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1. INTRODUCTION

This report presents the details of the governing equations, physical parame-
terizations, and numerical algorithms defining the version of the NCAR Community
Climate Model designated CCM3. The material provides an overview of the major
model components, and the way in which they interact as the numerical integration
proceeds. Details on the coding implementation, along with in-depth information on
running the CCM3 code, are given in a separate technical report entitled “User’s Guide
‘to NCAR CCM3” (Acker et al, 1996). As before, it is our objective that this model
provide NCAR and the university research community with a reliable, well documented
atmospheric general circulation model. This version of the CCM incorporates significant
improvements to the physics package, new capabilities such as the incorporation of a
slab ocean component, and a number of enhancements to the implementation (e.g., the
ability to integrate the model on parallel distributed-memory computational platforms).
We believe that collectively these improvements provide the research community with a
significantly improved atmospheric modeling capability.

a. Brief History

Over the last decade, the NCAR Climate and Global Dynamics (CGD) Division
has provided a comprehensive, three-dimensional global atmospheric model to university
and NCAR scientists for use in the analysis and understanding of global climate. Because
of its widespread use, the model was designated a community tool and given the name
. Community Climate Model (CCM). The original versions of the NCAR Community
Climate Model, CCM0OA (Washington, 1982) and CCM0B (Williamson et al., 1983), were
based on the Australian spectral model (Bourke et al., 1977; McAvaney et al., 1978)
and an adiabatic, inviscid version of the ECMWF spectral model (Baede et al., 1979).
The CCMOB implementation was constructed so that its simulated climate would match
the earlier CCMOA model to within natural variability (e.g., incorporated the same set
of physical parameterizations and numerical approximations), but also provided a more
flexible infrastructure for conducting medium- and long-range global forecast studies. The
major strength of this latter effort was that all aspects of the model were described in a
series of technical notes, which included a Users’ Guide (Sato et al., 1983), a subroutine
guide which provided a detailed description of the code (Williamson et al., 1983) a detailed
description of the algorithms (Williamson, 1983), and a compilation of the simulated
circulation statistics (Williamson and Williamson, 1984). This development activity firmly
established NCAR’s commitment to provide a versatile, modular, and well-documented
atmospheric general circulation model that would be suitable for climate and forecast
studies by NCAR and university scientists. A more detailed discussion of the early history
and philosophy of the Community Climate Model can be found in Anthes (1986).

1



The second generation community model, CCM1, was introduced in July of
1987, and included a number of significant changes to the model formulation which
were manifested in changes to the simulated climate. Principal changes to the model
included major modifications to the parameterization of radiation, a revised vertical finite-
differencing technique for the dynamical core, modifications to vertical and horizontal
diffusion processes, and modifications to the formulation of surface energy exchange. A
number of new modeling capabilities were also introduced, including a seasonal mode in
which the specified surface conditions vary with time, and an optional interactive surface
hydrology which followed the formulation presented by Manabe (1969). A detailed series
of technical documentation was also made available for this version (Williamson et al.,
1987; Bath et al., 1987a; Bath et al, 1987b; Williamson and Williamson, 1987; Hack et
al., 1989) and more completely describe this version of the CCM.

The most ambitious set of model improvements occurred with the introduction of
the third generation of the Community Climate Model, CCM2, which was released in
October of 1992. This version was the product of a major effort to improve the physical
representation of a wide range of key climate processes, including clouds and radiation,
moist convection, the planetary boundary layer, and transport. The introduction of
this model also marked a new philosophy with respect to implementation. The CCM2
code was entirely restructured so as to satisfy three major objectives: much greater
ease of use, which included portability across a wide range of computational platforms;
conformance to a plug-compatible physics interface standard; and the incorporation of
single-job multitasking capabilities.

The standard CCM2 model configuration was significantly different from its
predecessor in almost every way, starting with resolution where the CCM2 employed a
horizontal T42 spectral resolution (approximately 2.8 x 2.8 degree transform grid), with
18 vertical levels and a rigid lid at 2.917 mb. Principal algorithmic approaches shared with
CCM1 were the use of a semi-implicit, leap frog time integration scheme; the use of the
spectral transform method for treating the dry dynamics; and the use of a bi-harmonic
horizontal diffusion operator. Major changes to the dynamical formalism included the
use of a terrain-following hybrid vertical coordinate, and the incorporation of a shape-
preserving semi-Lagrangian transport scheme (Williamson and Rasch, 1994) for advecting
water vapor, as well as an arbitrary number of other scalar fields (e.g., cloud water
variables, chemical constituents, etc.). Principal changes to the physics included the use
of a 6-Eddington approximation to calculate solar absorption (Briegleb, 1992); the use of
a Voigt line shape to more accurately treat infrared radiative cooling in the stratosphere;
the inclusion of a diurnal cycle to properly account for the interactions between the
radiative effects of the diurnal cycle and the surface fluxes of sensible and latent heat;
the incorporation of a finite heat capacity soil/sea ice model; a more sophisticated cloud
fraction parameterization and treatment of cloud optical properties (Kiehl et al., , 1994);
the incorporation of a sophisticated non-local treatment of boundary-layer processes
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(Holtslag and Boville, 1992); the use of a simple mass flux representation of moist
convection (Hack, 1994), and the optional incorporation of the Biosphere-Atmosphere
Transfer Scheme (BATS) of Dickinson et al. (1986). As with previous versions of the
model, a User's Guide (Bath et al., 1992) and model description (Hack et al., 1993)
were provided to completely document the model formalism and implementation. Control
~ simulation data sets were documented in Williamson (1993).

b. Overview of CCM3

The CCM3 is the fourth generation in the series of NCAR’s Community Climate
Model. Many aspects of the model formulation and implementation are identical to the
CCM2, although there are a number of important changes that have been incorporated
into the collection of parameterized physics, along with some modest changes to the
dynamical formalism. Modifications to the physical representation of specific climate
processes in the CCM3 have been motivated by the need to address the more serious
systematic errors apparent in CCM2 simulations, as well as to make the atmospheric
model more suitable for coupling to land, ocean, and sea-ice component models. Thus,
an important aspect of the changes to the model atmosphere has been that they address
well known systematic biases in the top-of-atmosphere and surface (to the extent that
they are known) energy budgets. When compared to the CCM2, changes to the model
formulation fall into five major categories: modifications to the representation of radiative
transfer through both clear and cloudy atmospheric columns, modifications to hydrologic
processes (i.e., in the form of changes to the atmospheric boundary layer, moist convection,
and surface energy exchange), the incorporation of a sophisticated land surface model, the
incorporation of an opi;ional slab mixed-layer ocean/thermodynamic sea-ice component,
and a collection of other changes to the formalism which at present do not introduce
significant changes to the model climate.

Changes to the clear-sky radiation formalism include the incorporation of minor

CO4 bands trace gases (CHy, NoO, CFC11, CFC12) in the longwave parameterization,
and the incorporation of a background aerosol (0.14 optical depth) in the shortwave
parameterization. All-sky changes include improvements to the way in which cloud optical
properties (effective radius and liquid water path) are diagnosed, the incorporation of the
radiative properties of ice clouds, and a number of minor modifications to the diagnosis of
convective and layered cloud amount. Collectively these modification substantially reduce

~ systematic biases in the global annually averaged clear-sky and all-sky outgoing longwave
radiation and absorbed solar radiation to well within observational uncertainty, while
maintaining very good agreement with global observational estimates of cloud forcing.
Additionally, the large warm bias in simulated July surface temperature over the Northern
Hemisphere, the systematic overpredictidn of precipitation over warm land areas, and a
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large component of the stationary-wave error in CCM2, are also reduced as a result of
cloud-radiation improvements.

Modifications to hydrologic prdcesses include revisions to the major contributing
parameterizations. The formulation of the atmospheric boundary layer parameterization
has been revised (in collaboration with Dr. A. A. M. Holtslag of KNMI), resulting in
significantly improved estimates of boundary layer height, and a substantial reduction
in the overall magnitude of the hydrologic cycle. Parameterized convection has also
been modified where this process is now represented using the deep moist convection
formalism of Zhang and McFarlane (1995) in conjunction with the scheme developed by
Hack (1994) for CCM2. This change results in an additional reduction in the magnitude
of the hydrologic cycle and a smoother distribution of tropical precipitation. Surface
roughness over oceans is also diagnosed as a function of surface wind speed and stability,
resulting in more realistic surface flux estimates for low wind speed conditions. The
combination of these changes to hydrological components results in a 13% reduction
in the annually averaged global latent heat flux and the associated precipitation rate.
It should be pointed out that the improvements in the radiative and hydrologic cycle
characteristics of the model climate have been achieved without compromising the quality
of the simulated equilibrium thermodynamic structures (one of the major strengths of the
CCM2) thanks in part to the incorporation of a Sundqvist (1988) style evaporation of
stratiform precipitation.

The CCMS3 incorporates version 1 of the Land Surface Model (LSM) developed by
Bonan (1996) which provides for the comprehensive treatment of land surface processes.
This is a one-dimensional model of energy, momentum, water, and CO; exchange between
the atmosphere and land, accounting for ecological differences among vegetation types,
hydraulic and thermal differences among soil types, and allowing for multiple surface
types including lakes and wetlands within a grid cell. LSM replacés the prescribed
surface wetness, prescribed snow cover, and prescribed surface albedos in CCM2. It also
replaces the land surface fluxes in CCM2, using instead flux parameterizations that include
hydrological and ecological processes (e.g., soil water, phenology, stomatal physiology,
interception of water by plants). '

The fourth class of changes to the CCM2 includes the option to run CCM3 with
a simple slab ocean-thermodynamic sea ice model. The model employs a spatially and
temporally prescribed ocean heat flux and mixed layer depth, which ensures replication of
realistic sea surface temperatures and ice distributions for the present climate. The model
allows for the simplest interactive surface for the ocean and sea ice components of the
climate system.

The final class of model modifications include a change to the form of the
hydrostatic matrix which ensures consistency between w and the discrete continuity
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equation, and a more generalized form of the gravity wave drag parameterization. In the
latter case, the parameterization is configured to behave in the same way as the CCM2
parameterization of wave drag, but includes the capability to exploit more sophisticated
descriptions of this process.

A detailed technical description of the Land Surface Model (Bonan, 1996)
complements this technical note. A separate User’s Guide (Acker et al., 1996) is also
available, which provides details of the code logic, flow, data structures and style, and
explains how to modify and run CCM3. One of the more significant implementation
differences with the earlier model is that CCM3 includes an optional message-passing
configuration, allowing the model to be executed as a parallel task in distributed-memory
environments. This is an example of how the Climate and Global Dynamics Division
continues to invest in technical improvements to the CCM in the interest of making it
easier to acquire and use in evolving computational environments. As was the case for
CCM2, the code is internally documented, obviating the need for a separate technical
note that describes each subroutine and common block in the model library. Thus, the
Users’ Guide, the land surface technical note, the present report, the actual code and

a planned series of reviewed scientific publications are designed to completely document
CCMs.






2. OVERVIEW OF TIME DIFFERENCING

The temporal approximations are designed around a time-splitting formalism. In
this section we provide the details of the splitting and relate the various steps to the
individual processes described in later sections. When describing time-split algorithms, the
notational details often become very complex and cumbersome (e.g., CCM1 in Williamson
et al., 1987), even though each process or sub-step in isolation can be described as
a straightforward centered, forward or backward process. Therefore, we do not carry
the detailed notation forward throughout this report, but rather, describe each process
individually with simple, local notation and relate that simple notation to the complete,
and therefore complex, notation adopted in this section only.

The general prognostic equations for a generic model variable v can be written as

0 :

3¢ = Fr()+ T (W) + F (W) + Pa(¥), (2.a.1)
where Pr represents those physical parameterizations applied as tendencies, P4 those
parameterizations applied as adjustments, and T' represents the dynamical components.
The term F is an ad hoc correction to ensure conservation of atmospheric mass, water

vapor, and chemical constituents if included by the dynamical processes.

We describe a basic-time step assuming the unfiltered prognostic variables are
known on the Gaussian grid at time n, (¥™) and time filtered prognostic variables are

known at time n — 1, (ib_n_l). The time step is complete after the predicted variables are

available at grid points at time n-+1, (gb”“), and time filtered values are available at time
—n
n, (zp )

One complete time step proceeds as

v~ =9 +24tPf (7,99 ) (2.0.2)
§F =p~ + 20T (§*, 47, =5 ) (2.0.3)
{’lvz_*- = Rbcp'q (,éb—) ) (20,3b)
Yt =t 4+ 2ALF (2.a.4)
g+t = Py () (2.0.5)
T =g+ (P -2y (2.0.6)

The time filter, (2.a.6), was originally designed by Robert (1966) and later studied by
Asselin (1972). The tendency physics (2.a.2) includes (in the following order) the cloud
parameterization; radiative fluxes and atmospheric heating rates; update land surface
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properties; temperature update; surface fluxes; free atmosphere vertical diffusivities, ABL
height, diffusivities and countergradient term; vertical diffusion solution; gravity wave
drag; and Rayleigh friction. Note that for greater stability (2.a.2) is, in general, implicit
with the unknown ¥~ appearing on the right-hand side. To make the solution practical,
this step is further subdivided into time split steps for each component as described in
Section 4.1. The end result of step (2.a.2) is the net tendency attributable to the tendency
physics
- —n-—1
Py = -'3-75/;—— . (2.0.7)

The dynamical step (2.a.3) is written in two general forms, with (2.a.3a) for
the semi-implicit spectral transform dynamical components and (2.a.3b) for the semi-
Lagrangian advection of water vapor (and additional constituents). Because the tendency
physics (2.a.2) is formulated in terms of  and v, but the dynamics (2.a.3a) is formulated
in terms of vorticity and divergence (¢ and §), it is convenient to rewrite (2.a.3a) by
substituting in (2.a.2):

g =" roaer (P, un, e, 0T ) +20ePp (v un BT (2.0.8)
One subtle point associated with the dynamics is that, in some minor ways, I' explicitly
depends on Eﬂnl, as indicated in (2.a.3a). In a traditional time—Split approach, this
dependency would be replaced with an equivalent one on 9~ leading to the equation

$t =9~ + 2A¢T (1ﬁ+, Ww-) . (2.0.9)

Formally, however, the approximation actually used in the model is as given in (2.a.3a),
which yields (2.a.8). Equation (2.a.2) is used only to provide the tendencies, not for a
provisional forecast value entering in the dynamics.

The dynamics step (2.a.3a), or more properly (2.a.8), is based on a centered semi-
implicit, spectral transform method. It includes a transformation from grid to spectral
space during the forecast and an inverse transform to grid space of the updated variables.
Horizontal diffusion is applied on 7 surfaces in spectral space and a partial correction to p
surfaces (consisting of the leading term only) is applied locally on the return to grid space.
The details of this step are presented in Section 3.

The advection of water vapor and constituents is cleanly time split, as indicated in
(2.a.3b). In this semi-Lagrangian step, L represents the interpolation operator applied to
determine ¢~ at the departure point. The superscript n implies that the winds at time n
are used to determine the departure point. Details are provided in Section 3.c.

The fixer step (2.a.4) applies a change to the surface pressure and water vapor
(and constituents) such that the global average of dry atmosphere mass, water vapor, and
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constituents are conserved in the advective process, i.e.,

/ﬂ+dA_/ 2 T Ap dA:/—n tdA - / Ap™~ 1) dA (2.2.10)
‘ /(Zq+AP+> /(Zq Ap™~ 1) (2..11)

/ (Z L q+)AP+) dA = / (Z v (- q‘)Ap‘) dA (2.a.12)

where 7 is the surface pressure, q is the specific humidity and % is the constituent mixing
ratio based on a dry atmosphere. The > denotes an approximation to the integral by a
vertical sum over the grid values, and the integral [ ( ) dA denotes the discrete horizontal
Gaussian quadrature approximation to the integral. Details are given in Section 3.d.

and

The adjustment physics (2.a.5) consists of a number of adjustment type sub-steps
also, each applied in a time-split manner. These sub-steps are mass flux convective
parameterization, large scale stable condensation, and dry convective adjustment (at the
levels activated). They are detailed in Section 4.2.

Finally, the time filtering (2.a.6) is applied to complete the time step. The form
(2.a.6) is applied to u,v,T,q and m (where 7 is surface pressure). To be consistent with
u and v, ¢ and ¢ must also be filtered. To minimize data motion in the code, the filter is
applied in two steps to ¢ and ¢ only: | ‘

gr=yr+a (P - 2n), (2.0.13)
P =" +a(ypntl). (2.0.14)

In the time split steps (2.a.2) through (2.a.6) all prognostic variables are not
always affected by an individual sub-step, and thus by implication the “before” and
“after” superscript notation denotes the same variable. For example, 7 (or lnn) is not
affected by the tendency physics so that 7~ and #™~! can be used interchangeably.
Likewise, u,v (and ¢ and &) and T are not affected by the fixers, so (") and ( )T are
interchangeable for them. In addition, u,v (and ¢ and ) and 7 (or In7) are unaffected by
the adjustment physics, so ( )**' and ( )T are interchangeable for them. By implication
then, ( )"t and ()" also become interchangeable for w and v (and ¢ and 6). This
notational interchangeability should be kept in mind in the discussions in subsequent
sections, relating the notations used there to this overview section.

The time step is complete after (2.a.6), at which point the temporal index is
decremented and the calculation proceeds back to (2.a.2) for the next time step. In a
circular structure such as this, the program code could easily start anywhere, and the
temporal index could also be decremented anywhere. In fact, the CCM3 code appears
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not to start with (2.a.2), but rather to finish up the previous time step by solving (2.a.4),
(2.a.5), and (2.a.6) first, at which time the history of state (Jn) is recorded if desired.

The calculation then proceeds with (2.a.2) and part of (2.a.3a), up to the completion of
the spectral transform. At this point the flow of the dynamics is interrupted while the
semi-Lagrangian step (2.a.3b) is performed. After this, the dynamics (2.a.3a) is completed
by solving the semi-implicit equations, applying the horizontal diffusion and performing
the inverse transform. This appears to be the end of the process in the code, and the
temporal indices are all shifted down one. However, as mentioned earlier, the time step as
described by (2.a.2) through (2.4.6) is actually completed at the beginning of the code.
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3. DYNAMICS
a. Hybrid Form of Governing Equations

The hybrid vertical coordinate that has been implemented in CCM3 is described
in this section. The hybrid coordinate was developed by Simmons and Striifing (1981) in
order to provide a general framework for a vertical coordinate which is terrain following at
the Earth’s surface, but reduces to a pressure coordinate at some point above the surface.
The hybrid coordinate is more general in concept than the modified ¢ scheme of Sangster
(1960), which is used in the GFDL SKYHI model. However, the hybrid coordinate is
normally specified in such a way that the two coordinates are identical. |

The following description uses the same general development as Simmons and
Striifing (1981), who based their development on the generalized vertical coordinate of
Kasahara (1974). A specific form of the coordinate (the hybrid coordinate) is introduced
at the latest possible point. The description here differs from Simmons and Striifing (1981)
in allowing for an upper boundary at finite height (nonzero pressure), as in the original
development by Kasahara. Such an upper boundary may be required when the equations
are solved using vertical finite differences.

Generalized terrain-following vertical coordinates

Deriving the primitive equations in a generalized terrain-following vertical
coordinate requires only that certain basic properties of the coordinate be specified. If
the surface pressure is 7, then we require the generalized coordinate n(p, ) to satisfy:

1. n(p, 7) is a monotonic function of p.
2. p(m,m)=1

3. n(0,7)=0

>~

. n(ps, ™) = my where p; is the top of the model.

The latter requirement provides that the top of the model will be a pressure surface,
simplifying the specification of boundary conditions. In the case that p; = 0, the last
two requirements are identical and the system reduces to that described in Simmons and
Striifing (1981). The boundary conditions that are required to close the system are:

7'7(71-7 77) =0, : , (30,1)
n(pt, ™) = w(p) = 0. (3.a.2)

Given the above description of the Coordinate, the continuous system of equations

can be written following Kasahara (1974) and Simmons and Striifing (1981). The
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prognostic equations are:

ig:=k-V>< (n/cos ¢) + F,,,

ot

a0 2

5=V (n/cos¢) — V? (E + @) + Fy,,,
oT -1 0

Bt acos?¢ [8)\(UT) +COS¢3¢( )}

+Q+FTH + Fpy,,

9 _ -1
ot acos? ¢

or Op
Er /1 v (6nv>d

[aa)\(Uq) + cos¢ 5

.0q
(Vq)] + g6 — pm + S,

oT

+T6 - 77(9 +CT

R
P

w
D

(3.a.3)

(3.a.4)

(3.a.7)

The notation follows standard conventions except that the virtual temperature is
represented by 7 and the following terms have been introduced, with n = (ny, ny):

oU
7’LU=‘*'(C‘*‘f)V"“7'76
ov
~(C+HU - rm
Uy v?
"~ 2cos?¢ ]

(U, V) = (u,v) cos §,

SNCRD

()4

T1op

~Ror+ Fy,

adA

T cos¢ dp
-k a 34)

T,

D -

FV7

(3.a.8)

(3.a.9)

(3.a.10)

(3.a.11)

(3.0.12)

(3.0.13)

The terms Fy, Fy, @, and S represent the sources and sinks as determined by the tendency
physics for momentum (in terms of U and V'), temperature, and moisture, respectively.
This is discussed in the overview (Section 2) and in detail in Section 4. The terms
F¢,, and Fj, represent sources due to horizontal diffusion of momentum, while Fr,
and Fg, represent sources attributable to horizontal diffusion of temperature and a
contribution from frictional heating (see sections on horizontal diffusion and horizontal

diffusion correction).
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In addition to the prognostic equations, three diagnostic equations are required:
p(1)

®=3,+R Tdlnp, (3.a.14)
p(n)
.0p  0Op 7 Op )
n% =~ % /m \Y (Gnv dn, (3.a.V15)
n ap
w=V- -Vp-— V- =V )dn. (3.a.16)
™ 8’17

Note that the bounds on the vertical integrals are specified as values of  (e.g., 7, 1) or
as functions of p (e.g., p (1), which is the pressure at n = 1).

Conversion to final form

Equations (3.a.1) — (3.a.16) are the complete set which must be solved by a GCM.
However, in order to solve them, the function 7n(p, ) must be specified. In advance of
actually specifying n(p, 7), the equations will be cast in a more convenient form. Most of
the changes to the equations involve simple applications of the chain rule for derivatives,
in order to obtain terms that will be easy to evaluate using the predicted variables in
the model. For example, terms involving horizontal derivatives of p must be converted to
terms involving only dp/8n and horizontal derivatives of m. The former can be evaluated
once the function 7(p, 7) is specified.

The vertical advection terms in (3.a.5), (3.a.6), (3.a.8), and (3.¢.9) may be rewritten
as:

oy opoy

7787] - 77?57_7- ap ’ (3-@.17)

since 770p/07n is given by (3.a.15). Similarly, the first term on the right-hand side of (3.a.15)
can be expanded as

Op Opom

E = %—6?, (3(118)

and (3.a.7) invoked to specify O /0t.

The integrals which appear in (3.2.7),(3.a.15), and (3.4.16) can be written more
conveniently by expanding the kernel as

or\ —v.v (9P L%y,
v (anv> =V v(an)+anv V. | (3.0.19)
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The second term in (3.a.19) is easily treated in vertical integrals, since it reduces to an
integral in pressure. The first term is expanded to:

Op 0
vy (677) =Van (VP

_ a (0p

=V <awv”) |

v 0 (0p dp, (O :
=V5 (a )v T+ Voo V(an) (3.4.20)

The second term in (3.a.20) vanishes because d7/8n = 0, while the first term is easily
treated once n(p, 7) is specified. Substituting (3.a.20) into (3.a.19), one obtains:

Opy ) 9 (9 9p
v (8nv) = 9 <8W>V Vit 5 V-V (3.2.21)

Using (3.a.21) as the kernel of the integral in (3.a.7), (3.a.15), and (3.a.16), one obtains
integrals of the form

/v (8pV)d —/[ (gB)V-VHZPV V]d
/ V. Vr d( ) / 5dp. (3.0.22)

The original primitive equations (3.a.3) —(3.a.7), together with (3.a.8), (3.a.9), and
(3.a.14) — (3.0.16) can now be rewritten with the aid of (3.a.17), (3.a.18), and (3.2.22).

a¢

5 = k-V x (n/cos¢) + Fe,, , (3.a.23)
06 0
8t (n/ Cos ¢) \% (E + Q) + FJH 3 (3&24)
or -1 0 .0p0T R __w
B acos’ s [a/\(UT)-f-cosqb (VT)] +T6 77617 6p+c;‘,7_;

+@Q+ Fry; + Fry (3.a.25)
o -1 3} .0p 0q
Ot  acos?¢ [ (Ua) + cos¢ ¢( )] ta Ton op +5 (3.0.26)
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(1) p(1)
o [V .Vnd (ap ) / 5dp, (3.0.27)
ot (m0) o p(me)

0poU _ pT10por +Fy, (3.2.28)

=+ C+HHV - 776‘ Bp Rap(%r oA
.Op oV Tcospldpdr
—(C+ U - na 3 R— 59 59 + Fy, (3.a.29)
p(1)
=00, + R/ Tdlnp, (3.a.30)
p(n)
1), p(1)
72 _ op V. Vnrd (QZ—’) +/ 5dp}
"on ~ or (n:) om p(ne)
(n) p(n)
— | V.Vrd (87’) / 5dp, (3.2.31)
(n:) O p(n:) :
(m) p(n)
=Py vr- [V .Vnd (8‘” ) / sdp. (3.0.32)
Rz (me) 0n)  Jom)

Once n(p, 7) is specified, then dp/07 can be determined and (3.a.23) — (3.a.32) can be
solved in a GCM.

In the actual definition of the hybrid coordinate, it is not necessary to specify
n(p, ) explicitly, since (3.a.23) — (3.a.32) only requires that p and dp/8n be determined.
It is sufficient to specify p(n, 7) and to let  be defined implicitly. This will be done in a
later section. In the case that p(n,n) = om and 7, = 0, (3.a. 23) (3.a.32) can be reduced
to the set of equations solved by CCM1.

+

Continuous equations using 8 Iln(m)/dt

In practice, the solutions generated by solving the above equations are excessively
noisy. This problem appears to arise from aliasing problems in the hydrostatic equation
(3.2.30). The Inp integral introduces a high order nonlinearity which enters directly into
the divergence equation (3.a.24). Large gravity waves are generated in the v1cm1ty of steep
orography, such as in the Pacific Ocean west of the Andes.

The equations given above, using ® as a prognostic variable, may be easily
converted to equations using IT = In(7), resulting in the hydrostatic equation becoming
only quadratically nonlinear except for moisture contributions to virtual temperature.
Since the spectral transform method will be used to solve the equations, gradients will

15



be obtained during the transform from wave to grid space.

equation for II, all terms involving V7 will then appear as #VIIL.

Equations (3.a.23) —

9¢
ot

-g%zv-(n/cosqb)—

or _ -1
Ot  acos?¢

+Q+FTH+FFH,'

— =k -V x (n/cos¢) + F,,,

[ (UT) +cos g (VT)]—!—T(S oL

(3.a.32) become:

V% (E + ®) + Fs,,,

on 3p+c*

P

dg  -—1 .Op Oq
e W +eose SV + a5 i 4 s,
- (1) p(1)
on _ _ and(ap)—l/ Sdp,
ot () om p(e)
8pdU T dpoll
=tV - "apap apaiaA‘LFU’
6p oV T cos ¢ m Op OI1
p(1)
‘I>:‘1>S+R/ Tdlnp,
p(n)
(1) - ()
aop _ op V. vnd(6p>+/ 5@}
"on " or | S o p(n)
(m) p(n)
—/ xV - VIld (ap) / Sdp,
(m¢) om p(nt)
(m p(1)
weLorv . y- / 7V - VIld (ap> / &dp.
or (n¢) o p(nt)

.0poT R,Tw

p

Outside of the prognostic

(3.a.33)

(3.2.34)

(3.a.35)

(3.a.36)

(3.2.37)

(3.0.38)

(3.a.39)

(3.a.40)

(3.a.41)

(3.0.42)

The above equations reduce to the standard o equations used in CCM1 if n = ¢ and
n: = 0. (Note that in this case dp/0r =p/7m =0.)
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Semi-implicit formulation

The model described by (3.a.33) — (3.a.42), without the horizontal diffusion terms,
together with boundary conditions (3.a.1) and (3.a.2), is integrated in time using the semi-
implicit leapfrog scheme described below. The semi-implicit form of the time differencing
will be applied to (3.a.34) and (3.a.35) without the horizontal diffusion sources, and
to (3.a.37). In order to derive the semi-implicit form, one must linearize these equations
about a reference state. Isolating the terms that will have their linear parts treated
implicitly, the prognostic equations (3.a.33), (3.a.34), and (3.a.37) may be rewritten as:

%;- =—-RTV2lnp- V% + X, (3.0.43)

or R_w  0pdT

LY e/ el .a.44
p(1)

om__1 / 5dp + 24, (3.0.45)

ot T Jp(ne)

where X;,Y1,7; are the remaining nonlinear terms not explicitly written in (3.a.43) —
(3.a.45). The terms involving ® and w may be expanded into vertical integrals using
(3.2.40) and (3.a.42), while the V2Inp term can be converted to V2II, giving:

95 p(1)

9 _  prT 0o z/
o = RTp 5-V’Il- RV - Tdlnp + X, | (3.0.46)

p(n) p(1) p(n)
OF _ _RT [P 0 _ { o / sdp - / adp] Y (3aa7)
p P

ot o O Jp(ne) (ne) Op

1 p(1)
om__1 / 5dp + Zs. (3.0.48)
at T p(m)

Once again, only terms that will be linearized have been explicitly represented in
(3.0.46) — (3.a.48), and the remaining terms are included in X, Y2, and Zs. Anticipating
the linearization, 7 and cj have been replaced by T and ¢, in (3.0.46) and (3.a.47).
Furthermore, the virtual temperature corrections are included with the other nonlinear
terms.

In order to linearize (3.a.46) — (3.0.48), one specifies a reference state for
temperature and pressure, then expands the equations about the reference state:

T=T +T, (3.2.49)
T=n" +u, (3.a.50)
p=p (n,7")+p". (3.2.51)
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In the special case that p(n, ) = o, (3.a.46) — (3.a.48) can be converted into equations
involving only IT = Iln 7 instead of p, and (3.a.50) and (3.a.51) are not required. This is
a major difference between the hybrid coordinate scheme being developed here and the o
coordinate scheme in CCM1.

