The National Center for Atmospheric Research requested a series of tests to determine the mechanical properties of a new 0.75-mil film, "Startex SL 1883," submitted by the Applied Science Division of Litton Industries. Standard test procedures of earlier test programs were used, and the resulting data for the SL 1883 film are presented in this report. Test results are given for the properties of: ultimate tensile strength, tensile yield strength, ultimate elongation, tensile modulus of elasticity, tear initiation, and tear propagation; all at temperatures of both 25° C and -80° C.

II. DESCRIPTION OF FILM SAMPLE

A sample roll of Startex SL 1883 film was forwarded to the National Center for Atmospheric Research by the Applied Science Division of Litton Industries. The sample was a piece of lay-flat polyethylene tubing, nominally 0.75 mil thick, 54 in. wide and about 15 ft long, wrapped on a core bearing the marking "S4T". The film surface was wrinkled slightly and visual inspection of the film showed the appearance of occasional gel particles.

The following properties were found for the film:

Specific Gravity	0.972 (by weight and thickness)
Weight/Area	4.0 lb/1000 sq ft
Thickness, average	0.806 mil

III. TESTS AND RESULTS

Tests procedures, temperature environments (25°C and -80°C), laboratory conditions and data reduction methods described in Refs. 1-4, applied to the present tests. Data from this series of tests are shown in Table 1. Tables 2 and 3 compare these data with results obtained from previous test programs mentioned in Refs. 2-4. Figure 1 shows typical tensile modulus curves for the Startex material, compared with those for other commercial films.

Stress patterns were observed using polaroid sheets during some of the tensile tests at 25°C. Stress concentrations appeared around flaw areas (gel particles) and the film yielded first at these points.

A spectral analysis of the SL 1883 film displayed absorption bands very similar to those of Visqueen A (Ref. 1, p 45) and Visqueen X-124 (Ref. 4).

At 25°C the Startex film had slightly lower values than Visqueen X-124 for ultimate tensile strength and ultimate elongation. Higher values were found for the tensile yield strength, tensile modulus, and tear initiation. Tear propagation was higher in the machine direction but slightly lower in the transverse direction than the X-124 values.

At -80° C the SL 1883 values were generally comparable to those of Visqueen X-124, except for tear initiation and tear propagation values which were slightly lower.

REFERENCES

- 1. <u>Tests of Balloon Materials</u>, NCAR Facilities Report FRB-1-64, National Center for Atmospheric Research, Boulder, Colo., November 1964.
- Standard Test Methods for Balloon Materials, NCAR Facilities Report FRB-2-64, National Center for Atmospheric Research, Boulder, Colo., November 1964.
- Strength Characteristics of DuPont "Surlyn A" Film, NCAR Facilities Report FRB-4, National Center for Atmospheric Research, Boulder, Colo., April 1965.
- 4. <u>Material Strength Properties of Visqueen X-124 Film</u>, NCAR Technical Note TN-5, National Center for Atmospheric Research, Boulder, Colo., June 1965.

Table 1

SUMMARY OF TEST DATA ON STARTEX SL 1883 FILM (0.75 mil nominal)

(M = Machine, T = Transverse, C = Across Crease)

Property tested		25 ⁰ C		-80 ⁰ C				
		Direction	n		Direction			
	М	Т	С	M	Т	C		
Ultimate Tensile Strength								
Average, psi	2920	2110	2280	8990	8530	8350		
Average, lb/in. width	2.35	1.70	1.84	7.25	6.91	6.74		
No. of Samples Tested	5	5	5	5	5	5		
Standard Deviation	578	390	262	1340	910	234		
Deviation Coefficient	.198	.185	.115	.149	.107	.028		
Tensile Yield Strength								
Average, psi	1070	1110		6450	6660			
Average, lb/in. width	.86	.89		5.2	5.4			
No. of Samples Tested	5	5	0	5	5	0		
Standard Deviation	93	49		548	800			
Deviation Coefficient	.087	.044		.085	.120			
Elongation at Yield (no deviation)	8	8		3	3			
					······			
Ultimate Elongation			·					
Average, %	192	373	394	69	23	21		
No. of Samples Tested	5	5	5	5	5	5		
Standard Deviation	32	84	31	25	3.4	1.6		
Deviation Coefficient	.168	.226	.078	.358	.149	.076		

Property tested		25 ⁰ C		-80 ⁰ C					
		Direction			Direction				
	М	T	С	М	T	C			
Tensile Modulus (Initial Tangent)									
Average, psi	23,600	25,400		315,000	325,000				
No. of Samples Tested	5	5	0	5	5	0			
Standard Deviation	3,300	4,200		14,800	34,400				
Deviation Coefficient	.140	.165		.047	.106				
Tear Initiation									
Average, 1b/in.	541	511		1250	1080				
No. of Samples Tested	5	5	0	5	5	0			
Standard Deviation	54	42		147	181				
Deviation Coefficient	.100	.082		.118	.168				
Tear Propagation									
Average, 1b/in.	474	309		1090	782				
No. of Samples Tested	5	5	0	5	5	0			
Standard Deviation	61	33		162	46				
Deviation Coefficient	.130	.107		.149	.059				

Table 2

COMPARISONS OF FILMS TESTED AT 25°C

(elongation at yield, 8% for all samples; no deviation)

