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A new thrust in climate and earth 
system modeling is to conduct 
an ensemble of simulations 
using the same model and 
radiative forcing protocol but 
varying the initial conditions. 
The resulting spread across 
the model ensemble, which 
is due solely to unpredictable 
internally-generated variability, 
places inherent limits on our 
ability to predict future climate 
change at regional and decadal 
scales. Such “initial-condition 
Large Ensembles” (LEs) also 
provide crucial context for 
understanding and interpreting 
the observational record, and 
foster robust model evaluation 
and inter-comparison by 
allowing the forced response to 
be separated from internally-
generated variability. LEs also 
advance the study of extreme 

The identification of externally forced climate changes in the presence 
of internal climate variability is critical across many aspects of climate 

science, such as in attributing the causes of observed changes in weather 
and climate (Hegerl et al. 2007; Bindoff et al. 2013), understanding sources 
of uncertainty in future climate projections (Hawkins and Sutton 2009; 
Lehner et al. 2020), and improving predictions of internal climate variability 
on multi-year timescales (Meehl et al. 2014; Yeager et al. 2018). Single-model 
initial-condition large ensembles (SMILEs), ensembles of simulations with 
the same model and radiative forcing scenario but small differences in initial 
conditions, have become widely utilized for these purposes (Kay et al. 2015; 
Maher et al. 2019; Deser et al. 2020a). The forced response can be estimated 
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events by providing a large 
number of samples of “rare” 
occurrences.  

In this edition of Variations, we 
showcase new applications of 
LEs to the understanding of 
climate variability and change 
on regional and decadal scales. 
These articles, written by early-
career researchers at the 
forefront of their fields, span 
a range of emerging topics 
including air quality and health, 
ocean biogeochemistry, best 
practices for evaluating models’ 
internal variability, tools for 
quantifying forced changes in 
internal variability, and novel 
pattern recognition methods 
for detection and attribution. 
Many of these studies make use 
of a new multi-model archive 
of LEs conducted with CMIP5 
models produced by the US 
CLIVAR Working Group on Large 
Ensembles, publicly available 
at http://www.cesm.ucar.edu/
projects/community-projects/
MMLEA/.  This archive, along 
with LEs being conducted with 
CMIP6 models, herald a new era 
in climate science research and 
applications, and hold promise 
for new discoveries in the years 
to come.
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by averaging over the ensemble to remove internal variability that varies in 
phase between realizations. However, estimates of the forced response based 
on SMILEs are susceptible to any biases in the modeled forced response. It 
is therefore important to compare estimates of the forced response (e.g., a 
spatial pattern of change) across different models and to compare model-
based estimates with estimates of the forced response from observations.

In order to estimate the forced climate response from observations, where 
only a single realization is available, a different approach is needed. Pattern 
recognition methods, including pattern-based statistical learning, and artificial 
intelligence, have particular utility because of the differences in spatial pattern 
between forced climate change and internal variability. For example, the 
climate response to anthropogenic greenhouse gas emissions is clearest at 
the global scale, where it manifests itself, for example, in warming of global-
mean surface temperature. On the other hand, internal variability primarily 
redistributes heat between one region and another (or between the ocean and 
the atmosphere), such that it has a strong influence on regional climate but only 
a modest influence on global-mean surface temperature. Pattern differences 
can also extend to differences in vertical structure (e.g., Santer et al. 1996) or 
differences in the representation across multiple variables. Such differences in 
pattern between the signal and the noise have been exploited by a wide range 
of methods including standard detection and attribution methods (Hasselmann 
1979; 1993; Bell 1986; Santer et al. 1995a; Hegerl et al. 1996; 2007; Bindoff et 
al. 2013), signal-to-noise-maximizing pattern analysis (Allen and Smith 1997; 
Schneider and Griffies 1999; Schneider and Held 2001; Ting et al. 2009; DelSole 
et al. 2011; Wills et al. 2018; 2020), dynamical adjustment (Wallace et al. 2012; 
Smoliak et al. 2015; Deser et al. 2016; Sippel et al. 2019), regularized regression 
(e.g., Sippel et al. 2020) and artificial neural networks (Barnes et al. 2019; 2020).

Large ensembles provide a testbed for methods to estimate the forced climate 
response from observations, but at the same time, the analysis of large 
ensembles can benefit from the use of pattern recognition methods. Within 
SMILES, statistical methods to estimate the forced response can be tested on 
individual ensemble members and then compared to the “true” forced response 
as estimated from the ensemble mean over a sufficiently large ensemble (e.g., 
Deser et al. 2016; Frankignoul et al. 2017; Sippel et al. 2019; Wills et al. 2020). 
However, for regional anomalies with a large amplitude of internal variability, 
the number of ensemble members needed to isolate the forced response 
with an ensemble average can become prohibitively large, with 50 or more 
ensemble members needed (Deser et al. 2012; Milinski et al. 2019). In much 
the same way that pattern recognition methods can be trained to estimate 
the forced response from observations, they can be trained to estimate the 

http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
http://www.usclivar.org
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forced response from a subset of ensemble members, 
reducing the number of ensemble members needed 
by up to a factor of ten in some cases (Wills et al. 2020).

Here, we give a brief example of the utility of pattern 
recognition methods and discuss how to best leverage 
a combination of pattern recognition methods and 
climate model ensembles to make progress on 

important questions related to separating forced and 
unforced components of climate change. Two research 
areas where the combination of pattern recognition 
methods and climate model ensembles have the 
potential to lead to major advances in understanding 
are in the analysis of structural uncertainty in 
climate projections and in characterizing the time 
evolving patterns of climate signal and climate noise.

Figure 1. (a) Signal-to-noise ratio of seasonal (3-month-average) surface temperature anomalies in the CESM Large Ensemble (Kay et al. 2015) 
over the period 1920-2019. (b) Signal-to-noise ratio of signal-to-noise-maximizing (S/N-maximizing) patterns (Ting et al. 2009; Wills et al. 2020) of 
CESM-LE and comparison to range of signal-to-noise ratios for individual grid points (histogram on right axis), global-mean surface temperature, 
and US-mean surface temperature (dashed lines). (c) First S/N-maximizing pattern. (d) Time series of first S/N-maximizing pattern, global-mean 
surface temperature anomaly, and US-mean surface temperature anomaly. All anomalies are with respect to a 1920-1950 reference period. 
Grey lines show the time series in all 40 ensemble members, black lines show the ensemble mean, and orange lines show the HadCRUT4 
observational temperature reconstruction (Cowtan and Way 2014). All analysis is done on a 5° longitude by 3.75° latitude grid.
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The utility of pattern information

To illustrate the utility of pattern information, we 
compare the signal-to-noise ratio (SNR) of individual 
grid points within the CESM Large Ensemble (Kay et 
al. 2015) to that of the signal-to-noise-maximizing 
(S/N-maximizing) patterns, which are patterns 
that maximize the SNR within a truncated space of 
empirical orthogonal functions (Schneider and Griffies 
1999; Ting et al. 2009; DelSole et al. 2011; Wills et al. 
2020). Here, the signal is diagnosed using an ensemble 
average. The SNR is highest in the subtropical oceans 
and tropical land masses and lowest in the tropical 
Pacific and Northern Hemisphere midlatitudes (Figure 
1a). However, even the grid points with the highest 
SNR (1.5 in the Indian Ocean sector of the Southern 
Ocean; 1.3 in Borneo) have SNRs over an order of 
magnitude lower than the leading S/N-maximizing 
pattern (SNR = 19, Figure 1b, c, d), which captures 
71% of the ensemble-mean variance (i.e., the forced 
response). The S/N-maximizing pattern leverages 
information about the full spatial patterns of signal 
and noise, while the SNR computed for each grid point 
separately misses out on these spatial dependencies/
relationships. The space of S/N-maximizing patterns is 
thus a useful basis for separating signal and noise within 
large ensembles and for reducing the dimensionality 
of the forced response. For example, Wills et al. (2020) 
truncate to just the leading ~10 S/N-maximizing 
patterns (which together capture 84% of the ensemble-
mean variance) before taking an ensemble average, 
thereby reducing aliasing of internal variability onto 
the estimated forced response. A complimentary 
approach is that of dynamical adjustment (Wallace 
et al. 2012; Smoliak et al. 2015; Deser et al. 2016; 
Sippel et al. 2019), which identifies and removes 
patterns with low SNR based on their association 
with anomalies in the atmospheric circulation.

The utility of pattern information has long been 
recognized for the problem of detection and attribution 
of climate change (Hasselmann 1979; 1993; Bell 1986; 
Santer et al. 1995a; Hegerl et al. 1996), which seeks to 

detect a hypothesized climate response pattern (e.g., 
based on model simulations under specific forcing 
scenarios) within observations by identifying an “optimal 
fingerprint” that best distinguishes the response of 
interest from the background of internal variability. 
Unlike methods for characterizing the spatiotemporal 
evolution of the forced climate response (e.g., ensemble 
averaging, S/N-maximizing pattern analysis, dynamical 
adjustment), the goal of climate change detection is 
to determine whether a given forced response has 
occurred. The recent application of ideas from machine 
learning (e.g., ridge regression and neural networks), 
as well as the increasing magnitude of the climate 
signal itself, now allow detection of forced climate 
change from, for example, an individual year or day 
of data (Barnes et al. 2019; 2020; Sippel et al. 2020).

Fundamental to the climate change detection problem 
is the identification of a fingerprint or indicator 
pattern (e.g., Figure 2a) that represents how to 
weight observations in order to obtain a detection 
variable with high SNR. The same statistical machinery 
underlies S/N-maximizing pattern analysis, except that 
the response pattern (i.e., the S/N-maximizing pattern, 
Figure 1b) is determined empirically within a single 
climate-model dataset, rather than being imposed as 
a hypothesized response (i.e., no training is required). 
Each S/N-maximizing pattern has a corresponding 
fingerprint pattern, which is determined by multiplying 
the response pattern by the inverse covariance matrix 
(regularized by truncating in empirical orthogonal 
function space) and looks similar to those used in 
climate change detection applications (cf. Figure 
2a; Hegerl et al. 1996; Sippel et al. 2020; Barnes et 
al. 2020). In our CESM Large Ensemble example, the 
projection of this fingerprint pattern onto observed 
temperatures (upper orange line in Figure 1d) shows 
a long-term trend in the S/N-maximizing pattern that 
emerges beyond the range of internal variability.

Analysis of structural uncertainty in climate 
projections
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Multi-model ensembles (e.g., the Coupled Model 
Intercomparison Project [CMIP]) have enabled 
substantial progress on the quantification of structural 
uncertainty in climate projections, i.e., differences in 
the forced climate response across models arising from 
differences in their formulation and tuning (e.g., Tebaldi 
and Knutti 2007). However, without multiple ensemble 
members from each of these models, structural 
uncertainty is partially confounded with uncertainty 
due to internal variability. Recently, a multi-model large 
ensemble archive (MMLEA) with seven different CMIP5-

class models has been compiled (Deser et al. 2020a), 
enabling a clear separation of structural uncertainty and 
internal variability in these models. Pattern recognition 
methods provide utility for identifying differences in 
the forced response between these large ensembles, 
for comparing with additional models that have fewer 
ensemble members, and for formulating hypotheses 
about the spatiotemporal structure of the forced 
response (vs. internal variability) in order to detect 
the forced response in observations or in “holdout” 
climate models that have not been used in training.