Expanding (3.a.46) — (3.a.48) about the reference state (3.2.49) — (3.a.51) and
retaining only the linear terms explicitly, one obtains:

r T p" (1) p'(1) pr

¥ _ _pvr | (92) I+ / T'dlap" + / T—rdp'} +Xs,  (3.0.52)
ot N " (n) p’(m P

r P (n) rorpt(1) p"(n) "
or _ _ETT_/ 5dp’ — {(@) / Sdp’ _/ 5de] o | v, (3.0.53)
ot Cp P° Jpr(ni) 0T ) Jpm(ne) P (m) Op
o1l 1 /P'(”
—=-—= 5dp” + Zs. (3.a.54)
ot T Jpr(m)

The semi-implicit time differencing scheme treats the linear terms in (3.a.52) — (3.a.54)
by averaging in time. The last integral in (3.2.52) is reduced to purely linear form by the
relation '

(0P
dp —7rd<aﬂ_) +z. (3.a.55)

In the hybrid coordinate described below, p is a linear function of 7, so z above is zero.

We will assume that centered differences are to be used for the nonlinear terms, and
the linear terms are to be treated implicitly by averaging the previous and next time steps.
Finite differences are used in the vertical, and are described in the following sections. At
this stage only some very general properties of the finite difference representation must be
specified. A layering structure is assumed in which field values are predicted on K layer
midpoints denoted by an integer index, 7 (see Figure 1). The interface between 7, and
Mk+1 is denoted by a half-integer index, mx41/2. The model top is at 11,2 = n;, and the
Earth’s surface is at ng 112 = 1. It is further assumed that vertical integrals may be
written as a matrix (of order K) times a column vector representing the values of a field
at the ng grid points in the vertical. The column vectors representing a vertical column
of grid points will be denoted by underbars, the matrices will be denoted by bold-faced
capital letters, and superscript 7" will denote the vector transpose.
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Figure 1. Vertical level structure of CCM

The finite difference forms of (3.a.52) — (3.a.54) may then be written down as:
én+1 — én_l + 2At__&n

n—1 n
— 2AtRbV? <£I___'§_E_+.l_ - Hn)
\n—1 1\n+1
—-2Z&t}211’\72 ((22) ?:(Z:) __(ly)n>
n—1 n+1 )
— 2AtRh™V? (E——;—II— - H”) , " (3.a.56)
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n-—1 n+1
In+1 — In—l + QAtY_n — 2AtD" <é__12-__g__ - _5_”) , (30,57)
n—1 n+l T
1
I+ = 171 4 2AtZ" — 2At <-d___;;é__._ - é”) G Ap", (3.a.58)

where ()™ denotes a time varying value at time step n. The quantities X", Y™, and Z"
are defined so as to complete the right-hand sides of (3.a.43) — (3.a.45). The components
of Ap" are given by Apj = p}, +17 P . This definition of the vertical difference operator
A will be used in subsequent equations. The reference matrices H” and D", and the
reference column vectors b” and A", depend on the precise specification of the vertical
coordinate and will be defined later.

Energy conservation

We shall impose a requirement on the vertical finite differences of the model that
they conserve the global integral of total energy in the absence of sources and sinks. We
need to derive equations for kinetic and internal energy in order to impose this constraint.
The momentum equations (more painfully, the vorticity and divergence equations) without
the Fy, Fy, F¢,, and Fj, contributions, can be combined with the continuity equation

9 (p ap o (p.\ _ '
D () v ()2 2 (2) <y o

to give an equation for the rate of change of kinetic energy:

0 (0p.\ _ o (Op _ 0 (dp..
3t(3nE>_ v (877EV) an (BnEn>

RT Op Op
- -—p—%v -Vp — 57—;V V. (3.a.60)
The first two terms on the right-hand side of (3:4.60) are transport terms. The horizontal
integral of the first (horizontal) transport term should be zero, and it is relatively
straightforward to construct horizontal finite difference schemes that ensure this. For
spectral models, the integral of the horizontal transport term will not vanish in general,

but we shall ignore this problem.

The vertical integral of the second (vertical) transport term on the right-hand side
of (3.2.60) should vanish. Since this term is obtained from the vertical advection terms for
momentum, which will be finite differenced, we can construct a finite difference operator
that will ensure that the vertical integral vanishes.
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The vertical advection terms are the product of a vertical velocity (79p/07n) and
the vertical derivative of a field (8v/0p). The vertical velocity is defined in terms of
vertical integrals of fields (3.a.41), which are naturally taken to interfaces. The vertical
derivatives are also naturally taken to interfaces, so the product is formed there, and then
adjacent interface values of the products are averaged to give a midpoint value. It is the
definition of the average that must be correct in order to conserve kinetic energy under
vertical advection in (3.a.60). The derivation will be omitted here, the resulting vertical
advection terms are of the form:

Op 8y 1 dp p
( Ton ap) 2Apy, [( an)k+1/2 (Yr41— ¥x) + (773_77>k_1/2 (V% —%-—1)} : (3.aj61)

Apy = prt1/2 — Pr—1/2- (3.a2.62)

The choice of definitions for the vertical velocity at interfaces is not crucial to the energy
conservation (although not completely arbitrary), and we shall defer its definition until
later. The vertical advection of temperature is not required to use (3.a.61) in order to
conserve mass or energy. Other constraints can be imposed that result in different forms
for temperature advection, but we will simply use (3.a.61) in the system described below.

The last two terms in (3.2.60) contain the conversion between kinetic and internal
(potential) energy and the form drag. Neglecting the transport terms, under assumption
that global integrals will be taken, noting that Vp = ZZEVII, and substituting for the

p 67r
geopotential using (3.a.40), (3.a.60) can be written as:
0 (0p dp w Op
E)=- V.
5 (3n2) = -mr5v- (552
" (1)
- ?BV Vo, — éj)BV \% RT7TdInp+ ... (3.a.63)
on on (n)

The second term on the right-hand side of (3.a.63) is a source (form drag) term that can
be neglected as we are only interested in internal conservation properties. The last term
on the right-hand side of (3.a.63) can be rewritten as

p(1) p(1)
Oy v/ Rlenp=v-{@V/ R’lenp}
an p(n) O Jpm)
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op p(1)
-V ( V) / RT7dInp. (3.a.64)
on - J Jow

The global integral of the first term on the right-hand side of (3.a.64) is obviously zero, so
that (3.a.63) can now be written as:

9 (@E) = —RTap (” apvn)

ot \ dn on
op p(1)
+V- < V) RTdlnp+ ... (3.a.65)
on p(n)

We now turn to the internal energy equation, obtained by combining the
thermodynamic equation (3.a.35), without the Q, Fr,, and Fr, terms, and the continuity
equation (3.a.59):

5 (dp . dp . 9 (op . .
8t<a T) v (ancpTV) 51 (an%T”)
8pw
anp’

As in (3.a.60), the first two terms on the right-hand side are advection terms that can be
neglected under global integrals. Using (3.a.16), (3.a.66) can be written as:

9 <3p *T) rT%2v ("apvn>

+R (3.0.66)

ot \on P on po ,
-RTapl/ V- (QBV> dn + ... (3..67)
onp Jy, on

The rate of change of total energy due to internal processes is obtained by adding
(3.2.65) and (3.a.67) and must vanish. The first terms on the right-hand side of (3.a.65)
and (3.a.67) obviously cancel in the continuous form. When the equations are discretized
in the vertical, the terms will still cancel, providing that the same definition is used for
(1/p 8p/07)i in the nonlinear terms of the vorticity and divergence equations (3.a.38) and
(3..39), and in the w term of (3.2.35) and (3.a.42).

The second terms on the right-hand side of (3.4.65) and (3.a.67) must also cancel
in the global mean. This cancellation is enforced locally in the horizontal on the column
integrals of (3.a.65) and (3.a.67), so that we require:

1 P(1)
/{v (apv) Rlenp}dn
n4 on p(n) _
1 8p1/” 8p ;
- RT—==[ v.-(z=V d’}d. 3.0.68
/m{ onp Jy, (877’ ) Ty (3.0.68)
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The inner integral on the left-hand side of (3.2.68) is derived from the hydrostatic equation
(3.a.40), which we shall approximate as

K
O, =9, + RZHkﬂZ,

=k
K
=&, +RY HuTe, (3.a.69)
, £=1.
®=&,1+RHT, (3.2.70)

where Hyp, = 0 for £ < k. The quantity 1 is defined to be the unit vector. The inner
integral on the right-hand side of (3.4.68) is derived from the vertxcal velocity equation
(3.a.42), which we shall approximate as

(f) =(EQ?.) V, - VII
j pom/,

- ; Cre [5gApg +7 (Ve VID A (gﬁ ) } (3.a.71)

where Crp = 0 for £ > k, and Cy, is included as an approximation to 1/py for £ < k
and the symbol A is similarly defined as in (3.2.62). Cke will be determined so that w is
consistent with the discrete continuity equation following Williamson and Olson (1994).
Using (3.2.69) and (3.a.71), the finite difference analog of (3.a.68) is

K

1 : dp
> {Zn—k [5k4pk + 7 (Vi VI A (aﬂu RZHkﬂz} A

k=1

K ‘ N
_ Apy ap |
= ’; {Rﬂ Z Che [5@Ape +7(Ve-VII)A <8”)e] } Ang,(3.a.72)

where we have used the relation V- V(0p/0n)x = [6xApx + 7 (Vi - VII) A (Op/d7), )/ Ank
(see 3.a.22). We can now combine the sums in (3.a.72) and simplify to give

,; ; { [5kApk +7(Vi-VI)A (gﬁ)k] Hkﬂz}

{[&Ape—}-w(vz VII) A (gi ) JAkakﬂ}c}. (3.2.73)

Interchanging the indexes on the left-hand side of (3.4.73) will obviously result in identical
expressions if we require that

er = CekApg. (3.a.74)
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Given the definitions of vertical integrals in (3.a.70) and (3.a.71) and of vertical
advection in (3.a.61) and (3.2.62) the model will conserve energy as long as we require
that C and H satisfy (3.a.74). We are, of course, still neglecting lack of conservation due
to the truncation of the horizontal spherical harmonic expansions.

Horizontal fiiﬁusion

CCM3 contains a horizontal diffusion term for T,(, and § to prevent spectral
blocking and to provide reasonable kinetic energy spectra. The horizontal diffusion
operator in CCM3 is also used to ensure that the CFL condition is not violated in the
upper layers of the model. The horizontal diffusion is a linear V2 form on 7 surfaces in the
top three levels of the model and a linear V* form with a partial correction to pressure
surfaces for temperature elsewhere. The V? diffusion near the model top is used as a
simple sponge to absorb vertically propagating planetary wave energy and also to control
the strength of the stratospheric winter jets. The V?2 diffusion coefficient has a vertical
variation which has been tuned to give reasonable Northern and Southern Hemisphere
polar night jets.

In the top three model levels, the V2 form of the horizontal diffusion is given by

Foy =KD [V2(C+ f)+2(¢C+f) /o], | (3.0.75)
' Fy, = KO [V 1 2(6/a%)], (3.0.76)
Fr, = K®V°T. (3.0.77)

Since these terms are linear, they are easily calculated in spectral space. The
undifferentiated correction term is added to the vorticity and divergence diffusion
operators to prevent damping of uniform (n = 1) rotations (Orszag, 1974; Bourke et
al., 1977). The V2 form of the horizontal diffusion is applied only to pressure surfaces in
the standard model configuration.

The horizontal diffusion operator is better applied to pressure surfaces than to
terrain-following surfaces (applying the operator on isentropic surfaces would be still
better). Although the governing system of equations derived above is designed to reduce
to pressure surfaces above some level, problems can still occur from diffusion along the
lower surfaces. Partial correction to pressure surfaces of harmonic horizontal diffusion
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(0€/0t = KV2£) can be included using the relations:

0
(3.0.78)

0 0 0?
Vi =ViE—p= 'szlnp 2V, o8 - Vap + fvz
Op Bp 0%p
Retaining only the first two terms above gives a correction to the 7 surface diffusion which
involves only a vertical derivative and the Laplacian of log surface pressure,

Vit = Vit - gf) gp V2 +. (3.4.79)

Similarly, biharmonic diffusion can be partially corrected to pressure surfaces as:

.08 9p
: ~ ===V 3.a.80
V¢ = vi € 8p p —V°II+. (3.2.80)
The bi-harmonic V4 form of the diffusion operator is applied at all other levels (generally

throughout the troposphere) as

Feu = =K@ [V4(C+ 1) = (¢ + 1) (2/a%)7)], (3.0.81)
Fs, = —K® [v4 - 5(2/a?)?], (3.0.82)
BT Op
— _K® |gir _
Fr, =-KWY [v T o (%V"H] (3.a.83)’

The second term in Fr, consists of the leading term in the transformation of the V*
operator to pressure surfaces. It is included to offset partially a spurious diffusion of T
over mountains. As with the V2 form, the V* operator can be conveniently calculated in
spectral space. The correction term is then completed after transformation of T and V4II
back to grid—point space. As with the V? form, an undifferentiated term is added to the
vorticity and divergence diffusion operators to prevent damping of uniform rotations.

Finite difference equations

It will be assumed that the governing equations will be solved using the spectral
method in the horizontal, so that only the vertical and time differences are presented
here. The schematic dynamics term I' in equation (2.a.3a) includes horizontal diffusion
of T, (( + f), and 4. Only T has the leading term correction to pressure surfaces. Thus,
equations that include the terms in this time split sub-step are of the form
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O

5¢ =Dy (®) - (1)’ K*Vy, (3.0.84)
for ((+ f) and 4, and
orT N . 8T Op ..
—_— = — (—1)¢ g (20) 20 _ YT HH o a.
57 = Dyn(T) - (-1)'K {V,,T "ap or " H}, (3.2.85)
where ¢ = 1 in the top few model levels and ¢ = 2 elsewhere (generally within the

troposphere). These equations are further subdivided into time split components:

Pt = ¢! + 2A¢ Dyn (", y", 9"t (3.a.86)
,‘/)* — wn-}-l — 2AtL (_l)zK(2z)v7271 (w*n-*—l) ’ (30:87)
P = g, (3.a.88)
for ((+ f) and 4, and
T+ = 77! + 2At Dyn (T, 77, T771) | (3.0.89)
T* = T — 2A¢ (—1) K@DW2ig(T*) | (3.a.90)
T = T* + 2AL (1) K®q 9T 9p oy (3.0.91)

dp Orm ’
for T', where in the standard model ¢ only takes the value 2 in (3.a.91). The first step
from ()*7! to ()™*! includes the transformation to spectral coefficients. The second
step from ( )" to (*)**! for & and ¢, or ( )**! to ( )* for T, is done on the spectral
coefficients, and the final step from ( )* to (") for T is done after the inverse transform
to the grid point representation.

The following finite-difference description details only the forecast given by (3.a.86)

and (3.2.89). In what follows we use ( )"~ ' instead of U"_l from (2.a.8). This notation
is convenient for discussing the dynamical equations in isolation. The finite-difference
form of the forecast equation for water vapor will be presented later in Section 3c. The
general structure of the complete finite difference equations is determined by the semi-
implicit time differencing and the energy conservation properties described above. In
order to complete the specification of the finite differencing, we require a definition of the
vertical coordinate. The actual specification of the generalized vertical coordinate takes
advantage of the structure of the equations (3.a2.33) —(3.a.42). The equations can be finite-
differenced in the vertical and, in time, without having to know the value of n anywhere.

The quantities that must be known are p and dp/07 at the grid points. Therefore the
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coordinate is defined implicitly through the relation:

p(n,m) = A(n)po + B(n)m, (3.0.92)
which gives
9p
I = B(n). (3.a.93)

A set of levels 7, may be spec1ﬁed by specifying A, and By, such that o, = Ak + By, and
difference forms of (3.a.33) — (3.a.42) may be derived.

The finite difference forms of the Dyn operator (3.a.33) — (3.a.42), including semi-
1mphc1t time integration are:

" ="+ 248k - Vx (07 cos @), (3.0.94)

onHl = gl oAt v [ - (n"/cos ¢p) — V? <E_n + ‘I)sl-!-RHn(I,)n)]

— 2AtRH™V? ((I‘,)TH I (_I')")

2

: n—1 n+1
“ AR + 1)V (n___%n__ - nn) , (3.0.95)
i ! 1 6 ]. a
n+1l __ n—-1 _ Tl 4 n !
(Z) _(I) 24 [acossza)\ (ﬂ) acos¢8¢ H) ’F‘]
n—1 n+-1 )
—OAtDT (Q———;A— - gn> , | (3.2.96)
It = -t — 2At7ri ((én)T %n + (—Yn)T VHnﬂ'nA—B)
5n 1 + 6'n+1 n T 1 .
— 2At (--2——-— — 6 ) A, (3.2.97)

10p 10l
(nv), =+ F) Vi — RTx (paw)k'ﬁaa

1 .8p> (.819) '
- — Uky1 —Uk) + | 1= U — Ug- 3.a.98
s | (150, o =00+ (15E) W=t (sa09
+(FU)kv

10 oIl
(nw)e == G+ NV~ RT: (332 ) <2270
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1 ap) (.3p>
- Vie1 = Vi) + [ = Vi — Viee 3..99
a | (130),,.,, B =0+ (igh) | (h=View)| Gaso)
+ (Fv),, ,
@ (3,
Ty = T/6k + ——
k LYk (C;)k Q
ap) <.<9p) |
—= T, Te) + | = Ty — Tr-1)| , (3.2.100
e [(nan T (ig) BT Geto)
By = (w)® + (w)?, (3.0.101)
™ ! '
E;ri B Ti + s : (3.2.102)
(ch)x 1+ (_m - 1) a
) Bk+1/22[5gApg+Vg WVHAB@]
k+1/2 =1
k
~ Y [6eApe+ Vi - 7VIIAB], (3.a.103)
=1
(‘.‘f) :(l?ﬂ) V- 7VII
p/y \porm/,
k
— > Cre[6eApe + Vi - TVIIABy], (3.0.104)
=1
L forl<k '
Cre =4 % , | 3.2.105
{zp%k for £ =k ( )
Hye =CorApy, (3.0.106)
R

Dy = APZE‘TI: Cox
P
A '
=P (T% — Ti_1) (ene+1 — Bi—12)

2Ap;,
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APy (mw r
+ 2—&-1';%; (Tk+1 - Tk) (Ckg - Bk+1/2) , (30107)

exe 1, £<k
L {o, Sy (3.0.108)

where notation such as (_(_J_I_’)n denotes a column vector with components (UpT})". In
order to complete the system, it remains to specify the reference vector A", together with
the term (1/pdp/0), which results from the pressure gradient terms and also appears in
the semi-implicit reference vector b":

).~ (). (55) =5

— = — — = —, 3.a2.109

(pc?‘?r o \PJp\OT /) i ( )
=1, (3.a.110)
R" =0.  (3.a.111)

The matrices C™ and H" (i.e., with corﬁponents Cre and Hyy) must be evaluated at
each time step and each point in the horizontal. It is more efficient computationally to
substitute the definitions of these matrices into (3.a.95) and (3.a.104) at the cost of some
loss of generality in the code. The finite difference equations have been written in the
form (3.a.94) — (3.a.111) because this form is quite general. For example, the equations
solved by Simmons and Striifing (1981) at ECMWF can be obtained by changing only the
vectors and hydrostatic matrix defined by (3.2.108) — (3.a.111).

b. Spectral Transform

The spectral transform method is used in the horizontal exactly as in CCML.
As shown earlier, the vertical and temporal aspects of the model are represented by
finite-difference approximations. The horizontal aspects are treated by the spectral-
transform method, which is described in this section. Thus, at certain points in the
integration, the prognostic variables (( + f),d,T, and II are represented in terms of
coefficients of a truncated series of spherical harmonic functions, while at other points
they are given by grid-point values on a corresponding Gaussian grid. In general, physical
parameterizations and nonlinear operations are carried out in grid—point space. Horizontal
derivatives and linear operations are performed in spectral space. Externally, the model
appears to the user to be a grid-point model, as far as data required and produced
by it. Similarly, since all nonlinear parameterizations are developed and carried out in
grid—point space, the model also appears as a grid-point model for the incorporation
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of physical parameterizations, and the user need not be too concerned with the spectral
aspects. For users interested in diagnosing the balance of terms in the evolution equations,
however, the details are important and care must be taken to understand which terms
have been spectrally truncated and which have not. The algebra involved in the spectral
transformations has been presented in several publications (Daley et al., 1976; Bourke
et al., 1977, Machenhauer, 1979). In this report, we present only the details relevant to
the model code; for more details and general philosophy, the reader is referred to these
earlier papers.

Spectral algorithm overview

The horizontal representation of an arbitrary variable 1 consists of a truncated
series of spherical harmonic functions,
M N(m)
v = D Y YRPR(we™, (3.6.1)
m=—M n=|m]|
where 4 = sing, M is the highest Fourier wavenumber included in the east-west
representation, and A (m) is the highest degree of the associated Legendre polynomials
for longitudinal wavenumber m. The properties of the spherical harmonic functions used
in the representation can be found in the review by Machenhauer (1979). The model
is coded for a general pentagonal truncation, illustrated in Figure 2, defined by three
parameters: M, K, and N, where M is defined above, K is the highest degree of the
associated Legendre polynomials, and N is the highest degree of the Legendre polynomials
for m = 0. The common truncations are subsets of this pentagonal case:

Triangular: M = N = K,
Rhomboidal : K = N + M, (3.6.2)
Trapezoidal : N = K > M.

The quantity A (m) in (3.b.1) represents an arbitrary limit on the two-dimensional
- wavenumber n, and for the pentagonal truncation described above is simply given by
N (m) = min (N + |m], K).

The associated Legendre polynomials used in the model are normalized such that

[ prerdu=t (3.6:3)

-1

With this normalization, the Coriolis parameter f is
Q

= ——— P?, 3.b.4

1= Joam | (3.0:4)

which is required for the absolute vorticity.
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Figure 2. Pentagonal truncation parameters

The coefficients of the spectral representation (3.5.1) are given by

1 27
m 1 —im m
Y = / py / YA, w)e™ AP (1) dps. (3.5.5)
_ -1 4T Jo _ :
The inner integral represents a Fourier transform,
. 1 27 —im
Yr) = oo [ B weT A, (3.0.6)
T Jo

which is performed by a Fast Fourier Transform (FFT) subroutine. The outer integral is
performed via Gaussian quadrature,

J
Y=Y ™ (i) P (), (3.6.7)
i=1

where 1; denotes the Gaussian grid points in the meridional direction, w; the Gaussian
weight at point u;, and J the number of Gaussian grid points from pole to pole. The
Gaussian grid points (u;) are given by the roots of the Legendre polynomial Py(u), and
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the corresponding weights are given by

2(1 — p?
[J Pr_1(p;)]
The weights themselves satisfy
v 7 ,
D w;=20. (3.6.9)
j=1

The Gaussian grid used for the north-south transformation is generally chosen
to allow un-aliased computations of quadratic terms only. In this case, the number of
- Gaussian latitudes J must satisfy

J>@N+K+M+1)/2 for M <2(K~-N), (3.5.10)
J> (K +1)/2 for M > 2(K — N). (3.b.11)

For the common trunéations, these become
J>BK+1)/2 for triangular and trapezoidal, (3.5.12)
J>BN+2M+1)/2 for rhomboidal. (3.6.13)

In order to allow exact Fourier transform of quadratic terms, the number of points P in
the east-west direction must satisfy

P>3M+1 . v (3.b.14)

The actual values of J and P are often not set equal to the lower limit in order to allow
use of more efficient transform programs.

Although in the next section of this model description, we continue to indicate
the Gaussian quadrature as a sum from pole to pole, the code actually deals with the
symmetric and antisymmetric components of variables and accumulates the sums from
equator to pole only. The model requires an even number of latitudes to easily use the
symmetry conditions. This may be slightly inefficient for some spectral resolutions. We
define a new index, which goes from —17 at the point next to the south pole to +I at the
point next to the north pole and not ihcluding 0 (there are no points at the equator or pole
in the Gaussian grid), i.e., let I = J/2and ¢ =j—J/2for j > J/24+1andi=j—J/2—1
for j < J/2; then the summation in (3.5.7) can be rewritten as

I

=D ™ () P () wi. (3.5.15)
i=—T
i#0
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The symmetric (even) and antisymmetric (odd) components of ™ are defined by
m_Ll,om m
(Il/)E)z = '2‘ (wz + ¢—i) )
(3.5.16)
(Yo)i* = (?J)m — 7).

Since w; is symmetric about the equator, (3.b.15) can be rewritten to give formulas for
the coeflicients of even and odd spherical harmonics:

Z W) (ui) P (u;)2w; for n — m even
Y = S - (3.6.17)

ZLJ (Wo):" (1) P™(wi)2w; for n —m odd .

\ i=1

The model uses the spectral transform method (Machenhauer, 1979) for all
nonlinear terms. However, the model can be thought of as starting from grid-point
values at time ¢ (consistent with the spectral representation) and producing a forecast
of the grid-point values at time ¢ + At (again, consistent with the spectral resolution).
The forecast procedure involves computation of the nonlinear terms including physical
parameterizations at grid points; transformation via Gaussian quadrature of the nonlinear
terms from grid-point space to spectral space; computation of the spectral coefficients of
the prognostic variables at time ¢ + At (with the implied spectral truncation to the model
resolution); and transformation back to grid-point space. The details of the equations
involved in the various transformations are given in the next section.

Combination of terms .

In order to describe the transformation to spectral space, for each equation we
first group together all undifferentiated explicit terms, all explicit terms with longitudinal
derivatives, and all explicit terms with meridional derivatives appearmg in the Dyn
operator. Thus, the vorticity equation (3.a.94) is rewritten

1 0 0

¢+ f)n+1 =V+ m E'X(M)\) -(1- ,Uaz)a—“(lﬂ) , (3.5.18)

where the explicit forms of the vectors V, V,, and V,, are given in Appendix A [(Al)-
(A3).] The divergence equation (3.a2.95) is
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1 5‘
n+l _

_ Atv2(RHrI_/n+l + R(Qr _*_br) Hn+1).

/1‘2) —(—-u,
on (3.5.19)

The mean component of the temperature is not included in the next-to-last term since
the Laplacian of it is zero. The thermodynamic equation (3.a.96) is

1 3} 0
T'"H=7T - T — — AtD" 6™ 3.5.20
T = T e | ST 4 (- i) (L) (8620)
The surface—pressure tendency (3.a.97) is
n+t = ps — ﬁ (ap")T 6™+ (3.5.21)

The grouped explicit terms in (3.5.19)—(3.b. 21) are all given in Appendix A [(A4)-(A1l)].

Transformation to spectral space

Formally, Equations (3.0.18) — (3.b.21) are transformed to spectral space by
performing the operations indicated in (3.5.22) to each term. We see that the equations
basically contain three types of terms, for example, in the vorticity equation the
undifferentiated term V, the longitudinally differentiated term V,, and the meridionally
differentiated term V. All terms in the original equations were grouped into one of these
terms on the Gaussian-grid so that they could be transformed at once.

Transformation of the undifferentiated term is obtained by straightforward
application of (3.b.5) — (3.5.7),

J
(Vi = Z V™ () P (g Jwj, (3.0.22)

where V™(u;) is the Fourier coefﬁc1ent of V with wavenumber m at the Gaussian grid
line p;. The longitudinally differentiated term is handled by integration by parts, using
the cyclic boundary conditions,

0 ™ aVA —zm)\
{’zﬁ(-\"‘)} 27r R

1 2n .
= tm— / Ve tmAdA,
2n J,
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so that the Fourier transform is performed ﬁrstb, then the differentiation is carried out in
spectral space. The transformation to spherical harmonic space then follows (3.5.25):

1 90 Pr(u) »
{( (2) O —*} ‘mZ—A “])wj, (3.6.24)

where VY"(u;) is the Fourier coefficient of V, w1th wavenumber m at the Gaussian grid
line p;.

The latitudinally differentiated term is handled by integration by parts using zero
- boundary conditions at the poles:

{a(l . ©2) (1- “2)58;(_‘(41)} =/ ———1—'—(1 - MZ)%(MM)mP;nd”’

- —1a(1 - p?)
(3.0.25)
L | dpPm
—— - (V. ™(] - 2 n
e s
Defining the derivative of the associated Legendre polynomial by
dP™
= (1 — p2)—n_ b.2
(-5, (3.6.26)
(3.5.28) can be written
1 9 " Hy (1)
—_— (1 - )=V } = - V)™ =Rl gy 3.0.27
{a(l _ MZ)( I )au(——u) . J;(_p) a(l _ u?) J ( )

Similarly, the V? operator in the divergence equation can be converted to spectral space
by sequential integration by parts and then application of the relationship

. vngt(u)eim/\ — —-(—Z—tl_)Pm( Je zm/\, (3.5.28)

to each spherical harmonic function individually so that

(vDoyy = D ZD’” P2 (), (3.6.29)

n

where DT (u) is the Fourier coeflicient of the orlgmal grid variable DV

Solution of semi-implicit equations

The prognostic equations can be converted to spectral form by summation over the
Gaussian grid using (3.6.22), (3.b.24), and (3.5.27). The resulting equation for absolute
. vorticity is

(C+ )™ =Vsy, | (3.5.30)

n

where (¢ + f):‘ denotes a spherical harmonic coefficient of (¢ + f)"*', and the form of

VST, as a summation over the Gaussian grid, is given in Appendix A (A12).
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The spectral form of the divergence equation (3.5.19) becomes

(n+1)[

&7 = DS + At RE'T/™ + R(Y + 1) TI7], (3.6.31)

where ¢, T'™, and II™ are spectral coefficients of §"*!, T'"*! and II"*!. The
Laplacian of the total temperature in (3.5.19) is replaced by the equivalent Laplacian
of the perturbation temperature in (3.5.31). DS’ is given in Appendix A (A13). The
spectral thermodynamic equation is

T/™ = TSP — AtD'87, - (3.6.32)
with TS defined in Appendix A (A14), while the surface pressure equation is
= PST — 6™ (Ap")” %t- (3.5.33)

where PS]' is also given in Appendix A (A15).