Film	Weight (1b/1000 sq ft)	Direc- tion [*]	Ultima Tensi Streng	le ath	Tensile Yield Strength		Ultimate Elongation		Tensile Modulus (Initial Tangent)		Tear Initiation		Tear Propagation	
			average (psi)	d.c.**	average (psi)	d.c.	average (%)	d.c.	average (psi)	đ.c.	average (1b/in.)	d.c.	average (1b/in.)	d.c.
Startex SL 1883 0.75-mil	4.0	M T C	2920 2110 2280	.198 .185 .115	1070 1110 	.087 .044 	192 373 394	.168 .226 .078	23,600 25,400	.140 .165 	541 511 	.100 .082 	474 309 	.130 .107
Visqueen X-124 0.75-mil	4.1	M T C	3190 4010 3690	.158 .155 .098	890 920 	.082 .148 	308 420 436	.124 .115 .094	13,300 11,700 	.103 .149 	400 460	.125 .072 	330 330 	.129 .072
Visqueen A 1.5-mil	7.4	M T	3970 3510	.170 .180	850 800	.040 .027	456 442	.170 .110	14,400 13,500	.035 .130	581 440	.036	416 388	.018 .036
Consolidated GF19X 1 - mi1	4.8	M T	2140 1330	.016	1020 1000	.094	200 236	.300	15,200 17,200	.040	590 510	.048	510 360	.049
Winzen Strato- film 320	3.3	M	2054	.087	720	.078	193	.249	13,200	.166	374	.056	245	.114
0.75-mil Surlyn		T M	1734 2936	.109 .080	848 1580	.090 .054	285 241	.233 .149	16,300 38,800	.117 .034	360 456	.086	240 354	.054 .062
A 1-mil	5.2	Т	1900	.220	1500	.020	231	.302	32,300	.039	470	.074	214	.201

* M = Machine, T = Transverse, C = Across Crease

** deviation coefficient

Source: Data from Hauser Research & Engineering testing programs and Refs. 1, 3 and 4

Table 3

COMPARISONS OF FILMS TESTED AT -80°C

(elongation at yield, 3% for all samples; no deviation)

Film	Weight (1b/1000 sq ft)	Direc- tion*	Ultimate Tensile Tensile Yield Strength Strength		Ultimate Elongation		Tensile Modulus (Initial Tangent)		Tear Initiation		Tear Propagation			
			average (psi)	d.c**	average (psi)	d.c.	average (%)	d.c.	average (psi)	d.c.	average (1b/in.)	d.c.	average (1b/in.)	d.c.
Startex SL 1883 0.75-mil	4.0	M T C	8990 8530 8350	.149 .107 .028	6450 6660 	.085 .120 	69 23 21	.358 .149 .076	315,000 325,000 	.047 .106 	1250 1080 	.118 .168 	1090 782 	.149 .059
Visqueen X-124 0.75-mil	4.1	M T C	8870 9650 9290	.081 .093 .127	6230 5740 	.104 .094 	48 43 49	.300 .274 .420	317,000 272,000	.152 .124 	1580 1420 	.083 .040 	1210 1190 	.140 .089
Visqueen A 1.5-mil	7.4	М	8490	.026	5690	.125	45.5	.500	373,000	.110	1190	.140	740	.170
Consolidated	1	T M	7540 10,300	.084 .200	6500 5420	.081 .155	7.3 206	.420 .120	403,000 339,000	.076	1040 1400	.091 .064	710 1080	.098 .100
GF19X 1-mi1	4.8	Т	7500	.024	5470	.127	22.2	.530	468,000	.095	970	.035	750	.130
Winzen Strato film 320	3.3	М	6984	.041	4250	.041	78	.105	245,000	.115	1134	.016	962	.155
0.75-mil	3.5	т	7254	.033	4900	.028	22	.264	304,000	.049	1012	.131	676	.197
Surlyn A	5.2	М	9040	.096	4790	.028	20	.308	334,000	.200	756	.102	448	.064
1-mi1		T	8340	.092	4400	.013	19	.196	216,000	.094	736	.161	404	.165

* M = Machine, T = Transverse, C = Across Crease ** deviation coefficient

Source: Data from Hauser Research & Engineering testing programs and Refs. 1, 3 and 4

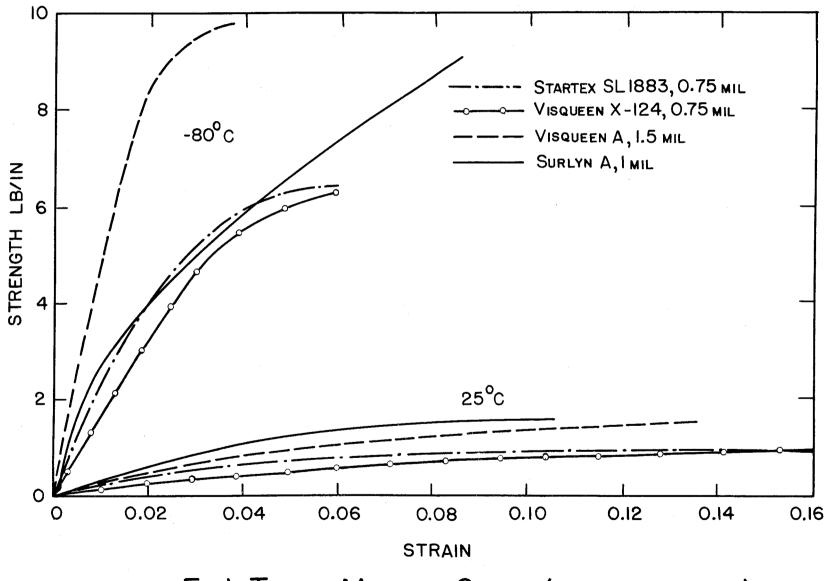


FIG. I--TYPICAL MODULUS CURVES (MACHINE DIRECTION)