Model Average CESM1 CanESM2 CSIRO EC−EARTH GFDL MPI−ESM
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Figure 2. Illustration of the fingerprint for predicting the forced global-mean surface temperature response in the form of regression coefficients 
averaged over six different SMILEs for a fixed λ value (log10(λ) = 1.06). (b) Standard deviation of regression coefficients across different SMILEs, 
highlighting regions of model disagreement on the regression coefficients to optimally predict the forced global-mean surface temperature 
response. (c) Mean squared errors (in (°C)2) calculated for the prediction of the annual-mean global-mean forced temperature response (from 
any year’s spatial temperature pattern) for an average across models and from each individual SMILE. Colors indicate mean squared errors for 
(i) training and testing on a single SMILE (green bars), (ii) training on a single SMILE X and testing on all other models (LENS[-X], orange bars), 
and (iii) training on all but one model X (LENS[-X]) and testing on the SMILE X not used in training (blue bars). All analysis is done for the period 
1951-2020 on a 5° longitude by 5° latitude grid. GFDL indicates a combination of the GFDL-CM3 and GFDL-ESM2M large ensembles.
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One useful way to use pattern recognition methods 
in the analysis of multi-model ensembles is to apply 
the pattern recognition methods separately to each 
model (e.g., Wills et al. 2020), allowing identification 
of inter-model differences in the forced response, 
which can help identify and better understand model 
biases. Pattern recognition methods also reduce the 
number of ensemble members needed to isolate the 
forced response (Sippel et al. 2019; Wills et al. 2018; 
2020), enabling analysis of structural uncertainty 
in climate projections in climate model ensembles 
ranging from the MMLEA to the broader CMIP archive.

For the purpose of detecting the forced climate 
response in observations, transferability of fingerprints 
extracted from imperfect models to observations 
becomes an important aspect. In detection and 
attribution, fingerprints of the expected forced 
response are extracted from models, and observations 
are only used in a second step (i.e., they are projected 
onto the fingerprints) to test whether the expected 
forced response can be detected in observations (e.g., 
Hegerl et al. 1996). The different patterns of forced 
response and internal variability across climate models 
(and imperfect knowledge of them in observations) 
offers an opportunity to utilize the heterogeneity 
provided by multi-model ensembles to increase 
the transferability of fingerprints to observations.

The benefit of pattern heterogeneity in multi-model 
ensembles for climate change detection is illustrated 
in Figure 2. We train a statistical model that predicts 
the forced (i.e., the ensemble mean) global-mean 
surface temperature response from the spatial 
pattern of surface temperatures. For the extraction 
of regression coefficients, we use ridge regression, a 
statistical learning technique able to deal with a large 
number of predictors, which avoids overfitting via a 
regularization parameter λ. For illustration, λ is fixed 
in this analysis to log10(λ) = 1.06, producing close to 
the minimum error when predicting a model not used 
in training (for details on ridge regression, see Hastie 
et al. 2009; for details on the climate application, 

see Sippel et al. 2020 and Barnes et al. 2020).

Training on each SMILE separately: Low error on 
training model, but poor transfer across models

We first train a ridge regression model for each of six 
SMILEs (CESM1, CanESM2, CSIRO, EC-Earth, GFDL, MPI-
ESM) from the MMLEA. The average regression coefficients 
across the six individual models are illustrated in Figure 
2a, indicating regions with high SNR to predict the forced 
response (cf. Figure 1a). These regions include tropical, 
subtropical, and some midlatitude regions, mainly in 
the world’s oceans, but with the notable exception of 
the eastern equatorial Pacific, which exhibits El Niño 
variability that is uninformative for diagnosing forced 
climate change. Similar results were found, and discussed 
in more detail, in Barnes et al. (2019; 2020) and Sippel et al. 
(2020). Structural differences in the representation of the 
forced response and internal variability are evident in the 
variation in regression coefficients across models (Figure 
2b). Regions of large disagreement include the western 
tropical Pacific, possibly indicative of Pacific cold tongue 
biases between models (Li et al. 2016), as well as regions 
in the Southern Ocean and the eastern subtropical Pacific.

We calculate the mean squared error (MSE) for the forced 
response prediction when the ridge regression model 
is trained and tested on the same model (green bars in 
Figure 2c). These errors are relatively small (~0.0045 (°C)2, 
corresponding to a root mean squared error of ~0.067°C).  
However, because models differ in their representation 
of forced response and internal variability (Figure 2b), 
the fingerprint of SMILE X is expected to be suboptimal 
for predicting the forced response in models other than 
X (termed LENS[-X]). To test this, we show the MSE for 
predicting LENS[-X] using the fingerprint extracted only 
from SMILE X (orange bars in Figure 2c). As expected, the 
errors are higher when the fingerprint of a single model 
is used to predict the forced response in all other models 
(e.g., in the “all-model average”, MSE is about double that of 
the single-model MSE; orange vs. green bars in Figure 2c).
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Training on multiple SMILEs: improved transferability 
across models

Training on multiple models substantially improves the 
fingerprint transfer to an “unseen model.” To demonstrate 
this, we train a second set of statistical models on all but 
one model (LENS[-X]) and evaluate the MSE for the model 
X not used in training. The prediction error is substantially 
reduced using the multi-model fingerprints instead of the 
single-model fingerprints (e.g., in the “all model average”, 
MSE is reduced by around 30%; purple vs. orange bars 
in Figure 2c). Training across multiple models allows 
the algorithm to sample the heterogeneity of multi-
model ensembles and improves the transferability of 
the resulting fingerprint to different, unseen models. If 
one adopts the assumption that the forced response and 
internal variability in observations may behave similarly 
to an “unseen model” in our example, then training 
across multiple models would be expected to improve 
the identification of the forced response in observations 
(e.g., Barnes et al. 2019, 2020; Sippel et al. 2020).

While an individual SMILE indeed provides a 
methodological testbed (as discussed in Deser et al. 
2020a), evaluating expected error based on a single 
SMILE may not provide a representative evaluation of 
the transferability of a method or extracted feature/
fingerprint to other models or to observations.

Time evolving patterns of climate signal and climate 
noise

The forced climate response is generally more complex 
than can be captured by a single spatial pattern that 
amplifies in time. This spatiotemporal complexity can 
arise, for example, due to the superposition of multiple 
types of radiative forcing (e.g., greenhouse gasses, 
anthropogenic aerosols, volcanic sulfur emissions, ozone) 
during the historical period. However, even the climate 
response to greenhouse gas forcing in isolation is thought 
to have a spatial pattern that evolves in time. In climate 
models, the changing pattern of warming in response 
to an abrupt increase in CO2 concentrations plays an 

important role in the time evolution of global radiative 
feedbacks and global-mean surface temperature (Senior 
and Mitchell 2002; Armour et al. 2013; Andrews et al. 
2015; Proistosescu and Huybers 2017; Dong et al. 2019).

In practice, the time evolving pattern of warming means 
that pattern recognition methods need to consider 
multiple forced response patterns. For example, in a S/N-
maximizing pattern analysis of the CESM Large Ensemble 
over the period 1920-2019, the first ten patterns have 
SNRs that stand out from the continuum (Figure 1d). The 
higher order patterns (i.e., patterns 2-10) help to capture 
changes in seasonality and regional responses to forcing 
from anthropogenic aerosols and volcanic eruptions (Wills 
et al. 2020). While pattern recognition methods cannot by 
themselves distinguish between the effects of different 
types of radiative forcing within all-forcing simulations, 
they can help to characterize the differences between 
simulations with different radiative forcings, such as in large 
ensembles designed to isolate the influences of individual 
forcing agents (Santer et al. 2019; Deser et al. 2020b).

Formalisms for detecting multiple patterns of climate 
change and their evolution in time are not new 
(e.g., Santer et al. 1995a; Hegerl et al. 1997); these 
methods have been applied to increase confidence 
in the combined effect of greenhouse gasses and 
anthropogenic aerosols on observed temperature 
changes (see also Székely et al. 2019). Large ensembles 
provide new opportunities to apply these methods to 
quantify the impact of different forced response patterns 
over time, even in cases where a forced response is small 
relative to internal variability, and to quantify uncertainty 
in the time evolution of forced response patterns 
arising from internal variability (e.g., Santer et al. 2019).

Time evolution of the pattern of noise (variance) has 
received less attention than time evolution of the forced 
climate response. Partly this is due to modest changes 
in, for example, temperature variance over the historical 
period (Screen 2014), however, these changes will likely 
become larger in the future. Analogous to time evolving 
patterns of forced response, time evolving patterns of 
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noise can be addressed by including sufficient patterns 
to characterize the noise in both the reference climate 
and in the warmed climate (within existing methods 
such as optimal fingerprinting or S/N-maximizing 
patterns). However, nonlinear methods such as neural 
networks (Barnes et al. 2019; 2020) may be better 
suited to handle the coevolving patterns of climate 
signal and climate noise within climate change detection 
applications and could be explored in this context.

Discussion and conclusions

Forced climate change and internal variability have 
distinct spatial patterns. Pattern recognition methods 
can use this pattern information to separate forced and 
unforced components of climate change. Non-pattern-
based methods for isolating the forced component of 
climate change, such as computing secular trends or 
regressing against global-mean surface temperature, 
do not take this spatial information into account, and 
thus, are less able to separate these components.

Large ensembles provide another tool to separate forced 
and unforced components of climate change, but analysis 
of large ensembles should still be designed in a way as 
to take advantage of pattern information. Recent work 
has suggested that pattern recognition methods can 
dramatically reduce the number of ensemble members 
needed to isolate the forced response (Wills et al. 2020), 
even allowing an approximate identification of the 
forced response within individual ensemble members or 
observations (Sippel et al. 2019; Wills et al. 2018; 2020).

The pattern recognition methods discussed in this 
article are by no means an exhaustive list. Diverse 
pattern-based methods should be explored in future 
work aiming to separate the forced and unforced 
components of climate change. In particular, the 
vast majority of pattern-based methods used in the 
literature assume a linear superposition of the various 
influences on climate. Future work should explore if and 
when nonlinear methods provide improved separation 
of the climate response from internal variability.

Pattern recognition methods applied to large 
ensembles and observations have a strong potential 
to provide new frameworks for model evaluation 
and the analysis of structural uncertainty in climate 
projections, to improve the separation of forced 
and unforced components of climate change in 
observations, to separate the influences of different 
external forcings on climate changes, and to improve 
our understanding of the spatiotemporal evolution of 
climate change across multiple variables, from changes 
in average temperature to changes in climate extremes.
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Internal climate variability and initial condition 
ensembles in air quality projections

James East and Fernando Garcia-Menendez 

North Carolina State University

The use of initial-condition large ensembles (LEs) to 
examine internal variability in projections of climate 

change and its associated impacts has grown extensively 
in recent years. Although substantial research has 
investigated the impacts of climate change on air 
pollution under different warming scenarios (Jacob and 
Winner 2009; Fiore et al. 2015), LEs have not been used in 
these studies and are not yet available from fully coupled 
chemistry-climate models. However, there is evidence 
that internal variability can play a significant role in 
the projections, in particular when aiming to capture 
a “climate penalty” (i.e., a forced trend in the absence 
of anthropogenic precursor emission changes) on air 
quality and its associated health impacts. Here, we briefly 
review treatment of internal variability in prior efforts to 
simulate air quality under a changing climate. We then 
compare internal variability to other major sources 
of uncertainty in an ensemble simulation of climate 
change impacts on US air pollution, showing that internal 
variability can have an important effect on projections 
even at multidecadal and national scales. Finally, we 
discuss opportunities to develop more informative air 
quality projections by benefiting from LEs.

Internal variability in projections of air quality under 
climate change

In simulations of air quality under climate change, 
impacts are driven by pollutant emissions, the forced 
climate response, and unforced internal variability. Prior 
projections have focused on modeling the effects of 
changes in anthropogenic emissions, climate, or both 
(Jacob and Winner 2009; Fiore et al. 2015; Fu and Tian 
2019). Most are based on a single model and single 
climate initialization. To account for internal variability, 
most studies use multiyear time slices when comparing 
present-day and future air quality. While the number of 
years varies across studies, time slices of ten or fewer 
years have been typically used to characterize air quality. 
These projections provide valuable insights into the 
potential impacts of climate variability and change on 
atmospheric composition and the mechanisms through 
which they can occur. However, the simulation length 
needed to detect a forced climate signal in ozone (O3) 
and fine particulate matter (PM2.5) concentrations above 
the noise of internal variability depends on the strength 
of this signal and magnitude of the noise (Barnes et al. 
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2016; Garcia-Menendez et al. 2017; Pienkosz et al. 2019). 
Although the analyses that use longer time slices can 
to an extent better capture internal variability, they still 
overlook low-frequency variability and the extent to 
which internal variability obscures the forced response 
depends on the study design. A projection’s spatial scales, 
time horizon, pollutants of interest, and focus on the 
combined or separate effects of emissions and climate 
determine the feasibility of discerning a human-forced 
impact. Few studies have gone beyond the time slice 
approach to further investigate internal variability in air 
quality projections. Jimenez-Guerrero et al. (2011) apply 
empirical orthogonal functions to weigh internal variability 
in a transient 21st century simulation. Barnes et al. (2016) 
use multidecadal transient and control simulations to 
compare 20-year trends in surface ozone associated 
with internal variability to those driven by forced 
climate change or changes in anthropogenic emissions.