.Equation (3.5.30) for vorticity is explicit and complete at this point. However,
the remaining equations (3.5.31)—(3.5.33) are coupled. They are solved by eliminating all
variables except 07

An5™ = DS™ + At(—“—l) [RE'(TS)™ + R (¥ + h7) (PS)™], (3..34)
where
A, =1+ a2 D) Toernr L R 407 (A Nt 1 b
n=1+ t——a—z—- +R(@" +4R") (p e N R (3.6.35)

which is simply a set of K simultaneous equations for the coefficients with given
wavenumbers (m,n) at each level and is solved by inverting A,. In order to prevent
the accumulation of round—off error in the global mean divergence (which if exactly zero
initially, should remain exactly zero) (Ao)~" is set to the null matrix rather than the
identity, and the formal application of (3.b.34) then always guarantees §7 = 0. Once §™
is known, T," and II™ can be computed from (3.5.32) and (3.5.33), respectively, and all
prognostic variables are known at time n+1 as spherical harmonic coeflicients. Note that
the mean component I is not necessarily zero since the perturbations are taken with
respect to a specified 7.

Horizontal diffusion

As mentioned earlier, the horizontal diffusion in (3.2.87) and (3.a.90) is computed
implicitly via time splitting after the transformations into spectral space and solution of
the semi-implicit equations. In the following, the ¢ and & equatlons have a similar form,
so we write only the § equation:

(67 = (6™+1)7 = (~1) 24¢K @) [9% (87 - (=1) (67 (2/a%)'], (3.0:36)

(T2 = (T — (=1)° 28tK@) [v2 (T*)7] . (3.5.37)
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The extra term is present in (3.6.36), (3.5.40) and (3.0.42) to prevent damping of
uniform rotations. The solutions are just

(6w = K3 (8) (67, (3.5.38)
(T)m = K& (T) (T, (3.5.39)
K2 (8) = {1 +2AtD, K@ [(("—a:l—)) - 525] }_1_ : (3.5.40)
K® (T) = {1 +2AtD, K® (”(—Z}ﬁ) }_1 ,  (3.5.41)
KM (6) = {1 + 2AtD, K@ [(-"—(—’g—l—))z - ;—4} } , (3.0.42)
KW (T) = { | 4 2AtD, K@ <?~%i1—))2}— . (3.5.43)

K& (6) and K (6) are both set to 1 for n = 0. The quantity D,, represents the “Courant
number limiter”, normally set to 1. However, D,, is modified to ensure that the CFL
criterion is not violated in selected upper levels of the model. If the maximum wind speed
in any of these upper levels is sufficiently large; then D, = 1000 in that level for all
n > n., where n, = aAt / max |V|. This condition is applied whenever the wind speed is
large enough that n. < K, the truncation parameter in (3.5.2), and temporarily reduces
the effective resolution of the model in the affected levels. The number of levels at which
this “Courant number limiter” may be applied is user-selectable, but it is only used in the
top level of the 18 level CCM3 control runs.

The diffusion of T" is not complete at this stage. In order to make the partial
correction from 7 to p in (3.a.81) local, it is not included until grid—-point values are
available. This requires that V*II also be transformed from spectral to grid-point space.
The values of the coefficients K?) and K* for the standard T42 resolution are 2.5 X
10°m2sec™! and 1.0 x 10*%m?*sec™, respectively.

Initial divergence damping

Occasionally, with poorly balanced initial conditions, the model exhibits numerical
instability during the beginning of an integration because of excessive noise in the solution.
Therefore, an optional divergence damping is included in the model to. be applied over the
first few days. The damping has an initial e-folding time of At and linearly decreases to
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0 over a specified number of days, ¢tp, usually set to be 2. The damping is computed
implicitly via time splitting after the horizontal diffusion.

T = max [—A}—i(tp —t)/tp, O:l | (3.0.44)
(67 = Ty (670 (3..45)

Transformation from spectral to physical space

After the prognostic variables are completed at time n + 1 in spectral space
((C + f)* ) &, (TN, (H"‘H) they are transformed to grid space. For a

variable 1, "the transformation is given by

M N{(m)
vy = ) [Z PP (1 (3.5.46)
m=—M |n=|m|

The inner sum is done essentially as a vector product over m, and the outer is again
performed by an FFT subroutine. The term needed for the remainder of the diffusion
terms, V*II, is calculated from

M N(m)
V4Hn'+1 — Z [ Z (P._(T;_j}_).)2 (Hn+1):‘ P,T(u)} eim)\. (3.b.47)
m=—M | n=|m| ’

In addition, the derivatives of IT are needed on the grid for the terms involving VII and
V. VII,

1 II
[ U S
These required derivatives are given by -
Il M N(m) '
5 = S im | Y TRPR(w)| €™, (3.5.49)
) m=-M n={m|
and using (3.5.26),
A-wgr= 2 [Z HTH,T(M)} e, (3.6.50)
m=—M | n=|m|

which involve basically the same operations as (3..47). The other variables needed on
the grid are U and V. These can be computed directly from the absolute vorticity and
divergence coefficients using the relations

———Yn + I (3.b.49)
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nn+1) .,

in which the only nonzero f* is f{ = Q/+/.375, and
lox (1-p)0y

g

U= Y 2 on (3.0.53)
10w, (1-)0x
| V= MY + e oy (3.0.54)
Thus, the direct transformation is
M N(m) im 1 R
m m m m m
- Yo [ oSSR () — s G+ DRHD G ¢
a £
— ———__H°, 3.b.53
20375 ( )
M N(m) ] 1 A
mPMp) + —=IO0  H tmA (3.5.56
-~ Y ;l[ IS¢ DRI + R H )| (350

The horizbntal diffusion tendencies are also transformed back to grid space. The
spectral coefficients for the horizontal diffusion tendencies follow from (3.6.36) and (3.5.37):

Fr, (T*)" = (-1)"" K% [v2 (1)), (3.6:57)
Feo (C+ DT = (-1)" K% {v% €+ £ = (=) ¢+ (2/a2)“'} , (3.6.58)

Foy (87 = (~1) K* {v?i (6*) — (—1) 6* (z/az)"} . (3.5.59)

using ¢ = 1 or 2 as appropriate for the V2 or V* forms. These coefficients are transformed
to grid space following (3.b.1) for the T term and (3.6.55) and (3.5.56) for vorticity
and divergence. Thus, the vorticity and divergence diffusion tendencies are converted
to equivalent U and V diffusion tendencies.

Horizontal diffusion correction

After grid-point values are calculated, frictional heating rates are determined from
the momentum diffusion tendencies and are added to the temperature, and the partial
correction of the V* diffusion from 7 to p surfaces is applied to T. The frictional heating
rate is calculated from the kinetic energy tendency produced by the momentum diffusion

Fp, = —u"'F,, (") /ct — v"~'F,, (v*)/c,  (3.5.60)
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where F,,,, and F,,, are the momentum equivalent diffusion tendencies, determined from
F¢, and Fj, just as U and V are determined from ¢ and 6, and

: c
r=cp 1+ | 22 —1) g, 3.b.61
s=o ()] 01
These heating rates are then combined with the correction, :
. T
TPt = T + (2AtFp,,), + 24t (w%p—) K®win+t, (3.5.62)
k

The vertical derivatives of T* (where the * notation is dropped for convenience) are defined
by

oT
<WB_5;> 2Ap1 [B” (T3 _Tl)] ’

oT
BZ= Biyr (Ter1 — Tk) + Bz (Ti — Te1)|
<7r 6p) 2Apk[ ey Towr = T) + Biy (T = T 1)] (3.6.63)

(WB%) 2ApK [B x-} (Tre =Tk 1)}

The corrections are added to the diffusion tendencies calculated earlier (3.5.57) to

give the total temperature tendency for diagnostic purposes:
. T
Fry (T")x = Fr, (T*)i + (2AtFp,, ), + 2AtBy, (77%;—) K@yt (3.5.64)
k

¢. Semi-Lagrangian Transport

The forecast equation for water vapor specific humidity and constituent mlxmg _
ratio in the 7 system is from (3.a.36) excluding sources and sinks.

dg _ 9q dp 0q

prialvies +V.Vq +773 Bp =0 | (3.¢.1)
or ‘

dg _ Oq dq ,

G-tV Vatig =0 (3.c.2)

Equation (3.c.2) is more economical for the semi-Lagrangian vertical advection, as An
does not vary in the horizontal, while Ap does. Written in this form, the 5 advection
equations look exactly like the o equations.

These are the necessary equations for the time split subset (2.a.3b). For simplicity,
in this section we will use the notation adopted in the previous section, i.e., ( )”_1 for
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( )7 of (2.a.3b) and ( )**! for (*)T. Thus, the tendency sources have already been added
to the time level labeled (n — 1) here. The semi-Lagrangian advection step (2.a.30) is
further subdivided into horizontal and vertical advection sub-steps, which, in an Eulerian
form, would be written '

¢* =q" "+ 2At (V- V)" (3.¢.3)
and
"t = g* + 2At 7'7@— ) (3.c.4)
5 ) .C.
In the semi-Lagrangian form used here, the general form is
¢* =Ly, (¢"71), (3..5)
"t =L, (¢"). (3.c.6)

Equation (3.c.5) represents the horizontal interpolation of g”~! at the departure point
calculated assuming 7 = 0. Equation (3.c.6) represents the vertical interpolation of ¢* at
the departure point, assuming V = 0.

The horizontal departure points are found by first iterating for the mid-point of the
trajectory, using winds at time n, and a first guess as the location of the mid-point of the
previous time step

AL — 34— Atu™ (N, %) Jacos oy, (3.c.7)

ol = o4 — At™ (N, %) /a, : (3.c.8)
where subscript A denotes the arrival (Gaussian grid) point and subscript M the midpoint
of the trajectory. The velocity components at (A%, ¢%,) are determined by Lagrange cubic
interpolation. For economic reasons, the equivalent Hermite cubic interpolant with cubic
derivative estimates is used at some places in this code. The equations will be presented
later.

Once the iteration of (3.c.7) and (3.c.8) is complete, the departure point is given
by
Ap = Ag — 2Atu" (/\M,(pM) /aCOS(pM, (3.6.9)

©p = Aa — 2A10" (Am, om) /a, (3.c.10)

where the subscript D denotes the departure point.
The form given by (3.c.7) — (3.¢.10) is inaccurate near the poles and thus is only
used for arrival points equatorward of 70° latitude. Poleward of 70° we transform to

a local geodesic coordinate for the calculation at each arrival point. The local geodesic
coordinate is essentially a rotated spherical coordinate system whose equator goes through
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the arrival point. Details are provided in Williamson and Rasch (1989). The transformed
system is rotated about the axis through (A4 — %,0) and (A4 + %,0), by an angle w4 so
the equator goes through (A4, pa). The longitude of the transformed system is chosen
to be zero at the arrival point. If the local geodesic system is denoted by (', '), with
velocities (u',v’), the two systems are related by

sin ¢’ = singcosds — cospsindacos (Aa — A), (3.c.11)
sin ¢ = sin ¢’ cos ¢4 + cos ¢’ sin/ 4 cbs N (3.c.12)
sin\' cos¢’ = —sin(Ag — A)cos ¢ , (3.c.13)

v’ cos @’ = v[cosdcosda +sin@singa cos (Ag — A)]
—usingasin(Ag — A), (3.c.14)

v cos X — v’ sin N sing’ = ucos(Ag — A\) +vsingsin(Ag — A) . (3.c.15)
The calculation of the departure point in the local geodesic system is identical to (3.¢.7) —
(3.¢.10) with all variables carrying a prime. The equations can be simplified by noting that

(M4, ¢'4) = (0,0) by design and v’ (X, ¢s) = u(Aa,pa) and v/ (N, ¢Y) = v(Aa, 0a).
The interpolations are always done in global spherical coordinates.

The interpolants are most easily defined on the interval 0 < 6 < 1. Define
0 = (zp —z:i) [ (Tip1 — i), (3.c.16)
where z is either A or ¢ and the departure point zp falls within the interval (z;, z;y1).

Following (23) of Rasch and Williamson (1990) with r; = 3 the Hermite cubic interpolant
is given by '

ap =qi+1[3—2016° —dip1 [hi6® (1 - 9)]

+q[3-201-0)]1-0)*+d; [hi9 (1- 9)2] (3.c.17)

where ¢; is the value at the grid point z;, d; is the derivative estimate given below, and
hi = Ti41 — Ty ’

Following (3.2.12) and (3.2.13) of Hildebrand (1956), the Lagrangian cubic
polynomial interpolant used for the velocity interpolation, is given by

2

fo = D & (@D) fit; (3.c.18)

j=-1
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where

(.’I)D - :L‘i_l) “e (l‘D - xi-i—j—l) (.’L‘D - .’Ili+j+1) e (:ED - l'z'+2)
Tigj = Tiv1) - (Tidg — Tij=1) (Titj = Titjt1) - - (Tigj — Tia)

t(wp) = | (3..19)

where f can represent either w or v, or their counterparts in the geodesic coordinate
system.

The derivative approximations used in (3.c.17) for ¢ are obtained by differentiating
(3.c.18) with respect to zp, replacing f by g and evaluating the result at zp equal z; and
Ti+1. With these derivative estimates, the Hermite cubic interpolant (3.c.17) is equivalent
to the Lagrangian (3.c.18). If we denote the four point stencil (i1, Ti, Tig1, Tig2) Dy
(1,2, 3,4, ) the cubic derivative estimates are

o= e e ey |

ry — SL‘z) (.’Bl - .’123) (331 — T4

- 1 _ 1 _ 1 ]
(z1—22)  (z2—23) (22—24) . (3.c.20)
N K
| (z1 — z3) (T2 — 23) (T3 — T4)
[ (m2~31) (22 — z3) ] q
(1 — z4) (2 — 4) (T3 — T4)
and
(z3 = 22) (z3 — z4)
ds = (:1:1 - 1?2) (:Ul - 133) (-'El - 334) :| o
_ [ (z3 — 1) (z3 — z4) ] %
:(331 = 3) (22 — x3) (?2 — &4) (3.c.21)

R S S ]
(@1 —23) (@2 —2a) (z3—124)| ©

(z3 — z1) (z3 — 22) } .
| (z1 ~ 24) (22 — 24) (3 — Z4)

The two dimensional (), ¢) interpolant is obtained as a tensor product application
of the one-dimensional interpolants, with A interpolations done first. Assume the
departure point falls in the grid box (A;, Aiy1) and (i, p;+1). Four X interpolations are
performed to find g values at (Ap,¢;-1),(AD,®;), (Ap,¢j+1), and (Ap, pj4+2). This is
followed by one interpolation in ¢ using these four values to obtain the value at (Ap, ¢ D)

43



Cyclic continuity is used in longitude. In latitude, the grid is extended to include a pole
point (row) and one row across the pole. The pole row is set equal to the average of the
row next to the pole for ¢ and to wavenumber 1 components for v and v. The row across
the pole is filled with the values from the first row below the pole shifted 7 in longitude
for ¢ and minus the value shifted by = in longitude for v and v.

Once the departure point is known, the constituent value of ¢* = qg’l is
obtained as indicated in (3.c.5) by Hermite cubic interpolation (3.c.17), with cubic
derivative estimates (3.c.18) and (3.c.19) modified to satisfy the Sufficient Condition for
Monotonicity with C°® continuity (SCMO) described below. Define A;q by

Ag= T~ 4 | (3.c.28)
Ti+1 — Ti
First, if A;q = 0 then
d-,; = di+1 =0. (3029)
Then, if either
: d.
0<-—<3 3.¢.30
< 5o (5.0:30)
or
0< gt o3 (3.c.31)
T Ag T :

is violated, d; or d;4; is brought to the appropriate bound of the relationship. These
conditions ensure that the Hermite cubic interpolant is monotonic in the interval [z;, z;41].

The horizontal semi-Lagrangian sub-step (3.c.5) is followed by the vertical step
(3.c.6). The vertical velocity 7 is obtained from that diagnosed in the dynamical

calculations (3.a.93) by
. . 327) <Pk+1 —pk> -
1= — —_ ], 3.¢.32
(77)164.5 (77 an k+%/ p—— ( )

with nx = Ag+ Bx. Note, this is the only place that the model actually requires an explicit
specification of 7. The mid-point of the vertical trajectory is found by iteration

nift = na— At (nfy) . (3.c.33)

Note, the arrival point 7,4 is a mid-level point where g is carried, while the 7 used for the
interpolation to mid-points is at interfaces. We restrict nas by

which is equivalent to assuming that ¢ is constant from the surface to the first model
level and above the top g level. Once the mid-point is determined, the departure point is
calculated from

np = na — 240" (nar) , (3.c.35)
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with the restriction
m < 1Mp S NK- (3.¢.36)

The appropriate values of 7 and g are determined by interpolation (3.c.17), with the
derivative estimates given by (3.c.18) and (3.c.19) for ¢ = 2 to K — 1. At the top and
bottom we assume a zero derivative (whi‘ch is consistent with (3.c.34) and (3.¢.36)), d; =0
for the interval k = 1, and &;4; = 0 for the interval k¥ = K — 1. The estimate at the
interior end of the first and last grid intervals is determined from an uncentered cubic
approximation; that is d;,.; at the k¥ = 1 interval is equal to d; from the k = 2 interval,
and d; at the k = K —1 interval is equal to d;; at the k = K —2 interval. The monotonic
conditions (3.¢.30) to (3.c.31) are applied to the g derivative estimates.

d. Mass fixers

The fixers which ensure conservation (2.a.4) are applied to the dry atmospheric
mass, water vapor specific humidity and constituent mixing ratios. For water vapor and
atmospheric mass the desired discrete relations, following Williamson and Olson (1994)
are ,

/7r+—/q+Ap+=P, (3.d.1)
2 3
/q+Ap+=/q“Ap‘, | (3.d.2)
3 3

where P is the dry mass of the atmosphere. From the definition of the vertical coordinate,

Ap = poAA+ 7AB, (3.d.3)

and the integral [ denotes the normal Gaussian quadrature while J includes a vertical
sum followed by éaussian quadrature. The actual fixers are chosen t:z) have the form

() = Mit (A, ¢), . (3.d.4)

preserving the horizontal gradient of II, which was calculated earlier during the inverse
spectral transform, and

gt (\e,n) =4t +angtlgt — g . (3.d.5)

In (3.d.4) and (3.d.5) the ( ") denotes the provisional value before adjustment. The form
(3.d.5) forces the arbitrary corrections to be small when the mixing ratio is small and when
the change made to the mixing ratio by the advection is small. In addition, the n factor is
included to make the changes approximately proportional to mass per unit volume (Rasch
et al., 1995). Satisfying (3.d.1) and (3.d.2) gives
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f g Ap~ — f GTpoAA — Mfcj“'fr'*‘AB
3 3 3

= ~ 3.d.6
“ [nd*|¢t — g~ |poAA+ M [ng+|gt — ¢~ |7t AB (3.4.6)
3 . 3

M= P+/q“Ap" //7?'*‘. | (3.d.7)
3 2 ‘

Note that water vapor and dry mass are corrected simultaneously. Additional advected
constituents are treated as mixing ratios normalized by the mass of dry air. This choice
was made so that as the water vapor of a parcel changed, the constituent mixing ratios
would not change. Thus the fixers which ensure conservation involve the dry mass of the
atmosphere rather than the moist mass as in the case of the specific humidity above. Let
x denote the mixing ratio of constituents, then the desired relationship for conservation is

and

[xra-aar = [xa-a)ar (3.4.8)
3 3 _
Following Rasch et al. (1995) the change made by the fixer is the same form as (3.d.5)
Then) =%t +amxtIxt - x| (3.d.9)
Substituting (3.4.9) into (3.d.8) and using (3.d.4) through (3.d.7) gives
fx (1-g¢7)Ap~ - f X1 —gt)Apt +a [ xtngtldt —q7|Ap
a, = 47 45 (3.d.10)
e f XXt = x"1(1-d*)Ap—a [ nxtxt - x"Ingtlgt —g¢-lAp
A,B A,B
where the following shorthand notation is adopted
[ COsp= [Cponast [(pons (3411)
AB 3 3
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4. MODEL PHYSICS

4.1 Tendency Physics

As discussed earlier, the tendency physics include (in the following order) the
parameterization of cloud amount; the evaluation of radiative fluxes and atmospheric
heating rates; the evaluation of surface fluxes; update land surface properties; evaluation
of free atmosphere vertical diffusivities, diagnosis of the PBL height, PBL diffusivities and
non-local transport term followed by the vertical diffusion solution; evaluation of gravity
wave drag tendencies; and Rayleigh friction. Note that for greater stability the formulation
of many of these processes is implicit, and the time step is further sub-divided into time
split steps for each component to make the solution of the tendency terms more practical.
The final result of the evaluation of these processes is the net tendency attributable to
the tendency physics as shown in (2.a.7). Also note that we use the more conventional p,
notation for surface pressure (as opposed to ) for the following model physics discussion.

a. Cloud Parameterization

Cloud amount (or cloud fraction), and the associated optical properties, are
evaluated via a diagnostic method in CCM3. Although the basic approach is similar
to what was employed in the CCM2, the specific techniques represent some of the more
significant changes to the collection of model physics. The diagnosis of cloud fraction
represents a generalization of the scheme introduced by Slingo (1987), and depends on
relative humidity, vertical velocity, atmospheric stability, and the convective mass flux
associated with parameterized moist convection (sections 4g and 4h). Three types of
cloud are diagnosed by the scheme: convective cloud, layered cloud, and low-level marine
stratus. Some of the major changes from Slingo (1987) are: clouds are allowed to form
in any model layer, except the layer nearest the surface; low-level frontal clouds occur for
all w < w, (where w, is an arbitrary threshold); the relative humidity thresholds for mid-
and upper-level layered clouds are functions of atmospheric stability; and convective cloud
amount is determined from the rate of convective overturning (as opposed to convective
precipitation rate). The minimum convective cloud fraction requirement of 20% employed
in the CCM2 has been removed.

Total column convective cloud amount is diagnosed from the presence and strength
of moist convective activity. In particular, it is a function of the column averaged
convective mass flux diagnosed by the moist convective parameterization (e.g., along the
lines of Xu and Krueger, 1991) where

Acony = 0.0351n(1.0 + M) , (4.a.1)
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where the vertically averaged convective mass flux M, is given by

. Ps Ds
M. = mc(p)dp/ dp, (4(111)
pT PT

mc(p) is in units of mb/day, and Acony is not allowed to exceed 80%. The convective cloud
amount in each model layer is assumed to be randomly overlapped within the convectively
active region, the bounds of which are provided by the moist convection parameterization.
Thus, the total cloud fraction in (4.a.1) is distributed in the vertical according to

Aconv =1.0- (1-0 - Zconv)l/N, (4.a.2) y

where N is the number of model levels within the convectively active region. For the
subsequent cloud fraction calculation, the large scale relative humidity within the grid
box is adjusted to account for the assumption that the fraction of convective cloud, Acopy,
is saturated. The specific humidity grid value itself is unchanged. Thus, the adjusted large
scale relative humidity, RH , is given by

RH - Aconv

. 1- Aconv ’
where RH is the actual grid box relative humidity. The remaining cloud types are
diagnosed on the basis of RH '. Frontal and tropical low cloud fraction, i.e., clouds
occurring below 750 mb, are diagnosed according to

RH = (4.0.3)

(0 w > We
RH' —RH!°v 2
ot mpliit ) 0Sw<sw
A, = { ( we ) ( 1-RHZE ) ¢ _ (4.a.4)
RH' ~RH!°¥ 2 '
( ToRETw > w<0
\ _rrnn

while stratus associated with low-level inversions is determined from
(0 RH <06

(~6.673% — 0.667)x (1 — L25EH) x (E5HS0)

06 <RH <09 and

A = 4.a.5
=) 20 < —0.125,750 < p < 900 (4.05)
(~6.6732 — 0.667)x (EFFY) RH >0.9 and
\ 99 < —0.125 :
where —g—% is the maximum inversion strength and RH is the adjusted layer relative

humidity given by (4.0.3). The pressure factor, (£52), accounts for the transition

from marine stratus clouds that occur in the presence of low level inversions to trade
cumulus clouds that can occur for higher level inversions. The parameter w. is set to
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50 mb/day, allowing low level clouds to form under weak subsidence conditions. The
parameter RH!%Y | the relative humidity threshold for low cloud formation, is assumed to
be 0.9 (i.e., 90%) over open ocean, and 0.8 over land. This distinction is made to account

for enhanced cloud drop nucleation (i.e., at lower relative humidities) that can occur over
CCN rich land areas.

Middle and upper level cloud is defined to occur between 750 mb and the uppermost
model level (which relaxes an earlier constraint that clouds form only in the troposphere).
Mid- and high-level stratified (or layered) cloud amount is determined from the relation

2
A, = [qu ( 0, RlH_/ —I—%gilm” , (4.a.7)
high N?
RHyim = 999 — (1 - RH}S) [1 - m] : (4.a.8)
where N? is the square of the Brunt-Vaisilla frequency:
N? = -% g—z (4.a.9)
Note that the ratio N2 /3.5 x.10™* is not allowed to exceed 1. The parameter RH"9" the

relative humidity threshold for mid-level and high cloud formation, is assumed to be 0.9
(i.e., 90%). The cloud cover in any layer is finally defined as

Ag = (1.0 = Acons) A + Acono , (4.0.10)

where A. is not allowed to exceed 0.999.

As in the CCM2, cloud optical properties in the CCM3 are accounted for using
the Slingo (1989) parameterization for liquid water droplet clouds. This scheme relates
the extinction optical depth, the single-scattering albedo, and the asymmetry parameter
to the cloud liquid water path and cloud drop effective radius (see Section 4b). The
latter two microphysical cloud properties were statically specified in the CCM2. In
particular, in-cloud liquid water paths were evaluated from a prescribed, meridionally
and height varying, but time independent, cloud liquid water density profile, p;(z). which
was analytically determined on the basis of a meridionally specified liquid water scale
height (e.g., see Kiehl et al.,, 1994; Kiehl, 1991). The cloud drop effective. radius was
simply specified to be 10um for all clouds. The CCM3 continues to diagnose cloud optical
properties, but relaxes the rigid CCM2 framework. CCM3 employs the same exponentially
decaying vertical profile for in-cloud water concentration

pe = plel~2/he), (4.a.11)

where the reference value p? is equal to 0.21 g m™3. Instead of specifying a zonally
symmetric meridional dependence for the cloud water scale height, hy, it is locally
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diagnosed as a function of the vertically integrated water vapor (precipitable water)

1 Ps
he = 7001n (1.0 + E./ qdp) . (4.a.12)

PT
The cloud water path is then determined by integrating the liquid water concentration
using

CWP = /pgdz, (4.a.13)
which can be analytically evaluated for an arbitrary layer k as
CWP (k) = pQhe [e“‘k+%/ P _ e/ ’“] , (4.0.14)

where z;, 1 and 2,1 are the heights of the k" layer interfaces.

Observational studies have shown a distinct difference between maritime and
continental effective cloud drop size, re, for warm clouds. For this reason, the CCM3
differentiates between the cloud drop effective radius for clouds diagnosed over maritime
and continental regimes (Kiehl, 1994). Over the ocean, the cloud drop effective radius for
liquid water clouds, e, is specified to be 10um, as in the CCM2. Over land masses r¢, is
determined using ‘

5 um T > -10°C
Tee=14 5—5(50) yum -30°C < T < -10°C (4.a.14.1)
Tei T < -30°C

An ice particle effective radius, 7, is also diagnosed by CCM3, which at the moment
amounts to a specification of ice radius as a function of normalized pressure

10 pm p/ps > p;o"
Tei=1q . high . (4.0.15.1)
Tt = (rg =g [%/”Wﬁ_—]’;:—;] pm p/ps < pr"
I 1
where 7% = 30pm, r" = 10um, p?igh = 0.4, and p!°® = 0.0. The fraction of the total
cloud water in the form of ice particles is then determined using
0 T > -10°C
fice ={ —0.05 (T +10) —30°C < T < —10°C (4.0.16.1)
1 T < -30°C

Finally, for diagnostic purposes, the CCM3 calculates three levels of cloud fraction,
assuming random overlap. These diagnostics, denoted as low, middle, and high cloud, are
bounded by the pressure levels ps to 700 mb, 700 mb to 400 mb, and 400 mb to the model
top.
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b. Parameterization of Radiation
Diurnal cycle

In the standard configuration, both the longwave and shortwave heating rates
are evaluated every model hour as discussed in the following sections. Between hourly
evaluations, the longwave and shortwave fluxes and heating rates are held constant. The
surface radiative fluxes are also fixed between hourly calculations.

The insolation at the top of the model atmosphere is given by
S; = Specos(, k ; (4.6.1)

where Sy is the solar constant, ¢ is the solar zenith angle, and ¢ is the eccentricity factor
(square of the ratio of mean to actual distance that depends on the time of year). We
represent the annual and diurnal cycle of solar insolation with a repeatable solar year
of exactly 365 days and with a mean solar day of exactly 24 hours, respectively. The
repeatable solar year does not allow for leap years. The expressions defining the annual
and diurnal variation of solar insolation are given by:

cos ¢ = sin ¢ sind — cos ¢ cos § cos(2mtiocal)
€ = 1.000110 + .034221 cos fy + .001280 sin Gy + .000719 cos 26y + .000077 sin 26,
0 = .006918 — .399912 cos 0y + .070257 sin By — .006758 cos 209+

.000907 sin 26y — .002697 cos 36 + .001480 sin 36,

where

27d
= 212 ' 1
fo 365 (mean orbit angle)

and :
d = calendar day of year(= 0, for January 1 and 364 for December 31)

¢ = latitude in radians
¢ = solar declination in radians

tiocal = calendar day with local time (ranges from 0.0 to 365.0).

Note that the calendar day d varies continuously‘throug‘hout, the repeatable year and is
updated every model time step.

The expression for cos { was taken from Sellers (1965, p.15), while the expressions
for € and ¢ were obtained from Paltridge and Platt (1976), pages 57 and 63, respectively.
The eccentricity factor € is appropriate for the current earth orbit and, according to
Paltridge and Platt (1976), is accurate to better than 10~%. Maximum eccentricity factor
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(the orbit point closest to the sun (perhelion)) occurs about January 3 (calendar day 2.0),
and minimum e (the orbit point farthest from the sun (aphelion)) occurs about July 5
(calendar day 185).

The declination 6 (the angle between the celestial equator and the sun) is
appropriate for the present earth obliquity of about 23-21-°. The declination expression
above is accurate to better than 3’ of arc (Paltridge and Platt, 1976); since the change
in declination in 24 hours is never greater than 30’ of arc, (and remembering that the
disc of the sun itself subtends an angle of ~ 30’ of arc), the above expression is quite an
adequate approximation. Minimum declination § occurs on about December 22 (calendar
day 355.0), and maximum declination § occurs on about June 21 (calendar day 172.0).