Perturbed initial condition ensembles are an important 
tool in climate modeling. Recently developed LEs 
show that without multiple initial conditions studies 
likely underestimate internal variability, which can 
lead to misattribution of impacts to the forced climate 
response (Deser et al. 2012). Only a small subset of 
air quality analyses, however, have included multiple 
climate initializations. Table 1 lists studies that use 
initial condition ensembles in projections of air quality 
under climate change. Projections based on a modeling 
framework that combines the MIT Integrated Global 
System Model and Community Atmosphere Model (MIT 
IGSM-CAM) include five initial conditions to account for 
internal variability in simulated impacts on air quality 
and several other sectors (Garcia-Menendez et al. 2015). 
Three-member initial condition ensembles are used in the 
future projections with the Geophysical Fluid Dynamics 
Laboratory chemistry-climate model, with 5 members 
used for the historical period (Turner et al., 2013; Clifton 
et al. 2014). Westervelt et al. (2016) further apply multiple 
linear regression to each of these ensemble members 
to breakdown projected impacts of climate change on 
fine particulate matter concentrations into sensitivities 
to different meteorological parameters. A Community 

Earth System Model (CESM1) initial condition ensemble 
of 15 members is used in projections of climate 
impacts on fine particulate matter pollution (Xu and 
Lamarque 2018). Some studies assess internal variability 
in meteorological conditions relevant to air quality 
without directly modeling atmospheric chemistry, and 
thus leverage some of the potential of initial condition 
ensembles while avoiding the computational costs of full 
chemistry simulations (e.g., Horton et al. 2012; Tai et al. 
2012; Horton et al. 2014; Shen et al. 2017). Although here 
we focus on future climate, analyses examining present-
day or past air quality have also sought to clarify the role 
of internal variability, with some similarly relying on initial 
condition ensembles (e.g., Turner et al., 2013; Lin et al. 
2014; Hess et al. 2015; Callahan et al. 2019). Studies that 
include initial condition ensembles and identify specific 
mechanisms through which unforced climate variability 
affects air quality can provide further information about 
the model time scales needed to capture such variability 
(e.g., Lin et al. 2015; Callahan and Mankin 2020).

Multi-model ensembles with atmospheric chemistry 
include internal variability across members (e.g., Allen 
et al. 2016; Schnell et al. 2016; Silva et al. 2017) but this 
uncertainty is inherently mixed with model structural 
uncertainty. Differences across models complicate 
assessing internal variability specifically. While multi-
model initiatives projecting climate and atmospheric 
composition have in some cases included as many as 
15 models (e.g., Young et al. 2013), initial condition 
ensembles have not been explored within them (in part 
due to major constraints from limited computational 
resources). Still, discrepancies in projected pollutant 
concentrations across models are partially attributable 
to internal variability. Inconsistencies are especially 
apparent in projections of climate impacts on PM2.5, 
including disagreements in the projected direction of 
climate-induced change (Von Schneidemesser et al. 2015).

Climate uncertainty in air quality projections

Three major sources contribute to uncertainty in climate 
projections: scenario uncertainty, model uncertainty, 
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Table 1.  Studies projecting air quality under climate change that include transient (i.e., 21st Century) initial condition ensembles. 
Different greenhouse gas scenarios are considered. 

Study Initial condition 
members

Climate model Atmospheric chemistry

Barnes et al. 2016 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate 

Callahan and Mankin 2020 35 CESM1 and 10 
CMIP5 models

No interactive chemistry

Chen et al. 2018 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Clifton, et al. 2014 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Garcia-Menendez et al. 2015 5 MIT IGSM-CAM Decoupled climate and 
chemistry

Garcia-Menendez et al., 2017 5 MIT IGSM-CAM Decoupled climate and 
chemistry

Pienkosz et al., 2019 5 MIT IGSM-CAM Decoupled climate and 
chemistry

Rieder et al. 2015 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Rieder et al. 2018 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Saari et al. 2019 5 MIT IGSM-CAM Decoupled CAM-Chem 
chemistry

Turner et al. 2013 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Tai et al. 2012 5 GISS GCM No interactive chemistry

Westervelt et al. 2016 3 GFDL CM3 Coupled chemistry (gas-
phase + aerosol)–climate

Xu and Lamarque 2018 15 CESM Coupled aerosol–climate 

and internal variability uncertainty (Hawkins and 
Sutton 2009). In projections of air quality under climate 
change, these uncertainties propagate to estimates of 
future pollution levels (which also depend on uncertain 
projections of air pollutant emissions). Here, we use 
an ensemble simulation of climate-induced impacts 

on 21st century US air quality (Garcia-Menendez et 
al. 2015) to illustrate how uncertainties associated 
with each of these sources compare. The simulations 
focus on climate-induced impacts on O3 and PM2.5 

pollution, changes driven by variations in air pollution 
meteorology with emissions unchanged from start-of-
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the century levels. Three scenarios of economic activity 
and greenhouse gas emissions are included. To capture 
model response uncertainty, simulations are conducted 
with climate sensitivities of 2.0, 3.0 and 4.5 °C. Air quality 
at the beginning, middle, and end of the 21st century 
is characterized by 30-year time slices. Five different 
climate initializations are used for each set of emissions 
scenario and climate sensitivity to further consider 
internal variability. The modeling framework based on 
the MIT IGSM-CAM and Community Atmosphere Model 
with atmospheric chemistry (CAM-Chem) is described in 
Garcia-Menendez et al. (2015). Further details about the 
methodology and projections are presented in Monier et 
al. (2015). Figure 1, reproduced from Pienkosz et al. (2019), 
shows the projected climate change impact on PM2.5 at the 
end of the century under a no-policy Reference emissions 
scenario and a 3.0 °C climate sensitivity for each initial 
condition and individual years within the time slices.  
We weigh uncertainties as the mean range of 30-year-

average O3 and PM2.5 surface concentrations (population-
weighted over the US) for each source (emissions 
scenario, model response, and internal variability) 
across the ensemble, following the approach outlined 
by Monier et al. (2015) and building on Hawkins and 
Sutton (2009). Figure 2 shows uncertainties at the start, 
middle, and end of the 21st century in simulated daily-
maximum 8-hour O3 and PM2.5. The uncertainties in 
modeled annual concentrations, rising as high as 3.8 ppb 
for O3 and 1.2 µg m-3 for PM2.5 by the end of the century, 
are similar in magnitude to ensemble-mean projected 
climate penalties on US air pollution (3.2 ppb and 1.5 
µg m-3 under the Reference scenario and 3.0 °C climate 
sensitivity). Internal variability dominates uncertainty in 
projections prior to 2050. By midcentury, its influence on 
O3 and PM2.5 is comparable to that of emissions scenario 
and climate model response. While internal variability 
remains relatively constant throughout the simulations, 
the uncertainties associated with greenhouse gas 

Figure 1. End of century ensemble-mean climate change impact on annual-average PM2.5, relative to start of century, estimated under a no-policy 
Reference scenario and 3 °C climate sensitivity (top left panel). Mean (30-year) impacts estimated under each climate model initialization 
are shown in the five midsized panels. Samples of single year impacts, estimated as the difference between future-year and present-day 
concentrations, within the 30-year time slices are shown in the 45 smaller panels. (Pienkosz et al. 2019)
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emissions and climate model response 
increase. Still, by the end of the century, 
uncertainty in projected air quality 
due to internal variability remains 
significant and equivalent to 20-30% of 
that imposed by emissions scenario, 
the prevailing uncertainty source. 
The contributions to uncertainty 
partially reflect those reported for 
mean surface air temperature and 
precipitation, with natural variability 
acting as the largest source early in 
the century and emissions scenario 
dominating by 2100 (Hawkins and 
Sutton 2009; Monier et al. 2015). The 
results also underscore the challenges 
imposed by internal variability on 
projecting a forced climate signal in 
air quality for time horizons extending over few decades. 
There are limitations to this assessment. Only three 
scenarios of greenhouse gas emissions and five initial 
conditions are included due to computational capacity. 
Variations in climate model response are represented 
applying a radiative adjustment method to a single model 
(Sokolov and Monier 2012). Despite these limitations, the 
analysis highlights the significance of internal variability 
in projections of air quality under climate change, even 
when examining multidecadal time slices at national scale.

Opportunities for LEs applications to air quality

LEs offer an exciting opportunity to explore the role of 
internal variability in air quality projections. Early efforts 
with small initial condition ensembles reveal that the 
approach can provide valuable insights (e.g., the studies in 
Table 1). Additionally, LEs have demonstrated the strong 
influence internal variability can have on meteorological 
variables recognized as important drivers of air pollution. 
However, the extent to which unforced internal variability 
impacts projections of atmospheric composition has not 
been carefully investigated. LEs provide a path to move 
beyond multiyear time slices, which by design are unable 
to capture internal climate variability on decadal and 

longer timescales, and better represent this uncertainty 
source. They may also help explain the differences 
among projections of climate-induced impacts on 
O3, PM2.5, and other harmful airborne pollutants.

There are several challenges associated with applying LEs 
to air quality. Among them is the added dimension of air 
pollutant and precursor emissions. Emission levels are 
anticipated to change significantly during the 21st century 
(Rao et al. 2017). While initial condition ensembles can 
help separate internal variability from human-caused 
changes in air quality, they cannot discern climate-
induced impacts from those of varying anthropogenic 
pollutant emissions. Doing so requires simulations in 
which radiative forcing or air pollutant emissions are 
held static, increasing the amount of modeling necessary 
and introducing some new inconsistencies due to the 
dual role of some species as both climate forcers and 
important components of air pollution. Additionally, the 
dependence of forced changes and internal variability 
in atmospheric composition on air pollutant emissions 
levels has not been fully explored. LEs can add clarity to air 
quality projections aiming to simultaneously capture the 
impacts of climate change and anthropogenic emissions.

Figure 2. Mean (population weighted over the contiguous US) range of simulated 
annual-average surface 8-hour O3 and PM2.5 for each source of uncertainty at start, 
middle, and end of the 21st century.
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The high computational costs of full atmospheric 
chemistry simulations pose a challenge to developing 
LEs focused on air quality. When dynamical downscaling 
of climate fields is used to drive models with more 
complex chemical mechanisms at higher resolution, the 
requirements increase substantially. However, LEs are 
a reality in physical climate modeling and generating a 
single LE based on a fully coupled chemistry-climate 
model is viable with existing computational resources. 
Further, the latest global chemistry models now include 
representations of atmospheric interactions better able 
to simulate air pollution processes. For example, the 
CAM-Chem component of CESM2 includes an updated 
tropospheric chemistry mechanism (MOZART-T1), 
interactive aerosols, and 1° horizontal resolution 
(Emmons et al. 2020). Strategies to maximize forced 
signal detection (Brown-Steiner et al. 2018) can be used 
to explore internal variability within a single-model LE and 
selectively downscale a subset of the ensemble to drive 
regional climate or chemical transport models with more 
comprehensive treatments of air pollution chemistry and 
meteorology. The findings generated by a single-model 
LE can also motivate development of multi-model LEs, 
which would enable comparison of the internal variability 
generated across models, identification of biases in 
each model’s representation of internal variability, and 
isolation of structural uncertainties (Deser et al. 2020).

LEs with interactive atmospheric chemistry can be used to 
pursue new research directions, similar to those enabled 
by the development of ensembles focused on climate 
(Deser et al. 2020). The effects of internal variability 
on multiple aspects of air quality, including regulation 
attainment, extreme air pollution, natural emissions, and 
many others have not yet been investigated. Importantly, 
only a few studies have used small initial condition 
ensembles to project mortality and morbidity impacts 
of air pollution (Chen et al. 2018; Saari et al. 2019). 
However, propagation of this uncertainty to estimates 
of the future health burden of air pollution can have 
major implications. Initial research suggests that internal 
variability propagates beyond pollutant concentrations 
to the co-benefits of policies designed to slow climate 
change, and that uncertainty in these estimates can span 
a multi-trillion US$ range (Saari et al. 2019). Thus, correctly 
attributing impacts and characterizing uncertainty 
in air quality projections is an important research 
need. LEs offer a valuable tool to pursue this goal.
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Anthropogenic emissions and land-use change 
have driven atmospheric CO2  concentrations, and 

consequently global temperatures, to rise. The ocean 
has removed 25-40% of anthropogenic carbon and more 
than 90% of anthropogenic heat from the atmosphere, 
thereby slowing the pace of global climate change 
(Frölicher et al. 2015; Gruber et al. 2019). This climate 
service provided by the ocean, however, does not come 
without penalty. Invading anthropogenic heat and CO2 

render the ocean warmer and more acidic, and reduce 
its oxygen content (Doney et al. 2009; Gruber 2011; Bopp 
et al. 2013). These impacts pose a threat to the ocean’s 
capacity to continue sequestering anthropogenic CO2 

from the atmosphere and to remain a hospitable habitat 
for marine organisms and ecosystems.

Given the ocean’s role as a large natural sink of 
anthropogenic carbon and the largest habitat on the 
planet, coordinated efforts are underway to observe 
our changing ocean and to predict its evolution over 
the coming centuries (e.g., Woods 1985; Takahashi et 

al. 2009; Wanninkhof et al. 2013; Friedlingstein et al. 
2014). Early seminal work focused on understanding 
the global response of the ocean carbon cycle and 
climate to anthropogenic forcings (Oeschger et al. 1975; 
Siegenthaler 1983). Later, with increasing observational 
coverage, model complexity, and model resolution, 
the global response could be understood as the sum 
of heterogeneous regional responses (Maier-Reimer 
and Hasselmann 1987; Bacastow and Maier-Reimer 
1987; Tans et al. 1990; Sarmiento and Orr 1992). The 
continuous expansion of our climate record has revealed 
substantial temporal variability in the ocean’s physical 
and chemical state. This variability stems largely from 
internal variability in the climate system (Kosaka and 
Xie 2013; Landschützer et al. 2015), complicating the 
interpretation of the climate record and predictions of 
future change.

Assessing the anthropogenic influence on ocean 
biogeochemistry in multi-model studies (e.g., through 
the Coupled Model Intercomparison Project [CMIP]) 
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has been challenging due to insufficient model member 
ensembles, which confounds uncertainty due to internal 
variability with that of model structure (Hawkins 
and Sutton 2009). This is especially relevant for key 
biogeochemical variables such as net primary productivity 
(NPP) and dissolved oxygen (O2), which showcase large 
inter-model differences and biases as well as substantial 
internal variability (Bopp et al. 2013; Cabré et al. 2015; Ito 
et al. 2017; Long et al. 2016).

Initial Condition Large Ensemble experiments (LEs) 
conducted with Earth system models (ESMs) represent an 
important advancement in attributing historical trends 
and projecting future natural and anthropogenic changes 
in ocean biogeochemistry. In this article, we survey 
recent applications of LEs to ocean biogeochemistry for 
addressing questions about timescales of anthropogenic 
change, mechanisms of variability, and ecological 
vulnerabilities.

Survey of BGC Applications

Emergence

Time of emergence (ToE) represents the statistical point 
in time at which an anthropogenic trend (the signal) 
statistically exceeds internal climate variability (the 
noise). ToE is a multi-purpose metric which informs (1) 
the timescales over which impacts of climate change 
might occur, as this is when the anthropogenic trend 
exceeds the natural variability to which organisms and 
systems are adapted, and (2) the implementation and 
interpretation of climate observations, as statistical 
emergence is a necessary prerequisite for detection 
of anthropogenic trends. LE experiments with ESMs, in 
addition to multi-model ensembles (e.g., CMIP5), have 
been used to show that biogeochemical properties 
and processes in the ocean have disparate times of 
emergence that range from under a decade—for 
properties like surface ocean pH—to over a century—
for processes like NPP (Figure 1; Rodgers et al. 2015; 
McKinley et al. 2016; Frölicher et al. 2016; Lovenduski 

et al. 2016; Long et al. 2016; Henson et al. 2017; Carter 
et al. 2016; Li et al. 2017; Schlunegger et al. 2019; 
Schlunegger et al., 2020).

LEs, in tandem with sensitivity studies, reveal that this 
chronology of emergence is a consequence of the 
differing timescales associated with the rapid chemical 
invasion of anthropogenic CO2 into the ocean and long-
term warming effects on ocean biogeochemistry. The 
impacts on carbonate chemistry and calcification emerge 
first, followed by the slow adjustment of ocean ventilation 
to warming and freshening, and lastly, by changes to 
nutrient supply and biological activity (Schlunegger et 
al. 2019). Emergence timescales are not only disparate 
across different biogeochemical variables, but can also 
differ substantially by region for the same variable (e.g., 
Figure 1b-d). For example, emergence of thermocline O2 

in the Community Earth System Model Large Ensemble 
(CESM-LE; Kay et al. 2015) can vary from a few decades 
in certain regions to more than a century in others, 
reflecting distinct regional sensitivities to governing 
modes of variability and anthropogenic forcing (Long et 
al. 2016).

The complex spatial composition and long emergence 
timescales of many important biogeochemical properties 
underscores the need for sustained, large-scale 
observations of the ocean in order to monitor and adapt 
to anthropogenic change.

Mechanisms of variability

The delayed emergence of anthropogenic trends in 
certain variables (e.g., O2 and NPP) in comparison to 
early emergence in others (e.g., pH and pCO2) also 
reflects key differences in how natural climate variability 
modulates biogeochemical cycles. This variability can 
be driven by a range of processes, such as internal 
modes of climate variability (e.g., El Niño–Southern 
Oscillation (ENSO), North Pacific Gyre Oscillation 
(NPGO), Southern Annular Mode (SAM)) as well as 
external drivers, such as volcanic eruptions. In contrast 
to multi-model ensembles which obfuscate uncertainty 
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due to internal variability and model structure, the LE 
framework allows one to isolate the forced response 
of ocean biogeochemistry by averaging over many 
realizations of the same climate model with the same 
external forcing (Deser et al. 2012; Kay et al 2015). This 
response includes both the forced trajectory of the 
system (ensemble mean in bold lines in Figure 2a-c), as 
well as its internal variability (ensemble spread outlined 
by the individual realizations in thin lines Figure 2a-c).

Internal variability

The response of ocean biogeochemistry to internal 
variability exhibits large spatial heterogeneity (Figure 
2d-f). Some regions emerge as hot spots for internal 
variability across all biogeochemical variables, such 
as the equatorial Pacific, Eastern Boundary Upwelling 
Systems (EBUS), Southern Ocean, and subpolar North 
Atlantic and North Pacific Oceans. This is due to the 
sensitivity of these regions to internal modes of climate 
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Figure 1. Time of Emergence (ToE) for anthropogenic trends in marine biogeochemistry for the GFDL-ESM2M RCP8.5 Large Ensemble Experiment. 
ToE calculations are referenced to year 1990, as this is the approximate beginning of the ocean-observing era and therefore the start of the 
reference period from which contemporary anthropogenic trends can emerge. The timeline in panel (a) indicates the year at which 50% of the 
global ocean area has an emergent anthropogenic trend for the given biogeochemical variable. The progression of emergence is a consequence 
of the initial, rapid invasion of anthropogenic CO2 and its impact on carbonate chemistry and calcification, followed by the slower response of the 
climate system and ocean to anthropogenic radiative forcing, and subsequent changes in ventilation, nutrient supply, and biological activity. The 
maps show the spatial patterns of emergence for (b) sea surface temperatures (SST), (c) air-sea CO2 fluxes and (d) the soft tissue pump, defined 
as the export of particulate organic matter at 100 meters depth. Other variable definitions include salinity normalized Dissolved Inorganic Carbon 
(nDIC) and Alkalinity (nALK), the equilibrium saturation concentration of O2 (O2,SAT ) integrated from 200-600 m, Apparent Oxygen Utilization (AOU), 
Sea Surface Salinity (SSS), Dynamic Sea Level (Dyn Sea Lev) and Mixed Layer Depth (MLD).
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Figure 2. Evolution of key biogeochemical variables over the historical period, including a) net primary production integrated over the upper 150 
m, b) air-sea flux of CO2, and c) air-sea flux of O2 (negative values denote uptake). The solid lines show the ensemble mean (forced response), 
while the thin lines show the individual 34 ensemble members of CESM-LE (internal variability), all smoothed with a 12-month running mean and 
adjusted by the 1950 decadal mean as a reference period. The three large historical volcanic eruptions (Mount Agung 1963, El Chichón 1982, and 
Mount Pinatubo 1991) are marked by triangles in panel c. (d-f) Historical unforced interannual variability of biogeochemical variables, computed 
by taking the ensemble mean standard deviation over 1971-2000 after removing the ensemble mean forced response. (g-i) Forced change in 
interannual variability between 1971-2000 and 2071-2100, represented by the ensemble mean of the individual changes in interannual variability 
for each ensemble member. Stippling denotes statistical significance at the 95% confidence level, where the signal-to-noise ratio is greater than 
two. Here, the signal is the ensemble mean change, while the noise is the ensemble spread of the change. Similar changes to variability are found 
by examining the evolution of ensemble spread over time.

variability, such as ENSO in the tropics (e.g., McKinley 
et al. 2003; Long et al. 2013; Eddebbar et al. 2017; 
McKinley et al. 2017), and other modes of variability 
at higher latitudes (e.g., SAM, Lovenduski et al. 2007; 
Verdy et al. 2007; NPGO, Di Lorenzo et al. 2008; Brady et 
al. 2019). Differences in the spatial structure of internal 
variability of these biogeochemical variables are also 
evident, such as the intense response of the western 
equatorial Pacific for NPP and the western boundary 
currents and equatorial Pacific for air-sea O2 flux.

An advantage of using the LE framework is its repeated 
sampling of the historical climate with evolving external 
forcing. This allows one to assess the robustness of a 
relationship between modes of climate variability and 
ocean biogeochemistry over a given time period. Brady 
et al. (2019) leveraged this to identify the major modes 
of climate variability that are associated with anomalous 
air-sea CO2 flux in EBUS. They performed decompositions 
of the response of driver variables of air-sea CO2 flux to 
the given mode of variability for each ensemble member. 
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They found that anomalous air-sea CO2 flux in EBUS is 
largely driven by the opposing response of CO2 solubility 
and dissolved inorganic carbon (DIC) to modes of 
climate variability. For example, during a positive NPGO 
event in the California Current, upwelling is intensified 
by enhanced gyre circulation, which cools SSTs and 
thus increases the ingassing pressure, while enhanced 
transport of DIC from the Alaskan Gyre intensifies the 
outgassing pressure (Brady et al. 2019). The large number 
of realizations from the LE places robust uncertainty 
bounds on the response of the given variable to modes 
of climate variability over the historical period.