It does not seem necessary to compute solar insolation more accurately (for
example, accounting for equation of time changes in the solar day during the year, or
accounting for long-term secular changes in orbit) for two reasons: (1) the solar insolation
given above multiplies approximate factors dealing with the scattering and absorption in
the model’s atmosphere/surface system (for example, the surface albedos in the model
are not known to an accuracy of better than 1-2% of solar insolation (Briegleb et al.,
1986), and (2) for multi-year model runs, it is desirable when looking at interannual
variability that the solar insolation repeat precisely every year in order to eliminate this
source of variation. The loss (in a run of larger than 4 years) of the leap year day seems
an acceptable approximation since this loss would only amount to 5 days after a 20-year
run, for example.

The local time (fioca1) in the expression for cos{ depends on the calendar day as
well as model longitude:

‘ tlocal = d + éé\o_o', ' (4.b.2)
where A = model longitude in degrees starting from Greenwich running eastward. This
would mean, for example, that a model calendar day d having no fraction (such as 182.00)
would refer to local midnight at Greenwich, and to local noon at the date line (180°

longitude).

Solar radiation

The é-Eddington approximation of Joseph, Wiscombe, and Weinman (1976) and
also Coakley, Cess and Yurevich, (1983) has been adopted and is described in Briegleb
(1992). This approximation has been shown to simulate quite well the effects of multiple
scattering.

The solar spectrum is divided into 18 discrete spectral intervals (7 for O3, 1 for the
visible, 7 for HoO, and 3 for CO,). The CCM3 model atmosphere consists of a discrete
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vertical set of horizontally homogeneous layers within which radiative heating rates are
to be specified (see Figure 1). Each of these layers is considered to be a homogeneous
combination of several radiatively active constituents. Solar irradiance, as well as surface
reflectivity for direct and diffuse radiation in each spectral interval, are specified, as well
as the cosine of the solar zenith angle.

The method involves evaluating the §-Eddington solution for the reflectivity and
transmissivity for each layer in the vertical. The layers are then combined together,
accounting for multiple scattering between layers, which allows evaluation of upward and
downward spectral fluxes at each interface boundary between layers. This procedure is
repeated for all spectral intervals to accumulate broad band fluxes, from which the heating
rate can be evaluated from flux differences across each layer.

The J-Eddington approximation allows for gaseous absorption by Oz, CO,, O3, and
H>0. Molecular scattering and cloud water droplet scattering/absorption are included.
A summary of the spectral intervals and the absorption/scattering data used in the
formulation is given in Briegleb (1992).

For cloud scattering and absorption, the radiative parameterization of Slingo [1989]
for liquid water droplet clouds is employed. In this parameterization, the optical properties
of the cloud droplets are represented in terms of the prescribed cloud water path (CWP
in units of kg m~2, see 4.4.11-14) and effective radius, re = [ r3n(r)dr/ [ r?n(r)dr, where
n(r) is the cloud drop size distribution over radius r.

Cloud radiative properties explicitly account for the phase of water. For shortwave
radiation we use the following generalization of the expression used by Slingo (1989)
for liquid water clouds. The cloud liquid optical properties, for each spectral interval,
(extinction optical dépth, single scattering albedo, asymmetry parameter and forward
scattering parameter) are defined as,

¥ =CWP [af + Tb—;] (1 - fice) (4.5.3)
wy = 1—c —diry | | (4.b.4)

gf = €} + fire (4..5)

£ =(g)’ (4.5.6)

where superscript ¢ denotes spectral interval. The spectral intervals and coefficients for
liquid water are defined in Briegleb (1993). The radiative properties of ice cloud are
defined by,

Tic =CWP [az + ;bl'} fice (4.b.7)

i
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wf=1-cl —dire (4.b.8)
9§ = € + firei | (4.6.9)

o= (g})? (4.6.10)
where the subscript ¢ denotes ice radiative properties. The values for the coeflicients a — f
are based on the results of Ebert and Curry (1992) and are listed in Table 4.1 for the
four pseudo-spectral intervals (.25-.69 pm, .69-1.19 pm, 1.19-2.38 ym, and 2.38-4.00 pm)
employed in the CCM3 shortwave radiation model. Note that when 0 < f;ce < 1, then the -
combination of these expression in (4.5.11 - 4.b.14) represent the radiative properties for a
mixed phase cloud.

TABLE 4.1: Cloud ice radiative coefficients

Interval a b C d
1 3.448 x 1073 2.431 1.0x1.07° 0
2 3.448 x 1073 2431 1.1x10™% 1.405x 107°
3 3.448 x 1073 2.431 1.861 x 10~2 8.328 x 10~*
4 3.448 x 10723 2.431  0.46658  2.05 x 107°

Partial cloudiness and cloud overlap radiative effects are represented in the
following manner. A parameterization that gives results approximately equal to the
random overlap assumption, without the computational cost of calculating the spectrum
of cloud cases and which gives the proper limits of zero cloud cover and complete cloud

cover in a single layer, is utilizéd. The cloud extinction optical depth (7.) for each layer is

3
modified as: 7. = 7.AZ and A is the fractional cloud cover in the layer; the power % was

found necessary to give results approximately the same as the random overlap assumption.
Despite the simplicity of this assumption for dealing with partial cloud cover and cloud
overlap effects, the resulting heating rates in a cloudy atmosphere are well represented
when compared with the benchmark calculations [see Briegleb, 1992].

A uniform (in space and time) background boundary layer aerosol is included in
CCM3. The aerosol is well mixed in the bottom three layers of the model. The aerosol
mass mixing ratio in these layers is specified to yield a visible optical depth of 0.14. We
view this prescription of aerosol as a ”place holder” for future implementations of various
aerosol types that have realistic spatial and temporal variability. The optical properties
of the aerosol are identical to sulfate aerosols described by Kiehl and Briegleb (1993).

The 6-Eddington scheme is implemented so that the solar radiation is evaluated
once every model hour over the sunlit portions of the model earth. The surface albedo
is specified in two wavebands (0.2-0.7 pm, and 0.7-5.0 um) and distinguishes albedos for
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direct and diffuse incident radiation. Albedos for ocean surfaces, geographically varying
land surfaces, and sea ice surfaces are distinguished. Ozone is prescribed, and COs; is
assumed to be uniformly mixed with constant mass mixing ratio. Diagnostic cloud amount
(A.) is evaluated every model hour just prior to the solar radiation calculation.

For some diagnostic purposes, such as estimating cloud radiative forcing (Kiehl and
Ramanathan, 1990) a clear-sky absorbed solar flux is required. A diagnostic calculation is
included to give an estimate of clear-sky column absorbed and surface absorbed flux. For
computational efficiency, the clear sky top of atmosphere and surface fluxes are evaluated
assuming two homogeneous atmospheric layers. The top layer contains only Oz, while
the lower layer contains all other absorbers/scatterers except clouds. The actual surface
albedos are employed.

Details of the implementation are as follows. The CCM3 model atmosphere is
divided into K + 1 layers in the vertical; an extra top layer (beyond the K layers specified
by CCM3) is added. This extra layer prevents excessive heating in the top layer when
the top pressure is not very low; also, as the model does not specify absorber properties
above its top layer, the optical properties of the top layer must be used for the extra
layer. Layers are assumed to be horizontally and vertically homogeneous for each model
gridpoint and are bounded vertically by layer interfaces. For each spectral band, upward
and downward fluxes are computed on the layer interfaces (which include the surface and
top interface). The spectral fluxes are summed and differenced across layers to evaluate
the solar heating rate. The following discussion refers to each of the spectral intervals.

In general, several constituents absorb and/or scatter in each homogeneous layer
(e.g. cloud, aerosol, gases...). Every constituent is defined in terms of a layer extinction
optical depth 7, single scattering albedo w, asymmetry parameter g, and the forward
scattering fraction f. To define bulk layer properties, the combination formulas of Cess
(1985] are used:

=) 7, (4.b.11)
1: .

w= -z—:—;-’—T (4.5.12)

g= ———ZiZiTwiTi, | (4.5.13)
;fiwsme

f= Z_w___, (4.b.14)

where the sums are over all constituents.
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The 6-Eddington solution for each layer requires scaled properties for 7, w, g, given
by the expressions: :

™ =71(1-wf), (4.5.15)
* 1- f

w __w(l—wf)’ (4.0.16)
9=t

g* = T F o (4.6.17)

The scaling accounts for the scattering effects of the strong forward peak in particle

“scattering. The 5-Eddington nonconservative (w < 1) solutions for each layer for direct
radiation at cosine zenith angle uo are (following the notation of Coakley, Cess, and
Yurevich, 1983):

R(uo) = (@ —7)Te™™ /" + (a+¥)R— (a - ), (4.5.18)
T(po) = (@ +7)T + (@ — y)Re™ " /#0 — (a4 — 1)e™" /¥, (4.5.19)
R=(u+1)(u—-1)(M —e )N, (4.5.10)
- T=4uN"}, (4.6.21)
where ‘
3, 1+g¢*(1—w*)
a=w uo( T =32 ) (4.5.22)
1 (14391 —w*)ud
N=(u+1)2" — (u—1)2?", . (4.b.24)
3 (1-uw*g )
u= ( 3 ) : (4.b.25)
A=4/3(1 —w*)(1 —w*g*), (4..26)

where R(uo), T(uo) are the layer reflectivity and transmissivity to direct radiation
respectively, and R, T are the layer reflectivity and transmissivity to diffuse radiation
respectively. It should be noted that in some cases of small but nonzero w, the diffuse
reflectivity can be negative. For these cases, R is set to 0, which produces negligible
impact on fluxes and the heating rate.

To combine layers, it is assumed that radiation, once scattered, is diffuse and
isotropic (including from the surface). For an arbitrary layer 1 (or combination of layers
with radiative properties R (uo), Ti(i0),R1,T1) overlying layer 2 (or combination of layers
with radiative properties Ra(uo), To(io), and Ry, T), the combination formulas for direct
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and diffuse radiation incident from above are:

Ri2(po) = Ri(po)
4 T1{(T1(uo) — e""1/P0) Ry + e~ i /10 Ry (1)}

S , (4..27)

1-R{R,

T12(po) = e~ /#Ty(po)
T — e~ Ti /K =71 /o R

S R X% .S S

1-RiR,

— —  T1R,T,
2T T I CRR, (4.6.29)

— T.T>

2T 1-R.R, (4.6.30)

Note that the transmissions for each layer (T1(uo),T2(uo)) and for the combined
layers (Th2(uo)) are total transmissions, containing both direct and diffuse transmission.
Note also that the two layers (or combination of layers), once combined, are no longer a
homogeneous system.

To combine the layers over the entire column, two passes are made through the
layers, one starting from the top and proceeding downward, the other starting from the
surface and proceeding upward. (In passing from the top down, the layer §-Eddington
computation of R(ug), T(wo), R, T is terminated if the total transmission to direct
radiation for the spectral band (normalized to 1.0 at top) is less than .001; this produces a
negligible error and saves computational overhead). The result is that for every interface,
the following combined reflectivities and transmissivities are available:

e~7 /Mo = direct beam transmission from top of at-
mosphere to the interface (7* is the scaled
optical depth from top-of-atmosphere to
the interface),

Ryp(po) = reflectivity to direct solar radiation of
entire atmosphere below the interface,

Tyn(po) = total transmission to direct solar ra-
diation incident from above to entire
atmosphere above the interface,

Ryp = reflectivity of atmosphere below the inter-
face to diffuse radiation from above,

Ry, = reflectivity of atmosphere above the inter-
face to diffuse radiation from below.
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With these quantities, the upward and downward fluxes at every interface can
be computed. For example, the upward flux would be the directly transmitted flux
(e77*/Ho) times the reflection of the entire column below the interface to direct radiation
(Rup(io)), plus the diffusely transmitted radiation from above that reaches the interface
(Tun(p0) — €~7*/#0) times the reflectivity of the entire atmosphere below the interface to
diffuse radiation from above (R,;), all times a factor that accounts for multiple reflections
at the interface. A similar derivation of the downward flux is stralghtforward The
resulting expressions for the upward and downward flux are:

e 7 /uoRup(“O) (Tdn(uo) —e 7 /MO)_R_up

Fup = _dn F
1 — RgnRup

,  (4.5.31)

Fd o e'_T*//“O
(Tdn (//"0) —e’’ /MO) + e-—T /uoRup(/-LO)Rdn

(4.6.32)

The upward and downward spectral fluxes at each interface are summed to evaluate
the spectrally integrated fluxes, then differenced to produce the solar heating rate,
Q=2 Fin (Pr+1) = Fup (Pr+1) = Fan (Pr) + Fup (px) ' (4.5.33)
Cp Pr+1 — Pk
which is added to the nonlinear term (@) in the thermodynamic equation.

Longwave radiation

The method employed in the CCM to represent longwave radiative transfer is based
on an absorptivity /emissivity formulation (Ramanathan and Downey, 1986),

FH(p) = B(0)e(0,p) + / a(p, 7')dB() (4..30)
0
Fi(9) = BT, - [ alp,p)dB() (4.5.35)

p

where B(T) = oT* , is the Stefan-Boltzmann relation. o and e are the absorptivity and
emissivity,

f{dB )/dT (")} (1 = Tu(p,p)) dv

a(p,p’) = B /AT @) (4.5.36)
[ Bu(Tea) (1 = To(0,p)) v
£(0,p) = > 50 (4.6.37)
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where the integration is over wavenumber, v. B, (p) is the Planck function, and 7, is the
atmospheric transmission. Thus, to solve for fluxes at each model layer we need solutions
to the following,

o0

/ (1= T,)F(B,)dv ‘ (4.6.38)
0
where F(B,) is the Planck function for the emissivity, or the derivative of the Planck

function with respect to temperature for the absorptivity.

The general method employed for the solution of (4.5.38) for a given gas is based
on the broad band model approach described by Kiehl and Briegleb (1991) and Kiehl and
Ramanathan (1983). This approach is based on the earlier work of Ramanathan (1976).
The broad band approach assumes that the spectral range of absorption by a gas is limited
to a relatively small range in wavenumber, v, and hence, can be evaluated at the band
center, i.e. '

124} 12] ’

/ (1= To)F (B,)dv ~ F (By) / (1—T,)dv = F(By)A (4.6.39)
vy v

where A is the band absorptance (or equivalent width) in units of cm~!. Note that A,

in general, is a function of the absorber amount, the local emitting temperature, and the

pressure. Thus, the broad band model is based on finding analytic expressions for the

band absorptance. Ramanathan (1976) proposed the following functional form for A,

u
A(u,T,P) = 24oln {1 MV iy } (4.5.40)

where Ag is an empirical constant, u is the scaled dimensionless path length,
S(T)
U= | ——up.dz 4.b.41
/ WL ( )

where S(T) is the band strength, p is the mass mixing ratio of the absorber, p, is the
density of air. 3 is a line width factor,

B = 2—:% /’y(T) <r%) du (4..42)

where y(T) is the mean line halfwidth for the band, P is the atmospheric pressure and
P, is a reference pressure and d is the mean line spacing for the band. The determination
of v, d, S from spectroscopic line databases, such as the FASCODE database is described
in detail in Kiehl and Ramanathan (1983). Kiehl and Briegleb (1991) describe how
(4.5.40) can be extended to account for sub-bands within a spectral region. Essentially,
the argument in the log function is replaced by a summation over the subbands. This
broad band formalism is employed for CO,, O3, CH4, N2O and minor absorption bands of
COs,, while for the CFCs we employ the exponential transmission approximation discussed
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by Ramanathan et al. (1985), ‘
T =exp[—D(S(T)/Av) W] (4.5.43)

where Av is the band width, and W is the absorber path length,
W= /upadz, (4.b.44)

and D is a diffusivity factor. The final problem that must be incorporated into the broad
band method is the overlap of one or more absorbers within the same spectral region.
Thus, for the wavenumber range of interest, namely 500 to 1500 cm™1!, the radiative flux -
is determined in part by the integral,

1500
[ a-mr®)w (4.6.45)
5

00
which can be re-formulated for given sub intervals in wavenumber as,

1500 750
/ (1- To) F(By)dv = / (1 - 7-0102T13720TH2O)F (BU) dy
5

" 820 500 650

.+/ (1= TérenTa,0) F (By) dv +/ (1= Térc11Th.0)F (By) dv

900 1000 |
" /sso (1- TéFClZTHzo)F (Bv)dv + /900 (1- TczogTHonchuTozFCQ)F (By)dv

1120
+ /1000 (1 - Tgoz%sTHzoﬁFchc%sz)F(Bu)du

1170 1500

* / (1 = Trc12Tm0TR,0) F (Bu) dv + / . (1= TenT3,0Tu:0)F (By) dv

(4.b.46)
The sub-intervals, in turn, can be reformulated in terms of the absorptance for a given gas
and the “overlap” transmission factors that multiply this transmission. Note that in the
broad band formulation there is an explicit assumption that these two are uncorrelated
(see Kiehl and Ramanathan, 1983). The specific parameterizations for each of these sub-
intervals depends on spectroscopic data particular to a given gas and absorption band for
that absorber.

Major absorbers

Details of the parameterization for the three major absorbers, H,O, CO; and Os,
are given in Ramanathan and Downey (1986), Kiehl and Briegleb (1991) and Ramanathan
and Dickinson (1979), respectively. Therefore, we only provide a brief description of how
these gases are treated in the CCM.

For COz

1 dB
aC’Oz( ?p/) = 40_T3 (p/) d;,oz (p,)A002 (pl)p)' (4b.47)
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Beo, is evaluated for o = 667 cm™!, where Aco,(p’,p) is the broad-band absorptance

from Kiehl and Briegleb (1991). Similarly,

1
€co,(0,p) = ;7?4—(—033002 (0)Aco,(0,p). (4.5.48)
For ozone,
1 dBo
20:(0P) = gty v 7)Ao Fp): (46.49)
and
1
€0,(0,p) = ;T:{(O—)Bos(o)floa (0,p), (4.5.50)

where Ao, is the ozone broad-band absorptance from Ramanathan and Dickinson (1979).
The longwave absorptance formulation includes a Voigt line profile effects for CO2 and
O3. For the mid-to-upper stratosphere (p < 10mb), spectral absorption lines are no longer
Lorentzian in shape. To account for the transition to Voigt lines a method described in
Kiehl and Briegleb (1991) is employed. Essentially the pressure appearing in the mean
line width parameter, ~,

Y= 2 (4.5.51)
Do

P [ T
p0+5 250

where § = 5.0 x 1073 for CO; and § = 2.5 x 1073 for O3. These values insure agreement
with line-by-line cooling rate calculations up to p = 0.3 mb. Water vapor cannot employ
the broad-band absorptance method since H,O absorption extends throughout the entire
longwave region. Thus, we cannot factor out the Planck function dependence as in (4.5.39).
The method of Ramanathan and Downey (1986) is used for water—vapor absorptivities and
emissivities. The overlap treatment between water vapor and other gases is also described
in Ramanathan and Downey (1986).

is replaced with

Y= ) (4.6.52)

Trace gas paramaterizations

Methane. The radiative effects of methane are represented by the last term in (4..46).
We re-write this in terms of the absorptivity due to methane as,

1500
/1170 (1= Ten,Th,0 Tm,0) F (B.) dv =

/(1 — Tu,0)F (By) dv + /ACH4TH20F (B,) dl/+/A:13\r207—CH4TH._,oF (B,,) dv
(4.6.53)
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Note that this expression also incorporates the absorptance due to the 7.7 micron band
of nitrous oxide as well. The first term is due to the rotation band of water vapor and is
already accounted for in the CCM radiation model by the parameterization described
in Ramanathan and Downey (1986). The second term in (4.6.53) accounts for the
absorptance due to the 7.7 micron band of methane. The spectroscopic parameters are
from Donner and Ramanathan (1980). In terms of the broad band approximation we
have,

/ACH4TH20F(BU) dv = ACH4TH20F (B,;)_ (4.b.54)
where according to (4.5.40),
U
Acu, = 6.00444,/T,In< 1 + 4.b.55
: ? { \/4+u(1+1/ﬁ)} (4.5.55)
where T}, is a path weighted temperature,
fT
= 4.5.56
The dimensionless path length is,
4
D 8.60957 x 10 / UCH, dp (4.b.57)
g
and the mean line width factor is, ,
[ 7 (& ) per.dp
B = 2.94449 % (£) e (4.5.58)

| Frucn.dp

where ucp, is the mass mixing ratio of methane, T is the local layer temperature in Kelvin
and P is the pressure in Pascals, and Py is 1 x 10° Pa. D is a diffusivity factor of 1.66.
The water vapor overlap factor for this spectral region is,

THzO = eXp(-—UHzo) ’ (4.b.59)

where,

_ P\ dp
UHzO = D/,U,Hzo (Po) p (4.b.60)

and pg,o is the mass mixing ratio of water vapor.

Nitrous Oxide. For nitrous oxide there are three absorption bands of interest: 589, 1168
and 1285 cm™! bands. The radiative effects of the 1285 cm™! band is given by the last
term in (4.5.53),

/A?vonCH4THzoF (By) dv ~ A3, 0Tcr,Tra,0F (By) (4.b.61)
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The absorptance for the 1285 cm™! N,O band is given by,
A3, o =2.35558/T,1In{ 1 + 4 _ 4 Y (45.62)
N,O = 4. ) n _ .
VAt (1+1/83)  y/a+ud(1+1/88)

where u3, 33 account for the fundamental transition, while u3, B3 account for the first
“hot” band transition. These parameters are defined as,

ud = D 1.02346 x 10° i;0 4P (4.5.63)

VvT g

and,

f——\/l::,,- (P%) dug

B3 = 19.399 T (4.b.64)
0
While the “hot” band parameters are defined as,
1 dp
ud = D 2.06646 x 10° / —— ™ 847:36/T — 4.5.65
| 1 . \/T UN,O g ( )
and,
[ 5 (&) au

8% = 19.399—YL (& (4.5.66)

[
The overlap factors in (4.b.61) due to water vapor is the same factor defined by (4.5.59),

while the overlap due to methane is obtained by using the definition of the transmission
factor in terms of the equivalent width (Ramanathan, 1976),

Top, = e~4cHs /24 (4.6.67)

Substitution of (4.5.55)-into (4.5.61) leads to,
1
1+0.02 C

V4+u(1+1/8)
where u and B are given by (4.b.57) and (4..58), respectively, and the 0.02 factor is
an empirical constant to, match the overlap effect obtained from narrow band model
benchmark calculations. This factor can physically be justified as accounting for the fact
that the entire methane band does not overlap the NoO band.

TeH, = (4.b.68)

The 1168 cn™! N30 band system is represented by the seventh term on the RHS
of (4..46). This term can be re-written as,

1170
/ (1= TSro12TH.0T0) F (By) dv =

1120

/ (= Tmo)F (Bu)dv + /AéFCHTHzOF (Bo)dv + /A?VonéF0127—H20F (By)dv

(4.5.69)
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where the last term accounts for the 1168 cm~! N,O band. For the broad band
formulation this expression becomes,

/A?vonc‘:chuTHzoF(Bu)dV ~ AX,0Térc12TH,0F(Bo) (4.5.70)
The band absorptance for the 1168 cm™! N3O band is given by,
uz
A} o =2.54034,/T, In{ 1 + - 2 - (4.b.71)
Va+ud (1+1/83)

where the fundamental band pathlengfh and mean line parameters can be simply
expressed in terms of the parameters defined for the 1285 cm™?! band (eq. 4.5.63-4.5.64).

u2 = 0.0333767ud (4.5.72)
and, _ '
3 = 0.98214303 (4.5.73)

Note that the 1168 cm~! band does not include a “hot” band transition. The overlap
by water vapor includes the effects of water vapor rotation lines, the so called “e-type”
and “p-type” continnua (e.g. Roberts et al., 1976). The combined effect of these three
absorption features is,

TH;O = TlTeTp v (4~b-74)

~ where the contribution by line absorption is modeled by a Malkmus model formulation,

T; = exp {—511:1 ( 1+ 52% - 1) } (4.5.75)

where d; and d; are coefficients that are obtained by fitting (4.5.75) to the averaged
transmission from a 10-cm™! narrow band Malkmus. The path length ; is,

@ =D é/pw—(%’i (4.b.76) -

fi— (%) (%) , (4.6.77)

where ® and ¥ account for the temperature dependence of the spectroscopic parameters
(Rodgers and Walshaw, 1966),

U = ¢—@|Tp—250|—-B|T,~250/ (4.5.78)

and,

& = =o' |ITp—250|-p'|T,—250/ (4.6.79)

The coefficients for various spectral intervals are given in Table 4.3. The transmission due
to the e-type continuum is given by,

T. = e~ %% (4.5.80)
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where the pathlength is defined as,

a, = %_/ e1800(+ k)2, PdP (4..81)
The p-type continuum is represented by
Tp = e~ %% (4.6.82)
where,
(4..83)

_ D .1
Up = g—P-O—/eISOO(T 296)wH20PdP

The factors 41, d2, d3 and 4 are listed for specific spectral intervals in Table 4.2.

TABLE 4.2: Coefficients for the broad band water vapor overlap transmission factors

Index vy — o 01 do 43 04
1 750 - 820 0.0468556 14.4832 26.1891 0.0261782
2 820 - 880 0.0397454 4.30242 18.4476 0.0369516
3 880 - 900 0.0407664 5.23523 15.3633 0.0307266
4 900 - 1000 0.0304380 3.25342 12,1927 0.0243854
5 1000 - 1120  0.0540398 0.698935 9.14992 0.0182932
6 1120 - 1170  0.0321962 16.5599 8.07092 0.0161418

TABLE 4.3: Coeflicients for the Temperature Dependence Factors (4.5.78) and (4.5.79)

Index vy — vy o A o B
1 750 - 820 2.9129¢e-2 -1.3139¢-4 3.0857e-2 -1.3512e-4
2 820 - 880 2.4101e-2 -5.5688e-b 2.3524e-2 -6.8320e-5
3 880 - 900 1.98216-2 -4.6380e-5 1.7310e-2 -3.2609e-5
4 900 - 1000 2.6904e-2 -8.0362e-5 2.6661e-2 -1.0228e-5
5 1000 - 1120  2.9458e-2 -1.0115e-4 2.8074e-2 -9.5743e-5
6 1120 - 1170  1.9892¢-2 -8.8061e-5 2.2915e-2 -1.0304e-4

The final N,O band centered at 589 cm™! isy represented by the first term on the

RHS of (4.b.46),
750

[ (0= Te0, T 0Tio) F (Bu) dv =
500
/ (1 — 73027-]{20) F(B,)dv+ /A}VonéozTHzoF (B,)dv

(4.5.84)
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where the last term in (4.5.84) represents the radiative effects of the 589 cm~! N3O band,

/ AnyoTb0, Th,0F (By) dv = Ay, 0Té0,Tr,0 F (B) (4.b.85)
- The absorptance for this band includes both the fundamental and hot band transitions,
ulk ul
AN,0 = 2.655814/T,In{ 1+ 0 + L (4..86)
Varub(1+1/8) (a4l (1+1/81)

where the pathlengths for this band can also be defined in terms of the 1285 cm~! band
path length and mean lines parameters (4.6.63 - 4.0.66),

ug = 0.100090u3 (4.5.87)
and,

B = 0.96428243 (4.5.88)
ahd, , .

ui = 0.0992746u3 : (4.5.89)
and,

Bi = 0.96428243 , (4.5.90)

The overlap effect of water vapor is given by the transmission factor for the 500 to 800
cm~! spectral region defined by Ramanathan and Downey (1986) in their Table A2. This
expression is thus consistent with the transmission factor for this spectral region employed
for the water vapor formulation of the first term on the right hand side of (4.5.84). The
overlap factor due to the CO; bands near 589 cm™! is obtained from the formulation in
Kiehl and Briegleb (1991),

1

14+0.2 20,
V/4+uco, (141/Bco,)

where the functional form is obtained in the same manner as the transmission factor for
CH, was determined in (4.6.67). The 0.2 factor is empirically determined by comparing
(4.6.91) with results from 5 cm~! Malkmus narrow band calculations. The pathlength
parameters are given by,

D 4.9411 x 10* (1 - e-96°/’-”)3e_960 o / dP

Téo, = (4.6.91)

Uco, = \/T Weo, -5— (4b92)
p
and,
5.3228 | P T T
= — +5xe 3 — 4.b.
Beo, VT, {POJr %€ 250300} (4.6.:93)
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CFCs. The effects of both CFC11 and CFC12 are included by using the approach of
Ramanathan et al. (1985). Thus, the band absorptance of the CFCs is given by,

Acrc = Av (1 - e—D-AS—u"CFc) | (4.5.94)

where Av is the width of the CFC absorption band, S is the band strength, ucpc is the
abundance of CFC (g cm™2),

UCFC = / MCFCZP‘ | (4.5.95)

where pcorpce is the mass mixing ratio of either CFC11 or CFC12. D is the diffusivity
factor. In the linear limit D = 2, since (4.b.94) deviates slightly from the pure linear limit
we let D = 1.8. We account for the radiative effects of four bands due to CFC11 and four
bands due to CFC12. The band parameters used in (4.6.94) for these eighth bands are
given in Table 4.4.