While internal variability can be isolated through a 
preindustrial control run with constant CO2 forcing 
(e.g., Frölicher et al. 2009; Long et al. 2013), this method 
does not address changes to internal variability due to 
external forcing. One requires many realizations of the 
same climate model to isolate the evolving response of 
internal variability to anthropogenic forcing. Figure 2g-i 
highlights changes to internal variability in NPP, air-sea O2 
flux, and air-sea CO2 flux on the interannual scale under 
the RCP8.5 scenario in CESM-LE. An increase in internal 
variability due to external forcing can also be seen for 
seawater acidity [H+] (Figure 3b). 

Changes to internal variability in biogeochemistry can be 
driven by both (1) changes in the variability of the physical 
climate system and (2) by the non-linear sensitivities of 
chemical and biological processes to the mean physical 
and chemical state of the ocean. Physically driven changes 
in biogeochemical variability are expected to arise from 
modifications to the frequency and expression of climate 
modes like ENSO (Timmermann et al. 1999; Stevenson et 
al. 2019), or from other processes such as the poleward 
expansion of Hadley Cells (Yin et al. 2005), sea ice melt 
(Bates et al. 2006) and warming-induced stratification 
(Freeman et al. 2018). Even without modifications to 
the variability of the physical climate, rising ocean 
temperatures and increasing concentrations of DIC 
result in a more sensitive, and thus more variable air-sea 
CO2 flux (e.g. Fassbender et al. 2018; Landschützer et al. 
2018).

Forced variability

Volcanic eruptions induce additional variability in the 
climate system, further challenging the attribution of 
anthropogenic trends in ocean biogeochemistry. These 
eruptions can influence ocean biogeochemical dynamics 
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Figure 3. (a) Yearly range of daily-mean surface seawater acidity [H+] for a grid cell at 40°N and 30°W over the historical and RCP8.5 period for one 
member of an ensemble simulated with the GFDL ESM2M model. The black dotted line indicates the ensemble mean that represents the forced 
trajectory in [H+]. (b) The yearly range of departures from the forced trajectory for the data shown in a). The red dotted line is the extreme event 
threshold, defined as the 99th percentile of departures in a preindustrial (PI) simulation. (c) The change in surface [H+] extreme event frequency 
between the preindustrial and the ensemble average over the years 2081-2100 under RCP8.5.
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through their direct aerosol radiative effects on sea 
surface temperatures (SSTs) which control gas solubility 
and air-sea gas exchange (Frölicher et al. 2009; 2011), as 
well as their indirect radiative effects on ocean circulation 
by modulating spatial gradients of SSTs and ocean-
atmosphere interactions (Zanchettin et al. 2012). Isolating 
the volcanic signature on ocean biogeochemistry has long 
been challenging in the presence of obfuscating internal 
variability and the small number of ensemble members 
in previous model studies (Frölicher et al. 2009; 2011). 

The LE framework, which simulates the volcanic aerosol 
effects on climate, is ideal for examining volcanic effects 
on ocean biogeochemical dynamics across models 
and volcanic forcing datasets for exploring governing 
mechanisms. Figure 2a-c illustrates the biogeochemical 
impacts of the Mount Agung (1963), El Chichón (1982), 
and Mount Pinatubo (1991) eruptions in the CESM-
LE. These tropical eruptions drive reduced NPP and 
enhanced oceanic uptake of O2 and CO2 that penetrate 
into the ocean’s interior, where they persist for several 
years (Eddebbar et al. 2019). The spatial patterns and 
mechanisms driving this oceanic uptake of oxygen and 
carbon differ considerably in the LE. Whereas anomalous 
CO2 uptake occurs mainly at lower latitudes, driven by 
reduced upwelling of DIC-rich waters and surface cooling, 
O2 drawdown occurs primarily at higher latitudes, where 
colder winters following eruptions induce vigorous 
uptake of O2 (Eddebbar et al. 2019). 

The LE experiment suggests that tropical eruptions act 
to temporarily slow down the progression of ocean 
deoxygenation due to ocean warming (Keeling et al. 
2010) and to briefly intensify the oceanic uptake of 
anthropogenic carbon and induce interannual to decadal 
variability in the global ocean carbon sink (McKinley et al. 
2020). This complex sensitivity of ocean biogeochemistry 
to radiative energy perturbations should be taken into 
account in attribution studies of the observed variability 
in the oceanic oxygen and carbon cycles (Ito et al. 2017; 
Landschützer et al. 2015; McKinley et al. 2017; 2020).

Ecological applications

LE experiments can be used to study the ecological 
impacts of changes in physical and biogeochemical 
ocean variables. This includes the use of LE 
experiments to detect changes in extreme events 
(Burger et al., 2020) and the crossing of biological 
thresholds (Negrete-Garcia et al. 2019), as well as to 
force ecological models to assess changes therein 
(Krumhardt et al. 2017; Cheung and Frölicher 2020). LEs 
are a particularly valuable tool for analyzing extreme 
events, since they provide enough data to study rare 
events and to track changes in extreme event statistics 
over transient simulations. Furthermore, LEs are useful 
for understanding variance changes in non-linear 
systems like carbonate chemistry, as the LE mean 
allows for the forced, non-linear trend in the mean-
state to be removed without assumptions or statistical 
fitting methods. Here, we review a selection of studies 
that utilize LEs to assess the ecological impacts of 
anthropogenic forcing.

Burger et al. (2020) analyze how the occurrence and 
the characteristics of extreme events in [H+] change 
with anthropogenic CO2 emissions within an ensemble 
simulation. Extreme events are defined with respect to 
a moving baseline, which is identified by the changing 
ensemble mean (Figure 3a). The study demonstrates 
that, in addition to the large increases in mean acidity, 
increasing variability leads to larger departures from 
the evolving mean states (Figure 3b) and to increased 
occurrence of extremes (Figure 3c). Cheung and 
Frölicher (2020) detect marine heatwaves in a large 
ensemble simulation and study their impacts on fish 
stocks in the Northeast Pacific using a fish impact 
model. They show that the impact of marine heatwaves 
on biomass decreases for some species could be 
several times higher than the decrease per decade due 
to global warming.

Negrete-Garcia et al. (2019) detect sudden shoaling 
events of the aragonite saturation horizon in the 
Southern Ocean within the CESM-LE. The aragonite 
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saturation horizon is the depth below which seawater 
is corrosive with respect to the calcium carbonate 
mineral aragonite. They show that although ensemble 
members generally agree on whether the saturation 
horizon shoals, there are differences of 30 or more 
years between ensemble members on the projected 
timing of local, abrupt shoaling of the aragonite 
saturation horizon.

Krumhardt et al. (2017) use the physical and 
biogeochemical projections of the CESM-LE to 
assess the long-term effects of climate change on 
coccolithophore growth and calcification. They find 
that, although growth and calcification are stimulated 
by the projected temperature increases over the 21st 
century, additional effects from increasing pCO2 and 
decreasing nutrient availability lead to an overall 
reduction in growth and calcification. The spread within 
the ensemble is used to test the statistical significance 
of these changes.

LEs can be used to force offline ecosystem models 
through efforts such as the Fisheries and Marine 
Ecosystem Model Intercomparison Project (Fish-MIP; 
Tittensor et al. 2018). However, they are currently 
limited by coarse model resolution of approximately 
100 km. To robustly assess the regional influence 
of external forcing and internal variability on key 
coastal ecosystems, dynamical downscaling or higher 
resolution LE runs are required.

Outlook

The diverse applications of LEs in ocean biogeochemistry 
described herein underscore the multifaceted utility 
and transformative nature of this modeling tool. These 
applications have recently expanded beyond the 
initial scope of ToE studies, to the isolation of forced 
and unforced variability, and to ecosystem impacts 
and extreme events. Recent studies have used LEs for 
Observing System Simulation Experiments (e.g., Majkut et 
al. 2014; Gleoge et al. 2020), in generating observational 
LEs for biogeochemistry (Elsworth et al. 2020), in 

assessing decadal predictability through repeated 
ensemble initializations (Séférian et al. 2014; Li et al. 
2016; Séférian et al. 2018; Lovenduski et al. 2019; Li et al. 
2019; Brady et al. 2020; Fröhlicher et al. 2020; Krumhardt 
et al. 2020; Spring and Ilyina 2020), and in development of 
LE methodologies for partitioning sources of uncertainty 
for projections of marine biogeochemistry (Frölicher 
et al., 2016; Lovenduski et al., 2016; Schlunegger et al., 
2020). LEs also provide a robust framework to isolate the 
biogeochemical signature of anthropogenic phenomena 
beyond greenhouse gas forcing and present a potentially 
powerful tool for exploring the effects of geoengineering 
(Lauvset et al. 2017) and nuclear war effects on marine 
ecosystems and biogeochemistry (Lovenduski et al. 2020).

Large potential remains for new insights into ocean 
biogeochemistry using the LE framework. While much 
of the initial LE work has focused on emergence and 
assessments of the long-term forced response, more work 
is needed on isolating the internal and external variability 
during the observed period, which showcases substantial 
variability on seasonal to multidecadal timescales. 
The forced component that emerges in the LE mean 
typically combines the effects of anthropogenic aerosols, 
volcanic aerosols, land-use change, and anthropogenic 
greenhouse gas radiative forcing. New “single forcing” 
experiments may be especially useful to isolate more 
precisely the biogeochemical influence of these different 
drivers. Additionally, future LE experimental design 
should consider the addition of external biogeochemical 
forcing by volcanoes through simulating atmospheric 
deposition of micronutrients (Hamme et al. 2010) and 
the use of prognostic (emissions-based), rather than 
diagnostic (concentration-based) CO2 (Arora et al. 2013). 

Finally, much of the LE work has focused on individual 
model analysis. New opportunities exist for comparing 
biogeochemical responses across models through the 
US CLIVAR Working Group on Large Ensemble’s Multi-
Model Large Ensemble Archive (MMLEA, Deser et al. 
2020), with a parallel effort focusing on the ocean 
carbon cycle (Schlunegger et al. 2020) as it differs 
across models. This perspective allows one to robustly 

https://usclivar.org/working-groups/large-ensemble-working-group
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
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separate the effects of external forcing, model structure, 
and internal variability on ocean biogeochemistry—an 
opportunity that has long been sought after and is the 
result of many years of collaboration and hundreds 
of millions of hours of computational expense.
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Surface temperatures and all variables in the climate 
system fluctuate around their long-term evolving 

forced state due to the chaotic effect of internal variability. 
Real-world observations offer only one amongst many 
possible combinations of these fluctuations, making it 
difficult to distinguish the effect of internal variability 
from the forced response to external drivers. In contrast, 
initial-condition large ensembles (LEs) consist of up to 
hundreds of simulations of a single climate model under 
the same time-evolving external forcing conditions, 
which differ only due to the effect of chaotic internal 
variability. This means that when large enough LEs allow 
a precise quantification of both the time-evolving forced 
response, represented by the ensemble mean, and the 
internal variability, represented by the spread of possible 
fluctuations around this mean.

Due to their design, LEs allow for a more effective 
climate model evaluation. We can use LEs to determine 
whether observations fall within the ensemble spread 
simulated by each model. We exploit this potential of LEs 
to evaluate how well climate models capture the internal 
variability and forced response in observations, without 
the need to separate both quantities in the observations, 
by applying a methodological evaluation framework 
based on probabilistic forecast verification (Hamill 2001; 
Suarez-Gutierrez et al. 2018; Maher et al. 2019). This 
evaluation framework allows us to determine model 
performance more robustly than before, by assessing 
whether current climate models capture the long-term 
trajectory of the climate system as well as the possible 
range of fluctuations around this trajectory caused by 
internal variability in any given region and time period.
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Here, we use this framework to evaluate historical near-
surface air temperatures over North America in LEs from 
six comprehensive fully-coupled climate models in the 
Multi-Model Large Ensemble Archive (MMLEA; Deser et al. 
2020) provided by the US CLIVAR Working Group on LEs: 
CanESM2, CESM-LE, CSIRO-MK3.6,GFDL-CM3, GFDL-
ESM2M, MPI-GE; as well as in the Observational LE (OBS-
LE). In contrast to the six model LEs, OBS-LE is a statistical 
product that combines the simulated time-evolving 
forced response from CESM-LE with a synthetic statistical 
estimate of internal variability derived from observations 
from the Berkeley Earth Surface Temperature (BEST) 
dataset for temperature (McKinnon and Deser 2018).

Results

Time series and rank histogram analysis

For the hypothetical case of an LE that perfectly 
represents the combined effect of the real-world 
forced response and internal variability, a sufficiently 
long sample of observations should fall across all of 
the ensemble spread with no preferred frequency, 
and mainly occur within the ensemble maximum and 
minimum limits. We evaluate this by computing time 
series and rank histograms of annually averaged North 
American near-surface air temperature anomalies 
(SAT) with respect to the reference period of 1961–
1990 compared to CRUTEM4 observations (Figure 1). 

The time series in Figure 1 show the ensemble maxima 
and minima as well as the 75th percentile central 
ensemble range (i.e., 12.5th to 87.5th percentile range), 
together with observations. The rank histograms 
shown in Figure 1 represent the frequency with which 
observations take each place in a list of ensemble 
members ordered by ascending SAT values for each year 
(Hamill 2001). The rank is zero if the observed SAT for a 
given year is lower than each SAT simulated by all the 
ensemble members for that year. If the observed SAT is 
higher than all simulated SATs, the rank is n, the number 
of ensemble members. For a long enough observational 
record that is adequately simulated, observations 

should occur in all ranks with uniform frequency, thus 
resulting in a flat rank histogram. In contrast, a non-
flat rank histogram indicates a model bias in either 
the variability or forced response. This is the case 
for CanESM2, CSIRO-MK3.6, and GFDL-CM3, which 
show sloped rank histograms with disproportionately 
large low-rank frequencies. Thus, these ensembles 
overestimate the historical forced warming compared 
to observations. Observations occur frequently in the 
lower half of these ensembles, or below the ensemble 
minima, either during the entire observational record 
as for GFDL-CM3, or only in recent decades or early 
historical period, as for CanESM2 and CSIRO-MK3.6 
respectively. The remaining LEs — CESM-LE, GFDL-
ESM2M, MPI-GE, and OBS-LE — show relatively flat 
rank histograms. This indicates that these LEs cover the 
time-evolving observational spread in North American 
SATs adequately, with observations occurring uniformly 
across the ensemble spreads and mostly within the 
ensemble limits. 

The LEs with longer simulation lengths, CESM-LE and 
in particular CSIRO-MK3.6 and  MPI-GE, also appear to 
have larger SAT variability in the 19th and early 20th 
Centuries than in recent decades. This variability, 
represented by the ensemble spread of SAT, decreases 
in recent decades to maximum to minimum annual SAT 
ranges of around 1.5 to 2.0 °C, of similar magnitude 
across all LEs. We also find year-to-year variability in 
the ensemble maxima and minima SAT larger than 0.5 
°C across all six climate models LEs. 

By contrast, and due to its experimental design, OBS-LE 
shows substantially less year-to-year variability in the 
ensemble maxima and minima. This could arise from 
the large ensemble size of 1,000 members resulting in 
the saturation of the SAT ensemble spread on yearly 
timescales. However, this year-to-year variability 
remains comparatively low when only the first 100 
members of OBS-LE are considered, and is also lower 
than the variability that we could expect from normally 
distributed data (not shown), indicating a potential 
under-sampling of the distribution tails. This suggests 
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that OBS-LE may underestimate the intensity of the most 
extreme SAT events. This could result from the lack of 
sufficiently large samples of observed low-probability 
events, due to relatively short observational record, 
which leads to not only the potential underestimation 
of the intensity of extreme events but also complicates 
the robust estimation of their likelihood. 

Although this comparatively low year-to-year variability 

might indicate that OBS-LE underestimates the intensity 
of low-probability events at the tails of the ensemble 
distribution, OBS-LE offers the most adequate 
representation of the combination of the internal 
variability and forced response in observed SAT over 
North America throughout the historical observational 
record. The climate model LEs that capture both 
quantities in observations most adequately are GFDL-
ESM2M, CESM-LE and MPI-GE.

Suarez-Gutierrez et al. 4th July 2020

ONLY FIRST 100 MEBERSOnly first 100 MembersOBS-LE (Only First 100 Members)

Figure 1: Time series and rank histograms of annual SAT over North America. Time series of annual

land-surface SAT anomalies simulated by each LE (colored) and CRUTEM4 observed anomalies (black

circles) for the period 1850–2019 (left column). Lines represent ensemble maxima and minima, shading

represents the central ensemble range within the 75th percentile (12.5th to 87.5th percentiles). Rank

histograms show the frequency of each place that CRUTEM4 observations would take in a list of ensemble

members ordered by ascending SAT values (right column). Crosses represent the frequency of minimum

(0) and maximum (number of members; n) ranks, lines illustrate the histogram’s slope as the moving

10-rank mean. Frequencies are normalized to percentage. Bin sizes are 1 rank, except for MPI-GE and

OBS-LE where bin sizes from ranks 1 to n-1 are respectively 3 and 37 ranks to aid visualization. Anomalies

are relative to the period 1961–1990. Temperature anomalies are averaged over the land-surface cells

where observations are available in the [17.5–52.5N, 62.5W–127.5W] domain.
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Figure 1: Time series and rank histograms of annual SAT over North America. Time series of annual land-surface SAT anomalies simulated 
by each LE (colored) and CRUTEM4 observed anomalies (black circles) for the period 1850–2019 (left column). Lines represent ensemble maxima 
and minima, shading represents the central ensemble range within the 75th percentile (12.5th to 87.5th percentiles). Rank histograms show the 
frequency of each place that CRUTEM4 observations would take in a list of ensemble members ordered by ascending SAT values (right column). 
Crosses represent the frequency of minimum (0) and maximum (number of members; n) ranks; lines illustrate the histogram’s slope as the moving 
10-rank mean. Frequencies are normalized to percentage. Bin sizes are 1 rank, except for MPI-GE and OBS-LE where bin sizes from ranks 1 to n-1 
are 3 and 37 ranks, respectively, to aid visualization. Anomalies are relative to the period 1961–1990. Temperature anomalies are averaged over 
land-surface grid cells where observations are available in the [17.5–52.5°N, 62.5°W–127.5°W] domain.
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Spatial representation of the combined forced 
response and internal variability in observations

Based on the concepts in the previous section, we 
now evaluate how different LEs capture the internal 
variability and forced response in observations 
at the grid-cell level by identifying three different 
possible biases (Figure 2). First, we evaluate how often 
observations lie either below or above the ensemble 
limits in each grid cell. We distinguish between regions 
where 5% or more of the time observations fall below 
the ensemble minimum (blue shading) and above 
the ensemble maximum (red shading). If only one of 
these biases occurs in a region, the model respectively 
over- or under-estimates the forced response in 
observations. Alternatively, such a bias could also be 
caused by a bias in the skewness of the probability 
distribution for non-normally distributed variables. If 
both of these biases occur at the same location, this 
means that observations fall below and also above 
the ensemble limits, either over the entire period of 
analysis (indicating the model does not sufficiently 
capture the observed variability) or during specific 
periods (indicating a likely change in the sign of the 
model bias over time). 

The third metric of model performance highlights 
regions where observations cluster more than 
expected within the central 75th percentile range of 
the simulated ensembles. For the ideal case in which 
observations are uniformly distributed across the 
ensemble and exhibit a flat rank histogram, observed 
values would lie within the central 75th percentile 
ensemble range (12.5th–87.5th percentiles) around 75% 
of the time. Here we identify areas where observations 
occur in the central ensemble range more than 80% 
of the time (gray shading in Figure 2), indicating that 
the model overestimates internal variability. This bias 
results in simulated extreme events at the tails of the 
ensemble distribution that are systematically more 
intense than observed. Note that this type of bias 
can only be robustly identified when the simulated 
distribution adequately captures the forced response 

in observations, and when evaluated over a period 
long enough to sufficiently sample the timescales of 
internal variability under study. 

White areas without any shading in Figure 2 indicate 
that none of the three biases occurs to a substantial 
degree, indicating that the ensembles simulate a 
time-evolving forced response and range of variability 
around this response that are comparable to those in 
observations for the whole length of their simulations. 
Thus, in these areas, our evaluation framework 
indicates that the models adequately capture the 
forced response and internal variability in observed 
surface temperatures. The percentage of white 
areas over North America represents areas with no 
substantial biases for each LEs (upper right corners 
in Figure 2), and indicates that OBS-LE, with 85.9%, 
offers the most adequate spatial representation of the 
combined internal variability and forced response in 
observed historical SAT. MPI-GE, with 46.6% of white 
areas, offers the best representation of historical SAT 
over North America amongst the model LEs, followed 
by CanESM2, CESM-LE, and GFDL-ESM2M.

The predominance of blue shading over red shading 
in Figure 2 for CanESM2, and especially CSIRO-MK3.6 
and GFDL-CM3, indicates that observations fall below 
the ensemble minima more frequently and over larger 
regions than they fall above the ensemble maxima 
for these models. These are the same models that 
show overestimated forced warming compared to 
observations in Figure 1. Observations exceed the 
ensemble maxima over the East Coast and Gulf of 
Mexico area for CESM-LE and CSIRO-MK3.6 (red shading 
in Figure 2b and c), indicating that these ensembles 
underestimate the intensity of warm near-surface air 
temperature extremes in these areas. 

Over the Caribbean Islands and the Baja California 
Peninsula, observations occur both below and above 
ensemble limits with high frequency (overlapping blue 
and red shading in Figure 2). This indicates that models 
underestimate observed SAT variability in these 
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Figure 2: Evaluation of internal variability and forced response in annual SATs. Evaluation of annual SAT anomalies simulated by different 
LEs compared to CRUTEM4 observed anomalies from 1850, or each LE starting year, until 2019. Red shading represents the percentage of time 
that the observed yearly anomaly is larger than the ensemble maximum; blue shading represents the percentage of time that the observed 
yearly anomaly is lower than the ensemble minimum. Gray hatching represents how often observations cluster within the 75th percentile 
bounds of the ensembles (12.5th to 87.5th percentiles). Dotted areas are excluded from our analysis due to CRUTEM4 observations being 
available for less than 10 years. Percentages of white area in the upper right corners represent the percentual area of North America where 
none of these biases occur to a substantial degree for each LEs. Anomalies are relative to the period 1961–1990. Model output data are 
regridded to match the observational grid.
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regions, likely due to the effect of model resolution and 
complex orography in confounding land versus ocean 
in these grid cells. Lastly, observations cluster in the 
central ensemble ranges of several models, including 
CanESM2, CESM-LE, MPI-GE, and especially GFDL-
ESM2M, over the West Coast and Central US, indicating 
that these models overestimate the variability in these 
regions (gray shading in Figure 2). 

OBS-LE shows no substantial biases over 
North America, with the exception of the 
underestimation of SAT variability over the 
Baja California Peninsula (Figure 2g). Our 
results indicate that OBS-LE offers the most 
adequate spatial representation of the 
internal variability and forced response in 
observed historical SAT over this region. In 
agreement with the results in Mckinnon and 
Deser 2018 for 50-year trends, we find that 
OBS-LE shows only minor biases in annual 
SATs over most of the Northern Hemisphere; 
while it exhibits underestimated annual SAT 
variability compared to observations over 
large areas in the low latitudes (not shown). 
Over these regions, OBS-LE fails to cover 
the observed variability range in SATs, with 
observed extreme anomalies beyond the 
OBS-LE maximum and minimum values over 
more than 10% of the years. This could result 
from a combination of the comparatively 
lower variability at the tails of the OBS-
LE distribution identified in Figure 1, that 
could be more prominent in these areas, as 
well as an increased spatial and temporal 
observational sparsity in these regions that 
could affect the statistical processing used to 
generate OBS-LE.