TABLE 4.4: Band Parameters for the CFCs transmission factors

Band Number  Band Center Av S/Av
(em™1) (em™1)  (cm? gm~1)

CFC11

1! 798 50 54.09

22 846 60 5130.03

3l 933 60 175.005

42 1085 100 1202.18
CFC12

1! 889 45 1272.35

22 923 50 5786.73

32 1102 80 2873.51

42 1161 70 2085.59

! Data are from Kagann et al. (1983)
2 Data are from Varanasi and Chudamani (1988)

The contribution by these CFC absorption bands is accounted for by the following
terms in (4.5.46).
820
/ (1= TérenTi0)F (By) dv = /(1 —Tﬂzo)F(Bu)dV+/A};FcuTHzoF(Bu)dV

750 :
(4.5.96)
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880

/ (1= 78rc11Taz0) F (By) dv =/(1 - THQO)F(Bu)dV%/A%FchHzOF(Bu)dV

820
(4.5.97)

900

[ (= TereraTio)F (B av = [(1= Two)F (B v + [ AbecTwoF (B.)av
880

(4.5.98)
1000
| @~ Téo,TioTeronTren) F(B.) v = [ (= Tino)F (B,) v+
900
4.5.99
/A?:szTHzOF(Bv) dV+/A%FchHonc%chF(Bu) dv+ ( )
/AzcozTHonchnTcchmF(Bu) dv
© 1120
| (1= 80,70, o Téron Téron) F (B dv = [ (1= Tiso)F (8,)dv+
1000
[ AosTiwoF (B, v+ | (46.100)

/ A%oz T0s Ti0Tére11 Tdrc12 F (By) dv+

[ AbronTo,TuioF (B dv+ [ AbrorTosToF (B.) dv

For the 798 cm™! CFC11 band, the absorption effect is given by the second term
on the right hand side of (4.5.96),

/AEFCHTHzOF (Bu) dv z""12’:17‘(;'11TH2OF (BD) (4.b.101)

where the band absorptance for the CFC is given by (4.5.94) and the overlap factor due
to water vapor is given by (4.6.74) using the index 1 factors from Tables 4.2 and 4.3.
Similarly, the 846 cm~! CFC11 band is represented by the second term on the RHS of
(4.6.97),

/A%‘FCMTHzOF (B,,) dv zAZCFC'11TH20F(BD) (4.b.102)

where the H,O overlap factor is given by index 2 in tables 4.2 and 4.3. The 933 cm™!
CFC11 band is given by the third term on the RHS of (4.5.99),

/ABCFCIITHongFCIZF (By) dv =A% pc11 T, 0T roraF (Bs) (4.6.103)
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where the H,O overlap factor is defined as index 4 in Tables 4.2 and 4.3, and the CFC12
transmission factor is obtained from (4.56.94). The final CFC11 band centered at 1085
cm™! is represented by the fourth term on the RHS of (4.5.100),

/AéFCIITOSTHzOF(BV)dV ~Abro1TosTu,0F (By) (4.5.104)

where the transmission due to the 9.6 micron ozone band is defined similar to (4.5.91) for
CO, as,

To, = ! (4.b.105)

1+
i

’l.l,-O3

=1 \/4+u;')3 (1+1/85,)
where the pathlengths are defined in Ramanathan and Dickinson (1979). The H,O overlap
factor is defined by index 5 in Tables 4.2 and 4.3.

For the 889 cm~! CFC12 band the absorption is defined by the second term in
(4.6.98) as,

[ AbrenTioF (B.) dv AbrorTuoF (Bo) (46100

where the H,O overlap factor is defined by index 3 of Tables 4.2 and 4.3, and the CFC
absorptance is given by (4.5.94). The 923 cm™! CFC12 band is described by the second
term in (4.6.99),

/ Atrc1aT,0F (By) dv = AL po12TH,0F (Bp) (4.6.107)

where the H,O overlap is defined as index 4 in Tables 4.2 and 4.3. The 1102 cm~! CFC12
band is represented by the last term on the RHS of (4.5.100),

/A%FCHTO:;THzOF(BV) dv =A% pc12T0,Ta,0F (By) (4.5.102)

where the transmission by ozone is described by (4.5.105) and the H,O overlap factor
is represented by index 5 in tables 1 and 2. The final CFC12 band at 1161 cm™! is
represented by the second term on the RHS of (4.5.69),

/ Al ro1aTi,0F (By) dv ® A poroTa,0 F (Bs) (4.6.109)
where the H,O overlap factor is defined as index 6 in Tables 4.2 and 4.3.

Minor CO, Bands. There are two minor bands of carbon dioxide that have been added
to the CCM longwave model. These bands play a minor role in the present day radiative
budget, but are very important for high levels of COg, such as during the Archean. The
first band we consider is centered at 961 cm™!. The radiative contribution of this band is
represented by the last term in (4.5.99),

/A%ozTHonchnTchuF (B,)dv ~ Alo,Tr,0T3rc11Térc12F (Bs)  (4.b.110)
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where the transmission factors for water vapor, CFC11 and CFC12 are defined in the
previous section for the 900 to 1000 cm~*! spectral interval. The absorptance due to CO,
is given by,

A%, = 3.84431/T,In{ 1+ 4.b.111

COs { Z\/4+u, 1+1/ﬂz)} ( )
where the pathlength parameters are defined as, ,

uy = 3.88984 x 103a (T}) we™ 19976/ (4.5.112)

uy = 3.88984 x 103a (T},) we™1997-6/T (4.5.113)

uz = 6.50642 x 1030 (T) we 29897/ (4.b.114)

and the pressure parameter is, ' _ '

P\ 1

B = 2.97558 (Po> 75 (4.b.115)

B = f (4.5.116)

B3 =20 (4.5.117)

and,

1 — o—1360.0/T;)3
a(T,) = (-e ) (4.6.118)
vIp
The CO, band centered at 1064 cm™! is represented by the third term on the RHS of
(4.5.100),

/ACOgTosTHonCFCHTCFC’lZF(B )dV NACO TOaTHonCFCIITCFOmF(B )

(4.b.119)
where the transmission factors due to ozone, water vapor, CFC11 and CFC12 are defined
in the previous section. The absorptance due to the 1064 cm™! CO, band is given by,

Ao, =3.8443,/T,In{ 1+ 4.5.120
€0 { Z\/4+u, 1+1/ﬂz)} ( )
where the dimensionless pathlength is defined as,
uy = 3.42217 x 103 (T,,) we1849-7/T | (4.6.121)
ug = 6.02454 x 10%a (T,,) we~27821/T  (4.b.122)
uz = 5.53143 x 1030 (T,) we3723-2/T (4.5.123)
where ;
1 — o—1540.0/T;\3
a(T,) = (-e ’) (4.5.124)

T
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The pressure factor, 3;, for (4.5.120) is the same as defined in (4.6.115), while the other
factors are,

B = 201 (4.5.125)
B3 = P2 (4.5.126)

In the above expressions, w is the column mass abundance of CO,,
w = /‘ucozg = “C;O? AP (4.6.127)

where pco, is the mass mixing ratio of CO, (assumed constant).

Mixing ratio of trace gases

The mixing ratios of methane, nitrous oxide, CFC11 and CFC12 are specified as
zonally averaged quantities. The stratospheric mixing ratios of these various gases do vary
with latitude. This is to mimic the effects of stratospheric circulation on these tracers.
The exact latitude dependence of the mixing ratio scale height was based on information
from a two dimensional chemical model (S. Solomon, personal communication). In the
troposphere the gases are assumed to be well mixed,

pdy, = 0.55241wey, (4.5.128)
uR, 0 = 1.51913wn,0 (4.5.129)
1 ror; = 4.69548worcrr - (4.5.130)
1 pc1n = 4.1430Twero1s (4.5.131)

where w denotes the volume mixing ratio of these gases. The CCM3 employs volume
mixing ratios for the year 1992 based on the 1994 IPCC report, wen, = 1.714 ppmo,
wn,o = 0.311 ppmv, werc11 = 0.280 ppbv and worei12 = 0.503 ppbv. The pressure level
(mb) of the tropopause is defined as, |

Pirop = 250.0 — 150.0 cos® ¢ (4.5.126)
For p < pirop, the stratospheric mixing ratios are defined as,
XcHy,
—,,0 p
HCH, = KCH, ( ) (4.5.133)
ptrop
, p XnNy0
KN,0 = 13,0 ( ) (4.6.134)
Dirop
Xcren
poFen = BEFon ( ) (4.6.135)
ptrop
D Xcreoi2 :
UCcFC12 = HOCch ( ) (4.5.136)
ptrop
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where the mixing ratio scale heights are defined as,

Xcn, = 0.2353
Xn,0 = 0.3478 + 0.00116 |¢]

Xeren = 0.7273 +0.00606 |g| [ 191 < 45 (4.0.137)
Xcreiz = 0.4000 + 0.00222 |¢)|
and,
Xcn, = 0.2353 + 0.22549 |¢|
Xn,0 = 0.4000 + 0.01333 |¢|

> U -
Xorcn = 1.0000+0.01333 || ( 1912 49 (4.6.138)
Xcoreoiz = 0.5000 + 0.02444 ¢ ,

where ¢ is latitude in degrees.

Cloud emissivity

. The cloud emissivity is accounted for by defining an effective cloud amount for each
model layer,

A,c = €c1glec : (4.5.139) -
The cloud emissivity is defined as,
€ctg = 1 — e~ DrabsCWP (4..140)

where D is a diffusivity factor set to 1.66, r,ps is the longwave absorption coefficient
(m2g~1'), and CWP is the cloud water path (grm=2). The absorption coefficient is defined
as,

Kabs = Kl (1 - fz'ce) + Kifice (4b141)

where k; is the longwave absorption coefficient for liquid cloud water and has a value of
0.090361, such that Dx; is 0.15. ; is the absorption coefficient for ice clouds and is based
on a broad band fit to the emissivity given by Ebert and Curry’s formulation,

1

ki = 0.005 + —. (4.5.142)
Tet

Numerical algorithms

The downward longwave clear—sky flux at the surface is,

Ps dB
FY (p,) = B(0)e(0, ps) + / alp',pe) 5 ) (4.5.143)
[
while the upward flux at the surface is just
F'(ps) = opT8. (4.b.144)
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The downward cloudy-sky flux at the surface is
FY(ps) = FY,.(ps) fetear + 0T (petor) A’ (Perz2)

K Ds /
+ Z{UT4(Pczbk) +/ a(Ps,P')(‘i'%ﬁ{izdp,}fcld(k)’
k=3 p P

clbk

(4.b.145)

where p.pi is the pressure level of the cloud base at k.

faa(k) is the probability of a cloud existing in layer k, and clear sky below this
layer,

k-1
faa(k) = A [T (1 - A1), " (4.b.146)
=2 »
or
K
\ H (1 - Al)
faa(k) = A =2 (4.5.147)
[1(1-4)
) i=k
The clear-sky fraction for the total atmospheric column, fceqr, is given by
' K
fclea.r = H(l - A;), (4.b.148)
i=1

where A’ is the fractional cloud cover in layer ¢ and N is the total number of atmospheric
layers.

Fluxes within the atmosphere are evaluated at each interface (Figure 1) so that
longwave heating-rates are on model levels. The upward flux between the surface and the
lowest cloud layer is equal to the clear—sky upward flux,

Fll,(ox) = Fiy, (px). (4.5.149)
Within the layers that contain clouds, the upward flux is

F(;rld(pk) = FcEr (pk)fclear + Z { pcltl
€=kjou
’ (4.5.150)

Pk / dB / 7
- a(p ,pcztt)w(P Ydp' ¢ X fad(f) Pri. < Pr < Pl
p

cltl

where fuq(£) is the probability that a cloud is in layer £ and clear sky exists above layer £:

K
II (1-4)
fcld = A} H )= Ay —— (4.5.151)
== I (149
i=k+1
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kiow is the lowest level of cloud, kg is the highest layer of cloud, and pgy is the cloud—
top level. The upward flux above the clouds is obtained from a similar expression. The
downward flux above the cloudy region is equal to the clear-sky flux,

Fl(pr) = F, (ps). (4.5.152)

Within the clouds and below the clouds, the downward flux is

{ 3 & 4 i / dB / /
Fcld,blw(pk) = Fclr (pk)fdd(k) + Z ol (pclbl) + / a(p ’p)a?(p )dp
p

P ctbt (4.5.153)

X fea(€), Ps < pr < PHI, v
where Pavt 1s the cloud-base level, fciq(£) is the probability of a cloud existing in layer ¢
and clear sky below this level,

‘ K
t=1 H (1-A4;)
fczd(e) = A} H 1- = A, Z;—————. (4.b.154)
=k H(l - A) |
1=£

The longwave atmospheric heating rate is obtained from
_ 9 FM(pr11) — FH(pr41) — FT(px) + F*(pr)
Qew(pr) = = :
Cp . Pk+1 — Pk
which is added to the nonlinear term (Q) in the thermodynamic equation.

(4.5.155)

The full calculation of longwave radiation (which includes heating rates as well as
boundary fluxes) is computationally expensive. Therefore, modifications to the longwave
scheme were developed-to improve its efficiency for the diurnal framework. For illustration,
consider the clear-sky fluxes defined in (4.5.34) and (4.5.35). Well over 90% of the longwave
computational cost involves evaluating the absorptivity o and emissivity e. To reduce this
computational burden, o and € are computed at a user defined frequency that is set to
every 12 model hours in the standard configuration, while longwave heating rates are
computed at the diurnal cycle frequency of once every model hour.

Calculation of @ and ¢ with a period longer than the evaluation of the longwave
heating rates neglects the dependence of these quantities on variations in temperature,
water vapor, and ozone. However, variations in radiative fluxes due to changes in cloud
amount are fully accounted for at each radiation calculation, which is regarded to be
the dominant effect on diurnal time scales. The dominant effect on the heating rates of
changes in temperature occurs through the Planck function and is accounted for with this
method.

The continuous equations for the longwave calculations require a sophisticated
vertical finite-differencing scheme due to the integral term [ adB in Equations (4.5.34)-
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(4.0.35). The reason for the additional care in evaluating this integral arises from the
nonlinear behavior of a across a given model layer. For example, if the flux at interface py,
is required, an integral of the form [ ;s * a(p’, pr)dB(p') must be evaluated. For the nearest
layer to level pg, the following terms will arise:

Pk
| et pane) = PR ool 5~ B ), s
Pr+1

employing the trapezoidal rule. The problem arises with the second absorptivity a(py, px.),
since this term is zero. It is also known that « is nearly exponential in form within a layer.
Thus, to accurately account for the variation of a(p,p’) across a layer, many more grid
points are required than are available in CCM3. The nearest layer must, therefore, be
subdivided and o must be evaluated across the subdivided layers. The algorithm that is
employed in is to use a trapezoid method for all layers except the nearest layer. For the
nearest layer a subdivision, as illustrated in Figure 4, is employed.

For the upward flux, the nearest layer contribution to the integral is evaluated from
k+1

Py :
/  0dB(p)) = o [B(F™) ~ B")] + an [B(*) - B(E)], (4.5.157)
Py
while for the downward flux, the integral is evaluated according to
Pl |
/k;l adB(p') = an [B(p*) — B(p})] + a2 [Bp§™) — B(Y)] . (4.5.158)
Py

The a;;, 1 = 1,2; j = 1,2, are absorptivities evaluated for the subdivided paths
shown in Figure 4. The path-length dependence for the absorptivities arises from the
dependence on the absorptance A(p,p') [e.g., Eq. (4.b.155)]. Temperatures are known at
model levels. Temperatures at layer interfaces are determined through linear interpolation
in log p between layer midpoint temperatures. Thus, B(pg) = cIBT,;1 can be evaluated at all
required levels. The most involved calculation arises from the evaluation of the fraction of
layers shown in Figure 3. In general, the absorptance of a layer can require the evaluation
of the following path lengths:

&(pr, pr+1) = F(T)pAp, (4.6.159)
and ' ‘

u(pr, Pret1) = 9(T)Ap, (4.5.160)
and |

Bk, pr+1) = W(T)P,  (4.b.161)

where f, g, and h are functions of temperature due to band parameters (see Kiehl and
Ramanathan, 1983), and T is an absorber mass-weighted mean temperature.

These pathlengths are used extensively in the evaluation of Ap, (Ramanathan and
Dickinson, 1979) and Aco, (Kiehl and Briegleb, 1991) and the trace gases. But path
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Figure 3. Subdivision of model layers for radiation flux calculation

lengths dependent on both p? (i.e., £) and p (i.e., u) are also needed in calculating the
water—vapor absorptivity, @xg,0 (Ramanathan and Downey, 1986). To account for the
subdivided layer, a fractional layer amount must be multiplied by £ and u, e.g.,

€11 = &(pkpli") x UINPL(1, k), (4.5.162)

un = u(py, P x WINPL(1, k), (4.5.163)
and

B = B(pE,pi") x PINPL(1, k), (4..164)

where UINPL, WINPL, and PINPL are factors to account for the fractional subdivided
layer amount. These quantities are derived for the case where the mixing ratio is assumed
to be constant within a given layer (CO4 and Hy0). For ozone, the mixing ratio is assumed
to interpolate linearly in physical thickness; thus, another fractional layer amount ZINPL
is required for evaluating Ao, (p,p’) across subdivided layers.

Consider the subdivided path for as; the total path length from pf to p’c+1 for
the p? path length will be
£ i) ~ Py [Pl — i), (4.5.165)
where py = B’iﬁﬂ— The total layer path length is, therefore, proportional to
2
(ol o) = -2-((:0’;;) — (P59, (4..166)
The path length £ for ass requires the mean pressure
1 k41
Pa®j {p—_—i-zp +p’§+1} ; (4.5.167)
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Apzz ~ Zi__;ﬁ_ - pI;I-H. (4b168)

Therefore, the path €25 is
: 2
§22 & Pag Ap22 = 3 { (——2’1—— - (p';fl) . (4.0.169)

The fractional path length is obtained by normalizing this by &(p%, pi7),

P+t 2
UINPL(2,k) = DAF3(k) (-—2-”—) - () ¢ (4.5.170)

where
1
DAF3(k) = 2 WETCE
()" - (P5")
Similar reasoning leads to the following expressions for the remaining fractional path
lengths, for as;,

(4.6.171)

k k 2 )
UINPL(3,k) = DAF3(k) { (3—*—;—@-> - (p’;;fl)z} , (4.6.172)
for 11,
2 (pF )\
UINPL(1,k) = DAF3(k)} (pf)" — (—5—-3—) , (4.5.173)
and for ays,
| | . |
k k+1
UINPL(4,k) = DAF3(k) {(p’;],)2 - (3—%&’—) } : (4.5.174)

The UINPL are fractional layer amounts for path length that scale as p?, i.e., Z,-j.

For variables that scale linearly in p, e.g., %;;, the following fractional layer amounts
are used:

Py — "
WINPL(1,k) = DAF4(k) {H—Q—} : (4.b.175)
p* - piit!
WINPL(2,k) = DAF4(k) {——2H—} - (4.5.176)
P + "
WINPL(3,k) = DAF4(k) { (_112_) - p’;;'l} : (4.b.177)
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| Pt + o
WINPL(4,k) = DAF4(k) { pf — Lz—— : (4.5.178)

where
1

k PR
Py — Py

DAF4(k) = (4.6.179)

These fractional layer amounts are directly analogous to the UINPL, but since @
is linear in p, the squared terms are not present.

The variable Eij requires a mean pressure for the subdivided layer. These are

1 k k

PINPL(1,k) = 5 {?% +p’;{} , (4.b.180)
1 k k+1

PINPL(2,k) = 5 {p—izpi— +p’,§+1} : (4.b.181)
1 [P +ph | ki

PINPL(3,k) = 5 y =2 + i 1, (4.b.182)

k k41
PINPL(4,k) = -;- {EL;’H— + p’},} . (4.5.183)

Finally, fractional layer amounts for ozone path lengths are needed, since ozone is
interpolated linearly in physical thickness. These are given by

k
ZINPL(L k) = 5 —p (4.5.184)

ZINPL(2,k) = = —Pi /. (4.5.185)

ZINPL(3,k) = ZINPL(1,k) + 2ZINPL(2, k), (4.5.186)

ZINPL(4,k) = ZINPL(2,k) + 2ZINPL(1, k). (4.5.187)
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¢. Surface Exchange Formulations

The surface exchange of heat, moisture and momentum between the atmosphere
and land, ocean or ice surfaces are treated with a bulk exchange formulation. We present
a description of each surface exchange separately. Although the functional forms of
the exchange relations are identical, we present the descriptions of these components
as developed and represented in the various subroutines in CCM3. The differences in
the exchange expressions are predominantly in the definition of roughness lengths and
exchange coefficients. The description of surface exchange over ocean and sea ice follows
from Bryan et al. 1996

Land

Land surface fluxes of momentum, sensible heat, and latent heat are calculated

from Monin-Obukhov similarity theory applied to the surface (i.e., constant flux) layer.

The zonal 7, and meridional 7, momentum fluxes (kg m~! s72) are

T, = _plw (4.c.1)
Tam

Ty =—P1 o~ vs) . (4.c.2)
Tam

where py, u1, and v; are the density (kg m™3), zonal wind (m s~!), and meridional wind
(m s71) at the lowest model level. By definition, the surface winds u, and v, equal zero.
Tem is the aerodynamic resistance (s m~!) for momentum between the lowest model level
at height z; and the surface at height zg,, + d, where zo,, is the roughness length (m) for
momentum and d is the displacement height (m)

e R R

where k = 0.4 is the von Karman constant and |V]; = y/u? + v{. Atmospheric stability

-is defined by ( = i ; d. The length scale L (m) is
3
-y
L= > (4.c.4)
H+40.61c, Ty E
k() (F5eE)
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where u, is the friction velocity (m s~1), g is gravitational acceleration (m s~2), T is the
virtual temperature of the lowest model level (K), H is the sensible heat flux (W m~2), ¢,
is the heat capacity of air (J kg=! K~1), T} is the temperature of the lowest model level
(K), and E is the water vapor flux (kg m~2 s~!). The term 0.61c, Ti E accounts for the
buoyancy effects of water vapor. ¥, is a function that increases this resistance for stable
conditions (¢ > 0) and decreases this resistance for unstable conditions (¢ < 0)

Ym(¢) = —5¢ for (>0 (4.c.5)
. 14z 1+ z? 1 T
Ym(¢) = 2In 5 )t — —2tan""z+ 5 for (<0 (4.c.6)

where z = (1—16¢)1/4,

The sensible and latent heat fluxes are calculated in a manner analogous to the
momentum fluxes, but are complicated by the need to partition these fluxes into ground
and vegetation components. Land surface fluxes of sensible heat and latent heat are
calculated by finding the vegetation T, and ground T, temperatures (K) that balance the
vegetation and ground energy budgets

—?v + fv +H,+AE, =0 (4.¢.7)

— S+ Ly + Hy+ AE,+G =0 (4.c.8)

where § is the absorbed solar radiation (W m™2), T is the absorbed longwave radiation
(W m~2), H is the sensible heat flux (W m~2), AE is the latent heat flux (W m™2),
G is the soil heat flux (W m™2), and the subscripts “v” and “g” indicated vegetation
and ground, respectively. The solar radiation absorbed by the vegetation and the ground
depends on the amount of leaf and stem material present (i.e., the leaf and stem areas),
their optical properties, and the optical properties of snow and soil. The other terms in
these two equations &depend on the vegetation and ground temperatures, which are found
through Newton-Raphson iteration. The soil heat flux is then used to melt snow, if the
conditions are right, and to update soil temperatures for a six-layer soil column using a
heat diffusion equation that accounts for phase change. The latent heat fluxes are used
to update vegetation, snow, and soil water pools. Soilwater is calculated for the six-
layer column using a one-dimensional conservation equation that accounts for infiltration
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input, gravitational drainage at the bottom of the column, evapotranspirational losses,
and vertical water flow based on lead gradients.

The vegetation and ground sensible heat fluxes are

Hy, = —p1cp(Ts — Ty)cho (4.¢.9)

Hy = —p1cp(Ts — Ty)chg (4.¢.10)

where T is the “surface” temperature (K). cp, is a vegetation conductance (m s~1)
that depends on leaf and stem area and the wind within the canopy. cng is a ground
conductance that depends on turbulent transfer processes within the vegetation canopy.
The surface temperature T is eliminated from these equations by assuming the canopy
air has negligible capacity to store heat so that the total sensible heat flux between the
surface and the atmosphere is '

(01 — TS)

=H, + H, (4.c.11)
Tah

where 6, is the potential temperature (K) at the lowest model level and r,p is an
aerodynamic resistance (s m~!) for sensible heat.

Similarly, the vegetation and ground latent heat fluxes are

C
AE, = —B:/—p[es — e (T))(Cwe + Cuwt) (4.¢.12)

\E, = —‘ﬁ/ﬂ[es — eu(Ty)cwg (4.c.13)

where v is the psychrometric constant (Pa K~1), e, is the vapor pressure (Pa) at the
surface, and e,(T,) and e,(T,) are the saturation vapor pressures (Pa) evaluated at the
vegetation and ground temperatures. cy. is a vegetation conductance for evaporation of
intercepted water. It depends on leaf and stem area, the fraction of the canopy that is
wet, and the wind within the canopy. Water is lost from the soil as transpiration from
the non-wetted fraction of the canopy with a conductance c,; that depends on leaf area,
the wind within the canopy, and stomatal responses to light, temperature, soil water,
vapor pressure, and CO, concentration. cygy is a ground conductance for evaporation of
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soil water, which decreases as the soil becomes drier. The surface vapor pressure e is
eliminated from these equations by assuming negligible capacity to store water vapor so
that the total latent heat flux between the surface and the atmosphere is

AE=-P2C1z8) _,p o sp (4.c.14)
Y Taw

where e; is the vapor pressure (Pa) at the lowest model level and rg,, is an aerodynamic
resistance (s m~!) for water vapor.

The resistances 74, and r,, are analogous to the aerodynamic resistance for
momentum

o = k_2|17|I Tln ( z;ﬂ;d) - «/)m(o; [ln (z;(;d ) - wh(c); (4.c15)
rew = s [0 (220) 90 [1n (222) - 0u(0) (4.c.16)

20w

where 2z, and zq,, are the roughness lengths (m) for sensible and latent heat. 5, and v,
are functions, similar to 9., that increase these resistances for stable conditions (¢ > 0)
and decrease thse resistances for unstable conditions (¢ < 0)

¥n(C) = Yu() = =5¢ for (>0 (4.¢.17)

1+ z2

wh<<>=¢w<<>=zln( ) for ¢ <0 (4.18)

where z = (1 — 16¢)%/*.

In addition to the momentum, sensible heat, and latent heat fluxes, land
surface albedos and upward longwave radiation are needed for the atmospheric radiation
calculations. Surface albedos depend on the solar zenith angle, the amount of leaf and
stem material present, their optical properties, and the optical properties of snow and
soil. The upward longwave radiation is the difference between the incident and absorbed
fluxes.
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These and other aspects of the land surface fluxes have been described by Bonan
(1996a).

Ocean and sea ice

The bulk formulae used for the ocean-atmosphere or sea ice-atmosphere exchange
are:

T = psCD||AU|| AT
E = psCD||AU||Aq (4.¢.19)
H = psC,CH||AT||AY

where p4 is atmospheric surface density, and C,, is the specific heat.

The transfer coefficients between ocean and atmosphere (i = ocn) or sea-ice and
atmosphere (i = si), shifted to a height, Z4,and to the stability, (;, appropriate to the
particular interface, are :

- ‘ 1-2
CD; = k% |In (%) — U

[ ( Z; 1750 (2 !
CE; = k2 |In (ﬁ) — Ym l:ln (2‘6‘) - d’s]

q-1 -1
on=2fo() -] [(2) 0]

-

where k = 0.4 is von Karman’s constant and the integrated flux profiles, ., for
momentum and 1, for scalars, are functions of the stability parameter, (;. These functions
as used in the model are: :

Ym(C) = ¥s(() = =5¢ | ¢ >0
Ym(¢) = 2In[0.5(1+ X)) +1n[0.5(1+ X?)] - 2tan" X +057 ¢ < O
¥s(¢) = 2In[0.5(1+ X?)) (<0

X = (1-160)Y4

The stability parameter is,

Gi

w0 Za(%, QL)
w? \by - (Zyl4q4)/

where virtual potential temperature is computed as 6, = 64(1 + Z,q4), g and 64 are

the lowest level atmospheric humidity, and potential temperature, respectively, and Z, =

(o(water)/o(air)) — 1 = 0.606. Since (; is itself a function of the turbulent scales and

hence the fluxes, an iterative procedure is generally required to solve (4.c.19). And where
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the turbulent velocity scales are given by
u!= CD!'* |AU

Q; = CE; |AU| (Ag) wi™t (4.¢.20)
C0r = CH; |AUi| (A8) wi™?,

For the ocean interface (i = ocn),

AU =T,
Aq = qo — 0.98p; ' Csexp(Cs/Ts)
Al =09-T,

where the factor 0.98 accounts for the salinity of the ocean,Cs = 640380 kg m~3 and Cjg
= -5107.4 K.

The roughness length for momentum, Z2.,, in meters, is a function of the
atmospheric wind at 10 meters height, Usg:

-1
Z2., =10 exp — |:K, < 2 +Co + OgUlo) J ,
Uto

where C; = 0.0027 m/s, Cz = 0.000142, and C3 = 0.0000764 m~'s. The éorresponding |
drag coefficient at 10m height and neutral stability is
Cl = CLUL" + Oy + C3Uy .
The roughness length for heat, Z% . is a functlon of stability, and for evaporation, Z2,.,
is a different constant:
Zh =22%x10"%nm  (3>0
=49x10%n (3<0

Z8, =95x%x10"5m.

Since the roughness lengths are neither constant nor equal, the iterative solution
for the fluxes (4.c.19)is as follows: first, (ocn is set incrementally greater than zero when
the air-sea temperature difference suggests stable stratification, otherwise it is set to zero.
In either case, ¥,, = ¥ = 0, and the initial transfer coefficients are then found from
the roughness lengths at this (,en, and Uyg = Uy. 'As with sea-ice, these coefficients are
used to approximate the initial flux scales (4.c.20) and the first iteration begins with an
updated (,cn and calculations of ¥, and ;. The wind speed, Uy, is then shifted to its
equivalent neutral value at 10m height :

—1
U10 = UA (1 + \/l;',— % - m((ocn)) )
This wind speed is used to update the transfer coefficients and hence the flux scales. The
second and final iteration begins with another update of (... The final flux scales then
give the fluxes calculated by (4.¢.19).
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The state variables required to calculate the fluxes over sea ice (i — si) (4.c.19)
are the atmospheric wind velocity, potential temperature, density and specific humidity in
(kg/kg) at a height Z4, and the ice surface temperature T;.

AU =T,
Aq = gop Csexp(Cs/Tsi)
AY = 190 - Tsi

Presently the coupler assumes constant and equal roughness lengths for ice :
7% = Z = Z& = 0.04m.

To start the iterative solver for the fluxes (4.c.19), (s; is set to zero : %, = 1, = 0,
and the neutral coefficients are used to approximate the flux scales (4.¢c.20). The iteration
begins by computing (s;, finding the non-neutral transfer coeflicients and updating the
flux scales. After two such iterations there is sufficient convergence to compute the fluxes
(4.¢.19).

d. Vertical Diffusion and Atmospheric Boundary Layer Processes
Local diffusion scheme

An explicit, non-local Atmospheric Boundary Layer (ABL) parameterization
is incorporated into the vertical diffusion parameterization in CCM3. The ABL
parameterization includes a determination of the boundary layer depth. Above the top
of the ABL, CCM3 employs a standard local diffusion parameterization for the free
atmosphere. In practice, the free atmosphere diffusivities are calculated first at all levels.
The ABL scheme then determines the ABL depth and diffusivities and replaces the
free atmosphere values for all levels within the ABL. The implementation of the ABL
parameterization in CCM is discussed in Holtslag and Boville (1993), while the formalism
only is discussed here.