Comparison of internal variability

Following our evaluation of the forced 
response and internal variability in LEs, 

we can now determine which LEs provide the most 
realistic simulations of internal variability in annual 
SAT over North America to better estimate the internal 
variability in the real world. Here, we measure the 
magnitude of internal variability in the model LEs and 
OBS-LE as the 2.5th to 97.5th percentile ensemble 
spread averaged over the period 1950–1990 (Figure 3a-
g). We restrict this analysis to the period 1950–1990 to 
ensure contributions from all LEs and to minimize the 

Figure 3: Variability in annual surface temperatures. (a-g) Ensemble spread 
for annual SAT anomalies by different model LEs and OBS-LE averaged for the 
period of 1950–1990 measured as the difference between the 2.5th to 97.5th 
annual SAT percentiles. (h) SAT spread in CRUTEM4 observations measured as 
the difference between the 2.5th to 97.5th percentiles of the whole distribution 
for the period of 1950–1990 of annual SAT anomalies. Simulated data are 
regridded to match the observational grid.
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potential effect of the forced response. For comparison, 
we compute the range of internal variability in 
CRUTEM4 observations, estimated directly as the 
2.5th to 97.5th percentile range in the distribution of 
non-detrended observed annual SAT anomalies in 
the same period (Figure 3h). The simulated amplitude 
of SAT internal variability ranges from 2 to 4°C over 
most of the continental land area across the different 
model LEs (Figure 3a-f) and OBS-LE (Figure 3g). The 
observational estimate (Figure 3h) is generally larger 
than the LE estimates, in particular over the northern 
part of the domain, and decreases more steeply with 
decreasing latitude. However, unlike the LEs estimates, 
the observational estimate of internal variability could 
be affected by the confounding effect of the forced 
response in observations. 

OBS-LE, which by design most adequately captures 
the forced response and internal variability in SAT 
over North America, exhibits a stratified pattern 
with variability increasing polewards, which is not 
completely captured by any of the LEs. Two of the four 
LEs that most adequately capture North American SATs, 
GFDL-ESM2M and MPI-GE (Figure 3e and f), simulate 
hotspots of too high SAT variability over the central 
United States and Gulf of Mexico region, in agreement 
with the areas of overestimated variability in Figure 2. 
These hotspots exhibit SAT variability ranges of 3.5°C 
to more than 4.0°C, almost twice as large as the SAT 
variability in other LEs. This indicates that in these 
areas, these two ensembles simulate annual mean 
SAT extremes systematically more intense than those 
observed, possibly due to an overestimation of the 
cold tail of the distribution during the summer months 
(not shown).

Summary and conclusions

We use a novel framework exploiting the power of 
large ensembles to evaluate historical temperatures 
over North America in six comprehensive, fully-coupled 
climate models, as well as in the observational ensemble 
OBS-LE. This framework is based on a simple approach: 

evaluating whether observations occur evenly across the 
ensemble spread of simulations, and whether they occur 
mainly within the limits of this spread. Our evaluation 
shows that the experimental design in OBS-LE results 
in the most adequate representation of the combined 
effect of the forced response and internal variability 
in observed temperatures over North America. The 
climate model LEs that provide the best representation 
according to our metrics are MPI-GE, CanESM2, CESM-LE, 
and GFDL-ESM2M, suggesting that these LEs are the best 
choice for investigating future temperature projections 
over this region. Our evaluation framework highlights 
MPI-GE as the model LE that most adequately captures 
the combined forced response and internal variability 
in observed North American surface temperatures for 
the period 1850–2019, with the largest area with no 
substantial biases, 46.6% of the North American region.

Several models show similar biases over similar regions, 
such as an overestimation of temperature variability 
in Central North America and an underestimation of 
variability over the Caribbean Islands and the Baja 
California Peninsula, likely due the combination of 
model resolution and complex orography in these 
regions. Some models overestimate recent forced 
warming over North America beyond the range of 
plausible fluctuations caused by internal variability. 
Our results show that models do not consistently 
over- or underestimate internal variability in surface 
temperatures, and that models that perform adequately 
over one region will not necessarily do so in another. 

Overall, this evaluation framework provides a new and 
more robust approach to determine model performance, 
allowing users to decide which models are most appropriate 
for their variable and region of interest, by highlighting 
which models offer the most adequate representation of 
the real-world internal variability and forced response.
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Data and methods
We include LEs from six coupled climate 
models in the US CLIVAR MMLEA (Deser et al. 
2020) as well as the synthetic product OBS-LE based on 
observations (Table 1). Each of the climate model LEs 
comprises several simulations for one fully coupled climate 
model that differ only in their initial state, and evolve 
under one specific set of forcing conditions. However, 
the ensembles differ in their number of simulations, in 
how sensitive the model is to increasing CO2, or in the 

method used for the initialization of their members. 
When available, historical simulations are extended with 
one available future forcing scenario to cover the entire 
observational record. We also use surface temperature 
observations from the CRUTEM4 (Jones et al. 2012) dataset 
for comparison to the LE simulations. All simulated 
data are regridded to match the coarser resolution of 
CRUTEM4 observations and transformed to anomalies 
with respect to the 1960–1991 climatological period. 

The methodological framework demonstrated in 
this paper was first used in Suarez-Gutierrez et al. 
2018 to evaluate European summer temperature 
and precipitation in MPI-GE; and further expanded 
to evaluate global annual mean temperatures in 
Maher et al. 2019, and global summer maximum 
temperatures in Suarez-Gutierrez et al. 2020. 

LE Experiment Members Years Forcing Reference

CanESM2 50 1950-2018 Hist + RCP8.5 Kirchmeier-Young et al. 2017

CESM-LE 40 1920-2018 Hist + RCP8.5 Kay et al. 2015

CSIRO-MK3.6 30 1850-2018 Hist + RCP8.5 Jeffrey et al. 2013

GFDL-CM3 20 1920-2018 Hist + RCP8.5 Sun et al. 2018

GFDL-ESM2M 30 1950-2018 Hist + RCP8.5 Rodgers et al. 2015

MPI-GE 100 1850-2018 Hist + RCP8.5 Maher et al. 2019

OBS-LE 1000 1920-2014 Hist + RCP8.5 McKinnon et al. 2017

Table 1: Details of LE experiments analysed from the Multi-Model Large Ensemble Archive (Deser et al. 2020). Experiment name, 
number of members, simulated years used, forcing scenarios and references of LE experiments included. All experiments include 
historical forcing (Hist.) until 2005, except for OBS-LE, which is based on historical observed temperatures (see McKinnon and Deser, 
2018). Historical simulations are extended beyond 2005 using one future forcing scenario.
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Anthropogenic activities contribute to the rising level 
of greenhouse gas concentrations in the atmosphere 

at a rate of approximately 1% per year providing a time-
dependent external radiative forcing on the climate 
system (Peters et al. 2020). Associated changes in several 
climate variables (e.g., global mean surface temperature) 
are thought to have emerged from unforced natural 
internal processes of the climate system allowed by the 
characteristics of the dissipative chaotic nature of the 
climate dynamics, i.e., from internal variability (Hawkins 
et al. 2020). In addition to tangible consequences of 
anthropogenic forcing affecting the climate system (e.g., 
the dramatic Arctic sea ice retreat (Screen and Simmonds 
2010)), simultaneous, less apparent changes occurring 
on low-frequency timescales demand effort to deal with. 
These include changes in internal variability due to the 
non-stationary anthropogenic forcing, that represents 
additional uncertainty affecting future model projections 
on top of internal variability, scenario and model 
uncertainty (Hawkins and Sutton 2009; Deser et al. 2012; 
Wettstein and Deser 2014; Lehner et al. 2020).

Although previous studies using observations and multi-
model single-member simulations successfully detected, 
for example, changes in the jet-stream variability 
(Barnes and Polvani 2013) or in the variance of Northern 
Hemisphere (NH) temperature (Screen 2014) due to 
anthropogenic forcing, traditional methods based on 
long-term temporal statistics unavoidably make use 
of discrete time windows subjectively chosen from a 
continuously time dependent system (i.e., the changing 
climate). In addition, separating the effects of model 
structural differences and internal variability in multi-
model ensembles is challenging (Merrifield et al. 2019). 
State-of-the-art Single Model Initial-condition Large 
Ensemble (SMILE) simulations (Kay et al. 2015; Maher et 
al. 2019; Deser et al. 2020) – that account for the chaotic 
behavior of the climate system with perturbed initial 
condition runs of the same model – offer a way forward 
for new perspectives on externally-forced changes in 
internal variability. Here, we outline an approach for 
analyzing SMILEs called the snapshot view, which offers 
a mathematically exact and elegant formulation and 
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the potential to complement previous diagnostics with 
ensemble-based statistics.

Theoretical background – The snapshot view

The concept of the so-called “snapshot view” was 
introduced into dynamical system theory to understand 
how nonautonomous dynamics behave when subjected 
to general time dependent forcings. Romeiras et al. (1990) 
drew attention to an interesting feature of dissipative 
dynamical systems: the fact that a single long “noisy” 
trajectory traces out a fuzzy shape, while an ensemble of 
motions starting from many different initial conditions, 
using the same noise realization along each trajectory, 
creates a structured fractal pattern at any instant. This 
ensemble-related pattern, the snapshot chaotic attractor, 
continuously changes its shape, in contrast to traditional 
chaotic attractors, which are time-independent (Lorenz 
1963; Ott 1993). The concept of snapshot attractors has 
been used to understand a variety of time-dependent 
physical phenomena (see e.g., Pikovsky 1984; Yu et 
al. 1990; Serquina et al. 2008; Ku et al. 2015; Vincze et 
al. 2017). However, it was not until Ghil et al. (2008) 
and Checkroun et al. (2011) pointed out its potential 
importance to the field of climate dynamics that it began 
to be more widely applied in climate science and that this 
concept (also called the “pullback attractor”) was relevant 
for the understanding of anthropogenic climate change.

Deterministic (noise-free) snapshot attractors capture 
the essence of an unpredictable dynamical system under 
changing conditions (Bódai and Tél 2012; Pierini 2014; 
Drótos et al. 2015). The traditional way of obtaining a 
chaotic attractor by means of a “single trajectory” is not 
equivalent to the “ensemble” method (ergodicity does 
not hold in systems subjected to forcings of general 
time-dependence). One has to choose between the two 
approaches, and it is the ensemble-based snapshot view 
that is appropriate for a faithful statistical representation 
of the possible distribution of a given quantity at any 
time instant in a changing climate. The reason is that 
the ensemble also represents a natural probability 
distribution, supported by the snapshot attractor.

The basic features of the snapshot view valid for any 
dissipative system subjected to general forcing can be 
summarized as follows (Drótos et al. 2015):

• Conclusions based on single trajectories may be 
misleading since such trajectories are unpredictable, 
thus not representative.

• On the contrary, ensemble properties, including the 
natural probability distributions (which set in after 
the initial conditions are “forgotten” in a numerical 
simulation) are fully predictable in a statistical sense 
(in harmony with general properties of chaotic 
systems (Tél and Gruiz 2006)).

• An instantaneous characterization of the system 
becomes possible (as properly expressed by the 
adjective “snapshot”), and the use of (occasionally 
biased) temporal averages can fully be avoided.

• It offers a straightforward way to analyze internal 
variability in a changing system, e.g., by means 
of statistical quantifiers of the instantaneous 
probability distribution.

• Because the instantaneous (snapshot) statistics are 
available at each time instant, the forced changes in 
any quantity, such as the internal variability, can be 
determined by analyzing the time series of snapshot 
values by means of the traditional tools of time 
series analysis.

In the particular example of climate change, the 
snapshot view can equivalently be formulated as the 
theory of parallel climate realizations (Herein et al. 2017; 
Tél et al. 2019). Qualitatively speaking, one can imagine 
many copies of the Earth system moving on different 
dynamical paths, each being subjected to the same 
physical laws and forcings. As a generalization of Leith’s 
observation (Leith 1978), parallel climate realizations 
constitute an ensemble of a large number of members, 
and the snapshot taken over the ensemble (the 
snapshot attractor) represents the plethora of permitted 
climate states at that instant.
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Utilizing the snapshot view to detect forced changes in 
internal variability

In this section we reveal how the snapshot view allows for 
surprisingly simple practices to detect forced changes in 
internal variability via utilizing SMILE simulations. Here, 
we focus on modes of large-scale internal atmospheric 
circulation variability (so-called “teleconnection 
patterns”), which may change due to anthropogenic 
forcing. The question arises how to characterize changes 
in these modes as a result of climate change, since 
certain characteristics of the linkages between the 
teleconnection patterns and other climate variables, 
for example precipitation or air temperature, may also 
change even within a carefully chosen time window 
(Drótos et al. 2015; Herein et al. 2016; Herein et al. 2017; 
Tél et al. 2019). Therefore, we need to reconsider these 
methodologies when aiming to detect forced changes in 
internal variability.

Our previous research (Haszpra et al. 2020b) exemplified 
a novel means of analyzing changes in modes of 
atmospheric circulation variability when the climate 
system is subjected to time-dependent external forcing, 
via introducing the snapshot empirical orthogonal 
function (SEOF) analysis. Rather than apply empirical 
orthogonal function (EOF) analysis in the traditional 
temporal dimension we compute instantaneous EOFs 
(spatial patterns of variability) and associated principal 
components (PCs, amplitude and polarity of the patterns) 
across the ensemble dimension. In doing so, we can 
monitor the changes in an EOF mode resulting from the 
time-dependent external forcing and account for the 
non-stationarity of internal variability. We note that a 
similar method was also developed in Maher et al. (2018), 
however, that approach combines the variability of the 
monthly data with that of the ensemble.

The instantaneous strength of the linkage between a 
particular SEOF teleconnection pattern and another 
climate variable (e.g., surface temperature, TS) can be 
quantified by means of the snapshot correlation, i.e., the 
instantaneous Pearson correlation coefficient computed 
across the ensemble. In this way, instantaneous 

correlation maps are obtained, thereby allowing one to 
monitor the spatial distribution of the correlation field 
in tandem with its time evolution. Such an approach 
has been insightful for documenting changes in the 
teleconnections of the ENSO (Bódai et al. 2020, Haszpra 
et al. 2020a) and that of the North Atlantic Oscillation 
(Herein et al. 2017). Similar to EOF analysis, maximum 
covariance analysis (MCA, Bretherton et al. 1992) may 
also analogously be extended to its ensemble-based 
twin (snapshot MCA, SMCA) to study forced changes in 
coupled modes of variability (see below).

Results

An illustrative example of SEOF: The Arctic Oscillation

We briefly demonstrate advantages of SEOF analysis in 
monitoring temporal changes in the Arctic Oscillation 
(AO) under RCP8.5 forcing in the CESM Large Ensemble 
(CESM-LE, Kay et al. 2015) for 1950–2099. We define the 
AO as the leading SEOF mode in the winter (December–
January–February, DJF) seasonal mean sea level pressure 
(SLP) anomalies poleward of 20°N and the corresponding 
PC series as the instantaneous (DJF) AO indices (AOI). 
Thus, for each winter season during 1950–2099 we 
obtain a spatial pattern that characterizes the current 
set of potential climate states (spanned by the ensemble 
spread) and explains the largest variability in their SLP 
fields, in addition to a PC series whose length is the 
number of ensemble members (for the AO, this PC is 
termed the AO Index or AOI).

The left panel in Figure 1 illustrates the instantaneous DJF 
mean SLP anomalies regressed onto the leading SEOF 
mode in 2025 in the CESM-LE, which closely resembles 
the observed AO pattern (based on historical reanalysis, 
not shown but see for example Thompson et al. 2000). 
Repeating the SEOF analysis for each year between 
1950–2099, important characteristics of the model’s AO 
are revealed, including temporal changes in amplitude 
at several locations determined from a linear fit to the 
regression values at each grid box (Figure 1 right). For 
clarity, in this panel dots represent geographical locations 
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where the linear trend is 
found to be significant at 
the 95% level and crosses 
indicate where, in addition, 
the regression coefficients 
are significant at the 95% 
level in the temporal 
mean. For example, the 
amplitude of the AO in the 
Pacific center-of-action 
shows an increase of about 
0.02  hPa  yr–1, implying 
3  hPa over 150  years, i.e., 
the change is of the same 
magnitude as the typical 
amplitude in 2025 (2.5–
6.5 hPa). On the contrary, in 
the northern part of Europe 
and Asia a slight decrease 
of the AO amplitude can 
be observed. Moreover, 
the choice of the scenario influences the magnitude of 
the changes (see application to the MPI Grand Ensemble 
(MPI-GE) with three forcing scenarios in Haszpra et al. 
2020b).

The AOIs are constructed for each winter season 
during 1950–2099 by projecting the instantaneous 
SLP anomalies of the ensemble members onto the 
given (instantaneous) loading (SEOF) pattern. A rather 
straightforward step is to calculate the snapshot 
correlation coefficient r field between the AOI and the 
surface air temperature (TS) across the ensemble. In the 
left panel of Figure 2, the correlation map is shown for 
2025. Similar to the SLP regression map, the correlation 
map resembles the observed relationship between the 
AO and TS (Wallace and Gutzler 1981). Fitting a linear 
trend at each grid point to the time series of snapshot 
correlation coefficients, significant changes are evident in 
the strength of the teleconnections across the NH. Dots 
and crosses in the right panel of Figure 2 indicate regions 
where the snapshot correlation coefficients undergo 
significant changes over time, and may need to be taken 

into account in future seasonal prediction. These regions 
include, e.g., Alaska, the eastern part of the Pacific Ocean 
and Northern Europe where the negative correlations 
become more pronounced (the correlation coefficient 
decreases by 0.1–0.3 over 150 years), and a substantial 
positive trend can be found in the eastern part of Asia 
where the correlation coefficient increases from about 
0.6 to 0.8 over 150 years.

An illustrative example for SMCA: Atmosphere–sea ice 
coupling under different forcing scenarios

Next, we consider an example from a different season 
and study how the coupling between the summertime 
(June–July–August, JJA) Arctic atmospheric circulation and 
September sea ice variability might depend on future 
anthropogenic forcing (Ding et al. 2019). Concomitant 
patterns of high-pressure anomalies in the Arctic and 
enhanced sea ice melt has been previously shown in 
SMILEs (Topál et al. 2020), but there has been little focus 
on possible nonlinearities in the nature or strength of the 
coupling.

Figure 1. (left) December-January-February (DJF) mean sea level pressure (SLP) anomalies (hPa) 
regressed onto the first SEOF mode (explained variance is indicated in parenthesis) in 2025 based 
on the CESM-LE (RCP8.5 scenario). (right) Linear trend (10-3 hPa yr-1) in the SEOF SLP regression 
coefficients during 1950-2099 based on the CESM-LE under historical and RCP8.5 forcing. Dots 
represent geographical locations where the trend is significant at the 95% level. Crosses indicate 
where, in addition, the regression coefficients are significant at the 95% level in the temporal mean.
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To study the influence of external forcing on the coupling 
between the atmospheric circulation and sea ice, we 
calculate linear trends in all members of each of the 
three RCP scenarios in MPI-GE (Maher et al. 2019) over 
2020–2050 for both JJA 200-hPa geopotential height 
(Z200) and September sea ice concentration (SIC) within 
the Arctic (poleward of 60°N). Second, we remove the 
ensemble mean trend from each member, so the residual 
trends only reflect internal variability of the model over 
the 31 years. We then use SMCA between JJA Z200 and 
September SIC trend fields across all the members in a 
given scenario. The leading ensemble-based SMCA modes 
reflect the dominant coupled patterns of internally-
generated trends in Z200 and SIC. For comparison, we 
also calculate the September sea ice area (SIA) trends in 
each member. We note, that a similar approach, using 
ensemble member trend-based EOFs, has previously 
been presented in Wettstein and Deser (2014) to study 
co-variability of atmospheric circulation and sea ice.

The extent to which the SIA trends resemble the time 
expansion coefficients of SMCA in each member can 
be used to probe the degree of linearity in the coupling 
between Z200 and SIC in a given RCP scenario. In the case 

of the RCP4.5 scenario, nearly half 
of the members in the fast melting 
group (15% of the members with 
strongest sea ice melt) show 
identically strong sea ice melt 
despite the linear decrease in the 
time expansion coefficient series 
of the same members (Figure 
3d). Such a phenomenon is not 
observed under the RCP2.6 and 
8.5 scenarios (Figure 3a,g), which 
suggests that the coupling may 
exhibit stronger non-linearity 
under the RCP4.5 scenario. We 
also show that the spatial patterns 
of Z200 and SIC corresponding 
to the leading ensemble-based 
SMCA mode differs slightly 
between RCP4.5 and the two other 

forcing scenarios, indicating some role for the intensity of 
external forcing, which remains a subject of future work 
(Figure 3b-c, e-f, h-i). Interestingly, the shared fraction of 
co-variance between Z200 and SIC (indicated in the panel 
titles in Figure 3) are also slightly higher for the RCP4.5 
scenario compared to the other two. Regarding the 
physical mechanism behind the observed co-variability 
between atmospheric circulation and sea ice, we argue 
based on previous work (Ding et al. 2017; Baxter et al. 
2019) that an internal atmospheric process manifested as 
a high-pressure driven adiabatic warming (via regulating 
downward longwave radiation) can cause sea ice melt on 
top of the externally forced melting (Figures 3b-c, e-f, h-i). 
A more thorough discussion of this physical mechanism 
and its limited representation in SMILEs can be found in 
Topál et al. (2020).

Outlook

We have applied the mathematically well-established 
“snapshot view” based on dynamical systems theory 
to the analysis of SMILEs and reconsidered traditional 
methodologies to study possible future changes in 
internal variability. A future direction of the research 

Figure 2. (left) Ensemble-based snapshot correlation coefficient field between the Arctic 
Oscillation Index and surface air temperature in 2025 based on the CESM-LE (RCP8.5 scenario). 
(right) Linear trend (10-3 yr-1) in the snapshot correlation coefficient during 1950–2099 based 
on the CESM-LE under historical an RCP8.5 forcing. Dots represent geographical locations 
where the trend is significant at the 95% level. Crosses indicate where, in addition, the 
correlation coefficients are significant at the 95% level in the temporal mean.
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could be comparing SEOF results to observations. One 
might try a comparison using carefully chosen (but 
still subjective) multiple time windows centered to the 
instantaneous SEOF year to construct the relevant 
traditional EOF pattern using a single time series. 
However, this comparison is expected to yield similar 
results only if the external forcing does not change much 
within the chosen time window and, therefore, ergodicity 
approximately holds. Equally, it is to be noted that the 
ongoing climate change is not ergodic (Tél et al. 2019). 
As a consequence, the above-mentioned comparison 

can serve as a measure of the ergodicity as well. A crucial 
message of the snapshot view is that all of the traditional, 
time series-based methods can be reformulated for 
ensembles, which will be of use for the broader climate 
community. In this way, utilizing ensemble-based 
(snapshot) analyses of the available SMILEs, ambiguous 
results arising from subjective choices of traditional 
methods (e.g. length and center of time windows) can be 
avoided, the possible climate states at each time instant 
can be properly characterized, and forced changes in any 
ensemble-based quantity can be determined.

Figure 3. Snapshot maximum covariance analysis (SMCA) between June-July-August Z200 and September sea ice concentration (SIC) trends during 
2020–2050 in the three RCP scenarios (2.6, 4.5 and 8.5) from the MPI-GE. The bar plots on the left represent the normalized member loadings 
(orange bars: left y axis) of the leading SMCA mode and the corresponding members’ September total sea ice area (SIA) trends (blue bars: right y 
axis), arranged in ascending order of the SMCA loadings. The percentages represent the shared fraction of covariance between Z200 and SIC trends 
across each ensemble explained by the leading mode. Maps in the middle and right columns show the Z200 and SIC spatial patterns, respectively, 
of the leading SMCA mode for each scenario.
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