The local form of the vertical diffusion terms of momentum, sensible heat, and
moisture follows those described by Smagorinsky et al. (1965) and Manabe et al. {1965)
where the tendencies are given by

ou_ _19n _ Om | (4.d.1)

=———=t =g—= (4.d.2)

8 1 8H g 0H |
'a*z = P, 92 = E; —BE, (4d3)
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¢  10R _ OR

ot poz Yop
Above the surface layer, the upward fluxes of momentum, sensible heat, and moisture due
to turbulent motions are given by

(4.d.4)

a Ou
™=pwu = me_a% = gszc%, (4.d.5)
77 a'U ov
Ty = pWo = —me5; = !JPcha—p, (4.d.6)
—= 06 - o0
H=pw'0 = —c,pKg—— = K, — d.7) -
pw cppKom— = cpgp°Ke o’ (4.4.7)
T 0q 2 9q
R=puw'q =~pKe5-=gp Kcap’ (4.d.8)

where § = T (%})N and p* is a reference pressure which in practice is taken to be p;.
The variables K., where ¢ € (g,0,u,v) are “eddy-diffusivities” that are typically taken
as functions of length scales ¢, and local vertical gradients of wind and virtual potential
temperature, e.g., ‘

K, = £.2SF.(Ri). (4.d.9)
Here S is the local shear, defined by
ov
= |— , 4.d.
S 55 | (4.4.10)
and the mixing length-¢. is generally given by
1 1 1
—_ = — 4+ — .d.11
Lok (4.d.11)

where k is the Von Karman constant, and A, is the so-called asymptotic length scale,
taken to be 30 m above the ABL. Since the lowest model level is always greater than 30 m
in depth, £. is simply set to 30 m in CCM3. Furthermore, F.(Ri) denotes a functional
dependence of K. on the gradient Richardson number:

. g 06,/0z
where 0, is the virtual potential temperature,
6,=2=0 {1—}- (%—1) qJ . (4.d.13)

For simplicity, in our present implementation of the local K approach, we specify
the same stability functions F; for all c. For unstable conditions (Ri < 0) we choose

F.(Ri) = (1 - 18Ri)'/?, ' (4.d.14)
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and we use (4.c.12) for stable conditions (Ri > 0). This means that no distinction is made
between vertical diffusion of heat, scalars and momentum.

“Non-local” atmospheric boundary layer scheme

In a local diffusion approach, the turbulent flux of a quantity is proportional to
the local gradient of that quantity (e.g., (4.d.5)-(4.d.8)). In such an approach the eddy
diffusivity depends on local gradients of mean wind and mean virtual temperature (see
(4.d.9)). These are reasonable assumptions when the length scale of the largest turbulent
eddies is smaller than the size of the domain over which the turbulence extends. In the
Atmospheric Boundary Layer (ABL) this is typically true for neutral and stable conditions
only. For unstable and convective conditions, however, the largest transporting eddies may
have a similar size as the boundary layer height itself, and the flux can be counter to the
local gradient (Deardorff, 1972; Holtslag and Moeng, 1991). In such conditions a local
diffusion approach is no longer appropriate, and the eddy diffusivity is better represented
with turbulent properties characteristic of the ABL. We will refer to such an approach as
non-local diffusion.

To account for “non-local” transport by convective turbulence in the ABL, the local
diffusion term for constituent ¢ is modified as

— oC
(T — Z .d.
w'C KC(@z 'yc> , (4.d.15)

where K. is the non-local eddy diffusivity for the quantity of interest. The term ~,
is a “non-local” transport term and reflects non-local transport due to dry convection.
Eq. (4.d.15) applies to potential temperature, water vapor, and passive scalars. No
countergradient term is applied to the wind components, so (4.d.1) and (4.d.2) remain
unchanged. For stable and neutral conditions the non-local term is not relevant for
any of the quantities. The eddy diffusivity formalism is, however, modified for unstable
conditions.

In the non-local diffusion scheme the eddy diffusivity is given by

Ke=huw 2z (1- %)2 , (4.4.16)
where w; is a turbulent velocity scale and h is the boundary layer height. Equation (4.d.16)
applies for heat, water vapor and passive scalars. The eddy diffusivity of momentum K,,,
is also defined as (4.d.16) but with w; replaced by another velocity scale w,,. With proper
formulation of w; (or wy,) and A, it can be shown that equation (4.d.16) behaves well from
very stable to very unstable conditions in horizontally homogeneous and quasi-stationary
conditions. For unstable conditions w; and w,, are proportional to the so-called convective
velocity scale w,, while for neutral and stable conditions w; and w.,, are proportional to
the friction velocity u,. |
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The major advantage of the present approach over the local eddy diffusivity
approach is that large eddy transport in the ABL is accounted for and entrainment effects
are treated implicitly. Above the ABL, . = 0 so (4.d.15) reduces to a local form with K,
given by (4.d.9). Near the top of the ABL we use the maximum of the values by (4.d.9)
and (4.d.16), although (4.d.16) almost always gives the larger value in practice.

The non-local transport term in (4.d.15), v, represents non-local influences on the
mixing by turbulence (Deardorff, 1972). As such, this term is small in stable conditions,
and is therefore neglected under these conditions. For unstable conditions, however, most
heat and moisture transport is achieved by turbulent eddies with sizes on the order of
the depth h of the ABL. In such cases, a formulation for 7. consistent with the eddy
formulation of (4.d.15) is given by

Wi (w'C")s ‘

Ye=a—t st (4.4.17)

where a is a constant and (w'C"); is the surface flux (in kinematic units) of the transported

scalar. The form of (4.d.17) is similar to the one proposed in Holtslag and Moeng (1991).
The non-local correction vanishes under neutral conditions, for which w, = 0.

The formulations of the eddy-diffusivity and the non-local terms are dependent on
the boundary layer height h. The CCM2 configuration of this non-local scheme made use
of a traditional approach to estimating the boundary layer depth by assuming a constant
value for the bulk Richardson number across the boundary layer depth so that h was
iteratively determined using

_ Rig {u(h)2 + v(h)z}
(9/0s) (6u(h) = 05)
where Ri., is a critical bulk Richardson number for the ABL; uw(h) and v(h) are the
horizontal velocity components at h; g/, is the buoyancy parameter and 8,(h) is the

virtual temperature at h. The quantity 6, is a measure of the surface air temperature,
which under unstable conditions was given by

(4.d.18)

T
6, = 6, () + b s | (4.4.19)

Wi

where b is a constant, (w'6]); is the virtual heat flux at the surface, 6, (z,) is a virtual
temperature in the atmospheric surface layer (nominally 10 m), b (w'8’))s/w,, represents a
temperature excess (a measure of the strength of convective thermals in the lower part of
the ABL) and unstable conditions are determined by (w’.)s > 0. The quantity 8, (z,) was
calculated from the temperature and moisture of the first model level and of the surface
by applying the procedure in Geleyn (1988). The value of the critical bulk Richardson
number Ri., in (4.d.18), which generally depends on the vertical resolution of the model,
was chosen as Ri.. = 0.5 for the CCM2.
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Vogelezang and Holtslag (1996) have recently studied the suitability of this
formulation in the context of field observations, large-eddy simulations (Moeng and
Sullivan, 1994), and an E — ¢ turbulence closure model (Duynkerke, 1988). They
propose a revised formulation which combines shear production in the outer region of
the boundary layer with surface friction, where the Richardson number estimate is based
on the differences in wind and virtual temperature between the top of the ABL and a lower
height that is well outside the surface layer (i.e., 20 m - 80 m). In addition to providing
more realistic estimates of boundary layer depth, the revised formulation provides a
smoother transition between stable and neutral boundary layers. Consequently, CCM3
employs the Vogelezang and Holtslag (1996) formulation for estimating the atmospheric
boundary layer height, which can be written as ’

Ric {(u(h) — usp)? + (v(h) — vsr)? + Bu?}
(9/0sL) (6u(h) —OsL) .

The quantities ugy, vsr, and fsr represent the horizontal wind components and virtual
potential temperature just above the surface layer (nominally 0.1k). In practice, the
lowest model level values for these quantities are used to iteratively determine h for
all stability conditions, where the critical Richardson number, Ri.., is assumed to be
0.3. The disposable parameter B has been experimentally determined to be equal to
100 (see Vogelezang and Holtslag, 1996). The computation starts by calculating the bulk
Richardson number Ri between the level of 851, and subsequent higher levels of the model.
Once Ri exceeds the critical value, the value of h is derived by linear interpolation between
the level with R: > Ri., and the level below.

h=z + (4.4.19.1)

Using the calculated value for h and the surface fluxes, we calculate the velocity
scales, the eddy diffusivities with (4.d.16), and the countergradient terms with (4.d.17),
for each of the transported constituents. Subsequently, the new profiles for 6, ¢, u, and v
are calculated using an implicit diffusion formulation.

The turbulent velocity scale of (4.d.16) depends primarily on the relative height z/h
(h is boundary layer height), and the stability within the ABL. Here stability is defined
with respect to the surface virtual heat flux (w’@))s. Secondly, the velocity scales are
also generally dependent on the specific quantity of interest. We will assume that the
velocity scales for mixing of passive scalars and specific humidity are equal to the one
for heat, denoted by w;. For the wind components, the velocity scale is different and
denoted by w,,. The specification of w; and wy, is given in detail by Troen and Mahrt
(1986). Holtslag et al., (1990) have rewritten the velocity scale, in terms of the more
widely accepted profile functions of Dyer (1974), and have given a new formulation for
very stable conditions. Below we follow the latter approach.
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For stable ((w'6)s < 0) and neutral surface conditions ((w’6.)s = 0), the velocity
scale for scalar transport is

Us
wg = — 4.d.21
"7 on ( )

where u, is the friction velocity defined by

ue = [(@w)2 + ()2 ", (4.d.22)

Furthermore, ¢, is the dimensionless vertical temperature gradient given by (Dyer, 1974),

dn =1+ 5% : | (4.4.23)
for 0 < z/L < 1. Here L is the Obukhov length, defined by
3
—u
L= I 4.d.24)
K(o/920) (w830 (
For z/L > 1,
dh =5+ % , (4..25)

which matches (4.d.23) for z/L = 1. Equation (4.d.25) is a simple means to prevent ¢y
from becoming too large (and K. too small) in very stable conditions. In stable conditions, -
~ the exchange coefficients for heat and momentum are often found to be similar. Therefore
we may use Wy, =uw.

For unstable conditions (w’6l,); > 0, we have that w; and w,, differ in the surface
layer (z/h < 0.1) and in the outer layer of the ABL (z/h > 0. 1) For the surface layer W
is given by (4.d.21) with

2\ —1/2
on=(1- 15-5) . (4.d.26)
Similarly, w,, is written as
Uy
Wy = — 4.d.27
b (4..21)
where ¢y, is the dimensionless wind gradient given by
2\ -1/3
bm = (1- 155) . (4.d.28)
In the surface layer, the scalar flux is normally given by
S— ku.z (0C
e = — — ] . 4.d.
(w'c)o = = o (az) (4.d.29)

Comparison with (4.d.15) and (4.d.16) shows that, in the surface layer, we should have
a =0 in (4.d.17) for consistency.

For the outer layer, w; and w,, are given by

wy = wm /Pr , (4.d.30)
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where

Wm = (ud + clwf)l/3 ) (4.d.31)
and
T RNARTA
Wy = ((g/@vo) (w Hv)gh) (4.d.32)

is the convective velocity scale. Furthermore, Pr is the turbulent Prandtl number and
c; is a constant. The latter is obtained by evaluating the dimensionless vertical wind
gradient ¢,, by (4.d.28) at the top of the surface layer, as discussed by Troen and Mahrt
(1986). This results in ¢; = 0.6. For very unstable conditions (h > —L or w./u. > 0),
it can be shown with (4.d.30) that w,, is proportional to 0.85 w,, while for the neutral
case Wy, = uy. The turbulent Prandtl number Pr (= K,,/Kp = wp/w) of (4.d.30) is
evaluated from

__ Oh z Z Wy .
Pr= 2t (L) taki o (4.4.33)

for z = 0.1h. Equation (4.d.33) arises from matching (4.d.15), (4.d.16), (4.d.17), and
(4.d.29) at the top of the surface layer. As in Troen and Mahrt we assume that Pr is
independent of height in the unstable outer layer. Its value decreases from Pr = 1 for
the neutral case (2/L = 0 and w, = 0), to Pr = 0.6 for w./u. =~ 10 in very unstable
conditions.

In very unstable conditions, the countergradient term of (4.d.17) approaches

wC()

Yo = dm , (4.d.34)
where d ~ a/0.852, because for very unstable conditions we obtain w, ~ 0.85w,. Since
typically d ~ 10 (Troen and Mahrt 1986), we have a = 7.2. Similarly, the temperature
excess of (4.d.19) reads in this limit as d(w'6)o/w.. This leads to b (= 0.85 d) = 8.5 in

(4.d.19).

Finally, using the velocity scales described above, the flux equation (4.d.15) is
continuous in relative height (z/h) and in the boundary layer stability parameter (h/L
Or Wy /Uy).

In summary, the vertical diffusion téndency is given by the vertical derivative of
the turbulent flux defined in (4.d.15):
oC 10

5%_ —_— [pw’C’I

p Oz

10 aC |

The vertical diffusion is implemented using a time-split implicit method.  The
countergradient term in the non-local ABL scheme depends on the surface flux,
the boundary layer depth and the velocity scale, but not explicitly on the diffused
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quantity. Therefore the countergradient term cannot be treated implicitly. Forward time
differencing is used for the diffusion, whereas a leap frog (centered) method is used for the
dynamics. Thus, the diffusive forward step is over two time steps. The time discretization
then results in:

Cn+1 — Cn_l — 1 a n—-1gn-1 aCn+1 n—1
SA7 = 15; [P K (_B_z—— - Ye >] ; (4.d.36)

where subscripts n— 1 and n + 1 refer to time levels, with K7~ and v?~! evaluated using
model variables at time n — 1. The whole diffusion process is time split from all other
processes so that time n — 1 variables may already have contributions from the dynamics
and other physical process. Equation (4.d.36) can be rewritten as

Ctl = (1-2Aa1G" Y tox, (4.d.37)
C* = C™ 1 - 2AtH™ (47 7]), (4.d.38)

where G and H are differential operators. There can be a problem in applying (4.d.38) for
trace constituents, including water vapor, because these quantities are positive definite.
The application of the countergradient term, H"~!(y"~!) may result in negative values
for C*, which are not removed by the subsequent implicit diffusion step. This problem
is not strictly numerical; it arises under highly non-stationary conditions for which the
ABL formulation is not strictly applicable. In practice, we evaluate C* and check for
negative values in the constituent profiles. If a negative value is found, we set C* =
C™! for that constituent profile (but not for other constituents at the same point). Note
that (4.d.37) is just the normal diffusion equation, which is solved using the numerical
techniquesk discussed in the next sub-section.

Numerical solution of rionlinear, time-split'vertical diffusion

As described in section 2, the vertical diffusion is calculated prior to the main
dynamical calculation. This time-split diffusion is

71\1:11/2 - Tfljll/z
ultl = 71 4 oA —z2 4.d.39
k k pkAz,'rcz—l | ( )
Tn’;i-l 2= 7_n+1 /
pptl = Pl oA A2 ekel/2 4.d.40
k k pkAz]r:—l ( ) »
Hn-{-l _ Hn+1
or+l = o=t oA L TEEL2 kol/2 (4.d.41)

-1
Cp Pk Azk

n+l Rn+1
k+1/2 k—-1/2

n+1 n—1
= + 2At
9 qx PkAZk -1
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The surface fluxes are given by the explicit forms (4.d.5)-(4.d.8):

R?{iﬂ/z = RnK_+11/2 =Lp (W)s ) (4.d.44)
Hil e = Higye = cpr (W), (4.d.45)
k2 = Tk = 1 (W), (4.d.46)
T:I—{*‘}*-l/2 = T:I;}H/z =P (w_’v—’)s (4..47)

Note that these surface fluxes are explicit and ensure conservation of energy and moisture
in the surface exchange. The surface stresses ) and 7, could be made implicit without
affecting this conservation. In the free atmosphere, for k =1 to K — 1,

+1 1 1 uZﬂ —upt!
n — n— T —
Txk+1/2 = (Pk+1/2> Kk+1/2w, (4.d.48)
+
' 1 1 ”1?111 -t
+1  _ (. n- -
T:k+1/2 = (PZ+1/2) KZ+1/2W, (4.d.49)
qn+1 _ q’1;t+1
+1 -1 -1 k+1
RZ+1/2 = (p2+1/2) KZ+1/2w, (4.d.50)
02-&—1 _ 92-}-1
+1 -1 -1 +1
H}?+1/2 = Cpiy1y2 (.024.1/2) KZHNW’ (4.d.51)
+1
where '
-1
ool = Pr1/2 : (4.d.52)
FR2 T R(TEA TR L+ (BB - 1) 5 (g )]

K ,’:;11/2 is then determined from the neutral K modulated by a function of Richardson

number -

with a minimum value for K,’:_:ll /2 of Kpin = 0.01.

max (0,1 — R;/Rjc) for Ry > 0 (stable) ,
f(Rr) = (4.d.55)
V1 - 18R; for Ry < 0 (unstable) ,
with a critical Richardson number at which f goes to zero of
Ric=02. (4.d.56)
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The neutral Ky is calculated by

- 102 _ 1\ 271/2
(st = ™)+ (o5t = oY

(K3 = £i+1/2 - ) (4.d.57)
b1/ A217:-;-1/2
with
- - ~1
Az,’:+11/2 = zf+11 — 27, (4.d.59)

and {12 is determined from (4.d.11) and (4.d.13). The Richardson number in the free
atmosphere is calculated from

29 (zk_l - 22;11)

R ey
(4.d.60)
y [ O 05 }
(uprt = up™)’ + (ot — o)
Where
n-1 n—1 Rv n—1
r=t = g7 (1.0+ ('E ~ 1) A ) : (4.d.60.1)

Within the diagnosed atmospheric boundary layer, the diffusivities are modified by the
non-local atmospheric boundary layer scheme described earlier. At the top of the model,
the fluxes are set to 0,

T = i = B = HIA =0 (o)

The diffusion equations can be summarized as

Wt (Y o (- ) - (T ), (4d62)

k
vt = (v e = ak (R~ p ) - (0T~ 0pt)), (4.4.63)
Gt ma @ - ) e @ -, (dey

G = - ) e ], ds)

forl1<k<K-1,

{v* 1}, =uph, (4.d.66)
{o" 1}, =0p (4.4.67)
{" '} =7, | (4.d.68)
{o~-1}, =671, (4.d.69)
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and for k = K,

2At
t S G +1
{w }K =ug  + WTQKH/Z ; | (4.d.70)
2At
-1 — -1 +1
2At
-1 . n-1 n+1
{¢" e =a + WRK+1/2 , (4.d.72)
2At ’
g1} =0t 4 HpL 4.d.73
{7} = 0% GoPra AT K2 ( )
where
gpn—l/ 2
k+1/2 n—1
ap = K 1<k<K-1, 4.d.74
£ Apx (Der1 — pr) < p’;”l ) k+1/2 == ( )
ag =0, (4.d.75)
¢ =0, (4.d.76)
2At et \ rme1
el N )K_ 2<k<K. (4.4.77)
APZ 1 (pz 1—]7:_11) ( k—1/2 k-1/2

The left-hand side of (4.d.65) can be written in terms of T because it is represented as a

difference.

Following Richtmeyer and Morton (1967, pp. 198-201), the solutions for u,wv,6,

and ¢ have the form,

where for k =1,

and for 2< k < K — 1,

u?t! = Fuy, + Epu?Tl : 4.d.78
k Uk41

Fu {un—l}l,
b,

=N (4.4.79)
E =2, (4..80)
b1

'u,n—l}k + cpFug_1

Fue = by, — ckEr—1

: (4.d.81)
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ag

Bp=—
* T bk = ckBr1

(4.d.82)
and for k = K, .
Ex =0, (4.4.83)
{ur~t} + ek Fuk -1

= . 4.d.84
Fux bk —cxFx-1 (4.d.:84)

In the above, the diagonal coefficient is given by
by =1+ ag + ck. (4.d.85)

Note that, since the model actually forecasts vorticity and divergence, the new
diffused velocity fields u*! and ™! are not explicitly carried by the model, and the
corresponding diffused vorticity and divergence are not calculated. Rather, the net effects
of the diffusion Fy, (u"*!) and F,, (v"*!) are saved for addition to the nonlinear terms
ny and ny in the vorticity and divergence equations (after multiplication by cos ¢),

un+1 _ un—l

pntl — g1 .
E,, = AT (4.d.87)
The heating rate due to the diffusion is also calculated,
Tn+1 _ Tn——l )
FTV = T, (4d88)

and added to the nonlinear term in the temperature tendency equation. . The
frictional heating associated with (4.d.86) and (4.d.87) is also added to the
nonlinear term in the thermodynamic equation. The individual heating rates
Fp, (T™), —u""'Fy, (u™t!) /¢;, and —v"~1F,, (v**1) /c; are saved for diagnostic
purposes. The new moisture ¢"*? is retained as the basis for the next time-split step
in the moisture equation. The moisture tendency due to vertical diffusion is also saved for
diagnostic purposes,

n+1 __ qnfl

Fy, (") =2 Y (4.d.89)

e. Gravity Wave Drag

Vertically propagating gravity waves can be excited in the atmosphere where stably
stratified air flows over an irregular lower boundary and by internal heating and shear.
These waves are capable of transporting significant quantities of horizontal momentum
between their source regions and regions where they are absorbed or dissipated. Previous
GCM results have shown that the large-scale momentum sinks resulting from breaking
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gravity waves play an important role in determining the structure of the large-scale flow,
particularly for higher resolution truncations. The CCM3 incorporates a parameterization
for a spectrum of vertically propagating internal gravity waves based on the work of
Lindzen (1981), Holton (1982), Garcia and Solomon (1985) and MacFarlane (1987).
Although the parameterization can treat a fairly general spectrum of monochromatic
waves, in the standard tropospheric version of CCM3, the spectrum is reduced to a
single stationary wave generated by flow over orography, following McFarlane (1987) and
similar to the parameterization in CCM3. A more complete spectrum is used for middle
atmosphere studies. As with all CCM3 physical parameterizations, non-resolvable-scale
effects of vertically propagating gravity waves are determined in physical space on the
transform grid.

Adiabiatic inviscid formulation

Following Lindzen (1981), the continous equations for the gravity wave parame-
terization are obtained from the two-dimensional hydrostatic momentum, continuity and
thermodynamic equations in a vertical plane:

0 0 oo
("5{‘*‘115;) U= —-5;, (4.6.1)
ou Ow
5; + 'a—z = 0, . (4.8.2)
& 9\0® ., |
(B—t -+ ’U:'é;) —a—z- + N“w=0. -(4.6.3)

Where N is the local Brunt-Viisilld frequency, and w is the vertical velocity in {log
pressure) height coordinates. Eqs. (4.e.1)-(4.e.3) are linearized about a large scale
background wind %, with perturbations u’, and combined to obtain:

8 _0\ o 0%
('5{’*"&—6‘;) 922 + N 522 =0. (4.6.4)

Solutions to (4.e.4) are assumed to be of the form:

w' = we*E=t)e?/2H | conjugate, (4.e.5)

where H is the scale height, k is the horizontal wavenumber and c is the phase speed of
the wave. Subsituting (4.e.5) into (4.e.4), one obtains:

2 .
~k2(@ — c)? (-{% + -2%) W—k*N%p =0. (4..6)
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Neglecting 53 compared to 3% in (4.e.6), one obtains the final form of the two dimensional
wave equation:

9

%;’- + A% =0, (4.€.7)
with the coefficient defined as: :
N

A= ) (4.e.8)

The WKB solution of (4.e.8) is:

W= AN 2exp <z/ /\dz'> , (4.e.9)
0

where A is determined from the wave amplitude at the source (z = 0), ThekReynolds
stress associated with the (4.e.9) is:
2

7(z) =7(z =0) = pu/w’ = —E|A|2posgn(/\) , (4.e.10)

and is conserved while the momentum flux w'w’ grows exponentially with height as the
inverse of the density. :

Saturation condition

The wave amplitude in (4.e.1) grows as e*/2¥ until the wave becomes unstable
to convective overturning, Kelvin-Helmholtz instability, or other nonlinear processes. At
that point, the wave amplitude is assumed to be controlled at the amplitude which would
lead to the onset of the instability and the wave is “saturated”. The saturation condition
used in CCM3 is from McFarlane (1987), based on a maximum Froude number (F}), or
streamline slope.

7 A3
|’ < 7 = Fngﬂm‘ﬁi,
where 7* is the saturation stress, E is an “efficiency factor”, and F2E ~ 0.1. Following
Lindzen (1981), within a saturated region the momentum tendency can be determined
analytically from the divergence of the saturation stress (4.e.11):

ou 10

(4..11)

—— T ——— 1Py
ot paz"““”
phE=015p
T 72 N  pdz’
k(@—c)?® g
~ Bp oo (4.e.12)

The analytic solution (4.e.12) is used below as an upper bound on the tendency computed
by differentiating the stress profile. This condition is usually invoked when the wave
saturates close to a critical level (7 — ¢ = 0).
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Radiative damping and dissipation

The effect of radative damping of the vertically propagating gravity waves can
be included in the solutions (4.e.9) and (4.e.10) relatively easily through the Newtonian
cooling approximation. The effect of mechanical mixing can also be included through an
eddy viscosity, giving a damped vertical stress profile:

7(2) = 7(0)exp <—% /0 ’ )\idz') , | (4.0.13)

where the imaginary part of the local vertical wavenumber, A; depends on the Newtonian
cooling coeflicient o and eddy viscosity D as:

N N2 .

A = D). 4.e.14
= e () (et
In CCM3, a = 107° s7! and is not important in the solution. D is determined
from the saturation condition, but is only of modest importance, particularly in the
standard tropospheric model with only a single wave. Again following Lindzen (1981),
one can assume that within a region of wave staturation, the wave damping balances the

exponential growth with height. The required diffusivity is then:
u~—c)? [ Ek
N2 HN
We define D* as the saturation diffusivity, analogous to the saturation stress 7*, for use

below.

D*=(

(@—c)?~af . : (4.6.15)

Orographic source function

For orographically generated waves, the source is taken from McFarlane (1987):
- k '
= |pu'w'|p = E§h8poN0H0 , (4.e.16)

where hg is the streamline displacement at the source level, and pg, Ny, and Uy are also
defined at the source level. For orographic waves, the subgrid-scale standard deviation of
the orography o is used to estimate the average mountain height, determining the typical
streamline displacemeﬁt. An upper bound is used on the displacement which corresponds
to requiring that the wave not be supersaturated at the source level.

. Ug
ho = min(20, FC—N—(;) .
The source level quantities pg, No, and Uy are defined by vertical averages over the source
region, taken to be 20, the depth to which the average mountain penetrates into the

domain:

(4.&.17)

20

Yo = Ypdz, ¥ € {p,N,u,v}. (4.e.18)
—J )
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The source level wind vector (up,vg) determines the orientation of the coordmate system
in (4.e.1)—(4.e.3) and the magnitude of the source wind .

Gravity wave spectrum

A small background gravity wave stress 7, is assumed to be present at all points
and the actual source stress is determined from the maximum of the orographic source
(4.e.16) and the background value. When the background stress is used, the source level
is assumed to be the bottom model level and the gravity wave stress at the source level is
aligned with source wind, as usual. At all other levels, the local wind vector is projected
onto the source wind vector, reducing the problem to two dimensions.

A gravity wave spectrum can be included by setting the number of waves to be

greater than zero. In that case,
Ts(ce) ex ( ct )2
Co) = T —| =
s\Ce bEeXP 30

ce € [0,£10,420,...]. " (4.e.19)
Above the source region, the saturation condition is enforced separately for each wave:

7~ cof®

k
T(ce) < 1) = FCZE—2-p N (4.€.20)
Oug  18m _ 10717 _ _kfu—cf® g
—_——— T —— e — < —— — O
ot poz ~ p oz E2 N RT’ (4e21)
8V V (9Ug
TR Z (4..22)

Finally, the diffusivity used to determine the stress profile (4.e.13) outside of saturated
regions is

D = max (De VZ) (4.€.23)
Ty

Although the standard CCM3 only uses a single gravity wave with ¢ = 0, the code allows
for the more general spectrum described above.

Numerical approximations

The gravity wave drag parameterization is applied immediately after the nonlinear
vertical diffusion. The interface temperatures are first determined from:
Vo
- +1
Ter, = ——2——,. o (4e29)
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The interface Brunt-Viisalld frequency is

2
g 1 oT
M- g (2-0) e
Where the interface density and temperature gradient are:
RTn—l
n—1 k+1/2
- = —, 4.e.26
Prti1/2 DPk+1/2 ( )
n— -1 -1
Op  J ji1/2 Pk — Pk+1

The midpoint Brunt-Véisalld frequencies are determined as Ng = (Niy1/2 + Nk—1/2)/2.

The level for the orographic source is an interface determined from an estimate of
the vertical penetration of the subgrid mountains within the grid box. The subgrid scale
standard deviation of the orography, o, gives the variation of the mountains about the
mean elevation, which defines the Earth’s surface in the model. Therefore the source level
is defined as the interface, ks —1 /2, for which 2y, 11/2 < 204 < zk,—1/2, Where the interface
heights are defined from the midpoint heights by z;1/5 = \/(zkzk+1).

~ The source level wind vector, density and Brunt-Vaisilld frequency are determined
by vertical integration over the region from the surface to interface ks + 1/2:

K
Yo = Z Ye(Pr+1/2 — P-172), = ¥ € {p, N,u,v}. (4.€.27)
k=k,

The source level background wind is @y = \/(ug + v2) and the unit vector for the source
wind is '

(%o, Y0) = (uo,v0)/T0 , (4.€.28)
the projection of the midpoint winds onto the source wind is ‘
U, = up o + vy 'y, | (4.€.29)

and the projected interface winds are

Hk+1/2 = (ﬂk + Hk+1)/2 . (4630)

Assuming that %y > 2 m s™! and 20* > 10 m, then the orographic source term,
Ty is given by (4.e.16) and (4.e.17), with F, =0.5, B = .125, and k = 27/10° m~!. The
gravity wave source term is then

7o = max(7y, T) , (4.€.31)
To = Te + T(N,S5) » (4..32)

where 7 = 0.75sin|2¢| and 75 = 1.2sin|2¢] are applied in the Northern and Southern
Hemispheres, respectively, and 7. = exp [—(¢/ 10)2] Pa. The background values are not
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significant in tropospheric version of CCM3, but become important for middle atmosphere
studies.

Although the code contains a provision for a linear stress profile within a “low level
deposition region”, this part of the code is not used in the standard model, since nq, = 0.

The stress profiles are determined by scanning up from the bottom of the model to
the top. The stress at the source level is determined by (4.e.31). The saturation stress, 7*
at each interface is determined by (4.e.11), where we note that 7* = 0 if a critical level is
passed. A critical level is contained within a layer if (Tg41/2 — ¢)/(Tk-1/2 — ¢) < 0. The
diffusivity at each interface is determined by
Dy = Diy_y jp 2X2 (4.¢.33)
Tk—1/2 ‘
where D* is given by (4.e.15). The interface stress is then determined from the stress on
the interface below by:

o x R '
Th-1/2 = mln(rk_l/z, Th+1/28XP —2mi§Tk(lnpk+1/2 —Inpr_1/2)| » (4.€.34)

Limits on the range of stresses within the spectrum are present in the code, but are only
applied when the spectrum contains more than a single wave, so are not relevant to the
standard model. '

Once the complete stress profile has been obtained, the forcing of the background
wind is determined by differentiating the profile during a downward scan:

e _ o max
0Tk Th1/2 = Th-1/2 <3uk) ' (4.6.35)
ot Pk+1/2 — Pk—1/2 ot
— max W * —
(%%) = min [(6(;‘:) ,’5|‘; At“’“' ,500m/s‘1/day“1} . (4..36)

The first bound on the forcing, (0% /0t)" is given by the analytic solution (4.e.12). This
bound typically comes into play when a critical level is near and the background wind is
rapidly varying in the vertical. The second bound comes from requiring that the forcing
not be large enough to push the wind mode than half way towards a critical level within a
time step and takes the place of an implicit solution. This bound is present for numerical
stability, it comes into play when the time step is too large for the forcing. It is not
feasible to change the time step, or to write an implicit solver, so an a priori bound is
used instead. The third bound is used to constrain the forcing to lie within a physically
plausible range (although the value used is extremely large) and is rarely invoked.

When any of the bounds in (4.e.35) are invoked, conservation of stress is violated.
In this case, stress conservation is ensured by decreasing the stress on the lower interface
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to match the actual stress divergence in the layer:

' Oy, Pr+1/2 — Pr—1/2
7| = Tg—1/2 + .
kt+1/2 = Th-1/2F 5, p

This has the effect of pushing some of the stress divergence into the layer below, a
reasonable choice since the waves are propagating up from below.

(4.€.37)

Finally, the vector momentum forcing by the gravity waves is determined by
projecting the background wind forcing with the unit vectors of the source wind:
OV 0Ty,

Tl Ft—(xo’ Yo) - (4.€.38)

The gravity wave source is also projected in the direction of the source wind for recording
on the history files. The momentum tendencies from (4.e.38) are added to the nonlinear
terms in the vorticity and divergence equations. In addition, the frictional heating implied
by the momentum tendencies, évg-lavk /0t, is added to the thermodynamic equation.

f. Rayleigh Friction

The Rayleigh friction term in CCMS3 is a carryover from CCM2. It was only used
for the stratosphere and, for those applications, it has been superseded by the gravity wave
spectrum parameterization described in the previous section. Since the parameterization
is still in the CCM3 code, it is described here. However, the parameterization will probably
be removed in revised versions of CCM3.

A Rayleigh friction term has been included in the zonal momentum equation to
provide a crude parameterization of the effect of breaking gravity waves in the mesosphere
and to prevent reflection of waves from the top boundary. This term is implemented in

the form

Qy—- = —-KgrV | (4.f.1)

ot
The friction coefficient is determined from
1 z—63 x 108 1
= =11 ———— - .f.
Kp 3[ +tanh( 75 X 10° )] days™", (4.f.2)
where
z=-hln(A+ B), (4.1.3)

and h = 7 x 10> m. This term, which is not intended to be a faithful representation of
mesospheric dynamics is inactive in the standard model configuration.
4.2 Adjustment Physics

After the new temperatures and mixing ratios are computed from (3.a.5) and
(3.a.6), a series of convective adjustment schemes is applied to create mutually adjusted
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T and q fields. If the predicted atmosphere is not saturated and the lapse rate exceeds
the dry adiabatic lapse rate, the temperatures are reset to give a dry adiabatic lapse rate,
but only in the “stratospheric” region of the model (i.e., top three levels in the standard
configuration). The moisture field is assumed to be mixed by this process as well and
is reset to the average value. The stability-dependent vertical diffusion provides for dry
turbulent vertical mixing in the troposphere. Thus, in practice, momentum is mixed as
well as heat and moisture. If the atmosphere is moist adiabatically unstable, the moisture
and temperature fields are simultaneously modified in accordance with a parametric
representation of “deep” cumulus convection, followed by a simple model of shallow and
mid-tropospheric moist convection. If the atmosphere is stable but supersaturated, the
moisture field is adjusted to be saturated and the temperature field is simultaneously
adjusted to reflect the heating due to the release of latent heat. When the moisture field
is changed to eliminate supersaturation, the change is assumed to go into precipitation.
The details of these processes are presented in the following sections, where we use the.
notation (T, q) to denote values before the adjustment, and (T',§) after the adjustment.

g. Deep Convection

The process of deep convection is treated with a parameterization scheme developed
by Zhang and McFarlane (1995). The scheme is based on a plume ensemble approach
where it is assumed that an ensemble of convective scale updrafts (and the associated
saturated downdrafts) may exist whenever the atmosphere is conditionally unstable in the
lower troposphere. The updraft ensemble is comprised of plumes sufficiently buoyant so
‘as to penetrate the unstable layer, where all plumes have the same upward mass flux at
the bottom of the convective layer. Moist convection occurs only when there is convective
available potential energy (CAPE) for which parcel ascent from the subcloud layer acts
to destroy the CAPE at an exponential rate using a specified adjustment time scale.
For the convenience of the reader we will review some aspects of the formulation, but
refer the interested reader to Zhang and McFarlane (1995) for additional detail, including
behavioral characteristics of the parameterization scheme.

The large-scale budget equations distinguish between a cloud and sub-cloud layer
where temperature and moisture response to convection in the cloud layer is written in
terms of bulk convective fluxes as '

oT 18 '
0q _~1.‘Z(M + Mags — Meg) + E~C (4.9.2)
En N = 0z uqu dqd cq ) -9
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and the subcloud layer response is written as

@ (”%‘) = -'A-ﬁ;(Mbw(zfn) = Su(zm)] + Ma[S(2m) = Sa(zm)]) =~ (4.9.3)
(w%%) = "'iﬂ:(Mb[Q(zm) — qulzm)] + Malg(zm) = qa(zm)]), (4.94)

where the net vertical mass flux in the convective region, M., is comprised of upward,
M,, and downward, My, components, C and E are the large-scale condensation and
evaporation rates, S, Su, Sd4, ¢, Qu, g4, are the corresponding values of the dry static
energy and specific humidity, Az, is the depth of the mean subcloud layer, the subscript
m denotes subcloud layer properties, z,, is the height of the subcloud layer, and My is the
cloud base mass flux. '

The cloud model is composed of two components, the updraft ensemble and the
downdraft ensemble. The updraft ensemble is represented as a collection of entraining
plumes, each with a characteristic fractional entrainment rate. Mass carried upward by -
the plumes is detrained into the environment in a thin layer at the top of the plume where
the detrained air is assumed to have the same thermal properties as in the environment.
The top of the shallowest of the convective plumes is assumed to be no lower than the mid-
tropospheric minimum in saturated moist static energy, h*, ensuring that the cloud top
detrainment is confined to the conditionally stable portion of the atmospheric column.
Each plume is assumed to have the same value for the cloud base mass flux where the
vertical distribution of the cloud updraft mass flux is given by

AD
M, = M, / —/\l—e’\(z‘zm)d)\ (4.9.5)
0 0

Ao is the maximum detrainment rate, and Ap is the entrainment rate for the updraft that
detrains at height z which is iteratively determined by requiring that

hy — B* = Ap / [ho — h(2')]erP ' =2 gy (4.9.6)
Zm

Thus, the budget equations for dry static energy, water vapor mixing ratio, and cloud
liquid water, £, are written as

0

& (MuSu) = (Eu s .Du) S + LCu (4-g.7)
0 N «

EZ. (MuQu) = Eyuq - D.q* + Cu (4-9'8)
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)
5, (Mub) = ~Duly+Cu — R (4.9.9)

where the conversion from cloud water to rain water is given by

Rr = CoMue, (4.9.10)

and ¢g = 221073m™1.

Downdrafts are assumed to exist whenever there is precipitation production in the
updraft ensemble where the downdrafts start at or below the bottom of the updraft
detrainment layer. Detrainment from the downdrafts is confined to the subcloud layer,
where all downdrafts have the same mass flux at the top of the downdraft region.
Accordingly, the ensemble downdraft mass flux takes a similar form to (4..5) but includes
a “proportionality factor” to ensure that the downdraft strength is physically consistent
with precipitation availability. This coefficient takes the form

P
—_ . . ].
@ ”[P+Ed]’ - (4.9.11)

where P is the total precipitation in the convective layer and "Ejy is the rain water
evaporation required to maintain the downdraft in a saturated state. This formalism
ensures that the downdraft mass flux vanishes in the absence of precipitation, and that
evaporation cannot exceed some fraction, u, of the precipitation, where p = 0.2.

The parameterization is closed, i.e., the cloud base mass fluxes are determined, as
a function of the rate at which the cumulus consume convective available potential energy
(CAPE). Since the large-scale temperature and moisture changes in both the cloud and
subcloud layer are linearly proportional to the cloud base updraft mass flux (e.g., see eq.
4.9.1 - 4.g.4), the CAPE change due to convective activity can be written as

8A
(_5?>cu = —M,F (4.9.12)

where F is the CAPE consumption rate per unit cloud base mass flux. The closure
condition is that the CAPE is consumed at an exponential rate by cumulus convection
with characteristic adjustment time scale 7;
A
T TF
Convective transport of trace species are assumed to follow (4..8) where g is a moist
mixing ratio of the tracer and C, = 0. The interested reader can find a more complete
discussion of the formalism in Zhang and McFarlane (1995). '

My (4.9.13)
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h. Shallow/Middle Tropospheric Moist Convection

To characterize the convective forcing associated with shallow and middle-
level convection (i.e., convective activity not treated by the primary convective
parameterization scheme) we write the large-scale budget equations for dry static energy
and total water as

%:—vf\?'g— %ﬁpj_% (ZT'sZ) + LR+ ¢,Qr
- g_f - %\(;Fs;) L IR 4R
and
% V.V —95—;-——— (v@+0))-R
- g_z - 3% (@ D) -=, (4.0.2)

where s = ¢,T + gz is the dry static energy; £ represents liquid water; s, = s — L£ is
the static energy analogue of the liquid water potential temperature introduced by Betts
(1975); R is the “convective-scale” liquid water sink (sometimes denoted by C — E); and
Qr is the net radiative heating rate. The subscript R.S. denotes the resolvable-scale
contributions to the large-scale budget. Note that variations of the mean liquid water on
the large scale have been neglected. The barred quantities represent horizontal averages
over an area large enough to contain a collection of cloud elements, but small enough so as
to cover only a fraction of a large-scale disturbance. By writing the mean thermodynamic
variables in terms of their average cloud and environment properties, and assuming that
the convection occupies only a small fraction of the averaging area, the vertical eddy
transports w’s, and w’ (¢’ + £') can be approximated by the difference between the upward
flux inside a typical convective element and the downward flux (i.e., induced subsidence)
in the environment (cf. Yanai et al., 1973). Mathematically, this approximation takes the
form

Fuo (7)== (957) ~ =M. () (50) = 5 () + LL () (41.3)
and |
Foae @) === (T@FD) ~-M.0) @) - 0. 0) = £()),  (4ha)
where M, is a convective mass flux, and s, g., and £ represent cloud-scale properties.
Thus, (4.h.1) and (4.h.2) can be written as
95 0%

ot~ ot

0 .
+g'6‘5Fs£ +LR 3 (4'h5)

R.S.
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and
0 0q 0
5t Bt s + Q%Fﬁ_g R. | (4.h.6)

Let us now turn our attention to a vertically discrete model atmosphere and
consider the case where layers k and k + 1 are moist adiabatically unstable, i.e., a non-
entraining parcel of air at level k + 1 (with moist static energy h.) would be unstable if
raised to level k. We assume the existence of a non-entraining convective element with
roots in level £+ 1, condensation and rainout processes in level k, and limited detrainment
in level k1 (see Figure 5). In accordance with (4.h.5) and (4.h.6), the discrete dry static
energy and specific humidity budget equations for these three layers can be written as

o5+ 22 o (- 18). war
$p = 55 + Z—A%% {me (sc = Sesy) = Bme (s~ Lty - 5e-y) + LR}, (4h8)
Ska1 =She1 + —AZ:% [me (g -50)}, (4h.9)
Goo1 =Teor + jiti {Bme (e =Tu-y) } (4.5.10)
G =3+ —Q—AA—p% {me (9= Turs) = Bme (00— Tuey) — Ra} (4.h.11)
s = Tesa + e (e (Tury — )} (4.h12)

where the subscript ¢ denotes cloud properties in the ascent region, m is a convective mass
flux at the bottom of the condensation layer (level k + %, “cloud base”), and B is a yet to
be determined “detrainment parameter” at level k — % that will take a value between zero
and one. Note that the convective-scale liquid water sink R has been redefined in terms
of mass per unit area per unit time (denoted by R), and the resolvable-scale components
have been dropped for the convenience of the following discussion. In the general case,
the thermodynamic properties of the updraft region can be assumed to be equal to their
large-scale values in the sub-cloud layer, level k + 1, plus some arbitrary thermodynamic
perturbation; i.e.,

Se = Sp41 + s, (4.h.13)

G =Tp41 1+ ¢, (4.h.14)
and

he = s¢ + L. (4.h.15)
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Figure 4. Conceptual three-level non-entraining cloud model

In the CCM3 implementation of this scheme, when a sub-cloud layer lies within the
diagnosed atmospheric boundary layer, the perturbation quantities ¢’ and s’ are assumed

to be equal to b —(w_T'EIm—')—S (e.g., see 4.d.19 and the atmospheric boundary layer discussion)
and zero.

The liquid water generation rate at level k is given by

mely, = me[ge — (gc),] - (4.h.16)
Using the saturation relation
) —x Y 1 —
(e), =Tk + 5 +k'7k I (hc ~ hk) , (4.h.17)
where ¢* denotes the saturated specific humidity
. €s
= ————— 4.h.18
T =T e ( )

h* denotes the saturated moist state energy, e, is the saturation vapor pressure
(determined from a precomputed table), and v = (L/c,) (67* /BT)p, and assuming that
the large-scale liquid water divergence in layer k is zero, (4.h.16) can be manipulated to
give the rainout term in layer k as

‘ 1 — :
LRy = L(1 = f)mets = (1= B)me {Ek - set T (hc - hk)} : (4.h.19)
and the liquid water flux into layer k — 1 as
1 —
BmeLly = Bme {gk = set o (hc - hk)} . ' (4.7.20)
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Equations (4.h.9) and (4.h.12) can be combined to give an equation for moist static energy
in layer &k + 1

aﬁk+1 g N ahc
Bt Appa (h’?+% hc) at (4.h.21)
where the approximation follows from the assumption that Oh' /0t can be neglected. Using
the relation (1 + fyk)%g-t& = a—gf—, (4.h.8) can be manipulated to give an expression for the
time rate of change of saturated moist static energy in layer k
oh, gm _ _
—ka = Ap: 1+7,) { (sc —Spey + LZk) -f (sc - sk_%) } (4.h.22)
Subtracting (4.h.22) from (4.k.21) results in
a(’zc'h’“)_ {9 (T
— = MR hgyy = he :
Di+1 (4.h.23)
g - - -
| = ap W (e =Ty) -8 (e -5y ) ]
from which the convective mass flux m. can be written as
he — hy,
me = ¢k (4.h.24)

TN RPN | A |

where 7 is a characteristic convective adjustment time scale.

Physically realistic solutions require that the convective mass flux m. be positive,
implying the following constraint on the detrainment parameter 3
B+, (sc - gk_%) <(1+7,) (sc ~ g1+ le) - Aif_’; (EH% - hc) . (4.h.25)
A second physical constraint is imposed to ensure that the adjustment process does not
supersaturate the “detrainment layer”, k£ — 1, which leads to the following constraint on
the detrainment parameter, (:

-A—;;[(l +7) (Sc ~ Sk} "‘Lgk)] N Aptﬂ [—H’“‘r% N hc] ”

ﬂ{ (2At> he — Tog [ {_
— —_ FYk—-l Sk_
T (hk_l — hk—l) Apr-1

— 1
+he = hy_y _Sc+—§k—1] +“—(1+’7k)(3c“§k—§>}-

=
|
w
[+
_|_
b'
)
>
| —
—~
-
=
w
pand
g

2] Apg

A final constraint on the adjustment process attempts to minimize the introduction of
2An computational structures in the thermodynamic field by not allowing the procedure to
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increase the vertical gradient of h when %% < 0 in the upper pair of layers. Mathematically

this constraint is formulated by discretizing in time the moist static energy equations in
layers k and k — 1, leading to the following constraint on 3

hi (;zfi_';%;—)— ¢ (2;t> (A;h [(1 + ) (8¢ — Spey t Lék)] - Ap;% [Ek+% _ hc])

+ Z;—k [hc —’HH%]

o B () () (ennt).

- 1 1
+{he—=hy_1 - LL + .
( k-3 k) (Apk Apk+1>} ( " )
4.h.33

where G is an arbitrary vertical difference in the adjusted moist static energy profile (cf.
Hack et al., 1993). '

The first guess for the detrainment parameter, 3, comes from a crude buoyancy
argument where

( ,Bmin

8 = max ¢ b | (4.7.34)

min he—hy_1)Apr-1
\ bt ( (hc*ﬁl:))Ap" ,
and Bmin is assumed to be 0.10 (i.e., 10% detrainment). Since 8 effectively determines the
actual autoconversion from cloud water to rainwater, By, is determined from a minimum
autoconversicn requirement which is mathematically written as

;Bmin

Bmax = max (4.h.35)

1-1¢y (5; — 0Zmin) ,
where ¢y is a constant autoconversion coefficient assumed to be equal to 1.0x107% m~1,
6z is the depth of contiguous convective activity (i.e., layers in which condensation and
rainout takes place) including and below layer k, and dzyi, is a minimum depth for
precipitating convection. The physical constraints on the adjustment process are then
applied to determine the actual value of 3 appropriate to the stabilization of levels k& and
k-+1.

In summary, the adjustment procedure is applied as follows. A first guess at
B is determined from (4.h.34) and (4.h.35), and further refined using (4.h.25), (4.h.31),
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and (4.h.33). The convective mass flux, m,, is then determined from (4.h.24), followed
by application of budget equations (4.h.7) — (4.h.12) to complete the thermodynamic
adjustment in layers £ — 1 through k£ + 1. By repeated application of this procedure from
the bottom of the model to the top, the thermodynamic structure is locally stabilized,
and a vertical profile of the total cloud mass flux associated with shallow and mid-level
convection, M, (where Mck+ ) = Me, . ) + ﬁmck+ %) can be constructed. This mass flux
profile can also be used to estimate the convective-scale transport of arbitrary passive
scalars. The total convective precipitation rate is obtained by vertically integrating the

convective-scale liquid water sink

K
1
P= > Ry (4.h.36)
PH,O ]
The free parameters for the scheme consist of a minimum convective detrainment, Smin,
a characteristic adjustment time scale for the convection, 7, a cloud-water to rain-water
autoconversion coeflicient c¢p, and a minimum depth for precipitating convection ézy;y.

i. Stable Condensation

If the lapse rate is stable, but the moisture is supersaturated at a point, i.e., if

& 510, (4.4.1)
Vo
the temperature and moisture are adjusted simultaneously so that the point is just
saturated. The new specific humidity is given by
) dgy ( :
I T, — T) , 4.4.2
Qk {qk-l-dT k k (44.2)
where ¢} is given by (4.9.18). The temperature change due to the release of latent heat
during condensation is

L L . :
(Tk - Tk) = — (qk - qk) . (4.’1,.3)
Cp
Substitution of (4.4.3) into (4.4.2) gives the adjusted specific humidity,
. . L dg; | :
= qr — - 14— . .
=0 (@-ai)/ (1+ 255 (4.4

Equations (4.2’.4) and (4.1.3) are iterated twice. The corresponding stable precipitation
rate at level £ is given by

Rsk = (dk - Qk) Apk/ (2Atg)7 (425)

in units of kg m™* s In previous versions of the model, this stable condensate was
assumed to immediately reach the ground allowing for the stable precipitation rate at the

2 -1
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surface to be written as

P, = Z R, /pm,0- (4.5, 6)

The CCM3 employs a Sundqvist (1988) style evaporation of this stratiform (i.e., stable)
precipitation as it makes its way to the surface. This scheme relates the rate at which
raindrops evaporate to the local large-scale subsaturation, and the rate at which rainwater
is made available to the subsaturated model layer

- 1/2 .
B,, = Kp (1- RHy) (R,,)". \ (4.4.7)

where R, , denotes the total rainwater generation rate at level k (which can be larger than
the locally diagnosed rainwater generation rate arising from 4.7.5, as will be shown below),
the “rate” coefficient K takes the value 1075, and the variable E;, has units of s~!. The
evaporation rate E, is used to determine a local change in ¢, and T}, associated with
an evaporative reduction of }?sk. Conceptually, the e\}aporation process is invoked after
- a vertical profile of R, has been evaluated using (4.i.5). An evaporation rate is then
computed for the _uppermost level of the model for which R,, # 0 using (4.1.7), where in
this case R,, = R, »- This rate is used to evaluate an evaporative reduction in R, which
is then accumulated with the rainwater rate in the layer below,

. . A : |
R3k+1 = R,, — ("‘gp—k'> E;, + R3k+1' (4.1,.8)

A local increase in the specific humidity g and a local reduction of T} are also calculated
in accordance with the net evaporation

9% = gk + Es, 24t (4.1.9)
and
L )
T =T — (c—) E;, 2At. (4.4.10)
P

The procedure, (4.7.7) — (4.1.10), is then successively repeated for each model level in a
downward direction where the stable precipitation rate is that portion of the condensed
rainwater in the column to survive the evaporation process

A A .
P, = (RSK - (%) E3K> /PH,0. (4.2.11)

In global annually averaged terms, this evaporation procedure produces approximately a
20% reduction in the stratifoxjm precipitation rate where the evaporated condensate acts
to slightly moisten the middle and lower troposphere.
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Jj. Dry Adiabatic Adjustment

If a layer is unstable with respect to the dry adiabatic lapse rate, dry adiabatic
adjustment is performed. The layer is stable if ‘

oT kT
— <= 4.5.1
9 p 451)
In finite-difference form, this becomes
Tk+1 - Tr < Clk+1(Tk+1 + Tk) +'5, (4j2)
where
K - .
Clpsr = _(I_’_k_ﬂ___@. (4.4.3)

2pky1/2

If there are any unstable layers in the top three model layers, the temperature is
adjusted so that (4.5.2) is satisfied everywhere in the column. The variable § represents a
convergence criterion. The adjustment is done so that sensible heat is conserved,

cp(TuApx + Tt 18pk+1) = cp(TeApk + Tho100k41), (4.5.4)
and so that the layer has neutral stability:
Tk+1 - Tk = Clk+1(kal + Tk) . (4.5.5)

As mentioned above, the hats denote the variables after adjustment. Thus, the adjusted
temperatures are given by

Apy Apr+1

Tpo1 = Ty + Tho1, 4.5.6
ktt Apkt1 + AprC2pr Api+1 + AprC2;41 k1 (45:6)
and

Te = C2%41T%+1, (4.5.7)

where

1—-Clgs )

C2 = — 4.1.8
k+1 1+01k+1 ( J )

Whenever the two layers undergo dry adjustment, the moisture is assumed to be
completely mixed by the process as well. Thus, the specific humidity is changed in the
two layers in a -conserving manner to be the average value of the original values,

Gk+1 = Gk = (qk+18Pk+1 + quApk)/ (Aprs1 + Ape). (4.5.9)
Tlie layers are adjusted iteratively. Initially, § = 0.01 in the stability check (4.5.2). The
column is passed through from k£ = 1 to a user-specifiable lower level (set to 3 in the
standard model configuration) up to 15 times; each time unstable layers are adjusted until
the entire column is stable. If convergence is not reached by the 15th pass, the convergence
criterion is doubled, a message is printed, and the entire process is repeated. If § exceeds
0.1 and the column is still not stable, the model stops.
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As indicated above, the dry convective adjustment is only applied to the top three
levels of the standard model. The vertical diffusion provides the stabilizing vertical mixing
at other levels. Thus, in practice, momentum is mixed as well as moisture and potential
temperature in the unstable case. '
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5. LAND SURFACE MODEL

The land surface model (LSM version 1) has been described in detail by Bonan
(1996a). This model is a one-dimensional model of energy, momentum, water, and
CO; exchange between the atmosphere and land, accounting for ecological differences
among vegetation types, hydraulic and thermal differences among soil types, and allowing
for multiple surface types including lakes and wetlands within a grid .cell. Vegetation
effects are included by allowing for twelve plant types that differ in leaf and stem areas,
root profile, height, leaf dimension, optical properties, stomatal physiology, roughness -
length, displacement height, and biomass. The model allows for 28 different vegetated
surfaces, each comprised of multiple plant types and bare ground so that, for example, a
mixed broadleaf deciduous and needleleaf evergreen forest consists of patches of broadleaf
deciduous, needleleaf evergreen trees, and bare ground. Lakes and wetland, if present,

- form additional patches. Soil effects are included by allowing thermal properties (heat
capacity, thermal conductivity) and hydraulic properties (porosity, saturated hydraulic
conductivity, saturated matric potential, slope of retention curve) to vary cohtinuously
dépending of percent sand and percent clay. Soils also differ in color, which affects soil
albedos. Consequently, each grid cell in the domain of interest is assigned a surface type,
a fraction covered by lakes, a fraction covered by wetlands, a soil texture (percent sand, -
percent silt, percent clay), and a soil color.

Major features of the model are: prescribed time-varying leaf and stem areas;
absorption, reflection, and transmittance of solar radiation, accounting for the different
optical properties of vegetation, soil, water, snow, and ice; absorption and emission of
longwave radiation allowing for emissivities less than one; sensible and latent heat fluxes,
partitioning latent heat into canopy evaporation, soil evaporation, and transpiration;
turbulent transfer above and within plant canopies; vegetation and ground temperatures
that balance the surface energy budget (net radiation, sensible heat, latent heat, soil
heat); stomatal physiology and CO; fluxes; interception, throughfall, and stemflow; snow
hydrology; infiltration and runoff; temperatures for a six-layer soil column using a heat
diffusion equation that accounts for phase change; soil water for the same six-layer soil
column using a one-dimensional conservation equation that accounts for infiltration input,
gravitational drainage at the bottom of the column, evapotranspiration losses, and vertical
water flow based on head gradients; and temperatures for six-layer deep and shallow lakes
accounting for eddy diffusion and convective mixing.

In coupling to the atmospheric model, the land surface model provides to the
atmospheric model, at every time step, surface albedos, upward longwave radiation,
sensible heat flux, latent heat flux, water vapor flux, and surface stresses. The atmospheric
model provides to the land model, at every time step, incident solar and longwave
radiation, convective and large-scale precipitation, and lowest model level temperature,
wind, specific humidity, pressure, and height.
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Bonan (1996a) provides a thorough description of the model. The model has been
applied to study land-atmosphere CO, exchange (Bonan, 1995a), the effects of lakes and
wetlands on climate (Bonan, 1995b), and climate sensitivity to subgrid infiltration and
runoff (Bonan, 1996b). '
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6. SLAB OCEAN MODEL

The Slab Ocean Model (SOM) provides a simple ocean model for coupling with the
CCM3. Using sea surface temperature and net surface heat flux available from a control

run, the ocean heat flux (also called Q flux) can be defined and the CCM3 run with SOM,
allowing for simple ocean/atmosphere interactions.

a. Open Ocean Component

The open ocean slab model! is taken from Hansen et.al. (1983). The prognostic
equation for ocean mixed layer temperature is: '
o7,
5 = F+Q (6.a.1)
where T, is the ocean mixed layer temperature, p, the density of ocean water, C, the
heat capacity of ocean water, h, the ocean mixed layer depth (m), F = net atmosphere
to ocean heat flux (Wm™2), and Q = ocean mixed layer heat flux (Wm~2) simulating
deep water heat exchange and ocean transport. p, and C, are constants (see Appendix
for values of constants).

PoCoho——

The ocean mixed layer depth h, is specified from Levitus (1982). Monthly mean
mixed layer depths at levels where o4 (h)—o¢(surface) = .125 on a 1°x1° grid were averaged
to the standard CCM (T42) grid (all data falling within a CCM grid box were equally
weighted). The data were then horizontally smoothed 10 times using a 1-2-1 smoother
and capped at 200m (to prevent excessively long adjustment times in coupled atmosphere
ocean experiments). The resulting mixed layer depths in the tropics are generally shallow
(10-30m) while at high latitudes in both hemispheres there are large seasonal variations
(10m up to 200m maximum).

F is the net atmosphere-to-ocean heat flux in the absence of sea ice, defined as:
F=FS-FL-SH-LH (6.a.2)

where F'S = solar flux absorbed by ocean, FL = longwave cooling flux, SH = sensible
heat flux from ocean to atmosphere, and LH = latent heat flux from ocean to atmosphere.
The surface temperature used in evaluating these fluxes is T5,.

At CCM iteration n one has: T}, h7,F",Q", where h and Q™ are linearly
interpolated in time between prescribed mid-monthly values, @™ has in addition been
globally adjusted as required and F™ is the net surface flux (6.a.2). The forecast value to
T, is then:

Fn + QTL

Tn+1 = T'n.
PoCoh?

At | (6.a.3)
where At is the model time step.

119



b. Sea Ice Component

The sea ice component employs a simple formulation that parallels the ocean
component. The mixed layer Q flux under sea ice is specified so that the sea ice component
is constrained to approximately yield the control sea ice distribution in a coupled run.

A modified version of the thermodynamic ice model of CCM2 is employed. Sea ice
is assumed to completely cover each CCM grid square, and is specified by six variables:
four sea ice layer temperatures, Tp(£ = 1...4)(K), physical depth of snow overlying sea ice
hs(m) and physical thickness of sea ice h;(m). Compaction of snow over time, as well
as loss of snow through sublimation (latent heat loss) to the atmosphere, are ignored.
Thermal conductivity of snow ks, the snow mass density p;, and the snow mass heat
capacity cs, are assumed constant. The density ratio of snow to ice is about 1/3, which
represents some compaction of original snowfall. Since snowfall in CCM3 is given in liquid
water equivalent, a factor of 3 increase in depth is assumed. Snow melts at T, = 0°C.
Liquid water melted from snow is assumed to percolate down to the underlying ocean with
no effect on snow or ice.

Sea ice physical thickness h; has an assumed minimum value of A" = 0.25m. The
thermal conductivity of sea ice ;, the heat of fusion of sea ice into liquid water L;, the
~sea ice mass density p;, and the sea ice mass heat capacity ¢;, are all assumed constant.
The effects of salt (i.e. brine pockets and variable salinity) are ignored. Sea ice is assumed
to form at T,y = —1.9°C (appropriate for an ocean salinity of 35°/,,) and to melt at 0°C.
Sea ice can melt at the surface, but water from such melting is assumed to percolate down
with no effect on sea ice or snow albedo. The mixed layer temperature T, below sea ice is
assumed to remain at freezing (T,y).

Solar albedo for sea ice in the visible (0.2-0.7um, solar top-of-atmosphere irradiance
fraction 0.465), and near-ir (0.7-4.0um, solar top-of-atmosphere irradiance fraction 0.535),
are given by: '

ayis(sea ice) = .50+ (.70 — .50)(h; — .25)/.25
| Omir (s€0 ice) = .26 + (.50 — .26)(hi — .25)/.25 (6.5.1a)
for h; < .50m (a relation based on the observations of Allison et al. (1993)), and:
awis(sea ice) = .70
Qnir(sea ice) = .50

for h; > .50m (as in CCM2). These spectral albedos imply broad band albedos of ~ .37
and ~ .59 respectively. Snow albedos are taken as those of aged snow:

Qyis(snow) = .84

Qnir (SNOW) = .60
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These spectral snow albedos imply broad band snow albedo of =~ .71. When snow is
present on sea ice, the total albedos are: '

auis(total) = fsayis(snow) + (1 — fs)ayis(sea ice)

i (total) = fsanir(snow) + (1 — fs)anir(sea ice) (6.b.1b)
where the fractional horizontal coverage by snow fs is given by:
hs
=— 6.b.2
e hs +.10 (6.6:2)

similar to the expression used in Briegleb (1992). Thus, for a snow depth of 10cm, snow
coverage is 50%.

The penetration of solar flux for snow free ice is Fsper(2) = FS"Tr(z) where
Tr(z) is the flux transmission of solar radiation to level z (increasing downwards). Based
on an expression used in Maykut (1982) we have: Tr(z) = .805e(~ksotarz=0.1) for » > 0
where kgo1qr is the bulk absorption coeflicient of solar radiation through sea ice. If snow
cover is present, then Tr(z) = 0 for z > 0. The total solar flux penetrating the ice is
FS™Tr(z)(1 — fs) where f is the horizontal fraction of snow cover given above.

Sea ice is divided into four layers of uniform thickness (’2 each). Each layer of
sea ice is characterized by mass density, mass heat capacity, and thermal conductivity
(pi, Ci, ki) respectively. Snow is characterized by similar parameters (ps, Cs, ks), and is
mixed with the top layer of sea ice for numerical stability:

— h;
Zl-’%;'*";L

h .
__ Pshs+pi "'Lg

h.

— psCshs+pici 2+

C, ==—="—"4
iz

Ko (hs+5)

(hs+—L’i‘ = (6.5.3)
where zp = 0 is the top surface interface with the atmosphere, z; is the lower interface of
the top layer, and z;4; = z1 + -’-‘41 gives the interface depths for layers 2,3,4. Ice thermal
properties are used for layers 2,3,4. The conductivity of the combined snow/ice top layer
assumes that snow overlies ice.

KRy =

The thermodynamic equation for the sea ice temperature tendency is:

oT OF
where the total heat flux F' is positive downward. The total heat flux is given by:

F = Fsotar + Fihrmt + Ftop + Fiot (6.b.5)
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where Fiprpyy is the thermal conduction flux, given by Fipprmi = ——fc%—f, Fiop is the top layer
flux between the ice surface and atmosphere, and Fyo; is the bottom layer flux between
the lowest layer and the underlying ocean.

At CCM iteration n one has: T*(¢ = 1...4),h%, h?. The required input surface
fluxes are F'S™, FL™, SH™, LH™, S™, which are the absorbed solar flux, the net upwards
longwave flux, the sensible heat flux from surface to atmosphere, the latent heat flux from
surface to atmosphere, and the snow precipitation rate respectively.

The top ice surface net flux is:
F{:’P = solar(o) solar (21) FL" - SH" — LH" (6b6)

where z; is the top layer thickness, and where the surface temperature T7 used in
computing the sensible and latent heat fluxes is the top snow/ice layer temperature T7.

A backward implicit top bounda.ry condition is used:

t""’| (Tr+1 —17) (6.b.7)

top
where the top flux partial derivative (g‘—‘ﬂ’-hm) is evaluated by allowing only the sensible

and latent heat flux surface temperature dependenc1es

There are three general equations for heat transfer within sea ice: one for the top
layer, one for the two intermediate layers, and one for the bottom layer. The general fully
implicit finite difference equation for times n + 1 and n is '

TP+ — T aF\ "t
peCle (___Te) = (62) , (6.5.8)

where ¢ = layer index (1...4 from top to bottom), and where At is the model time step.

We approximate the flux and temperature derivatives as follows (and suppress the
time index n for conciseness):

oT Trrq — T,
Finrmi(2z1) = — (n —) = —Kot+1,0 __e;l———;—e, (6.5.9)
¢

where Z, is the mid-point depth of layer £ = (ze + 24—1), 2¢ is the geometrical depth of
layer interfaces where £ = 0 is the surface/ atmosphere top interface and z4 is the bottom
interface with the underlying ocean, and Kg41,¢ = %(ne + Kgt1)-

The thermal flux derivative for the £*® layer is:

— Tey1—-T, _ Ty—Tg_
er1—Te ) t=Tg—y
_8Fthrml _ Ke+1,e (5e+1—?e) Ke,e-1 ('55—33—1 )
oz ), '

6.5.10
Zg — 2¢-1 ( )
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Defining Azy = zg — 2¢—1 (E”‘» layer physical thickness)
Azf=Zpp1 — Z (¢*® layer mid-point physical thickness with layer below)
Azy =7 —Zp1 (£** layer mid-point physical thickness with layer above)

gives
6Fthrml> 1 {K'l-!—lﬁ Keo—1 }
_Ofthrml ) 2 Tyr - To) — T, - T,
( oz ),~ Br A+(13+1 ¢) Az (Te — Te-1) .
1 [Reyie Reo—1 | Retl,e Re,e—1 (6:0-11)
=— Tppn — | k= T, T,
T Az {A+‘+1 (Aze’+Az£) +A-“}
Defining
F = , = ————— 6.b.12
I AzgAz) I AzAzy ( )
gives:

OFthrm
<_ tahz l> =(”z+1efe)Te+1—("”vee L7+ Reene ) Tet (Rea-r ) Tema
¢
(6.5.13)

Consider the top layer equation first:

TP+t — T OF\""!
ner (B ) == (%),

(Ezl(Tz"*l-Tf’Ll)) + P+ s

Zo—2Z1 top

(T{‘“-—T{‘) . (6.b.14)

I

Z1— 20

Collecting the n + 1 temperatures on the left-hand side and all known terms n on the
right-hand side gives

BFt’;p

p1C1 o \rp

—_— + _ o T‘n,+1
At + A2 fl 21 — 2p 1 *
(6.5.15)
. ngép_

F™ C T | pm

_ g+l - _Ttop pitr Ty Tn

{ mzlfl} zl—zo+ At 21— 20 1

Next, consider an intermediate layer £ (£=2and £ =3):
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- n C - | = n
(—Ree—1 f7) TP + {peAte + (Ree~1 f; + Fet1e f;)} Tt ‘
(6.5.16)

_ ni1 _ PCtpn o Fooiar (21-1) = Froo, (21)

Finally, for the bottom layer we consider the bottom boundary condition to be
fixed temperature equal to To5 = —1.9°C for the underlying ocean mixed layer. Thus, for

the lower boundary temperature we specify T”‘"1 = Tz, and use:
| . 1
= + _ < + _
K54 = Kg AZ4 =24 — 24 f4 = m, (6b17)
which results in an equation of the form:
- C. S
(~Fa3 fO) T3 + {&4574 + (Ra,3 f )} T
(6.5.18)
— ,04C4T Fbot + Fs%lar( ) — F;lar(z4)
At 4 AZ4 A’34
where
Kq
Feoy = _A_zf(Tof - T7)
The equations for T;’“ £=1..4form a coupled set of linear equations:
An A 00 TP+t b1
Axy Ay Az O Tn+1 | be
0 Aszx Azz Az Tn+1 Tl bs ] (6.6.19)
0 0 A34 A44 Tn+1 b4

where the definitions of the A(4 x 4) matrix and b( ) vector, respectively, can be seen from
the finite difference equations above.

The linear equations are solved for T,;"*' (£ = 1...4) using a tri-diagonal solver.
Then, the layers are checked to see if any melting occurs. For the top layer, if 77! > Ty,
where Ty, = 0°C is the melting temperature of snow and sea ice, then snow depth is
modified by:

B = o P_f_l(:ryﬂ — Ton)(z1 — 20) (6.5.20)
L]

where Lg is the volumetric heat -of fusion of snow. If TI"”“1 < —0.1°C, then snow
accumulation on the surface is computed as

APt = BT 4+ 38™ At (6.5.21)
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After adjustments by (6.5.20) and (6.5.21), if A7™! < 0 there is sufficient heat to
melt sea ice after complete melting of snow:

Emer = p1C1 (TP = Tom) (21 — 20) — Lshy (6.5.22)

and
RIHl = B — Emett (6.5.23)
k) Lz

where h7;"! is the top layer adjusted sea ice thickness, h7; is the original top layer sea ice
thickness (= 24-‘?—), and L; is the volumetric heat of fusion of sea ice. If T;'t' > T, for |
1=2,3,4, then the lower sea ice layers are adjusted in thickness by:

h?;_l = h';ll - &2_2_(ng+1 - sm)(zl - zl—l) (6b24)

1

The lowest layer of sea ice can also accrete or ablate ice through heat exchange
with the underlying ocean mixed layer as follows:
Fooar (24) + Fioy + Q7
At
L;
where Q™ is the prescribed heat flux supplied to the ocean mixed layer below the sea ice.
Note that the sign convention for Q™ is the same as is used in the open ocean case. For
example, positive Q™ tends to warm the ocean mixed layer, and therefore to melt sea ice.

(6.5.25)

n+l _ 1n
h’i4 - hi4 -

If there is sufficient snow on sea ice to suppress the ice/snow interface below sea-
level, a fraction of snow is converted to sea ice to return the ice/snow interface to sea level.
The conversion uses mass conservation and force balance. In detail, if A2+! > ("Lp’iﬁ)h;”’l,
(where A7+? is the sum of A%, = 1...4), then 7T, = (psh2+! + pih7F1)/po is the new
total ice thickness. Any increase in ice is added to the top (I = 1) layer, the total ice

thickness is adjusted accordingly, and the snow depth is adjusted to AT*! = (ng—_s& h?j:dj.

There results from these adjustments to sea ice thickness the unevenly spaced
thicknesses h;‘e“ at temperatures Tf""l, where the temperatures of any melting layers have
been set to Ts,,. These layers and temperatures are restored to a uniform spacing in a
manner that conserves total heat. For each uniformly spaced layer £, the final temperature
is:

_ f, T dz
()
where the new total thickness of sea ice is B} = S +_, A%FL, TPY s the final adjusted
% £=1"%¢ £

temperature, and the integral is over each final layer. The unevenly spaced layers are
assumed isothermal. If any T,Z""’1 > Tsm, they are not reset to Tsp,.

T+ " (6.5.26)

If the new sea ice thickness A < h" then complete melting is assumed, with the
heat of melting coming from the ocean mixed layer itself, so that the ocean temperature
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is adjusted by:
LA+t + Lkl
poCohy

and where then afterwards h?+! = 0 and A}*! = 0.

(6.6.27)

To* =Tos -

It should be noted that it is not necessary to do an ocean mixed layer temperature
calculation, since the assumption is being made that the ocean mixed layer temperature
under sea ice is always at Toy = —1.9°C. The ocean mixed layer temperature forecast
equation is: '
| F&lar (24) + Fl?ot + Qn

Tl =T, At 6.5.28
o of + poCoho | ( )

Heat of fusion of sea ice is used to restore the changed ocean temperature to freezing:
PoCoho(TPFY — Typ) = — Ly (R — BY,) (6.5.29)

Substituting this into the ocean mixed layer temperature equation (6.5.28) results in the
heat balance equation for sea ice given above (6.5.25).

This completes the forecast of T (¢ =1..4),h2, A}

? 8 1

c. Specifications of Ocean Q Flux

For each month m (m=1...12) over open ocean points:

Tm+1 _ Tm—l

Q™ = poCohy (i) — F™ (6.c.1)

where T7 . is the CCM sea-surface temperature for month m used as the lower boundary
condition for the control run, F™ is the control run ensemble mean net flux into the ocean
for month m, A7" is the ocean mixed layer depth for month m, and the d™ are the mid-
month calendar days for the mt* month. The use of mid-month days is consistent with
CCM3; which linearly interpolates in time between mid-monthly values. (6.c.1) is simply

(6.5.1) solved for Q and applied to monthly mean data.

According to (6.c.1), if the sea-surface temperature tendency is small, then Q™ =
—F™. During spring and fall seasons when the tendency is large, @™ can differ quite
a bit from -F™, but typical values of @™ can be quite large in any case, and are
generally negative in local summer and positive in local winter. Thus Q™ corresponds
to heat storage in local summer (negative values) and heat release in local winter (positive
values). Typical values of Q™ are from 0 to 150Wm™2 in the winter hemisphere, and 0
to -150Wm~2 in the summer hemisphere, but winter gulf stream values can reach 300-
400Wm~2, and a few regions in the Denmark strait of rapid fall mixed layer deepening
combined with rapid cooling have values of near -1000Wm 2.
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For the ocean Q flux in the presence of sea ice, one cannot so simply invert the heat
balance equations to specify Q. If the details of the sea ice thermal diffusion are ignored
however, the vertically integrated thermodynamic equation can be used:

—Li% + poC’Oho%g =F+Q (6.c.2)
In the presence of sea ice, the mixed layer temperature tendency term vanishes, since it
is assumed that the mixed layer temperature is always at freezing (the term needs to be
kept in evaluating Q when ice vanishes seasonally). Note that the term reflecting snow

melt is ignored, as this term is much smaller than the ice term.

Most likely, in the CCM control run, h; and h, are prescribed. Thus, there is
not information available to specify the rate of heat storage term Li%‘j. The approach
taken here was to estimate L,—%’lti by constructing a synthetic sea ice thickness dataset (see

below).

Observations of sea ice thickness on the required geographical scale are limited.
Régional measurements of high quality have been made in the Arctic (Moritz, 1992), and
the Antarctic (Budd, 1986; Wadhams et al. 1987; Jacka et al. 1987). Sea ice models, both
dynamic/thermodynamic and pure thermodynamic, have computed sea ice thickness, but
the usefulness of such data for GCM studies is not clear (in the Arctic, one has Hibler
1979; Walsh et al. 1985; Semtner 1987; in the Antarctic, Budd et al. 1991).

In light of this situation, a purely synthetic sea ice thickness dataset has
been constructed. It makes use of various regional and point measurements, sea ice
concentration, modeling studies on the seasonal variation of sea ice thickness, and
approximate information about dynamic influence on Arctic sea ice thickness.

_ The general idea is that the geographical distribution of sea ice concentration gives

the geographical distribution of sea ice thickness. Further, one can assume (crudely
speaking) that the greater the sea ice concentration the greater the sea ice thickness.
The actual physical relation between concentration and thickness is quite complicated,
especially once near-complete coverage occurs, and is determined by both dynamic and
thermodynamic processes (seé for example, Hibler, 1979). Since a simple relation between
c and h cannot reproduce the thickness distribution in many cases, a more realistic relation
is derived below.

Arctic sea ice thickness

For the Arctic, the sea ice thickness is specified as a three step process: (1) relation
between concentration ¢ and thickness h is assumed, (2) the thickness h from (1) is
modified for seasonal variation, and (3) finally, a regional dynamically forced variation
is imposed on h from (2).
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The assumed relation between ¢ and h for the Arctic is:
¢ < Cmin h = Rmin

(hmaw - hmin)(c - Cmin)

(cmam - cmin)

Cmin < € < Cmaz h= hm,in +

C > Cmax h= hmaan

where cpin = 0.1, Cmaz = 0.9, Amin = .25m, hyee = 3.0m for latitudes greater than 70°N
and linearly decreasing with decreasing latitude to zero at 50°N.

The reason for the minimum sea ice thickness is taken both from observations, but
especially from modeling constraints; very thin sea ice thickness might cause numerical
difficulties in computing thermal fluxes and sea ice temperatures. The maximum sea ice
thicknesses are taken from observations that multi-year sea ice in the Arctic ranges around
3m (Washington and Parkinson, 1986).

Arctic sea ice not only undergoes geographical expansion and contraction with
varying seasonal forcing, but multi-year sea ice undergoes seasonal growth and ablation.
A seasonal adjustment is applied to the h values determined from the above c(h) relation.
From a calculation (Semtner, 1976) applicable to multi-year central Arctic pack ice, the
following coefficients were applied for the appropriate month (January to December): .942,
1.000, 1.058, 1.124, 1.161, 1.175, 1.058, .931, .883, .880, .876, and .912. Thus, if the
coefficients are labeled s(m) for the mth month (1...12), then the sea ice thickness is now
s(m)h. Note that the annual average of the s(m) coefficients is 1.

The final step for the Arctic sea ice thickness involves accounting for regional
variations due to ice flow. In general, high pressure exists in the Beaufort sea, giving rise
to a clockwise circulation called the Beaufort gyre (see Battisti et al. 1992). This results
in ice production in the Beaufort sea and its transport around the Beaufort gyre, across
the pole, and either into the Lincoln sea region north of Greenland and the Canadian
archipelago, or out through the Fram Strait between Greenland and Spitsbergen. The
sea ice tends to be thicker north of Greenland, and thinner across the Arctic basin (see
Bourke and Garrett, 1987). A simple planar modification is made across the Arctic basin
and north of 75 degrees, to increase the thickness north of Greenland and decrease it
across the basin. In general, this modification produces sea ice thickness in the region
adjacent to Ellsmere Island around 4 to 4 1/2 m (depending on season), with thickness
around 2 to 2 1/2 m over the pole on the other side of the Arctic basin.

Antarctic sea ice thickness

The situation in the Antarctic is rather different from the Arctic. The relatively
open waters adjacent to the continent allow for much more extensive sea ice formation
during winter. Ice shelves extend out from near-shore for many regions, with fast ice
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formations close to shore. However, the bulk of the Antarctic sea ice is first year ice (see
Zwally et al. 1983) formed near shore and transported away from the coast. Except for
near shore fast ice, pressure ridging is minimal. Most of the sea ice encountered in the
Polarstern cruise (Wadhams et al 1987) was undeformed consolidated pancake sea ice,
with a relatively narrow range of thicknesses between 40 and 60cm. These thicknesses are
confirmed by the data of Jacka et al. (1987). Collected observations of Budd (1986) also
suggest relatively thin (0.5 - 1.0m) Antarctic sea ice thickness. ‘

With these observations in mind, the following expressions were used to specify -
Antarctic sea ice thickness:

c<cCmin h=hnn+c -

Cmin < ¢ < 1.0 h = hmiq

where cmin = 0.25, hpin = .25m, Amiqg = .50m.

Thus the minimum sea ice thickness is .25m, and maximum is .50m.

d. Ocean Q Flux in Presence of Ice

Given the quantities A ., (the final synthetic sea ice thickness as discussed above)

and F™ (the net heat flux into the ocean from the CCM3 control run), Q™ for month m
can be estimated by solving (6.c.2) for Q:

Tm+1 Tm—1 h’(n'*'l — hm-l

Q= —F™ + poColi (—£mcem) — (=~ iman (6.d.1).

Q™ from (6.d.1) is in general positive, indicating upwards heat flux from the deep ocean.
Negative values occur (indicating heat flux into the deep ocean) around ice edges during
accretion or ablation of ice in the central Arctic, or in regions of ice convergence due to
strong ice transport.

In coupled runs, points can exist where there is ice for which the control CCM had
open ocean, and conversely. The SOM model is not able to physically handle situations far
from equilibrium. It was found that using an unmodified Q flux led to secular growth of
sea ice. Any delays of ice melt led to the situation where Q flux under ice was prescribed
as large and negative (during local summer), which resulted in excessive ice growth. In the
control, such points were open ocean during the summer. To prevent such ice growth in a
way which has some physical justification, Q flux under ice was constrained in a globally
conserving manner to be larger than a hemispheric minimum value. In particular, at each
time step a global mean (over ocean) of Q was calculated. Then, Q under all sea ice points
was constrained by the appropriate minimum, found by empirical testing. A global mean
(over ocean) was taken again, and the flux change required to conserve global balance was
added to all ocean points. This results in very small (order £1Wm~2) Q variations to all
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ocean points. This is necessary to insure that the ocean in the global and annual mean is
not a source or sink of heat beyond that inferred in the original calculation (6.c.1 — 6.d.1)
of Q flux.
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7. INITIAL AND BOUNDARY DATA
a. Initial Data

In this section, we describe how the time integration is started from data consistent
with the spectral truncation. The land surface model requires its own initial data,
as described by Bonan in (1996a). The basic initial data for the model consist of
values of u,v,T,q,II, and @, on the Gaussian grid at time ¢ = 0. From these, U, V,T",
and II are computed on the grid using (3.a.11), and (3.a.49). The Fourier coefficients
of these variables U™, V™, T'™ 1™, and ™ are determined via an FFT subroutine
(3.5.23), and the spherical harmonic coefficients T/™,II™®, and (&) are determined by
Gaussian quadrature (3.0.24). The relative vorticity ¢ and divergence § spherical harmonic
coefficients are determined directly from the Fourier coefficients U™ and V™ using the
relations,

1 ov. 10U
C—-—————a(l_ﬂz)a—/\“a%, (7a1)
18U 108V (7.0.2)

Tl ox Taon
The relative vorticity and divergence coefficients are obtained by Gaussian quadrature
directly, using (3.5.27) for the A-derivative terms and (3.5.30) for the u—derivatives.

Once the spectral coefficients of the prognostic variables are available, the grid-
point values of {,d,T",II, and &, may be calculated from (3.5.49), the gradient VII from
(3.6.52) and (3.0.53), and U and V from (3..58) and (3.5.59). The absolute vorticity 7
is determined from the relative vorticity ¢ by adding the appropriate associated Legendre
function for f (3.6.4). This process gives grid-point fields for all variables, including
the surface geopotential, that are consistent with the spectral truncation even if the
original grid—point data were not. These grid—point values are then convectively adjusted
(including the mass and negative moisture corrections). |

The first time step of the model is forward semi-implicit rather than centered semi—
implicit, so only variables at ¢ = 0 are needed. The model performs this forward step by
setting the variables at time ¢ = —At equal to those at ¢t = 0 and by temporarily dividing
2At by 2 for this time step only. This is done so that formally the code and the centered
. prognostic equations of section 4 also describe this first forward step and no additional
code is needed for this special step. The model loops through as indicated sequentially in
section 4. The time step 2At is set to its original value before beginning the second time
step.
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b. Boundary Data

In addition to the initial grid—point values described in the previous section, the
model also requires lower boundary conditions. The required data are surface temperature
(Ts) at each ocean point, the surface geopotential at each point, and a flag at each point
to indicate whether the point is land, ocean, or sea ice. The land surface model requires
its own boundary data, as described by Bonan (1996a). A surface temperature and three
subsurface temperatures must also be provided at non-ocean points.

The sea-surface temperatures, and sea—-ice locations are changed to reflect the
seasonal changes. The sea-surface temperatures and sea-ice distributions are specified
from the monthly mean analyses of Shea et al., (1990). The mean monthly sea—surface
temperature and sea ice distribution are assigned the mid-month date and updated every
time step at each grid point using linear interpolation.

The radiation parameterization requires monthly' mean ozone volume mixing ratios
to be specified as a function of the latitude grid, 23 vertical pressure levels, and time.
The ozone path lengths are evaluated from the mixing-ratio data. The path lengths are
interpolated to the model n-layer interfaces for use in the radiation calculation. As with
the sea—surface temperatures, the seasonal version assigns the monthly averages to the
mid-month date and updates them every 12 hours via linear interpolation. The actual
mixing ratios used in the standard version were derived by Chervin (1986) from analyses
of Diitsch (1978).

The sub-grid scale standard deviation of surface orography was specified in the
following manner. The variance is first evaluated from the global Navy 10’ topographic
height data over 2° x 2° grid for T42 and lower resolutions, 1.67° x 1.67° for T63, and
1.0° x 1.0° for T106 resolution, and is assumed to be isotropic. Once computed on the
appropriate grid, the standard deviations are binned to the CCM2 Gaussian grid (i.e., all
values whose latitude and longitude centers fall within each Gaussian grid box are averaged
together). Finally, the standard deviation is smoothed twice with a 1-2-1 spatial filter.
Values over ocean are set to zero.
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8. STATISTICS CALCULATIONS

At each time step, selected global average statistics are corﬁputed for diagnostic
purposes. Let f3 denote a global and vertical average and f2 a horizontal global average.
For an arbitrary variable 1, these are defined by

_/Bfﬁdv = iiz’:lﬁijkwj (%&) /2I, (8.a.1)

and
J I
/¢dA = Z Z Yijew; /21, (8.2.2)
2 et £
‘ j=11i=1
where recall that
J
' ij = 2. | (8.a.3)
J=1
The quantities monitored are: ‘
- 1/2
global rms (¢ + f)(s™!) = /(C" + f)2dV} , (8.a.4)
/3
| - 1/2
global rms §(s™*) = /(6")2dVJ , (8.a.5)
/3
ror 1/2
global rms T' (K) = / (TT + T’”)deJ , (8.a.6)
/3
global average mass times g (Pa) = / 7"dA, (8.a.7)
2 .
global average mass of moisture (kg m™2) = / n"q"/gdV. {8.a.8)
3
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APPENDIX A—Terms in Equations

The terms of (3.5.18) are

V=(+HY (A1)
V, =2Atnd, (42)
Vv, =2Atng. (A3)
The terms of (3.5.19) are ‘
D=g"", (44)
D, = 2Atnf, (45)
D, = 2Atny, (A6)

Dy =24t [B" + 0,1+ RH'T"|

+ At [RH’ ((z’)"‘ - 2@')”) +RQ + ) (It - 2H”)] . (A7)

The terms of (3.5.20) are
T=(T)"" +26¢0" — AtDT [5"F - 267 (49
IA‘V=2At@”, (A9)
I, =2M¢e(VT)". | : (A10)

The nonlinear term in (3.b.21) is
Ps =" — 20— [ (Ap") + (V)7 VI"n"AB]
: (A11)
T __]_'__ n—1 _oen
-t |(ar) | - o)

The spectral transformation of the terms in the vorticity equation (3.5.33) is given
by
J
B (k) Hi (p5)

Vsy = ; {Mm(uj)P,’?(uj) + imMT(Mj)m +Mm(uj)mJ w;.  (A12)

135



The spectral transformation of the explicit terms in the divergence equation (3.5.34)

is
J
DSy = Z{ 12+ D )| )
£
(413)
+imDP () 5 3 — D j)ff_(—’;’?)—)}wj-
J ;

The spectral transformation of the explicit term of the thermodynamic equation
(3.5.35) is

m J m m . m P1;n(u) m ng(ﬂj)
ISy = ; [I (1) Pa* (k) = tmI3 (Mj)m + T, (M)m w;.  (Al4)

_ The spectral transformation of the explicit terms of the surface pressure tendency
equation (3.5.36) is

J
PSy = PS™ (1) B (1 )w;- (A15)

=1
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APPENDIX B-—Physical Constants

Following the American Meteorological Society convention, the model uses

the International System of Units (SI) (see August 1974 Bulletin of the American

Meteorological Society, Vol. 55, No. 8, pp. 926-930).

a

Tmelt

6.37122 x 10° m
9.80616 m s™2

7.292 x 107° 71

5.67 x 1078 W m~—2 K—*
287.04 J icg—l K1

1.00464 x 103J kg=* K1

R/cp

622

2.5104 x 106 J kg—!
3.336 x 10% J kg~!
4.61 x 102 J kg~ ! K1
1.0 x 103 kg m~3

1.81 x 103 J kg~ K!

273.16°K

Radius of earth

Acceleration due to gravity
Earth’s angular velocity
Stefan-Boltzmann constant
Gas constant for dry air

Specific heat capacity of dry air
at constant pressure

Ratio of molecular weight of
water vapor to that of dry air

Latent heat of vaporization
Latent heat of fusion

Gas constant for water vapor
Density of liquid water

Specific heat capacity of water
vapor at constant pressure

Melting point of ice

The model code defines these constants to the stated accuracy. We do not mean to

imply that these constants are known to this accuracy nor that the low—order digits are

significant to the physical approximations employed.
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APPENDIX C—Constants for Slab Ocean Themodynamic Sea Ice Model
Temperatures

Toy =~=1.9 °C

Tom =0 °C

Ocean
po = 1.026 x 103 kgm~3

Co, =3.93 x 103 Jkg—'K~1

Ice

pi = 920 kgm™—3

C; =2.07 x 103 Jkg~ 1K1
L; =3.014 x 108Jm™3

Kk; = 2.03 Wm— 1K1

k; =15 m~1
A = 0.25 m
Snow

ps = 330 kgm™3

| Cs =2.09 x 10% Jkg~lK~1
L, = 1.097 x 108 Jm™3

ke = 0.31 Wm—1K~1
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